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1. INTRODUCTION

This paper considers exclusively linear time-invariant systems with the
configuration X(P,K) of Fig. 1, where the plant P has an output ¥ and a measured out-
put ¥,, and the controller K has two inputs: the exogeneous input v and the feedback
signal e,. This configuration is a slight extension of the standard one considered in
most textbooks and papers [Blo. 1, Cal. 1, Kai. 1, Per. 1, Ros. 1, Vid. 1, You. 1]. It is
simpler than that considered in [Net. 3]. Algebraic techniques are systematically used
in this paper [Des. 1, Des. 3, Des. 4, Net. 2, Vid. 1, Vid. 2]. The contribution of this work
lies in its more general configuration and its standardized proofs. For previous work on
decoupling, see |[Ham. 1] and the references therein. '

Six theorems address the crucial issues in the design of control systems: stability;
achievable 1/0 and D/O maps; achievable decoupled 1/0 maps; robustness of stability;
asymptotic tracking: necessary conditions; and sufficient conditions for (robust)
asymptotic tracking.

The following is a list of the commonly used symbols:

a := means a denotes b. Y, is the n-vector of zeros. W.l.o.g. means without loss of
generality. U.t.c. means under these conditions. If ; is a ring, then € ()
denotes the set of matrices having all entries in ; . @u_ denotes the proper
rational functions analytic in the region 2¢{ € C, a symmetric subset of C which con-

tains C, and ] = C, u {oo]. R(s) denotes the scalar rational functions in s with
real coefficients, and IR[s ] denotes the scalar polynomials in s with real coefficients.

Algebraic Structure: [Bou. 1, p. 55], [Jac. 1, p. 393], [Lang 1, p. 69].

A : A principal ring (principal ideal domain), i.e., an entire commutative ring in
which every ideal is principal (e.g., ceu ).

i : The field of fractions over A/ (e.g. R(s)).

j : A multiplicative subset of X . equivalently, f c ,z/ ,0¢ J 1 €fand
z,y €7 implies that Ty €/ (eg.f €f iff E“&L and f (=) = 1).

; =fn/d:n €& ,d Ef !, a subring ofg (e.g. Rp(s), the ring of
T

prope€r scalar rational functions).

)= X :m™! . its i e.g.,
it ?é(feu) anigtf(es)#ogralles}z ;atl;.egroup of units in % (e.g.. f € Z((JV)

g, ={x € ; : (1+zy)™! €§ VY E; } (Jacobson radical of; )

Four examples of this algebraic structure are given in [Des. 3, Table I].
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II. DESIGN THEORY

2.1. Problem Description

We consider the multi-input-multi-output (MIMO) linear, time-invariant system
Z(P,K) (3Z(P,K)) shown in Fig. 1 (Fig. 2). Given a plant P we wish to design a con-
troller X with two inputs and one output such that the resulting feedback system is
stable and K has elements in ; . We make the following assumptions on £(P ,.}(,):

Assumptions on the System Z(P,K)
® P= [f;;

with D, €4™™, N3, N €%™ ™ and detD,, € J .

Npr
€ ;2'"’“‘ has a right-coprime factorization (r.c.f.) |-- Dp;l
: m

PT

(X) xK € &™) pog a left-coprime factorization (Le.t.) D {Nm * .Nﬂj with
Dy E‘/n‘ ™, Nm Eﬁ/n‘m. Np €/6/u‘ ° and detD, € J ,
det (chDp-,- +Nlep",'f) € /

It is understood that the subsystems P and K, specified by their transfer functions,
do not have any unstable hidden modes [Cal 1 sec. 4.2].

Under assumptions (P) and (K) the system X(P,K) in Fig. 1 is completely
described by

i 2 S R :1 (1)
Da i NaNglls| [Nm P Npoio0 i Nl ]
: « .. yl ¢ . : . s . ... : V..
0 . N° [”]: v |+l 0 © o : Uy (2.2)
L T ° : S |
. “ s e m A : « o : .« . E . e d
| 0 Ng | O : 0 I o !_nm

Let u = (0T ululdN7, ¢:= (yIT,EPY)T. v = (Wl ylyI)T. Then equations
(2.1) and (2.2) are of the form

Dé = Nu (2.3)
Né=y + Eu (2.4)

where the matrices D, Nj, N,, E, defined in an obvious manner from (2.1) and (2.2),
have their elements in

For any D; €% ™™ and any N, € X/™™ ™, define
Dh. = Dchp‘r + Nlep"; . (2-5)

Note that det D = det D), and, by assumption (K), det D € / .

Definition 2.1. (W-stabﬂity ): _The system £(P,K) is said to be &/ -stable if and only
if Hyp, :u +» y satisfies Hyp, € & (&)
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Let assumptions (P) and (K) hold; then from equations (2.3) and (2.4) we obtain
Hn =N,D'N + E € €(8) . (2.6)

Definition 2.2 (Stabilizing Controller): The controller K is said to stabilize P if K
satisfies assumption (K) and the resulting system T(P,K) is A/ -stable.

Theorem 2.3 (& -stability)
Consider the system Z(P,K) where P satisfies (P), and K will be specified later.

(i) Let K satisfy (K). Then Z(P.K)is A -stable if and only if det D, € TUA ).

(ii) Let, in addition, P™ € % ? °m‘. where s .= Jacobson radical of . Then
zhere is a compensator K which stabilizes P if and only if (Npz.Dpr) is a righ -coprime
r.c.) pair.

Proof: (i) (=>) To prove that detly € 2L (ﬁ( ) , we first show that (D.Ny) is
left-coprime (Lc.) and (Ny,D) is r.c., where N, D, N are defined by (2.1)-(2.4).

Let LR € é (A4 ) be products of elementary row and column matrices, respec-
tively. Then_using Bezout identities it can be shown that (D) is Le. <=> (D,N,) is

lLc. where [D - N;]1=[D : N)[R]); similarly (N;,D) is r.c. <=> (N,,D) is r.c. where
N, N,

... =[L]}] - | By elementary column operations on [D: N;] of equation (2.3),
D D
we obtain
R o - 0 0 . 0 : In : O
D=|--- ¢t ..., Ny=|--- v oo 0 o000 (2.10)
Dy : O Nu Nfl 0 -Nﬂ
[ N,
By assumption (K), (D,N;) in (2.10) is L.c. By elementary row operations on |- - - | of
D
equations (2.3)and (2.4), we obtain
Ly ¢ 0]
E . s 0 . Dp‘r
N" = 4] E N;T , D - }... i . (2.11)
et 0 0
0 : Np

In view of assumption (P), equation (2.11) shows that, (N,.D)isr.c.

Now for a proof by contradiction, suppose that detD, & L (&) ; then
detD, =detD ¢ Z/((&/)- Hence, D' g (&) since _%&/ is a commutative ring
[Jac. 1, p. 94]. Using Bezout identities it is easy to show that, since (N,,D) are r.c.,
N.D'e & (#)<=>D"'¢€ & (% ). and that, since (D,N,) are Lc., N,D7!N, €
& (#) <=> N, D! € & (& ). Therefore, Hyp, = (N,D-IN,+E) ¢ & (&/), which
implies that I(P.K) is not & -stable. Since this is a contradiction, detD, €

A )- (<=) Since detD, € 2L (A/) eand detD = detD,. we have
(det D)™! € &/ , and D™! € & (A ). Consequently, Hyp = (N,D-IN;+E) € &
(&) and Z(P,K) is &/-stable.



(ii) $=>) For a proof by contradiction, suppose that the pair (Ng+,Dpy) is not
r.c. Then (Ng;.D, ')nhave a greatest-commop-right-divisor (gerd) R such that det & &
U(F ). Nt = Np¥R, Dgy = Dz R and (Ng7,Dp,) are r.c. Defining D, is an obvious
manner, we write

det D, = det[(Dy D,y + NpyNE)R] = det Dpdet R (2.16)

where detD, € &/ and (det R)™ ¢ A . Then deiD, & Z,é()ﬁ ), because if
detD, € 7/ (&), then from (2.18), (det R)~! = (det Dy) (det Dy -1 ¢ & , which
is a contradiction. Therefore, for all D, Ny, det Dy € 2£ (/). including those Da
and N;; for which K satisfies (K). Then by part (i), the system Z(P,K) is not & -stable
for all X which satisfy (K). In other words, there is no such K that stabilizes P.

(<=) By assumption, the pair (Np7,Dpr) is r.c.: hence, there exist U, Ver €

& (A ) such that
U Ngz + Ver Dy = In, (2.17)

As a compensator choose K := (Vg#) ™[Ny : UR], where Ny € € (¥) is arbitrary.
From (2.5) and (2.17), D, =] and gatD;, =1€ ().

It remains to show that det VI',," € _/ . For the chosen compensator, (2.5) implies
VD =1 - URNE: (2.18)
and taking determinants of both sides of (2.18) we obtain
det V7 = det(/ —Um N (det D, )™ (2.19)

By assumption, P™ € & (&) ; by the properties of the Jacobson radical gs. we have
PmD, =Nt e € (&) and URNR € % ¥ since Dy and Ug € E (A).
Using standard determinant expansion formulas, we see that det(/ —K’;-le"}) 4
and hence, [det(]—N_ﬂl\fp"}")]'1 € . Since detD_. € 7 ., equation (2.19) shows
that (det V;',‘.)'] € and hence. det V* € 7' . Thus, the compensator K chosen
above has all its elénents in ; and for this K, detD, € 2( (&) Therefore Z(P.K)
is A/ -stable.

II. ACHIEVABLE PERFORMANCE OF Z(P.K)

We now use the relationships between the stabilizing controller K and det Dy to
give global parametrizations of a) the family of all 1/0 maps possible for a given plant

with some stabilizing controller b) the family of all disturbance-to-output (D/0) mags
possible for a given plant with some stabilizing controller.

For a given system I(P,K) satisfying (P) and (K), and det Dy, # 0, equations (2.1)
and (2.2) show that the 1/0 map H, ,:¥ r Y and the D/0 map Hy,q :d b Yy are given
by:

Hy o = N5 D 'Ny (3.1)
Hv,d = g,.[f - Dh-le;Np",‘-'] = N;,’rD):IDchpr (3.2)

Definition 3.1 (Achievable Maps )

Let P be a given plant that satisfies assumption (P); hence the specification of the
controller K determines the system L(P,K). Roughly speaking, let #,,.(P) denote
the set of all achievable 1/0 maps of Z(P,K), and let%,d(}’) denote the set of all
achievable D/0 maps of L(P,K); more precisely,
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}evov (P) := {Hy, , :K stabilizes the given plant P} (3.3)
}e,,d(p) := {Hy,» : K stabilizes the given plant P} (3.4)

The following theorem characterizes all the achievable 1/0 maps and the achiev-
able D/0 maps for Z(P,K).

Normalization Assumption: Since by Theorem 2.3, K stabilizes P if and only if
detD, € U (X ). wetake w.lo.g.

Dy = In‘ ‘ (3.5)
whenever K stabilizes P [Vid. 2].

Theorem 3.2 (Achievable 170 Maps and Achievable D/0 Maps)

Consider the system ZEP,K of Fig. 1. Let P satisfy assumption (P) and let
(Ng#.Dpr) be ar.c. pair. Let ot Njt bealc.. of P™. Then

WH,» = INSQ:Q € H™™) (3.6)

equivalently, any map H, € ﬁ ™o XM is an achievable 1/0 map of the ﬁ -stable sys-
tem Z(P,K) if and only if H, = Np, @ for some @ € &/ Ty

(i) #,,a = (N3 [I - (UR+RDu)NR] = Ng- (Vi —RNG) Dpr -

R € N™™ st det(V-RNE) €7 } @7

where Vor. Ug,f. NZ. Dp, are as in (2.16); equivalently, any map Hy € A T s an
achievable D/O "map of the & -stable system Z(P,K) if and Lonly if
Hg = N3,[I - (UR+RDp)NR] = N (Vi—RNJ) Dpy for some R € & ™7 which
satisfies det(Vgz—RNg}) € 7 .

Comments: 1) In the case that Y, = ¥y, (ie., N3, = No? =: Np,) the set of achievable
1/0 maps and the set of achievable D/0O maps reduce to those in [Des. 3]:

Ao (P) = (N @: Q@ € K™}
Ha,(P) = I = Npp(UR+RDy): R € ¥™™ , and Riss.t. detDy €7}

where d, := N, d. 2) H, 4 by the L -zeros and the U-poles of the plant when /A=
@Z( . Y Z(P,K) is A -stable and if PF := PD !Ny is full normal rank in % . then

a)if 2, is a U-zero of Ng, (equivalently, 3 a # Y, such that a’Ng(2,) = Un,) then
a'N;,.(I-NﬂNp”',‘)(z,) - a'Hw,(z,) = 'l’m . (38)

b) if Np7 has full normal rank and if 2,, is a 2(- zero of Ng7 (equivalently, ELEXN
such that Ng2(2y, )8 = ¥,,) then

Ngr(I—Nlep’:)(zm)ﬁ = N;r(zm)ﬁ = Hy,d(zm)ﬁ . (3.9)
c) if p, is a &{ -pole of P (equivalently, 3 7 # ¥, such that Dgr (P, )7 = ¥p,) then
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N;rDchpr(po Yy = Hy,d ®o ) = 1911., (3.10)

Thus, whenever either N, or Ng has a A -zero or when P has a &-pole, the D/O
map is constrained by a vector-equality such as (3.8), (3.9) or (3.10) respectively.

Proof of Theorem 3.2: (=>) We are given P satisfying (P) and a controller K which
stabilizes P. Let H, be the 1/0 map and Hy be the D/0 map of this Z(P,K). We must

shovir that H, is of the form Ng, @ for some & e & ™™ and Hdr&'ﬁn‘?f the form
No.[I — (UT+RDy)NZ] = N (Vie—RNg})Dpy for some K Sy satisfying
Bvp-RRm € f T T R

Since K satisfies (K), Ny 61/7:”"" and by Theorem 2.3, det D, € LUA ). Let
Q := DN, = Ny then @ €%/™™ and by (3.1), Hy = Np Dy 'Nm = Nz Q-

Now from (2.5) and (3.5)

NIIN;;.I + Dchp‘r =4 (3.11)

Viewing (3.11) as a linear matrix equation in & (&), we solve for (D, Ny) subject to
detD,; € 7 so that Dg'Ny € ;n‘xn": since (Ng7,Dpr) is a r.c. pair, from (2.17) we
have

UR NG + VD = | (3.12)

and since NgDp;l = Dp_ll ot = P™, we have

Dy Ngr = Npi Dpr = 0 (3.13)

The pair (UZF, Vg7) is (8.12) is a particular solution to (Ng1,Dg) in (3.11) and the pair
(Dpl.—N;'f) is a particular solution to the homogeneous equation (3.13). Hence, any
general solution of (3.11) is given by

Nfl = Ump.r + RDP‘ (3.143)
Dy = Vgr — RNzt (3.14b)

We now show that K € é (& ). Since K satisfles (K), detD; € j : therefore
det(W,'}—RN;f) € 7 . Since (DPL,N;,?) are l.c., there exist ¥, Upn € & (A) such
that

Dpl ]/;,l + N;,;nUpl =17 (3.15)
Thus, . by (3.14a-b) and (3.15),
K= R(D #LV#+N":U#) = (N l_U;Tn)Vpl + (V;rrl—Dcl)Upl € E (z/) since
Nfl'Dcl'ﬁpr'Vp";- ptUpt € é(;r’)-

From (3.2) and (3.14a-b), Hg = Nesld = (U_,S',E-!-RDFI)N;';] = J‘:,’T(V”‘—RN;,?)DP,..
Thereforc the given H, and Hy are elements of the sets (3.8) and (B.T)F;‘espeggvely.
(<=) For some Q Ez/n‘xﬂ”, we are given H, = Ng,, and for some K B e
are given e = Ng [l - (U;;+RDP¢)NF’¢] = N5 (Vgr—RNgt) Dpr. where
det(V;.,"—RJV;?) € " We must show that there exists a compensator ?which stabil-

izes P and the 4 -stable Z(P,K) achieves the given H, and Hy.
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Choose the controller K := D[Ny : Nﬁl] with Ny and Dy as in (3.14a-b) and
Ny = Q. Clearly, Dy, Ny Ny € € (Z/). Note that det D € 7 is guaranteed by
the R that was chosen. Now, by (2.5)

D = (V~RND\Dpr + (UR+ RDp)NE

By (3.12) and (3.13), D, = I. Rewriting (3.16) as
(Vor=RN) Dgr + [@ : (Upp+RDG)]|- -+ -+~ =7,

we see that (Dy.[Ng ' Npl) are lLec., and this K satisfies (K). since detD, €
UK ). Z(P.K)is % -stagle by Theorem 2.3(i).

By (3.1) and with D, = I, we calculate the 1/0 map: Hy , = NgNpy = N;, @ = H,.
By (3.2), the D/O map is Hﬂod = N;,-[I "Nf;Np",t.] = N;r[f - (U;’:-+RDpl)Npmr =
Np;Dey Dpr = Npr (Ve —RNG!) Dpr = Hg.

Summary: Given the set up of Theorem 3.2 and in particular the Q and the R of (3.8)
and (3.7), the compensator that achieves the specified H, and Hy and that stabilizes P

is  given by the coprime factorization Dy = Vg7 = RN,
[N : Npl=1[Q: UR + RDy).

IV. DECOUPLING

In this section we characterize all diagonal 1/0 maps which can be achieved by
1$(P,K) for the given plant P. _

Lt P e & je,n,=n=n,K € ; nx2n and n, = n. Let assumption (P)
and (K) hold with these new dimensions.

Let ny €.Z/"™™ denote the k-th row of N3, € ™ ™. For k=1, ..., n, define 4
as a greatest common divisor (g.c.d.) over ¥ of the elements of 7y [Lang 1, p. 71].
Ay exists Since 4 Jsa princ}gal ring.. Then the row-vector 7i 4 is uniquely defined by

k =BTy and Ay, €FVR. Let N €& X% he defined as the matrix which has

T asitsk-throw,k =1, .., n. Then

N2, = diag (Apy,....Bpe... b )N G = 8, N2 (4.1)

Note that A; and N 2 are unique within unimodular factors. (In the case that A =

2¢ + O "book-keeps" the plant zeros in Z/{ that are common to all elements of the
k-th row of Ng,). A similar factorization is used in [Dat. 1].

The matrix, Np, is not ngeessarily invertible over /™. But by assumption (P)

and since det Nj, € %/ , (N2.)~! has elements in the field of fractions [F][F \

0]"! of the entire ring 4/ [ Lang 1, p. 69]. Let %‘EJ— denote the ij-th element of

(lvg,.)"l. ij=1,..,n wheremy;, d;; € A/ and mi, d.,;; are coprime; thus
(1'\7,5’,.)'1 =: [;&1— ,.j=1,..n . (4.2)

Forj=1, .... nJet AF- be a least common multiple (l.c.m.) of @;, d3;, ..., dn; of the j-
th column of (N g)~T{Lang 1, p. 72]. Define



Ap := diag (Agl,...,ARj,....ARn) g nxn (4.3)
Ap is unique within a unimodular factor.

Lemma 4.1: Let N5 and A be defined by (4.1) and (4.3). Then (Ng,)~'ap €&

f: Since Ap; is al.c.m. of (dij )i, we have t?.q € A suchthat Ap; = dy; 3.5,- fori
1, ., n. Then for ij = 1, .., n, the ijth element of

(Ng)™ag = ”—?—AR,- = my;d; € & by (4.2)

Definition 4.2 (Achievable diagonal 1/0 rap): Let P be a given plant that satisfies
assumption (P). Roughly speaking, let & g,v(P) denote the set of all achievable diago-
nal 1/0 maps of £(P,K); more precisely,

%VdQV(P) := {Hg', K stabilizes P and the resulting 1/0 map HE, is diagonal and
nonsingular.}

Theorem 4.3 (Achievable Diagonal 1/0 Maps)

Consider the system Z(P,K) of Fig. 1. Let P satisfy assumption (P) and let
(Ng#.Dpr) be r.c. Let D,,';‘N;;" be a l.c.f. of P™. Then

}( 3, o(P) = (A, 050y : Qs €EH™*™,with §; diagonal and nonsingular| (4.4)

equivalently, the map HZ € #™*" is an achivevable 1/0 miap of the J&/-stable system
2?P K if and only if H¢ = A Ap @ for some nonsingular, diagonal §; €% nxn,

Proof: (=>) We are given P satisfying (P) and K which stabilizes P. Let HS e /™"
be the diagonal I/0 map of this Z(P,K). We must show that H2 is of the form 4, Az @y
for some diagonal, nonsingular @y €%/ ™*".

Since £(P,K) is A/ -stable, we use (3.5). By (3.1) and (4.1), the diagonal matrix A
is obviously a left-factor of HZ. It remains to show that Hy has A Ap as a left-factor.
For a contradiction, suppose that Hg is of the form

HE=8,8,Q, (4.5)

where ZR is a proper factor of Ap, and @3 €™ " is nonsingular and diagonal.
W.l.o.g. suppose, for example, that

Br = diag (Bg1,....Agj-1.8Rj BRj+ 10 BRn) (4.8)
where, for a non-unit prime element §; € &/ [Lang. 1. p. 72},

Br; = 8;8; - (4.7)
Then by (3.1) and (4.5)

ALNE Ny =880 (4.8)

Since His a principal ring, we may cancel the nonsingular left-factor 4; and invert
N2, in (4.8) to obtain

Np = (N2 8rQa . (4.9)



By (4.2) and (4.8)

Ny = [%J—l . d‘iﬂg(AR],....ZRj,...,ARn) - Qg - (4.10)

n
Recalling that Ap; is by definition a l.c.m. of (d'”;la and by (4.7), for some i, we have
dij = 6jdij (4.11)
(o 4 ~ ~ . .
where dij € ﬁ/ is a factor of ARj; Le., thereisaCy eﬁ/ , possibly a unit, such that
~ Ny, '
ARJ' = dij Ci . (4.12)

Hence, with g; e denoting the j-th (non-zero) diagonal entry of some general non-
singular diagonal & €2/ ™", we obtain the ij-th element of Ny from (4.10), (4.11)
and (4.12) as

%L'gij g (4.13)

Since 0; & 2( (& ) and in general d; is not a factor of g;, (4.13) is not in /. There-
fore, except when the prime non-unit 6; is a factor of 9 Npy € Z/™, thus with Ny
as in (4.10), there is a diagonal, nonsingular @ €#*>" such that K does not satisfy
assumption (K). This contradicts the assumption that K stabilizes P. Therefore, HZ
must be an element of tﬂae set {(4.4). (<=) For some diagonal, nonsingular
Qy EA/™™, we are given HS = AL ApQy. We must show that there exists a compensa-
tor K which stabilizes P, and the %/ -stable Z(P,K) achieves the given HZ-

Choose the controller K := DNy Np ] with
Ny = (N5) "0 Qs (4.14)

where, by Lemma 4.1, Ny €A ™", and choose Ny, Dy as in (3.14a-b) with n; = 7,
To prove that this K satisfies (K) and that Z(P,K) is &/ -stable, one uses the same rea-
soning as in Theorem 3.2 (ii). Hence, we omit the proof.

By (3.1), (3.5) and (4.14) we calculate the diagonal 1/0 map as
Hy = N3 D7\ = A N3 (N 3) 0 Qs = AL Qy = HY
V. ROBUST STABILITY

The following robust stability theorem considers multiple perturbations (both
plant and compensator) for the system Z(P,K).

. the following, let T(P,K) denote the perturbed system where
= -1 - - _ .
P=| . |Da Np = N + aNg,., N = N3 + AN Dy = Dy + AD, and K is
Ngr
defined similarly. Assumptions (P) and (K) become (P) and (K) with all parameters
replaced by their perturbed versions.



Theorem 5.1 (Robust Stability)

Consider the system I(P,K) of Fig. 1, where P satisfies assumption (P) and X sta-
bilizes P. oLet. Dpy. Npr, I\g,? Let» Npi, Ny bg additively perturked by, respegtively,
A.Dp,-, ANW. ... ete., with etDp,. Ej. detDcl €j and det.(Dde,-l-NﬂN;,,."') €

(i) Let P and KX satjsfy.assumptions (ﬁ) and (k ). Then E(ﬁ K ) is A&/ -stable if
and only if det (Dchp,.“'Nngp",'.’) € Z{(W).

(ii) Let (7. |l) be a Banach algebra and B(0;r) denote the open ball in %P7
of radius r centered at zero where p and q are specified by the context. Let pgp > 0,
Pnp > 0, pac > 0, ppy > O be such that

"Dcl"pdp + “Nj’l"Pnp + “Dpr“pdc + “Npr "Pnf + PapPnc t PrpPny <1 . (5.1)
Utc. if ‘
AD,, € B(0:p4,) AD; € B(0pgc) = (5.2)

ANZ € B(0ipn,) and AN, € B(O;pnf‘)

then the perturbed system T(P,K) is A -stable.

Proof: (i) Same as the proof of Theorem 2.3(i), with all parameters replaced by the
perturbed versions. (i), The perturbed system Z(P.K f is 2 -stable if and only if
detD, € 2/ (R¢ ) <=>Dj! €§ ) where Dy, := Dy Dgr + Ny Ngz. By normaliza-
tion of the unperturbed system, J, = /. Then :

Dy = I + DyAD,, + NyANT: + AD, Dy + ANy N + AD,AD,, + ANy ANG

=I+R (5.3)

By (5.1) and (5.2), ||IRl| < 1: hence, (/+R)"! € & (%) [Rud. 1, Theorem 18.3]. There-
fore, D" € £ (

- /) and the conclusion follows.

L}
Comments: 1) Similar results may be obtained for the case in which a left-coprime
factorization (l.c.f.) of the plant P and a right-coprime factorization (r.c.f.) of the com-
pensator K are used. 2) In the lumped case, the sufficiency result (ii) allows changes in
the number and location of poles and zeros in both the stable and the unstable regions
of the plane: this allows the consideration of systems of different orders having
different number of unstable zeros and poles.

V1. ASYMPTOTIC TRACKING

For the tracking problem we consider the system Z(P,K) of Fig. 1 with n,, = 7.

Definition 8.1 (Class of Inputs): The class A of inputs to be tracked consists of vec-

tors a~lu where a € \Z[(Z/ and u € W ™ with the property that the vector u
is not a multiple of a. Consequently, the vector a™'u £ & (J&): the inputs to be
t.rac)ked are not stable time functions (typically steps, ramps, parabolas, sinusoids,
etc.).

Definition 8.2 (Asymptotic Tracking): The closed-loop system Z(P,K) is said to
asymptotically track the class Aif and onlyif v —y, € Z/ ". VvV € A.

Comments: 1) The function v — ¥y, is the tracking error: if the class & is suitably
chosen, v — Y, € &/ ™ implies that v(t) — Y, (t) > U, as ¢ » oo (e.g., ﬂ:@uwith
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U> C,). 2) Alternatively we could have used D;~! driven by u € A ™ as the gen-
erator of tracked signals, where (det D;)~! ¢ . With a defined as the largest invari-
ant factor of D;, using the discussion in [Vid. 1] it can be shown that there is no loss of
generality in adopting our definition as far as robust asymptotic tracking--to be pre-
cisely defined later—is concerned.

Theorem 8.3 {(Necessary Conditions)

- . 2n
Let P satisfy (P). Let K stabilize P and have a L.c.f. Dg'[Nm : Np] eEmMm,
w.lo.g let Dy = Ip. U.t.c. if the system I(P,K) asymptotically tracks the class A,

then

(i) ny = n, (6.1)
(ii) (NgeNm . al)isT.C. (6.2)

Comments: 1) By calculation, H, , = NgyNm € A ™*™_ Conclusion (ii) implies
that det H, , = det(N3,Ny) and a are coprime in A . 2) Let & =£a. If Z(P,K)
tracks the class A, the zeros off Ng, the zeros of Np, and the zeros of H, are dis-

joint from those of a. In particular, if N;,’,. and a have some common zeros in 2{ . there
exists no K such that (P, K) tracks A. |

Proof: Let u;/ a be an input to be tracked; thus, u; € A* ™. The transfer matrix
Hgy, 1wy & (V—y,) =: e, is given by

Hyy, = (I=Npp Ny )a™? - (8.3)

By assumption, H,‘ut € W "o X™ since asymptotic tracking is achieved.

(i) Suppose, for a proof by contradiction, that mn; <n,._ Then
Tk (N3, Ny) = min(rkNg, rkNy) < my <m,y. Thus, there exists 7 € ™ such
that [Bou. 1, Chap 1], sec. 8, Prop. 14]

(@)Ngr Ny = Uy, (6.42)

(b)7 is not a multiple of a . (6.4b)

If ¥ were a muiltiple of a, gay 7 =na“"; where k is the multiplicity of a as a factor of 7,
then Ngp Ny = ¥p,.and7 € Zr ° and a €Zy have no (non-trivial) common factors.
Apply the ilx\xﬁut v=aly alyg & () by (6.4b) above. Then
(I=NppNg)aly=a"ly ¢

e, =V —Y, = & (& ); which contradicts the assump-
tion that E(P,K ) asymptotically tracks the class A.

(ii) Since He,,, € )!'/n"xn’, let (]—N;,’,.N,n)a" =: M € £ (& ); equivalently,
NogpNyy + Ma =1 (8.5)

Hence, (N3 Ny ,al) is r.c. and since Ng,, Ny € & (%), (Ny.al) is also r.c. and
(al ,Ng;) is Le.

Theorem 8.4 (Robust asymptotic tracking: sufficient conditions)

Let P satisfy assumnption (P) and let N2D;! = DNt be a r.c.f. and a Lc.f,
respectively, of P™. Let K stabilize P and let D¢j Ny = N,,-D,,;1 be al.c.f. and ar.c.f,
respectively, of the feedback compensator.
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I) (Tracking)
If (i) NgzNgy = Ngp Ny = aN, for some N, €& ™™ and

(ii) D;r = aD, for some D, € Tho XM
then Z(P,K) tracks asymptotically the class A.

) (Robust Tracking)

~-et theg, plant P be perturbed to P and let the compensator K be perturbed o K.

let P and K bg described by similar coprime factorizations (i.e., all N's become N and
D's becomes D's) but a is not perturbed. U.t.c.

if (i) K stabilizes P,
(ii) ﬁp"‘,.ﬁﬂ - ﬁ,‘,’,ﬁ,ﬂ = aﬁc for some ]'\7,; EW""""’ and

(i) 5;,. = aﬁ‘c for some ﬁc € ™Mo

. ~n AN

then Z(P,K) tracks asymptotically the class A.

L J

Comments: 1) Condition (ii) of part I requires that 1/a appears in each input-channel
of the compensator: the internal model must contain each unstable factor of a, the
denominator of the signal generator. 2) Condition (i) of part 1 means that the
difference between the closed-loop gam U+ ym and the closed-loop gain v - Y, must
have a as a factor (if - N3 N,,; must have a blocking zero at each
7L -zero of a) for asym tot1c trackmg é) For 1S (P.C ; [Des. 3], condition (ii) of part I
becomes a tautology: F and Ny = Npy). 4) As long as the a-factor condi-
tions (ii) and (iii) of partf'are obeyed, any perturbation of the plant and of the com-
‘pensator however lm'ge they may be, robust asymptotic tracking will be maintained
provided that stability is maintained. 5) Condition (ii) of part I may not be minimal;
i.e., some factor @ of a may already exist in the plant and thus a-lD ot € & (H).
However. if (ii) is satisfied, then the internal model is present in the compensator and
thus allows the plant to be arbitrarily perturbed.

Proof of .  Since K stabilizes P, D, = I, asin (3.5). Similarly, we can set
DP;D" + N;?Nfr = In° (6.6)

From the properties of r.c.f. and l.c.f. we have

X 1 ]
[Dcl Nﬂ]wpr =Ny, _ In, O (6.7)
mDplm Der -0]"0
Dpr =Nge|[Da Np] i O (6.6)
NE Do |I-NE Du|T |0 kb
Using (8.8). H,,y, of (6.3) can be written as
G‘u‘ (D Dpl'*'Nmle -N3 N,,;)a" (6.9)

From (i) and (ii), we obtain Hg,y,, = D Dy + N; € E (Z/ ). Hence, L(P,K) asymp-
totically tracks the class A.
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Proof of II: . The.proqf of I can, be repeated word for word except that K's, P's, N's and
D's are now K's, P's, N's and D's, respectively.

[}
Conclusions: This paper presents an algebraic design theory for linear feedback sys-
tems. The results obtained rely on linearity and time-invariance, and important fac-
tors such as saturation and noise are ignored.

Research sponsored by the National Science Foundation Grant ECS-9119763.
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