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1. INTRODUCTION

This paper considers exclusively linear time-invariant systems with the
configuration 2 (P,K) of Fig. 1, where the plant P has an output y0 and a measured out
put ym and the controller K has two inputs: the exogeneous input v and the feedback
signal ej. This configuration is a slight extension of the standard one considered in
most textbooks and papers [Bio. 1, Cal. 1, Kai. 1, Per. 1, Ros. 1, Vid. 1, You. l]. It is
simpler than that considered in [Net. 3]. Algebraic techniques are systematically used
in this paper [Des. 1, Des. 3, Des. 4, Net. 2, Vid. 1. Vid. 2]. The contribution of this work
lies in its more general configuration and its standardized proofs. For previous work on
decoupling, see [Ham. 1] and the references therein.

Six theorems address the crucial issues in the design of control systems: stability;
achievable I/O and D/0 maps; achievable decoupled 1/0 maps; robustness of stability;
asymptotic tracking: necessary conditions; and sufficient conditions for (robust)
asymptotic tracking.

The following is a list of the commonly used symbols:
a := means a denotes b. i?n is the n-vector of zeros. W.Lo.g. means without loss of

generality. U.Lc. means under these conditions. If 6 is a ring, then & (§ )
denotes the set of matrices having all entries in £ - ^-ZjL denotes the proper
rational functions analytic in the region ZJL c C, a symmetric subset of C which con
tains C+ and "Ct = C+ u (ooj. TR(s) denotes the scalar rational functions in s with
real coefficients, and lR[s] denotes the scalar polynomials in s with real coefficients.

Algebraic Structure: [Bou. 1, p. 55], [Jac. 1, p. 393], [Lang 1. p. 69].
H : A principal ring (principal ideal domain), i.e., an entire commutative ring in

which every ideal is principal (e.g., 6£«/ )•

j£ : The field of fractions over %/ (e.g. B(s)).
j : Amultiplicative subset of 2/ . equivalently, j C J/ , 0 £J ,1 €/and

x,y e/ implies that zy e/ (e.g../ <Z j if/ € ft and/(«)=l).
£ := [n/d:n e^& , d E^/ j. a subring of £ (e.g. IRp(s), the ring of

proper scalar rational functions). ^

ZL{M)\-\m zZ/ :m"1 e7Z {.the group of units injV (e.g., / e 2/W)
if/ € <jJP and/ (s) * 0 for all s e £ ).

&S := \ x € lS : (1+xy)"1 E?,Vi/ E? J(Jacobson radical of E ).

Four examples of this algebraic structure are given in [Des. 3, Table I].
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n. design theory;

2.1. Problem Description

We consider the multi-input-multi-output (MIM0) linear, time-invariant system
Z(P,K) ^SCP./O) shown in Fig. 1 (Fig. 2). Given a plant P we wish to design a con
troller K with two inputs and one output such that the resulting feedback system is
stable and K has elements in 72 • We make the following assumptions on 2(P,a):
Assumptions on the System 2(P,K)

(p> p = pm G.Q ** has a right-coprime factorization (r.c.f.)

with D,,. e^"'xn<. A£., N£ %#">*"* and detD^ e f .

(K) K €. &"**<•"*+">'> has aleft-coprime factorizaUon (l.c.f.) Dc1y[N^ '• JV/t ]with
Dcl *Mn*xn<. * Nnl €^n'xn«. Nfl e^xn» and det£e« ey .

It is understood that the subsystems P and K, specified by their transfer functions,
do not have any unstable hidden modes [CaL 1 sec. 4.2].

Under assumptions (P) and (K) the system 2(P,K) in Fig. 1 is completely
described by

X • -D„
•

3/1 0 0 -'», ;

Dcl : NfiN£ .f". N„i : Nji o i

0
V

d

0

0

6>
= +

0

0

0

0

0

0

0
V

u2

0 '• *w. 0 0 0 • -N£
d

N°

p?
N£

(2.D

(2.2)

Let u := (vT,uf,u%,dT)T, £:= (yf,f/)r. y := (vLyo>Vm)T- ^^ equations
(2.1) and (2.2) are of the form

NrS = y + Eu

(2.3)

(2.4)

where the matrices D, NL, Nr, E, defined in an obvious manner from (2.1) and (2.2).
have their elements in

For any Dcl e& "**"• and any Nfl ej^7*4™0, define

Note that detD = detP^ and, by assumption (K), detZ? e y .

Definition 2.1. (^-stability): The system 2(P,K) is said to be ^-stable if and only
if Hyu :uwy satisfies Hy* e £ (Jt/ ).
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Let assumptions (P) and (K) hold; then from equations (2.3) and (2.4) we obtain

H^^NrD^Nt+Ezety • {26)
Definition 2.2 (Stabilizing Controller): The controller Kis said to stabilize P if K
satisfies assumption (K) and the resulting system E(F,A) is ^ -stable.

Theorem 2.3(^-stability)
Consider the system 2{P.K) where Psatisfies (P). and Kwill be specified later.
(i) Let Ksatisfy (K). Then Z(P,K) is #-stable if and only if det^ e ZUft )•
fiti Let in addition, Pm € £>***. where gs := Jacobson radical of f. Then

there * acompensator Kwhich stabilizes Pif ancfonly if ^.Dpr) is aright-coprime
(r.c.) pair.

Proof: (i) (=>) To prove that detZfc e 2l {&) . we first show that (D.Ni) *
ieft-coprime (Lc.) and (Nr,D) is r.c. where Nr, D, Nt are denned by (2.1)-(2.4).

Let L,R e £ (>V) be products of elementary row and column matrices,j-efipec-
tively Then using Bezout identities it can be shown that {D,Ni)js Lc. <=> {L>,Mi) »
Lc. where [S ' Nt] = [D -N{][E]i similarly (Nr,D) is r.c. <=> (Nr,D) is r.c. where

Nr
= U]

D

0

0

. By elementary column operations on [D \ Ni] of equation (2.3),

-D J-we obtain

D -

0

Da
. *l =

0

Nnl

0

Nfl

l*H 0

-Nfi

By assumption (K), (D,Nt) in (2.10) is Lc. By elementary row operations on

equations (2.3)and (2.4), we obtain

Nr = 0 N°

Nm
P7"

. B =

'pr

0

(2.10)

Nr

D

of

(2.11)

In view of assumption (P). equation (2.11) shows that, (NT,B) is r.c.
Now for a proof by contradiction, suppose that det Dh € cL{/J) \ then

detik =detZ? £ ZZ (<*/)• Hence, D"1 ft £ (jV) since J*' is acommutative ring
[Jac. 1. p. 94]. Using Bezout identities it is easy to show that since ^r,^; are r.c
N D'1 I £ W) <=> X?"1 e £ W). and that, since {D,Ni) are Lc NTD lNi e£(#)<=> NrD-* e g (*) ThVrefore. tf^ =WZT^+S) if 6 CV>. which
imnlies that ZIP K) is not JV -stable. Since this is a contradiction. detL^ exmphes that L^AJ u-~ 6 ^^ and det i? =det A, we have
(Vtoifl) »e y? . and P-1 €£($/)• ConsequenUy. H^ =(NrD *Nt+E) e £
0V) andS(P,iT) is ^-stable.
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(ii) (=>) For a proof by contradiction, suppose that the pair (Np^,Dpr) is not
r.c. Then (NS-Mvr) nave a greajtest-commoji-rigjit-divisor (gcrd) Rsucj? that deti? €
ULW)- Npr = NgR, Dpr = DprR and (Ng.Dpr) are r.c. Defining Dh is an obvious
manner, we write

detZ^ = det[(ZfciV + NflN£)R] = detDhdetR (2.16)

where detDh e 7/ and (det R)"1 € JV . Then de\JX Z LL{*t\ 5eycause *
deti^ e 7/ C?V). then from (2.16), (det J?)"1 = (det Dh) (det DK)~l e^V . which
is a contradiction. Therefore, for all Dci, Nfi, detDh £ U, (*f), including those Dci
and Nn for which Ksatisfies (K). Then bypart (i), the system 2(P,K) is not^/-stable
for all Kwhich satisfy (K). In other words, there is no such K that stabilizes P.
(<=) By assumption, the pair (N^.Dpr) is r.c; hence, there exist UpT> V-pr e
£(#) such that

UgN™ + VgDpr = /n, (2'17>

As a compensator choose K:= (le)"1!^ ! &£]. 7hefe ^irt eg"(^r/) is arbitrary.
From (2.5) and (2.17), ft, = / and det Z^ = 1 € ^(^/).

It remains to show that det VJ£ e JT : For the chosen compensator. (2.5) implies

VgDp,. =I - U£N£ (2-18>

and taking determinants ofboth sides of (2.18) we obtain

det 1JS =detU-UgNgHdet D^)'1 (2'19)

By assumption. Pm e £ (§s) \by the properties of the Jacobson radical j?,. we have
P-ZV =tf£ Eg (£ J and q^ € BsW ^> "ft ^ ^f <#>•
Using standard determinant expansion formulas, we see that aet^-^/i/VJ W
and hence. [deltf-tyi^S?)]-1 e^ . Since deta, £^ . equation (2.19) shows
that (det V™)'1 eg and hencefdetT^ e/ . Thus the compensator Kchosen
above has aff its elements in « and for this K detDh £ U &/)• Therefore Z(P,K)
is .^/-stable. * m

m. ACHIEVABLE PE3BTORMANCE OF S(P.K)

We now use the relationships between the stabilizing controUer Kand detDh to
give global parametrizations of a) the family of all I/O maps possible for a given plant
with some stabilizing controUer b) the family of all disturbance-to-output (D/0) maps
possible for a given plant with some stabilising controller.

For agiven system 2(P.tf) satisfying (P) and (K). and det fl, * 0 equations (2.1)
and (2.2) show that the 1/0 map HyoV :v t-> y and the D/0 map Hyod :d Hy are given
by:

Bikv =NSrKlN« (3,1)
HVod =N£ll " Dh-iNflN£\ =N^D^D^D^ <3-2>

Definition 3.1 (Achievable Haps )
Let P be a given plant that satisfies assumption (P); hence the specification of the

controUer Kdetermines the system £(F,K). Roughly speaking, let 9CVqV{P) denote
the set of aU achievable I/O maps of H(P.K), and let^ad(P) denote the set of all
achievable D/0 maps of Z(P,K)\ more precisely,
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?£yoV(P) := \Hy9V :Kstabilizes the given plant PJ (3.3)

j£y0d(P) := Wy9v' KstabiUzes the given plant Pj (3.4)

The foUowing theorem characterizes all the achievable I/O maps and the achiev
able D/O maps for 2(P,K).

Normalization Assumption: Since by Theorem 2.3, K stabilizes P if and only if
det D^ G \l (ft ). we take w.l.o.g.

Dh = I*. <3-5>
whenever K stabUizes P [Vid. 2].

Theorem 3.2 (Achievable I/O Maps and Achievable D/0 Maps)
Consider the system Z(P,K) of Fig. 1. Let P satisfy assumption (P) and let

(Ng.Dpr) be a r.c. pair. Let DfilNg be a Lc-f- of P™'• ^^

®XyoV =\N°rQ:Q eZT^l (3.6)

equivalently, any map Hv € ft noXnv is g^ achievable I/O map of the Jr-slable sys
tem Z(P,K) if and only if Hv = N^Q for some QGft 7liXTtv.

R G^71***0 s.t. det(V£-RNZft zf j

where VJ£, L2J, N^, Dw are as in (2.16); equivalently. any map Hd €ft n°X7H is an
achievable D/0 map of the M -stable system 2(P,K) if and only if
Hd = NSr[I - (US+RD^Ng] = N^Vg-RN&Dpr for some i? € yV "• "» which
satisfies det( V™ -RN$) ey .

Comments: 1)In the case that y0 = ym (i.e., Np\. = /^ =: Np,.) the set of achievable
I/O maps and the set of achievable D/0 maps reduce to those in [Des. 3]:

K.v{P)^\NwQ'Q Z&^l
flv^P) = {/ - Nprttty+RD^iR eX7**71' , and fl is s.t. det£ci e/ 1

where dp := Nprd. 2) -Hy^ by the 6^ -zeros and the c/-poles of the plant when -^V=
^„ . If Z(PtK) is ^ -stable and if PF := PDc1lNft is fuU normal rank in g. then
a) if z0 is a 2/-zero of NpT (equivalently, 3 a * i?^ such that a*Npr(z0) =1?^) then

aN^(I-NflN£)(z0) = a'#Vod(z0) = ^ . (3.8)

b) if i\5J has fuU normal rank and if zm is a d/-zero of Nl7}. (equivalently, 3 /S ^ i?n
such that N£(zm)p = tf^) then

Np\(I-NflN^)(zm)^ = tf°r(zm)0 = Hyod(zm)fl . (3.9)

c) if.p0 is a 2^ -pole of P (equivalently. 3 7 * tfn such that I^(p0 )y - t?^) then

-5-



NZr^Dprfa)? = HVod(Po)7 = *n0 <3-10)

Thus, whenever either NL or N£ has a 2^-zero or when Phas a H-pole, the D/0
map is constrained by a vector-equality such as (3.8). (3.9) or (3.10) respectively.

Proof of Theorem 3.2: (=>) We are given P satisfying (P) and a controller Kwhich
stabilizes P. Let Hv be the 1/0 map and Hd be the D/0 map of this S(P,A). We must
show that Hv is of the form NfrQ for some QE/V^ ^ and Hd is of the form
NSrll -(UZ+RDpl)Ng] = Npir(Vpr±-RNprl)npr for some R Gj*/ satisfying
det(*£-J%) G/ .

Since Ksatisfies (K), A^ G^71^ and by Theorem 2.3, detZ^ G U(A/). Let
« := AT1** = N*'. then « e^*1" and by (3.1). Hv =N^D^N* = N^Q.

Now from (2.5) and (3.5)

NnN™ + DclDpr = / (3.11)

Viewing (3.11) as a linear matrix equation in £ (-f). we solve for (Del>Nfl) subject todeti?cl Ey so that A^/fy e^"**"": since (A^.^pr) is ar.c. pair, from (2.17) we
have

i5»Ag. +i££pr =/ (3-12)

and since NgDp = DjN$ = Fm. we have

DpjJV™ - A^ =0 (3-13)
The pair (U£,V£) is (3.12) is a particular solution to (Nfl,Dcl) to (3.11) and the pair
(Dpt.-NJS) wa particular solution to the homogenemis equation (3.13). Hence, any
general solution of (3.11) is given by

Nfl=U£ +RDpi (3'Ua)
Dcl =V£-RN$ (314b)
We now show thatJ? 6 8 &)• Since Ksatisfies (K) detJb e / : »*•"*ore
det(T$£-#AJ?) ej/ • Since {Dpi,N^) are l.c„ there exist 1^,£/,j 6 & (JV) such
that

DplVpl+N$Upl = I
(3.15)

ty.

From (3.2) and (3.14a-b). Hd =A^/ - (I©+«il).{ffil =^^"^'Therefore the given ff„ and Hd are elements of the sets (3.6) and (3 ?f respectively.
/,,_•> ror some o e ;£n<Xn\ we are given Hv - NSr. and for some E S-X . we£e-) g\ve°n QL =^r[/ - {u£+BdJn?]Z N^V^-RN^D where
det(Vm-/?A"7) G7 . We must show that there exists a compensator Kwhich staon-
izes p'and the jV-stable £(P,K) achieves the given Hv and Hd.
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Choose the controUer K:= Dc1l[Nnl \ Nfi] with Nji and Dcijas in (3.14a-b) and
^=9. Clearly. Dcl,Nnl,Nfl * £ (J/)- Note that detDcl EJ is guaranteed by
the R that was chosen. Now, by (2.5)

Dh = (VZr-RN&Dpr + (UZ+RD^Ng

By (3.12) and (3.13). Dh = I. Rewriting (3.16) as

^xn*

(V£-RN$)Dj,r + [Q i (U£+RDpl)]
NZ

= / .

we see that (Dci,[Nni '• Nfl]) are I.e.. and this K satisfies (K). since detDh G
ZMft). Z(P,K) is ^-stable by Theorem 2.3(i).

By (3.1) and with Dh = /. we calculate the 1/0 map: Hy<)V = N^N^ = N^Q = Hv.
By (3.2). the D/0 map is HVod =N^[I - NflN™] =N°rV " (U^-rRD^N^] =
N^D^Dpr = N^Vg-RNZftDpr = i/d.

Summary: Given the set up ofTheorem 3.2 and in particular the Qand the Rof (3.6)
and (3.7). the compensator that achieves the specified Hv and Hd and that stabilizes P
is given by the coprime factorization Dci = T^r "~ RNpi,
[Nm \ Nfi] = [Q \ U™ + RDpL].

W. DECOUPLING

In this section we characterize all diagonal I/O maps which can be achieved by
l2(P,K) for the given plant P.

Let P Gig2**71; i.e., t^ = 71* =n, K ep nx2n and n„ =n. Let assumption (P)
and (K) hold with these new dimensions.

Let Tipfc G^lxn denote the k-th row of Np\. G#nXn. For k = 1 n, define A^
as a greatest common divisor (g.c.d.) over^V of the elements of npk [Lang 1. p. 71].
A/* exists sinceft is a principal ring^Then the row-vector npk is uniquely defined by
npk = bucKpk and n^ GJV • Let N^ eft71*71 be defined as the matrix which has
Tipk as its k-th row. k = 1 n. Then

fifr = diag(bL1 L& ALn)/\fc =: bLN*r . (4.1)

Note that A^ and Npr are unique within unimpduiar factors. (In the case that -^7 =
tf^-ZC • Ate "book-keeps" the plant zeros in 22 that are common to all elements of the
k-th row ofNpr). Asimilar factorization is used in[Dat. 1].

The matrix^N£r is not nejeessarily invertible over^71*71. But by assumption (P)
and since det N^ Gft , (N^)'1 has elements in the field of fractions [ft] [ft \
0]"1 of the entire ring ft [ Lang 1. p. 69]. Let —r*— denote the ij-th element of
(Npr)"1, i.j =1 n. where m^, dy- Gft and m^-, dy- are coprime: thus

W1 =
TTLi-

<ki
, ij = 1 n . (4.2)

For j = 1 n^Jet Ad* be a least common multiple (l.c.m.) of d^, d2j d^j of the j-
th column of (N^)"1 "[Lang 1, p. 72]. Define
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bR:=diag(*Ri AjWi...,AAl) e nXn (4.3)

A# is unique within a unimodular factor.

Lemma 4.1: Let Np\. and A# be defined by (4.1) and (4.3). Then (N^)'1^ ej?71*71.

Proof: Since A/y is a Lc.m. of (dy )£-!, we have dy Gft such that A/y = dy dy- for i
= 1, .... n. Then, for i,j = 1 n, the ij-th element of

(tfjr)"1** =^f-Ajy =mydy- G^ by (4.2)
Definition 4.2 (Achievable diagonal I/O map): Let P be a given plant that satisfies
assumption (P). Roughly speaking, let^f^„(P) denote the set of all achievable diago
nal I/O maps of Z(P,K); more precisely,

}Cy9v(P) := \H*-V Kstabilizes Pand the resulting I/O map #£v is diagonal and
nonsingular.}

Theorem 4.3 (Achievable Diagonal I/O Haps)
Consider the system Z(P,K) of Fig. 1. Let P satisfy assumption (P) and let

(Npr-.Dpr) be r.c. Let Df^Np? be alcf. of Pm. Then

tfkv(P) = \^L^RQd 'Qd G#nxn,with Qd diagonal and nonsingular! (4.4)

equivalently, the map H$ Gj/nXn is an achivevable I/O niap of the^-stable system
Z{P,K) if and only if H$ = ^L^RQd for some nonsingular, diagonal Qd e&

Proof: (=>) We are given Psatisfying (P) and Kwhich stabilizes P. Let H$ *-ftnX™
be the diagonal I/O map of this Z(P,K). We must show that H* is of the form A/, A/? Qd
for some diagonal, nonsingular Qd e#nXn.

Since X(P,K) is^V-stable, we use (3.5). By (3.1) and (4.1). the diagonal matrix AL
is obviously a left-factor of H$. It remains to show that H* has A^A/? as a left-factor.
For a contradiction, suppose that Hy is of the form

H$ = LLlRQd <4'5)

where A* is a proper factor of A*, and Qd ej/nxn is nonsingular and diagonal.
W.Lo.g. suppose, for example, that

A* =diag(LR1 A/y-_1,Ai?<7-,Afl;+1,...,Aj&l) (4-6)

where, for anon-unit prime element 6j eft [Lang. 1, p. 72],

4*=«,2*. (47)
Then by (3.1) and (4.5)

*LN°rNrt =*iARQd (48)

Since ^ is a principal ring, we may cancel the nonsingular left-factor AL and invert
Np\. in (4.8) to obtain

-8-



By (4.2) and (4.6)

** = UhL
4* I

ding(bRl A^-.-.-.A^) • Qd (4.10)

Recalling that A^- is by definition a l.c.m. of (dy- ) and by (4.7). for some i. we have

dy=<5idy (4.H)

where dy- eft is afactor of A/$; Le.. there is aCy- G^, possibly aunit, such that

la, =Mv • <412>

Hence, with g.- G-^ denoting the j-th (non-zero) diagonal entry of some general non-
singular diagonal Qd eftnXn, we obtain the ij-th element of N^ from (4.10), (4.11)
and (4.12) as

(4.13)

Since 6j g 2JL (J/) and in general 6j is not afactor of qjt (4.13) is not in j£/. There
fore, except when the prime non-unit <5;- is a factor of Qj, Nni £ftnXn, thus with N„i
as in (4.10), there is a diagonal, nonsingular Qd e/p'X7i such that K does not satisfy
assumption (K). This contradicts the assumption that K stabilizes P. Therefore, Hv
must be an element of the set (4.4). (<=) For some diagonal, nonsingular
Qd e^/7lXn. we are given H$ = &L&RQd- We must show that there exists a compensa
tor Kwhich stabilizes P, and the^-stable H(P,K) achieves the given Hy.

Choose the controller K := D^l\Nvi ; Nfi] with

Jv\* := (Nirr^RQd (4.14)

where, by Lemma 4.1. N„L G#nXn, and choose Nfi, Dci as in (3.14a-b) with th =n0.
To prove that this Ksatisfies (K) and that Z(P.K) is .Tf-stable, one uses the same rea
soning as in Theorem 3.2 (ii). Hence, we omit the proof.

By (3.1), (3.5) and (4.14) we calculate the diagonal I/O map as

HLV = N^Dh'Nvi =IlNUN')-1*^ =ALLRQd = Hi .'yzv * wpr

V. ROBUST STABILITY

The following robust stability theorem considers multiple perturbations (both
plant and compensator) for the system Z(P,K).

In the following, let Z(P ,K) denote the perruroed system where
Ni\

P = D£ ,N£r = N°+ AW" N£ = N£+ A7V£. Dvr = D- + AZLr and K is
pr pr 'pr

** pr
defined similarly. Assumptions (P) and (K) become (P) and (K) with all parameters
replaced by their perturbed versions.
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Theorem 5.1 (Robust Stability)
Consider the system Z(P,K) of Fig. 1. where P satisfies assumption (P) and K sta

bilizes P. Let Dpr, Np\.t N™, Qclt Nfi, N^ bjg additively perturbed^y. respectively,
ADpr, AA£., ... etc.. with detZ?^ e/, det£ct e J and det(DclDpr+NfiN£) e

y-
(i) Let P,anqJ? sajtjsfy^assumptions (P) and (K). Then Z(P,K) is ^-stable if

and only ifdet(D^Dpr+NfiNp7}:) G& (ft).
(ii) Let (ft t ||-||) be a Banach algebra and B(0;r) denote the open ball in>VpX<?

of radius r centered at zero where p and q are specified by the context. Let pjp > 0,
Pnp > 0, pdc > 0, pnf > 0 be such that

IU?cillPdp + \\Nfi\\Pnp + lUVllPdc + WNprWPnf +PdpPnc +PnpPnf < 1 • (5.1)

U.tc. if

LDpr e B(0\Pdp) ,LDQi e B(^Pdc) , ~ (5.2)

LN™ e B(0'tpnp) .and LNfi e B(0\pnf)

then the perturbed system E(P,Aj is 7i -stable.

Proof; (i) Same as the proof ofTheorem 2.3(i), witbuallparameters replaced by the
perturbed versions. (ii)L The perturbed system ZLPJf) is <y-stable if and only if
detDh e 2lW)<=> Dhl ^ £<&) wAere Dh := DQiDpr + NfiN™. By normaliza
tion of the unperturbed system, Dh - /• Then

Dh = / + DciLDpr + Nfi&N™ + tJ)ciDpr +Atf^ +AI^Ai^. + A^AJV™

By (54.) and (5.2), ||R|| < 1: hence, (I+R)'1 G E#/) [Rud. 1, Theorem 18.3]. There
fore, D^1 G£" (^) and the conclusion follows.

Comments: 1) Similar results may be obtained for the case in which a left-coprime
factorization (l.c.f.) of the plant P and a right-coprime factorization (r.c.f.) of the com
pensator K are used. 2) In the lumped case, the sufficiency result (ii) allows changes in
the number and location of poles and zeros in both the stable and the unstable regions
of the plane: this allows the consideration of systems of different orders having
different number of unstable zeros and poles.

VI. ASYMPTOTIC TRACKING

For the tracking problemwe consider the system Z(P,K) of Fig. 1withUy = n^.

Definition 8.1 (Class of Inputs): The class A of inputs to be tracked consists of vec
tors a'yu where a Gj\(j(ft) and u Gft n°, with the property that the vector u
is not a multiple of a. Consequently, the vector a~lu £ £ (ft): the inputs to be
tracked are not stable time functions (typically steps, ramps, parabolas, sinusoids,
etc.).
Definition 6.2 (Asymptotic Tracking): The closed-loop system H(P,K) is said to
asymptotically track the class Aif and only if v -y0 G ftn,\/ v G A.

Comments: l) The function v - y0 is the tracking error: if the class ft is suitably
chosen, v - y0 eft71 implies that v(t) - y0(t) -• tfn as t -* oo (e.g.. ^/=^^with
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ZlD C+). 2) Alternatively we could have used Dt~l driven by u eft 'as the gen
erator of tracked signals, where (det Dt)~l £ &. With a defined as the largest invari
ant factor of Dt, using the discussion in [Vid. l] it can be shown that there is no loss of
generality in adopting our definition as far as robust asymptotic tracking-to be pre
cisely defined later—is concerned.

Theorem 8.3 (Necessary Conditions)
Let P satisfy (P). Let Kstabilize P and have a Lc.f. D^N^ \Nfl] eg"**2"0;

w.Lo.g. let Dh = Int- U.t.c. if the system Z(P,K) asymptotically tracks the class A.
then

(i) 71* ;> Tic (6.1)

(ii) (NSrN* , al) is r.c. (6.2)

Comments: 1) By calculation, HVoV =N^N^i eft n°XTh. Conclusion (ii) implies
that detHyoV = de^N^N^) and a are coprime in ft. 2) Let ft =&zt* If E(F,/0
tracks the class A, the zeros off N£r, the zeros of N^, and the zeros of HVzV are dis
joint from those of a. In particular, if Npr and a have some common zeros in 2/. there
exists no K such that Z(P,K) tracks A.

Proof: Let i^/a be an input to be tracked; thus, ix* Gft n°. The transfer matrix
H9iut :ut» (v-y0)=:et is given by

#•.«, = (I-N^N^a-1 ' (6.3)

By assumption, HBtUt eftn°xn° since asymptotic tracking is achieved.
(i) Suppose, for a proof by contradiction, that n^ <n0. Then

rk(NSrNni) ss min(rkNp\.,rkNnl) ^ ni<n9. Thus, there exists y G ftn° such
that [Bou. 1. Chap HI, sec. 8, Prop. 14]

MN^N^y = Uno (6.4a)

(6 )y is not a multiple of a . (6.4b)
If 7 were a multiple of a, sjiy y = cry where k is the multiplicity of a as a factor of y,
then NprNniy = i?no, and y eftn° and a e3/ have no (non-trivial) common factors.

Apply the input v = oTly\ a~ly & £ (#) by (6.4b) above. Then
et = v ~~ Vp = (I—NprNn^a^y = oTly £ £ (JC/ ); which contradicts the assump
tion that H\PtK) asymptotically tracks the class A.

(ii) Since H9tUi e ft^X7X-', let (I-N^N^a"1 =: M e £ (ft ); equivalently.

N^Nrt + U a = / (6.5)

Hence. (NLNni,aI) is r.c. and since NX,., Nni e £(X/), (N^.al) is also r.c. and
(aAAJ.) is Lc.

•

Theorem 6.4 (Robust asymptotic tracking: sufficient conditions)
Let P satisfy assumption (P) and let JVJ?/?—1 = Dp^}Npi be a r.c.f. and a Lc.f.,

respectively, of Pm. Let Kstabilize P and let D^Nfi = NfTD^ be a Lc.f. and a r.c.f.,
respectively, of the feedback compensator.
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I) (Tracking)

// (i) N^Nfi - N^Nrt = aNc for some Nc eft71**7* and

(ii) Dn = a£c for some Dc eftn°Xn°
thenE(PtK) tracks asymptotically the class A.

II) (Robust Tracking)
Jjet thfe plant P be perturbed to P and let the compensator K be perturbed 4,0 K:

let P and K be described by similar coprime factorizations (Le., all N's become N and
D's becomes D's) but a is not perturbed. U.t.c.

if (i) K stabilizes P,

(ii) NpTlNfi - NZrNm = <xNc for some Nc e ft71*^ and

(iii) Dcr = a^c for some Dc eft71**"9

then l(P,K) tracks asymptotically the class A.
•

Comments: 1) Condition (ii) of part I requires that l/ot appears in each input-channel
of the compensator: the internal model must contain each unstable factor of a, the
denominator of the signal generator. 2) Condition (i) of part I means that the
difference between the closed-loop gain Uj t-* ym and the closed-loop gain v h* y0 must
have a as a factor (if ft =&11 , Npr-Nn —NirN^ must have a blocking zero at each
££-zero of a) for asymptotic tracking. 3) For *S(P,C), [Des. 3], condition (ii) of part I
becomes a tautology: (N%r = N^ and Nfi = Nni). 4) As long as the a-factor condi
tions (ii) and (iii) of part II are obeyed, any perturbation of the plant and of the com
pensator however large they may be, robust asymptotic tracking will be maintained
provided that stability is maintained. 5) Condition (ii) of part I may not be minimal:
i.e., some factor a of a may already exist in the plant and thus a"lDpi G £ (3/).
However, if (ii) is satisfied, then the internal model is present in the compensator and
thus allows the plant to be arbitrarily perturbed.

Proof of I: Since Kstabilizes P, Dh = /^ as in (3.5). Similarly, we can set

DpiDCT + NgNfr = 1^

From the properties of r.c.f. and Lc.f. we have

Dpr ~NfT
\N£ D„

N™. D,cr

4, 0

0 In,

Dcl Nfl In, 0'
-Npl D#. ,° In-

Using (8.8). Hf.u, °f (6-3) can be written as

H9tUt = (DcrDpi+NgNfi-NlrN^a-1

(6.6)

(6.7)

(6.B)

(6.9)

From (i) and (ii), we obtain HBtUt =DcDpi +Nc e £ (J/). Hence, Z(P,K) asymp
totically tracks the class A.
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Proof of H: ^Theuproot of I can^be repeated word for word except that ICs, P's. N's and
D's are now K's,P's, JV's and .D's, respectively.

•

Conclusions: This paper presents an algebraic design theory for linear feedback sys
tems. The results obtained rely on linearity and time-invariance, and important fac
tors such as saturation and noise are ignored.
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