Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TRIGGERS AND INFERENCE IN

DATA BASE SYSTEMS

by

M. Stonebraker

Memorandum No. UCB/ERL M85/46

28 May 1985

TRIGGERS AND INFERENCE LN
DATA BASE SYSTEMS

by

M. Stonebraker

Memorandum No. UCB/ERL M85/46
28 May 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

TRIGGERS AND INFERENCE IN DATA BASE SY STEMS

Michael Stonebraker
University of California
Berkeley, Ca.

Abstract

There is a collection of data base applications (such as real time control)
which may be best accomplished using collections of triggers. The paradigm in
which an initial action recursively triggers dependent actions is often called for-
ward chaining. In addition, data base support for large knowledge bases requires
at least a simple inferencing capability. When a retrieve command cannot be
satisfied using only stored data, a data manager must determine if a rule in the
knowledge base can be used to reformulate the query. In this way, one works
from the desired data toward data base facts which must be ascertained using
backward chaining. : -

In this paper we show how forward chaining and backward chaining can-both
be supported by simple extensions to a relational query language. Moreover, we
demonstrate extensions to a conventional lock manager which will efficiently
gnplegxeegt the new constructs. Lastly, the extensions to support backtracking are

escri

1. INTRODUCTION

In real timé control applications such as power (plant monitoring and control
of sonar systems, a collection of sensors periodically (or continuously) present data
to a data base system. When certain data patterns are sighted, appropriate actions
must be taken. For example, if the flow of coolant past a given sensor falls below
a certain value, then an auxiliary pump should be activated. One way to imple-
ment such applications is through a collection of trigger [ESWA75] or alerters
[BUNE79]. In business data processing applications, triggers may rovide a useful
mechanism for propagating updates to dependent (or replicated) data elements.
(However, there are many who dispute this point of view).

In a trigger driven application an initial update to the data base will cause
dependent updates, which may recursively cause further updates. This forward
chaining process quiesces when there are no new dependent triggers.

Conventional data base management systems (DBMS) are useful for efficiently
storing large quantities of rigidly f ormatted data. However, when DBMS’s are
applied in applications containing both large amounts of data and " knowledge,”
they usually fail to provide facilities to manage the knowledge-based portion.
ﬁxugplic?t%ohnsfwhich have a knowledge base generally require the capability to store

es of the form:

if (condition) then (result)

For example:

if a person is a manager
then he has a key to the executive lounge

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 83-0254
and the Naval Electronics Systems Command Contract N39-82-C-0238.

Moteover, such applications require automatic inference on the rules in the
knowledge base. For example, if a user asks:

Does John has a key to the executive lounge?

then the data manger must detect that the information is not stored in the data
base, that there is an appropriate rule to consuit, and that the desired query is:

Is John a manager?

The process whereby a desired retrieval iteratively causes auxiliary retrievals until
one yields an appropriate result is called backward chaining, and is the basic con-
trol “tactic used in Prolog [CLOC8 1] and many other artifical intelligence (AD
languages.

When multiple rules can be applied, then backtracking is often a useful
feature. Suppose there is an additional rule: -

if a person is disabled :
then he has a key to the executive lounge

If John is not a manager, the sg'stem should backtrack to determine whether John
is disabled. Backtracking on ailure is a common control tactic in Al languages,
and can be applied in both forward chaining and backward chaining systems.

In this paper simple extensions to a relational query language QUEL
[STON76] are proposed to support the storage of rules and both forward and back-
ward chaining as control strategies. Moreover, simple extensions to a lock manager
to eficiently implement the language proposals are suggested. Section 2 treats for-
ward chaining and {ts proposed locking implementation, while Section 3 discusses
backward chaining. Then, Section 4 indicates how to extend both facilities to sup-
port backtracking, while Section 5 presents two alternative locking systems which
can support the necessary locking constructs. In the mext section the proposed

mechanisms are contrasted with a alternate implementation tactic based on views.
Lastly, Section 7 contains some concluding remarks.

Even though the context for our proposal is the data sublanguage QUEL and
the INGRES data base system, the ideas can be easily used in any relational DBMS
with minor modifications. Although an expert system example might be a more
appropriate vehicle for illustrating our constructs, in the interest of simplicity and
brevity the standard EMP relation:

EMP (name, salary, age, dept, manager)

will be used instead. Other work on coupling knowledge bases and data bases is
described in [BROD84, CHANS4, JARKS4, 4, SCIO84, WARRS81].

2. A PROPOSAL FOR TRIGGERS
2.1. Language Constructs

A QUEL command such as:
range of E is EMP
Tace EMP (salary = E.salary)
where EMP.name = " "
and E.name = "Bill®

will set Mike’s salary equal to that of Bill. The command can be rerun at any time
to reperform the replacement.

In order to turn a QUEL command into a trigger, it must logically execute
indefinitely. We propose the following syntax:

range of E is EMP
replace ALWAYS EMP (salary = E.salary)

2

where EMP.name = "Mike"
and E.name = "Bill"

This command sets Mike’s salary equal to Bill’s salary, and then logically contin-
ues to execute indefinitely. Hence, whenever Bill's salary is changed, the new
value will immediately propagate to Mike’s salary. Using this feature, any QUEL
operation, postpended with ALWAYS, becomes a trigger.

2.2. Support For Triggers

Any ALWAYS command can be processed with the assistance of a special
kind of lock, called a "trigger-me" lock (T lock). The compatibility between T
locks and normal read and write locks is specified in the following table:

| R W _ T
R ok no ok
W | no no ##
T ok no ok

An ALWAYS command is executed repeatedly by the user’s INGRES dprocess until
it no longer has an effect. Then, INGRES reexecutes the command, and sets T locks
on all the data base objects read or written by the command (i.e. all the objects
satisfying the where clause). Then the command is placed in a relation:

DORMANT (t-id, quel-command,. user) :

When a user U, submits an INGRES command which -attempts to write an object
on which a T lock is held (case ## above), U’s INGRES process obtains the
.. requested lock and continues processing. In parallel the lock manager releases all T

locks held by the command in the DORMANT relation and activates it using the
stored user-id to achieve access control. The only required DBMS facility is the
~ ability to submit a QUEL command from inside the lock manager.

All commands which hold a T lock on the object written by the user com-
mand are awakened. In this way, the DBMS performs a (logically parallel)
breadth-first exploration of tree of dependent commands. Section 4 will present an
alternate exploration method using a depth-first search and backtracking.

Triggers can be canceled by running an INGRES delete command on the DOR-
MANT relation. At this time, all T loc held by the command must be removed.
Alternatively, one could extend QUEL with a CANCEL command as follows:

CANCEL trigger-id

In this case, the user must be informed of the trigger-id for later use in a CANCEL
command.

Of course, T locks must be persistent, i.e. survive crashes of the hardware or
DBMS. Moreover, very fine granularity locks (on records or even on fields of
records) will be helpful in avoiding unnecessary "wake-ups" of triggers caused by
updating some other object inside a lockable granule. In addition, lock escalation is
desirable to prevent triggers which read many data elements from setting an enor-
mous number of fine granularity locks. The locking system must also be carefully
desi%ned to deal correctly with "Qhantoms." For example, the insertion of a new
employee with a name equal to Mike® must cause the example ALWAYS com-
mand to be awakened. Section 5 presents two implementation alternatives which
satisfy these goals.

The above facilities will set Mike’s salary equal to Bill’s whenever Bill's
salary is changed, and in addition, if Mike’s salary is inadvertantly changed, it is
immediately reset to Bill's value. In some circumstances one might not want a
direct update to Mike’s salary to be undone in this fashion. Such an effect can be
accomplished by a different modifier on QUEL commands (e.g. WEAKLY) and
trigger-me locks which are held on objects which are read but not written.

Unfortunately, the phantom problem appears difficult to solve with WEAKLY
commands. :

The above trigger system is based primarily on QUEL, and requires no Dew
syntax or query processing extensions. Also, it is as efficient as the fineness of lock
granularity of the locki%§ system. Moreover, only modest changes are required to
a DBMS to support ALWAYS commands and T locks. Lastly, no theorem prover
or exotic data structures are required to identify which commands to trigger; the
lock manager simply identifies W-T lock conflicts.

ALWAYS commands support one form of inferencing. For example, a data
base update can trigger a command in the DORMANT relation. This awakened
command can trigger a third, and so forth. This forward chaining will stop when
no new triggers are awakened by active commands. In this way, one can find all
consequences of a cular update. However, the above mechanism is not able to
perform bac chaining from a desired goal to a set of facts. The mechanism
in the next section supports this alternate construct.

3. BACKWARD CHAINING

3.1. Language Constructs
Consider another modifier to QUEL commands, DEMAND. For example,

range of E is EMP

replace DEMAND EMP (hair = E.hair)
where E.name = "Bill”

and EMP.name = "Mike"

The normal meaning of this command is to make Mike's hair color the same as
Bill’s. However, D commands are not directly executed; rather, a form of
*lazy evaluation” is used. When someone reguests the hair color of Mike, he is
made aware of the effect of the DEMAND command in a way 1o be described.
DEMAND commands are called "lazy triggers,” and require a slight modification 10
the relational model.

A pormal relation.consists of tuples, each with a collection of stored fields. In
the EMP relation these are name, salary, age, dept, and manager. In addition, lazy
trigtg:rs can provide data values for columns which are not stored (e.g. hair color
in the EMP relation). Hence, each tuple in a relation has a collection of stored
fields and a collection of fields with values provided by lazy triggers. Lazy triggers
need not provide a value for a given field for each tuple in a relation. Conse-
quently, the unstored field can vary from tuple to tuple. One view of lazy triggers
is as a means of extending a relation with new fields which have values only for a
subset of the tupies.

3.2. Support for DEMAND Comma.ncis
A DEMAND command is executed until the collection of objects which it will

update is determined. Then execution is halted without any modification 1o the
data base, and the command is stored in a DORMANT-2 relation

DORMANT-2 (c-id, command, user-id)

Additionally, *Missing Data" locks (M locks) are set on the collection of objects
which the command would have updated. The compatibility matrix for M locks is
the following:

| R W M
R |lok no !

W | no no no
M | no no ok

When a read lock is set on an object which has an M lock-set (case ! above), an R~
M conilict algorithm is run. M locks are held indefinitely and are only withdrawn
when the corresponding DEMAND command is deleted. .

QUEL processing is slightly different if DEMAND fields are present. The reg-
ular parser will reject a command which requests data which does not appear as a
stored field in a relation. This rejection must be delayed, because there may be a
lazy trigger to provide the desired data. An execution plan is then carried out and
a retrieval command is decomposed into a collection of single relation subcom-
mands, S, of the form:

range of R is relation
retrieve (R,tl, ..., R.tj)
where Q(R)

Here, Q(R) is a qualification involvingsonly the tuple variable R, and the target list
contains a collection tl, ..., tj of fields of R. The DBMS will acquire locks during
the processing of each S.

If S requests a read lock on an object which has a M lock set, the R-M conflict
algorithm below must be executed. In this algorithm the DEMAND command D,
holding the M lock is of the form:

replace DEMAND X (d1 = f1, ..., dn = fn)
where QUAL

Hence, D updates data items dl, ..., dn with values computed using the functions,
f1, ..., fn whenever the qualification QUAL, is true. Also, X is the tuple variable
which specifies the relation to update.

R-M Conflict Algorithm

1) Make a copy of the query S and delete from the qualification
all clauses which have already been evaluated to true for the
current record. Substitute into the query any data items which
are stored in the current record, and call the resulting-query S. It
will contain only references to non-stored data items.. If D does
not provide values for any data items, then terminate the algo-
rithm, and continue query processing for S on the next DEMAND
command D’ which has an M lock on the current record, or on the
next appropriate tuple.

2) In D replace each occurence of the tuple variable X by R. Add
all range statements of D to those of 5. Create S” by replacing
every reference to R.dj in §’ by fj and adding the qualification
QUAL from D. '

3) Execute the modified query S” normally and return any quali-
fying tuples produced as part of the result for S. Continue query
processing for S on the next DEMAND command with an M lock
on the current record, or on the next appropriate tuple.

For example, suppose the user requests the hair color of Mike:
retrieve (EMP.hair) where EMP.name = "Mike"
Moreover, suppose the following two lazy triggers are in effect:

range of E is EMP
range of F is EMP
Di: replace DEMAND E (hair = F.hair)
where E.name = " Mike"
and F.name = "Bill”

range of G is EMP
D2: replace DEMAND G (hair =" green")
where G.name = " Bill",

The requeét for Mike's hair color will co ide with the M lock held by D1. At this
time the clause "EMP.name = *Mike"™ has been evaluated. Hence, the remainder of
the query, S, is simply: .

retrieve (EMP hair)
The algorithm will use D1 to produce the following command:

(A smarter algorithm would avoid the redundant check for Mike’s name, which is
guaranteed to be true at this point.)

This second retrieve cO d is run normally and will collide with the M
lock held by D2. When the collision occurs, the system will be executing the
subquery:

retrieve (F.hair)

where F.name = "Bill”

and will have evaluated "F.name = »BilI"" to true. Hence, the algorithm will be
run again to produce:

retrieve (hair = "green")

where F.name = "Bill"

This query will return ®green,” which will be iteratively returned to the top level
query and added to the answer. Since there are no other qualifying records, the
query processing plan will exit, producing a single answer “green® as the result of
the query. '

The advantage of this scheme is that little new syntax is needed. If fine
granularity locking is supported. the R-M conflict algorithm will be rarely
activateed unless the lazy trigger affects the request. Hence, the scheme should be
very efficient. Also, there is no need for a special indexing structure for D
commands to identify relevant lazy triggers.

This mechanism will implement backward chaining because a retrieve com-
‘mand will activate those lazy triggers which provide required data. These in tum
may activate other lazy triggers which will ultimately retrieve facts from the data
base. This backward chaining is similar to that accomplished by PROLOG; how-
ever, it does not support backiracking. If there are two or more rules that apply at
a given point, all are executed in a random order. The next section extends the pre-
vious constructs to support backtracking.

4. PRIORITIES AND BACKTRACKING

4.1. Introduction

Suppose a general rule with some exceptions is desired. For example, all
employees over 40 have 2 wood desk and others have a steel desk. However, Bill
who is 45 has a steel desk, Mike who is 35 has a wood desk, and Sam has the same
kind of desk as Bill. Using the proposed inference system this can be expressed as
five DEMAND commands:

D1: replace DEMAND EMP (desk = "wood") where EMP.age >40
D2: replace DEMAND EMP (desk = "steel”) where EMP.age <= 40
D3: replace DEMAND EMP (desk = "steel") where EMP.name = *Bill”

6

. D4: replace DEMAND EMP (desk =" wood") where EMP.name = " Mike"
range of E is EMP
D5: replace DEMAND EMP (desk = E.desk)
where EMP.name = "Sam"
and E.name = "Bill”

Two problems must be solved. First, a priority system must be devised to support
evaluating the last three DEMAND commands in preference to the first and second.
Second, only if a higher lgriority DEMAND command fails should a lower priority
command be executed. For example, to determine the kind of desk that Sam has,
e.g:

retrieve (EMP.desk) where EMP.name = "Sam”

command D5 and then D3 should be utilized, resulting in the answer "steel." How-
ever, if Bill is not an employee, these commands will return a null answer. In this
case one should " backtrack” and try a lower priority command (D1 or D2 depend-
ing on Sam’s age). In no case should all applicable DEMAND commands be used,
sing: t%s will produce the answer "wood, steel” if Bill is an employee and Sam is
under 40.

A similar situation exists with triggers. If two or more triggers apply, one
might want to execute the one with highest priority. If that trigger fails to pro-
duce a desired answer, the DBMS should backtrack and try a lower priority trigger.

For example, suppose new employees are inserted into the. EMP relation with .
no department specified. They are then assigned to a department using the follow-
ing triggers:

T1: replace ALWAYS EMP (dept = "shoe")
where EMP.dept = null
and EMP.age > 40

T2: replace ALWAYS EMP (dept = "admin")
where EMP.dept = null
and EMP.manager = "Smith"

range of E is EMP
T3: replace ALWAYS E (dept = EMP.dept)
where EMP.name = " Bill"
and E.name = "Mike"
and E.dept = null

T4: replace ALWAYS EMP (dept = " trainee”)
where EMP.dept = null

The desired effect is to place new employees managed by Smith in the admin
department, new employees over 40 not managed by Smith in the shoe depart-
ment, Mike in the same department as Bill, and everyone else in the trainee depart-
ment.

To achieve the desired effect, the triggering process should stop when a desired
goal (in this case assigning a department to a new employee) succeeds. Moreover,
all four triggers apply to a new employee over 40 named Mike who works for
Smith; hence a priority system is requi od to activate the triggers in the order T3,
T2, T1, T4. Lastly, there may be situations where a collection of triggers have
been executed, no new ones have been activated, and the goal has not been reached.
In this case, the system should backtrack (i.e. undo the effect of one or more
triggers) and try a lower priority alternate collection of triggers.

Consider the situation of hiring a new employee named Sam. First Fred must
be moved to the toy department to make room for Sam. Moreover, George must be

transferred from the toy department to the admin department t0 make room for
Fred. If one of these changes fails (for example because George does not work in
the toy department) then Sam must be placed in the trainee de ent and Fred
restored to his original position. This situation can be eXpr by the following
collection of triggers: : :

range of E is EMP
T1: replace ALWAYS EMP (dept = "toy")
where E.name = *Sam"
and t = gull
and .name = "Fred”

ranﬁg of E is EMP
T2: replace ALWAYS EMP (dept = "admin”)
where E.dept = ";t:g:

range of E is EMP

T3: replace ALWAYSE (dept = "shoe")
where Edept = nuil :
and E.name = *Sam”
and EMP.name = " George”
and EMP.dept = *admin”

T4: replace ALWAYS EMP (dept = "admin")
where EMP.name = " Sam”
and EMP.dept = null

In this case triggers T1, T2, and T3 will be executed in order to produce the desired
effect. However, if trigger T2 or T3 fails, their effects should be backed out, and
trigger T4 executed instead.

The mechanisms for DEMAND and ALWAYS commands are slightly
different, and we consider them separately.

4.2. Support for DEMAND
Consider an extra modifier for DEMAND commands, e.g.:

replace DEMAND PRIORITY EMP (desk = *wood")
where EMP.name = * Mike" '

To use priorities and backtracking, the keyword PRIORITY must be added to all
potentially conflicting DEMAND commands. The effect of a PRIORITY command
is similar to an ordinary DEMAND command, except it activates the following
prioritization scheme. .

Although priorities can be "hardwired,” a flexible system is probably more
useful. When a PRIORITY DEMAND command is inserted, the data base system
can easily ascertain which other PRIORITY DEMAND commands conflict with the
new one and on what objects the conflict occurs. (This information is available
from the lock manager). The user would be required to specify for each such
object the priority of his command relative to conflicting commands. This could be
done by making insertions into a relation:

PRIORITY-M (id-of-higher, id-of-lower, object)
The composition of PRIORITY-M for the desk example of the previous section
would be:

PRIORITY-M id-of-higher id-of-lower object

5 2 Sam
3 2 Bill
4 1 Mike

Using thxs priority information, the lock manager can form an ordered list by
priority of command-ids for each object. In the R-M conflict algorithm, the highest
priority conflicting command must be used first.

The user must specify backtracking with the keyword PRIORITY on a retrieve
command, for example:

retrieve PRIORITY (EMP.desk) where EMP.name = " Sam”

With this modifier, the R-M conflict algorithm must be altered slightly:
Whenever the algorithm says:

continue on the next command C’ which holds
an M lock on the current record

substitute:

continue on the next command ONLY IF THE CURRENT
COMMAND PRODUCED AN EMPTY ANSWER

The modified R-M algorithm, the use of a RETRIEVE PRIORITY command, and the -
insertion of DEMAND PRIORITY lazy triggers will provide the desired priority-
backtracking scheme.

4.3. Support for ALWAYS

To use priorities and backtracking, an ALWAYS command must specify the
keyword PRIORITY, e.g.:

replace ALWAYS PRIORITY EMP (dept = "shoe”)
where EMP.dept = null
and EMP.age > 40

When a user inserts such a trigger, the lock manager can ascertain conflicting
triggers and the collection of conilicting objects. Registration of a trigger includes
inserting information into a PRIORITY-T relation similar to the PRIORITY-M rela-
tion above. The lock manager uses the PRIORITY-T relation to order all conflicting
T locks. On a W-T conflict, the highest priority trigger is awakened first.

The user must indicate that he desires a priority backtracking trigger solution.
At the time he makes an update that will activate triggers, he must specify the
keyword PRIORITY, for example:

append PRIORITY to EMP (name = "Mike", age = 25, salary = 2000)

Additionally, he must specify what goal should stop the priority/backtracking
algorithm. A simple solution would be to have a built-in goal which is satisfied if
a trigger activated no new dependent triggers but modified the data base. To obtain
greater generality, we propose that a user 'will will state both his triggering update
and his goal in a transaction. The goal is a retrieve command with the keyword
PRIORITY which is reached when the command has a non-empty answer. The fol-
lowing transaction has a goal of placing Mike in a department:
begin transaction
append PRIORITY to EMP (name = "Mike," ...)

retrieve PRIORITY (EMP.dept)
where EMP.name = "Mike"
end transaction

The following three modifications to DBMS processing must be used in the
presence of PRIO retrieves and updates: -

1) A savepoint [GRAY78] must be established for the current transaction before
any trigger is activated as a result (either directly or through a chain of intermedi-
ate triggers) of a PRIORITY update.

2) Only the highest priority trigger is activated.
3) If an empty answer 10 2 PRIORITY retrieve command is observed and there are

no triggers still processing, then backup to the last transaction savepoint, and have
the lock manager activate the next trigger in priority order.

The use of ALWAYS PRIORITY commands, the use of transactions with a
PRIORITY update followed by PRIORITY retrieve, and modest changes to QUEL
processing will implement a general priority-backtracking scheme. The highest
priority trigger will be activated and cause a sequence Of forwardly chained
actions. If the goal is not achieved, the system will backtrack (by undoing changes
back to a savepoint) and recursively try the next lower priority trigger, until a
solution is found or until all applicable triggers are exhausted.

5., IMPLEMENTATION OF T AND M LOCKS

A straight-forward approach would be to place T and M locks in the same
lock table holding R and W locks. In this case, one must cope with a lock table of
widely varying size which must be made recoverable. Moreover, phantoms must
be correctly handled. Lastly, all triggers must run inside the scope of the transac-
tion which contained the initial update, and will thereby be backed out if the tran-
saction is aborted.

The first objective can be satisfied by using extendable hashing for the lock
table instead of conventional hashing. The second objective requires writing T and
M locks into the log as part of the process of registering 2 new DEMAND or
ALWAYS command. Moreover, the lock table must be checkpointed along with
ordinary data. Data base recovery code can now restore T and M locks after a
crash. This presents only modest implementation difficulties.

The phantom problem poses more serious issues. Systems which perform
page level locking (e.g. [RTI84, CHENS4]) have few difficulties supporting correct
semantics in the presence of phantoms. However, finer granularity locking is
required for efficient T and M locks. Systems which perform record level lock;e:;%
can allow detection of phantoms by holding locks on index intervals in the 1
nodes of secondary indexes as well as on data records [ASTR76]. Hence, a transac-
tion which modifies a tuple will hold a write lock on the tuple and on the
appropriate index interval for any modified field for which a secondary index
exists. An insert will, of course, add a new record and associated index entries.
Suchaninsertmustwaitifitwillfallinalockedind.eximerval.Ofcourse.a
transaction which splits a B-tree index page must wait until there are no locks held
on any index records in the page.

The general mechanism can be restated as one of holding record level locks on
data and index tuples. Then, a write must be delayed if it will fall adjacent t0o a
tuple which is locked. Adjacency means "logically adjacent in Tuple Identifier
order” for B-tree data records and indexes; adjacency means *in the same hash
bucket® for hashed records and indexes.

The same adjacency tactic can be applied to T and M locks. T locks must be
held on data and index records, and a trigger will be awakened if a write lock is set
on the adjacent index record or data record. Moreover, 2 DEMAND command will
hold M locks on data records. If a write lock is set on an adjacent data record, the
DEM&NP command must be reregistered to potentially cover the inserted
record(s).

10

The only problem with the adjacency approach is that a B-tree page split will
cause all triggers holding locks on the page 10 be awakened and all DEMAND com-
mand holding write locks to be reregistered.

The phantom problem and the logging problem appear easier to solve if an
alternate strategy is employed. Consider storing the M and T locks in data and
index records themselves. Systems which support variable length records can sim-
ply add as many T and M locks to each record as necessary. Such locks are
automatically recoverable by current conventional techniques. The phantom prob-
lem requires the above adjacency algorithm; however, structure modifications (e.g.
B-tree page splits) do not cause extra overhead. Moreover, since the extra locks are
stored separately from R and W locks, extendable hashing is not a prerequisite for
the lock table. Lastly, lock escalation can be handled by storing an extra record at
the front of each page or relation indicating that all enclosed objects are locked.
This record is automatically recoverable, and the run-time system must simply
guarantee that it looks for this special record before accessing any enclosed object.

The only drawback of this second alternative is that a second implementation
of a lock manager must be coded for T and M locks.

6. COMPARISON WITH A VIEW-ORIENTED SCHEME

We illustrate the view based scheme by performing the hair color example
from Section 3 using views. Consider the following collection of view definitions:

range of E is EMP '
define view EMP (E.all, hair = "green")
where E.name = " Bill”

range of E is EMP

range of El is EMP

define view EMP (El.all, hair = E.hair)
where E.name = "Bill"

and El.name = "Mike"

The‘interpretation is that EMP can be both a stored relation and a collection of
view definitions. Moreover, the actual value of EMP is the union of the stored
relation and the view definitions.

If the following query is specified
retrieve (EMP.hair) where EMP.name = "Mike’
it will be run on the stored relation to produce an empty answer. In addition, it

will be run on both view definitions for EMP using the standard query
_ modification procedure in [STON75]. This produces two queries:

retrieve (E.hair) where
E.name = "Mike"
and E.name = "Bill"

and

retrieve (E.hair)
where E.name = " Bill”
and El.name = "Mike"

A simple theorem prover can ascertain that the first query is false; alternately, the
query can be run to produce an empty answer. The second query produces an
empty answer when run on the stored relation. However, when passed again
through the view mechanism, it will be modified to produce the query which will
yield the desired answer.

The problem with this approach is apparent. The view machinery contains no
mechanism for indexing the collection of EMP views which are logically unioned.

11

Previous work [ROSS82] has concentrated on indexing to speed materializing the
tuples in a view and not on restricting the number of view definitions which must
be evaluated. Therefore, the system must try all view definitions to find the sub-
set which yield the answer. Hence, redundant queries will be executed leading 10
considerable inefficiency. Alternately, some sort of a theorem prover must be built
into the view mechanism to limit the number of specifications which must be
evaluated. This will be a sophisticated piece of software, and theorem provers are
not noted for their execution efficiency.

In the case that there are a very small number of view definitions associated
with a given relation, then a view-based scheme has obvious advantages. For
example, if there is only one view definition which augments a stored relation,
_then at most two queries must be run to satisfy any command. Moreover, if views
are cascaded, then the query modification algorithm [STON75] can be run itera-
tively producing at the end a small number of queries to optimize and execute.
Plan optimization is performed only Over these ultimate gueries. On the other
hand, the approach in Section 3 forces query planning 10 be
sub-query is' constructed ar %uery optimization will be performed over a larger
collection of smaller queries. ptimization at the end is sure to result in a more
efficient plan.

However, the technique in Section 3 is especially effective in discarding
irrelevant rules in the case that there are a large number that mi ht apply but only
a few that actually do. A view oriented scheme performs this function much less
efficiently. Hence, the composition of the application will determine which -
mechanism will work better.

7. CONCLUSIONS

This paper has suggested mechanisms to support rule processing using both
forward and backward chaining in a relational data base system. ese require
only minor extensions 10 the query language and locking system. Moreover, mod-
est additional changes can support backtracking on failure in either environment.
The proposed facilities are advantageous because they are easy to understand, easy
to implement and can be efficiently supported. Moreover, no additional data struc-
ture is required to index either DEMAND or ALWAYS commands. This can be
contrasted with systems such as OPSS (FORG81], which require such indexing.

Additionally, it appears possible to have simultaneous backward and forward
chaining, if easily defined compatibility between T and M locks is established. One
might suggest a solution such as the following:

replace (...) where ...

retrieve (...) where ...

The replace command would start a collection of forward chaining triggers, and at
the same time the retrieve would activate backward chaining. The forward chain-
ing triggers could thereby provide data required by the backward chaining infer-
ence engine.

Our approach is not without drawbacks, however. For example, it is difficult
to support a field which is physically stored for some records and computed by a
lazy trigger for others. If the field has an index and a query uses this index as an
access path, the locking system will fail to activate the appropriate DEMAND com-
mands. Hence, lazy triggers are restricted to non-stored fields. Also, redundant
clauses are often evaluated using the R-M conflict algorithm, leading to 2 loss of
efficiency in processing DEMAND commands.

12

[ASTR76]
[BUNE79]

[BRODS84]

[CHANB84]

[CHENS4]

[cLoC81]
[ESWA75]

[FORGS81]
[GRAY78]
[JARKS84]

[MISS84]

[RTI84]

[ROSS82]
[sC1084]

[STON75]

[STON76]

[WARRS1]

REFERENCES

Astrahan, M. et. al., "System R; A Relational Approach to
Data," ACM-TODS, June 1976.

Buneman, P. and Clemons, E., "Efficiently Monitoring Rela-
tional Databases,” ACM-TODS, June 1979. .

Brodie, M., and Jarke, M., "On Integrating Logic Programming
and Data Bases,” Proc. lIst International Conference on
Expert Data Base Systems, Kiowah, S.C., Oct 1984.

Chang, C. and Walker, A., "PROSQL: A Prolog Programming
Interface with SQL/DS,” Proc. 1st International Conference
on Expert Data Bases, Kiowah, S.C., Oct 1984.

Cheng, J. et. al., "IBM Database 2 Performance: Design, Imple-
rlxgeéziation and Tuning,” IBM Systems Journal, Fe

Clocksin, W. and Mellish, C., *Programming in Prolog,”
Springer-Verlag, Berlin, Germany, 1981.

Eswaren, K., "A General Purpose Trigger Subsystem and Its
Inclusion in a Relational Data Base System,” IBM Research,
San Jose, Ca., RJ 1833, July 1976.

Forgy, C., "The OPS5 User's Manual,” Carneigie Mellon Univ.,
Technical Report, 1981.

Gray, J., "Notes on Data Base Operating Systems,’ IBM
Research, San Jose, Ca., RJ 2254, August 1978.

Jarke, M. et. al., "An Optimizin Prolog Front End to a Rela-
tional Query System,” Proc. 1984 ACM-SIGMOD Conference
on Management of Data, Boston, Mass., June 1984.

Missicof, M. and Wiederhold, G., "Toward a Unified
Approach for Expert and Data Base Systems,” Proc. 1st
International Conference on Expert Data Base Systems,
Kiowah, S.C., Oct. 1984.

Relational Technolo%y, Inc., "INGRES Version 3.0 Reference
Manual, December 1984.

Roussopoulis, N., "View INdexing in Relational Databases,”
ACM-TODS, July 1982.

Sciore, E. and Warren, DS, "Toward an Integrated
Database-Prolog _System,” Proc. 1st International Conference
on Expert Data Bases, Kiowah, S.C., Oct 1984.

Stonebraker, M., "Implementation of Integrity Constraints
and Views by Query Modification,” Proc. 1975 ACM-
SIGMOD Conference, San Jose, Ca., May 1975.

Stonebraker, M., et. al., "The Design and Implementation of
INGRES,” ACM-TODS, Sept. 1976.

Warren, D.H., "Efficient Processing of Interactive Data Base
Queries Expressed in Logic,” Proc 7th Very Large Data Base
Conference, Cannes, France, June 1981.

13

	Copyright noticE 1985
	ERL-85-46

