Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LAGER: AN AUTOMATED LAYOUT GENERATING
SYSTEM FOR DIGITAL SIGNAL PROCESSING

CIRCUITS. USER MANUAL - VERSION 1.3

by

Jan Rabaey

Memorandum No. UCB/ERL M85/5

15 February 1985

LAGER: AN AUTOMATED LAYOUT GENERATING
SYSTEM FOR DIGITAL SIGNAL PROCESSING
CIRCUITS. USER MANUAL - VERSION 1.3

by
Jan Rabaey

Memorandum No. UCB/ERL M85/5
15 February 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

LAGER
An automated layout generating system for Digital Signal Processing Circuits
User Manual - Version 1.3

Jan Rabaey

Department of Electronic Engineering and Computer Science
University of Califarnia
Berkeley, CA 94720

December 1984

Table of contents:

Part 1: Philosophy and architecture description
Part 2 : The Design File

Part 3 : The emulator Demon

Part 4 : Examples

This research was sponsored by DARPA under contract number K00039-84-C-0107

Part 1 : Philosophy and Architecture Description

1. Introduction

This text describes the hardware configuration of a programmable processor approach for

digital signal processing. The particular characteristics of the described system are :

Paralle] processing to allow for an increased data-throughput

A limited instruction set to keep the arithmetic and control units small, allowing a
number of paralle] processors on the same chip.
The basic speed of the processors is increased using fully pipelined arithmetic units. Mul-
tiplications are performed in a parallel-serial way . The elimination of a parallel array
multiplier keeps the arithmetic units small.

A1l arithmetic is performed in the two’s complement number representation.

The use of a well defined set of macrocells allows for full automatic layout generation.
Debugging of the processors microcode is facilitated by a special purpose emulator. This
simulator checks the input code, sets up the control sequencers, checks for timing

conflicts. A full debugging mode is provided featuring traces, breakpoints and step pro-
cedures.

A design file description language has been developed for this particular system. It con-
tains a detwailed description of the complete system and serves as a single input to the
Javout generator and the emulator.

The resulting system allows for a fast silicon implementation of custom signal processing

applications. The system is particularly suited for speech-band applications, although higher
frequency operations are possible, exploiting the parallel processing feature.

In this first part, we describe the architecture of the basic building blocks of the signal

processing system.

2. General description
A signal processing machine, based on our concept, has the following basic architecture :

(1) A number of parallel processors. Each of these processors is built up using a combination
of macrocells, being RAM-data-memory, a pipelined arithmetic unit, an 10 unit, an
adress arithmetic unit, a contro] sequencer and a decision making finite state machine
(optional).

(2) Interprocessor communication proceeds via a number of serial connections. The timing of
these transfers is decoupled from the processor timing by data buffering.

(3) A paralle] bus to communicate with the outside world. This bus is connected to only one
~ processor and does not provide any data buffering. Strobe lines are provided by the pro-
cessor control to time the data in- or output.

(4) A buffered host 1/0-section, which allows for a low data rate communication with a host
microprocessor. The data exchange proceeds at a rate, FRAME times slower than the sam-
ple rate, where FRAME is set by one of the processors. 1/0 data is buflered in a set of
FIFO's .

The architecture is illustrated in Figure 1. A more detailed discussion of the different
parts follows next

3. The individual processor structure

Each processor is composed of a number of basic macrocells, as already described in the
introduction. These macrocells are invoked with a set of application-dependent parameters as
wordlength, number of words (RAM or ROM), programming (micro-code ROM), depth
(FIFO's)~ The layout generator translates the design file description into a set of these parame-
ters. A precise description of each of these macrocells and of their function in the system is
given next

3.1. The data memory

Variables, local to a processor, are stored in the local data memory. The present version
provides for up 10 128 RAM storage locations per processor. Constants are also stored in the
data-memory, this with a minor change in the RAM-cell. This allows for a complete separa-
lion of data- and conurol paths, in contrast with most of the existing general purpose signal
processors. X
Two types of memory-addressing are provided : absolute addressing and indexed addressing
throlgh an ix- and an iy-register (cfr. address-arithmetic).

3.2. The arithmetic unit

The arithmetic unit is implemented as a pipelined structure with a variable wordlength
dependent upon the application. All data is represented in two's complement notation.
Fig. 2 pictures the processor data path, which is basically a pipeline with four stages : the mor,
the sor, the accumulator and the mir-registers. The path is composed of following building
blocks

- The mor-register is loaded with the contents of a Ram-word in a r(ead)-operation and
with ~ mir (where © means bit inversion) in a w{rite) or mor := ~ mir operation (cfr.
assembler-language part II).

= The barrelshifter allows for a right shift of O to 7 bits. It takes either the mor-register or
the sor-register as input . The latter makes shifts of more than 7 bits feasible. When per-
forming a parallel-serial multiply or divide operation, the combination shifter-sor is used
to shift right repeatedly on successive cycles. This presents a sequence of partial products
to the adder input.

- The complementer outputs either the true value, the inverse or the absolute value of the
sor-register. The action performed is either controlled by the ROM-controllines or is

-3-

made programmable to allow for four quadrant variable-variable multiplications.

= -The adder is saturating: if an overflow is detected, the output will be the maximum or
misumum value that can be represented, for positive or negative overflow respectively.
The output of the adder is Joaded in the acccumulator . The adder has as input the so
called abus and bbus. The abus equals either the output of the complementer or zero.
Once again, the control of this multiplexer can be made programmable to allow for vari-
able coefficients. (cfr. multiplication in part II). The bbus equals either the accumulator,
the mor-register or zero.

- The mbus is either driven by the accumulator (default), the mor-register or from the
i/o-unit (in case of input). The mbus drives the mir-register . This is a transparent latch,
which may either load or bold data under program control and introduces an extra stage
of possible storage in this way. All i/o-transfers are going through the mbus as well.

3.3. The i/o-unit

The i/0-unit consists of the connection 1o the parallel i/o-bus (for only one of the proces-
sors) and the serial interconnections with the other processors and the host i/o-unit. These
serial i‘o-units include serial-to-parallel (s/p) or parallel-to-serial (p/s) converters and also the
buffering laiches, which allow for an user-timing independent interprocessor communication.

3.4. The control sequencer

The controller consists mainly of two cvcle-counters and the micro-code ROM. It is kept
simple and small by a strict restriction of the looping and branching facilities, encountered in
classical processors.

In fact, signal processing algorithms involve the unconditional execution of the same
sequence of operations every sample interval. If functional multiplexing is used (wherein
repeated sections of the algorithm are realized with the same hardware elements), the control
sequencer must loop through a section of code several times. Still, the control flow is data-
independent; the number of iterations is predetermined and does pot vary from sample to
sample. It is very desirable to maintain this dawa- independent control flow in pipelined sys-
tems.

Therefore, we came up with the following control sequence : each processor starts a new
sample-interval with the execution of a so called "main-program”. This is a piece of microcode,
which is only executed once a sample. Next, the sequencer proceeds with the execution of a
fixed number of instances of a "sub-program". The number of iterations is defined by the pro-
grammer and allows for hardware multiplexing. Note however that both main- and sub-
program have a fixed length and do not contain any branching. How the iterations of a sub-
program can deal with different data is described in the address-arithmetic unit.

It is however clear that some signal-processing algorithms require some decision-making

and conditional operations. A restricted form of conditional testing is provided in this
approach with the aid of an user-defined finite state machine.

3.5. The finite state machine
Decision-making can be implemented easily by the introduction of a conditional y.'.rite
instruction, wherein an assignment is made to a variable in data memory only if a condition-

code bit is set. . ‘
This conditioncode bit is one of the output variables of a user-defined finite state machine

(pla). This output variable controls the write-enable of the data-memory . Following signals
can be used as input to the finite state machine :

- The sign-bit of the accumulator, which allows for comparison operations.
- The individual bits or values of the ix- and the iy-index-registers.

-4-

User defined instructions, which change the state of the FSM are processed in parallel with
daia path operations
The above organization is quite general and allows for any kind of decision making. It keeps
the control flow (and at the same time the execution time) data-independent, which simplifies
the design of real-time systems.

An additional task of the finite state machine is the setting of the eof (end-of-frame) and
mof (middle-of-frame)-flags, which control the communication between signal- and host-
processor (cfr. host-io unit).

3.6. The address-arithmetic unit
Two kinds of addressing are supported in the current architecture :

- direct addressing : the RAM-address is taken directly from the address field of the
ROM-control-word without any modification. If a processor uses only this kind of
addressing, no address-arithmetic unit is needed.

- indexed addressing : in some cases however, some kind of indexing is needed. This is e.g.
the case when functional multiplexing (with subprograms) is needed, or for table look-
up, interpolation, decimation . Therefore, two index registers ix and iy with different
functions have been provided . The contents of these registers is added to the ROM-
address-field, when performing indexed addressing.

The ix-register counts the iterations of the subprogram. This register is not user-accessible
(with exception of the finite state machine, which can base decisions on the value of ix).
The user only defines the modulus of the counter, when specifying the number of itera-
tions of the subprogram. Ix-indexing is mainly used in functional multiplexing, where
the data inputs and outputs and the state variables of the individual sections are accessed.
by x-indexing in an array.

The iy-register is normally implemented as a counter with a user defined modulus. The
counter is incremented at the swart of every new sample period. This kind of indexing
can be used for decimation. Another possibility is to implement the iy-register as a regis-
ter, which can be loaded from the mbus via a parallel bus. This configuration allows for
table Jookup and memory precessing.

4. Interprocessor communication

As already described, interprocessor communication is performed over serial lines. The
i/0-units of the different processors take care of the parallel-serial and serial-parallel conver-
sion and also perform the pecessary buffering . This scheme simplifies the job of the program-
mer, so that he does not have to worry about the synchronization of the timing of the
different processors.

The emulator Demon (see part III) performs a basic role in this process : in fact, it checks
if the programmer does not introduce timing conflicts, e.g. by sending a signal over a serial
i/o-line which is still in use. It also warns the user if the additional delay over the serial lines
introduces sample delays.

The first pass of the compiler Archer assigns the i/o-units 10 the different processors, deter-
mines on which side (transmitter or receiver) the buffering has to be done and provides the
control signals, needed for the exact timing of the transfers.

This results in a communication proces, which is designed in a fully automated way and
which is completely hidden to the user.

S. The parallel i/o-bus

The parallel i/o-bus allows input and output at sample-frequency rate. Only one proces-
sor can be connected to this bus and the data is not buffered in FIFO’s. The timing of the
data-flow is controlled by a number of strobe signals, which are generated by the control sec-
tion of the processor. The layout generator takes care for the provision and the exact timing of

-5-

these strobe signals. Also important is that the hardware does not allow a parallel output and
a parallel input in subsequent instruction-cycles.

6. The host-i/o section

A large number of speech applications require a low data rate communication with a
bost processor. Therefore, an i/o-unit with FIFO-buffers is provided. This unit communicates
in a serial way with the different signal-processors (in an identical way as the interprocessor
communication). The host-i/o0 unit itself consists mainly of S/P and P/S converters and the
buffering FIFO's.

The exchange-proces is repeated over an interval of FRAME samples, while the commun-
ication with the host-processor is interrupt-controlled . These interrupt signals are generated
by the finite state machine of one of the signal processors. A first interrupt signal (mof) is gen-
erated somewhere in the middle of the frame and starts the data transfer from host to i/o-
block. The period between the mof-signal and the end of the frame has to be large enough 1o
allow for a complete datwa transfer and has 1o be smaller than 3 milliseconds. A second inter-
rupt (eof) denotes the end of the frame and initiates the data output to the host.

Once again, the timing and the architecture of the host-i/o-unit is completely generated
by the compiler and hidden to the user.

7. Summary

The different hardware blocks have been descibed. In the next part, we describe a design
file-language, which allows for a full description of a signal processing machine and which
serves as a single input to both the emulator and the layout generator.

1/0

|

AUIO l(‘;:

RESET

k= —
FSM o
1

ROM

PC

 sPC

Fig,l; Macrocells forming a single procesor

Host

Host Doto

interfoce

.

- mocgssoa 2

=\

Bit - seriol signols

F_ PROCESSOR {4 —
\

F‘sa.i Organizatian of a four-processor IC

|)]——

%o doto w‘nmofy
]

— S

MOR

2:1 MUX

MIR

y

BARREL
SHIFTER
(0-7BITS)

|

- SOR

COEF
{serigl
input)

ouoT
(serio

ouiput)

1

COMPLEMENTOR

(O)ﬂ 1 (0)
-l 21 MUX

MBUS

A \V
ADDER

—

S -- ACC

Fig.2 Processor data-patb architecture

t01/0
circuits

Part 2 : The design file

1. Introduction

The design file gives a full description of a signal processing IC and serves as a single
input to the emulator and silicon compiler, so that both design tools are consistent . A special
purpose language has been developed. This language, which describes the system at an inter-
mediate Jevel, can be kept rather simple, due to the restriction to a well defined processor and
interprocessor architecture. (The design file will be generated by a higher level compiler in a
future phase.)

For the formal definition of the syntax of the design file, a notation proposed by K. Jen-
sen and N. Wirth [1] is used : semantic constructs are denoted by english words between the
angular brackets < and >. These words are suggestive of the nature or meaning of the con-
struct. Production rules use == to define a construct as an expression or a combination of con-
structs; curly brackets { |} indicate repetition any number of times including 2ero; square
brackets [] indicate optional factors (i.e. zero or one repetition); parentheses () are used for
grouping. The vertica) bar | is used for the or-ing of constructs.

The design file contains a detailed description of the basic blocks of the signal processing
IC : the processors, the host 170 and signal 170, the interprocessor communications. This deter-
mines the general format of the design file:

<design-file> == <globals> <1/0> (<proc> { <proc >}) [<constraints>]
In the next sections, the syntax and the contents of each of these blocks will be discussed in

dewail. This is preceded by a discussion of the number representation used in our architecture
and its implications on the arithmetic operations.

2. Number representation and arithmetic operations

The two’s-complement number representation has proven to be the most flexible way to
handle negative numbers in a binary number system and is therefore used for all arithmetic
operations in our structure. In this section, details of this representation are given. The way
in which two'scomplement multiplications and divisions are performed is described.

In the two’s-complement -number notation, the representation of a positive number is
identical with its representation in an unsigned binary format. If a number, X, is negative, the
two's-complement of x is given by Eq. (1%

Two's —complement(x) = 2"=I1x | (x<0) (1)

One advaniage of the two's-complement approach is that two's-complement addiuon is the
same as the addition of two positive arguments.

2.1. Variable-variable multiplications

Suppose now that we want to multiply two two's-<complement pumbers x and v and
that ¥ is a fractional number (-1 £y <1) with word-length n. It can be seen that the y can
be expressed in terms of its two's-complement notation as shown in (2), where y, is the i-th
bit of the 2’'s<comp. representation.

"t Yi
val(y)=-y+} = (@
is) 2

This form allows a simple procedure for multiplication.

n=] x

xy = —xyo+ 2, CTRL 3)
J!

-2-

Eguation (3) suggests a method of multiplying two two’s-complement numbers in a serial-
paralle]l fashion. Start with either O (when y is positive) or -x (y negative). Add x, shifted
over i positions, if the i-th bit if the coefficient y is one. Note that the bits of the coefficient are
needed serially on succesive cycles, MSB first, in order to control the addition of the shifted
values. (Examples of how this procedure is microcoded are given in Section 6.4.2.9.)

Example 1 : multiplication of 011000 (3/4) with 0011 (3/8)

000000 /® sign bit of coeffient is zero */
0000000 /* first significant bit zero %/
00011000 /* bit 2 equals 1 :add /4 3/
000011000/* Isb equals 1 :add x/8 */

001001000/* 1otal = 9/32 */

Example 2 : multiplication of 011000 (3/4) with 1101 (-3/8)
101000 /* sign bit of coeffient is one , invert x */
0011000 /* first significant bit is one , add x/2 */
00000000 /* bit 2 equals 0 s/
000011000/* 1sb equals 1 :add x/8 */
110111000/* total = -9,32 */

The result of multiplication has to be truncated to the wordlength of the processor, droppping
the least significant bits (3 in the above examples). It is necessary to take this effect into
account when determining the required number of bits in the data word for a given applica-
tion and given performance criteria.

2.2. Multiplication with a constant

The serial-parallel multiplication procedure, described above, can be optimized when the
coefficient is a high precision constant. The number of cycles needed can be reduced drasti-
cally by representing the coefficient in the canonical signed digit form. In this form, a constant
is represented in the form (4), where the x; have values of = 1, and the exponents n, are
chosen so as to minimize j, the total number of digits. This representation typically has one
third the numbers of the digits as does a binary representation, with no loss in precision.

esd(x) = ix,l"’ @
i=0

Example : the constant 0110111 (55/64) can be represented as :
20_2-3_2-6

When multiplying by the above constant, only two additions are required. It should be kept
in mind that is only very effective for constant coefficients, where the canonical form can be
calculated before the processor's code is written.

2.3. Division of two variables

Divide operations are implemented using long division. To find the quotient N/D with D!
> I\{ one first has to determine the sign of quotient (for four quadrant divisions). The division
operation itself is performed as follows : NI is Joaded in the accumulator. On succesive cycles
DV2, DV4 . is subtracted form the accumulator, the result being accumulated only if it is
positive. If so, a one is added to the quotient-result, otherwise a O is added. In this way, a sign
magnitude representation of the quotient is obained in a bit-serial fashion. The result can be
transformed 1o two’'scomplement notation using some additional hardware.

-3-

Example : Divide 001 (1/4) by 0101 (5/8) (the result is positive).

001000 10101
111011 /* add - 000101 (bit 3 of quot = 1) */
0011.

000011
1111011 /* add - 0000101 (bit 4 of quot = 1) */

0000001
The 4-bit result equals 0011 (3/8) which approximates the exact result (2/5). Section 6.4.2.10
describes the procedure to implement this long division in microcode.

3. General syntax description
Each block has the same basic syntax :
<block > == <keyword [parameters] CR > begin <statement > end
with
<statement>s= <dataline;> | <dataline;>}
Note that only the semicolon is considered as a statement separator. Blanks, tabs and carriage

returns are ignored. The only exception is the .keyword line, which has to be terminated by a
carriage return (CR). Certain keywords may be followed by parameters.

Comments can be included as follows:
<comment> == /* put comment here */
These comments can be inserted everywhere in the design file.

4. The global-block

A global is a variable which is shared between different processors or which is shared
with the outside world (host- and signal-l/0). All these variables are processed in bit-serial
form and are buffered in temporary lawches. The only exceptions are signal-1/0O variables,
which are paralle] and unbuffered. It must be noted that the bit-serial transfer causes a delay
of a number of clock cycles, on the order of the word length of the global variable.

Global variables which are used for host 1/0 may be declared as arrays- Input or output
of array variables is indexed automatically with the ix-register if the reference w0 the global is
in a subprogram, and with the iy-register if the reference is in the main program. Global
array variables are stored in FIFO structures in the Host Interface. Globals used for signal 170
Or interprocessur COMMUNICalion are never arrays

Globals may be indexed by the iy-register only in counter mode and not in pointer
mode. These two modes of using the iy-register are descirbed below.

The syntax of a global block :

<global-block > == .global CR begin <block-statement> end

<block-statement > == <data_line;> { <data_line;>}

<data_line> == <variable_decl> {,<variable_dec1>} : [<justification >]

<variable_dec]> == <name [dimension] <word_length>>

<justification > = lef1_justified ! right_justified
("name” is a user-supplied variable name.) Dimension declares the dimension of an array vari-
able. If no dimension is specified, a scalar variable is assumed. Word_length defines t'he
wordlength of the global. This denotes the number of bits which is transf erred over the serial
line. It defines the number of lines in the case of parallel transfer.

Justification denotes how the words are truncated if the wordlength of the processor and
the global are different : left_justified preserves the most significant bits or pads the word
with 7ero’s at the right side (if the word has to be lengthened). Right_justified selects the least

-4-

significant bits (and drops the sign-bit). This is e.g. important when positive counter values
have to be transferred. lef1_justified has been selected as the default value.

IMPORTANT REMARK : The definition of a global results in the generation of extra
hardware at the transmitter and the receiver side. Excessive use of globals results in a untoler-
able growth of the processor-dimensions. The user should be careful and should try to keep
the number of global definitions to a strict minimum in order to obtain an area-efficient design.

example :

.global /* interprocessor and I/0 communications */

in
ka[10)<8>, k{10} <8>; /* array variables with dimension 10 and
wordlength 8 - left_justified */
pitch_in <8 >, pitch_out <8 >: right_justified;
/* scalar variables with wordlength 8 -
right_justified Y
end

5. The 1/0-block
This block defines which of the global variables are selected as 1/0-variables.
Syntax: .
<io-bloch > == .jo <<host_word_length>>CR begin <block-statement>end
<block-statement > == <data_line;> | <data_line;>}
<data_line > == <variable> {,<variable>} : <io_specification >
<io_specification > == hosi_in | host_out | signal_in | signal_out .
The host_word_length is specified on the same line as the Jo-keyword and determines the size

of the parallel bus, connecting the host-1/0 unit and the host-processor. This equals normallly
the wordlength of the host processor itself (8 or 16 bits) and by default is set to 8.

The variable specification specifies which global variable (already defined in .global) is
connected 10 a }/(-unit. The io_specification determines the type of 1/0 . signal-i/o is
transferred through the parallel unbuffered bus, while host-1/0 communicates with the host-
processor through the FIFO-buflered host-1/0 section.

example :

Jo <36> /* 16 bit host interface */
begin
host_in.d : ka,ks : host_in;
host_outd : pitch : host_out;
speech_in.d : speech_in ¢ signal_in;
end

6. The processor block

A processor can be considered as an assembly of different macrocells. Some of these cells
have to be defined by the user (e.g. data-memory, finite state machine, arithmetic unit), others
are partially or completely assembled by the compiler interpreting the user defined microcode
(e.g. control section, 1/0-units, address-arithmetic). This leads to following general format :

<proc> == .processor : <name <word_length>> CR begin <sub_blk >end
<sub_blk >z= <locals> <consiants> <fsm> <main_program > <sub_program >

-S-

In the .processor line, a name is given to the processor and the wordlength of the arithmetic
unit and the data memory is determined. Note that this wordlength is sufficient to assemble
the complete aritmetic unit

The syntax and meaning of the different subblocks is demonstrated in the following sections.
Note that each of these blocks is optional. However either a main_program or a sub_program
should be provided.

6.1. The local-block

In the hardware description, it has already been mentioned that the data memory of
each processor can be a mixture of RAM and ROM. The RAM-memory locations are denoted as
locals, the ROM-words are defined as constants (see constant-block).

Svntax :
<ocals> == .JocalCR begin <data_line;> { <data_line;>} end
<data_line > == <name|{dimension]> {, <nameldimension]>}

If no dimension is specified, the variable is considered to be scalar, otherwise an array of
length [dimension] is reserved.

6.2. The constant-block
For definition, see local-block.

Syntax :
<constanis> == .constantCR begin <data_line;> { <data_line;>} end
<data_line > == <name|dimension] = value {,value} >

Each data-line contains the definition and the initialization of only one constant-type. Arrayvs
of constants of length [dimension] can be defined. In that case, the number of values has to
equal the dimension of the array.

example :

Jprocessor : pitch <18>
/% implements the Gold pitchtacker algorithm */

begin
Jocal
begin
thresh[6), ppcl6), ppl71 Ippl6). signall6}
1s, 1p, v, score, topscore, pitch, winner;
end

£constant

begin
TWO =2,
BLANK = 24; /% definition of blanking interval */
VOICED = 9, /% speech if unvoiced if score < VOICED */
WINDOW1 = §; /* windows to compare pitches */
WINDOW?2 = -14;

end

— definition of fsm and microcode
end
/* end of pitch_tracker definition */

-6-

The definitions in the above example make provisions for a data-memory of 43 words (38
RAM + 5 ROM).

6.3. The finite state machine

A limited form of decision-making is feasible with the definition of a finite state
machine . This machine controls a conditional code-bit (cc), which in its turn governs the
write operation. This results in a conditional write-instruction. The finite state machine
operates in paralle]l with the processor.

The user defines the finite state machine completely. The state variables may be given
arbitrary names, except for the following following reserved names : cc, mof and eof (cfr.
host_jo). Note that a conditional write operation is only possible when a cc-output has been
defined and that only one processor may define the mof and eof bits.

Following signals can be used as input to the fsm : the states itself, the sign bit of the accumu-
lator (TRUE if negative), the individual bits of the ix- and the iy-registers, and expessions of
the form "ix=consiant” or "iy=constant”.
Syniax :

<sm>z= fsm CR begin <command_def;> { <ommand_def;>} end

<ommand_def > == <cmd_pame>: <equation> {, <equation >}

<equation > z= <state > = <expression>

<expression > ;== combination of <booleans>and <operands>

<hooleans> == <state >, sign , ixc), iylc], ix <>, iy <>

<operands> = &(AND), KOR) and XNOT)

The <md_pame> is used to reference to a specified fsm-command in the microcode. An
expression is evaluated from left to right with normal operator precedence : ! has the highest
priority, and | the lowest. Parentheses can be used 1o change the precedence.

*ix<i>" denotes the i-th bit of the ix-register, with ix <0> the least significant bit. “iy<>"
has a similar interprewation. "ix[c]' denotes an equality comparison between the ix-register
and a constant. This is used, for example, 10 execute an operation only during the final itera-
tion of a subprogram. “iy[c]" is used similarly.

example :

fsm /* finite state machine description */
begin
SET : cc = sign;
/* se1 condition code if acc >= 0%/
AND_MINUS : cc = cc & 5ign;
/% set cc if acc <0 and cc = TRLE ¥/
APV : cc = cc & (lix O>&5Ip&lsp | ix <D >&slp&iisp);
VPE:cc=iyl0} /*setccif iy=0%/
SIP : cc = Slp & Isp;
/* set cc if peak */
SIV : cc = slp & UUsp;
/* set cc if valley *’
SSL : Isp = slp, slp = sign;
/* set slp (slope) if acc >= 0,
set Isp (last_slope) o slp */
end

-7-

6.4. The microcode-block : main program and subprogram

6.4.1. General block-syntax

The basic structure of the control-sequencer is quite stricl. A processor siaris a new sam-
ple interval with the execution of a main program, followed by a Joop of x_mod subprograms.
Note that all processors are synchronized in that they start a new sample at the same time.
This means that a processor with a shorter program has to wait (execute nop’s) until all other
processors have finished their program. Both the main-program and the sub-program are
optional.

The compiler infers the structure of the control sequencer from the microcode descrip-
tion. It counts the number of instructions in main- & sub-program and computes the number
of cycles in a sample interval. This is done for all processors and the maximum value is taken
as the modulus of the system's main program counter. The subprograms of two processors can
be svnchronized using the sync and the couple options (cfr. constaints).

Note that the microcode contains all the information needed for the generation and assign-
ment of the 1/O-units and the address arithmetic unit. The compiler scans the microcode 0
check for the occurence of indexed addressing and for different kinds of 1/0.

Syntax ¢
<main_program > == .main_pr <y_mod >CR begin <microcode > end
<sub_program > == sub_pr <x_mod>CR begin <microcode > end

<microcode > == <simultaneous_instr;> { <simulianeous_instr; >}
<simultaneous_instr> == <instruction> |, <instruction >}

v_mod and x_mod determine respectively the modulus of the iy- and ix-index counters. As
already stated before, the ix-counter counts the number of iterations of the subprogram and is
incremented at the begin of a new iteration (ix = -3 in the main program). The iy-counter (in
counter mode addressing) is incremented at the start of a new sample-cycle and is used for e.g.
decimation. These registers (or counters) are basically used in the indexed read- and write
operations (cfT. microcode definition). The default values of x_mod and y_mod are both 1.

If the v_mod field of the .main_pr line is "*", pointer mode addressing is implied. In this
event, the iy-register may be loaded from the processor mbus. The new value is available in
the iy register on the second instruction following the instruction in Which the assignment to
iy is performed.

Each microcode line consists of a pumber of simultaneously executed pipeline instruc-
tions. The emulator checks the consistency of these instructions. The layout generator
transforms the assembly level description into binary used for ROM programming.

6.4.2. The assembler syntax

The set of available microcode instructions is split into groups of similar instructions.
Members of the same group are mutually exclusive, while instructions of different groups can
be executed simultaneously. There are the instruction groups

memory

sor

acc (accumulator)

mbus

mir (memory input register)
output

aip (accumulate if positive)
coef (coefficient)

quot (quotient)

perform simultaneously a mor, sor, acc, mbus, mir, output, aip, coef and quot- instruction.

6.4.2.1. The Memory Instructions

A1l these instructions affect the mor (memory input resister). "loc_add” denotes the
address assigned the local variable "local”. The immediate index “ind" is used to address the
different elements of an array variable. "ind” can be omitted when pointing to the first ele-
ment of an array or in the case of scalar variables.

The presence of a finite state machine defining '’ is assumed when invoking a conditional
write-operation. In the case of indexed addressing, the contents of the ix- or iy-register
(defined in Part I section 3.6) is added to the actual address.

Note that in the syntax definitions, ":=" denotes a storage action (assignment of a value to a
storage location).

instruction action

default mor = -1
r(localfind)) mor = mem(loc_add + ind)
rx(locallind)) mor ;= mem(loc_add + ind + ix)
rv(locallind]) mor := mem(loc_add + ind + iy)
w(locallind]) {mem(loc_add + ind) := mir, mor := ~ mir)}
wx(locallind]) | {mem(loc_add + ind + ix) := mir, mor := ~ mir}
wy(locallind]) | {mem(loc_add + ind + iy) := mir, mor := ~ mir}
wellocallind]) | if (cc) {

mem(loc_add + ind) := mir, mor := ~ mir}
wxc(locallind]) | if (cc) {

mem(loc_add + ind + ix) := mir, mor := " mir}
wycllocallind}) | if (cc) {

meml(loc_add + ind + iy) := mir, mor := " mir}
mor = mir mor := ~ mir (no memory action)

6.4.2.2. The sor instructions (shift output register)
Instructions affecting the sor-register.

instruction action
SOr = mor unshified load of mor-register
SOr := sor unshifted load of sor-register
sor := mor>n | arithm. right shift of mor over n bits (0 <= n <= 6)
sor = sor>n | arithm. right shift of sor over n bits (0 <=n <= 6)
sor i= mor<n | arithm. left shift of mor over n bits(0 <= n <= 1)
sor := sor<n | arithm. left shift of sor over n bits (0 <= n <= 1)

Note : the hardware doesn’t support the left shift at present. A right shift of (n = 7) is sup-
ported instead. We expect the hardware adaptation to be done in the near future.

6.4.2.3. The Accumulator Instructions

The syntax of an accumulator instruction is ssmewhat more complicated. The adder has
two input busses (called abus and bbus). Both of these can represent a whole set of different
actions, so that a large number of combinations is possible. To shorten the description of the
instructions, we use a simplified syntax; the accumulator instructions can take one of the fol-
lowing forms :

acc = 'abus’
acc = ‘bbus’

acc = "abus’ + ‘bbus’
acc = "bbus’ + 'abus’

where "abus’ and "bbus’ represent respectively entries from the
’abus’- and "bbus’-tables.

‘abus’ table

instruction action
0 abus=0
sor abus = sor
~ sor abus = ~ sor (bit-inversion of sor)
sor abus = borl (absolute value of sor)
~ sor! abus = ~ kor! (bit inverted form of absolute val.)
coef . sor if (coef == 1) {abus = sor)

else labus = 0}
coef.” sor if (coef == 1) {abus = ~ sor}

else {abus = 0}

The order of the arguments in the coef-instructions is not significant e.g. sor.coef is
equivalent to coef.sor .

‘bbus’ table
instruction action
4] bbus = 0
mor bbus = mor
acc bbus = acc . :
mor&acc bbus = moré&acc (bitwise AND-ing)
(acc&mor)

Most of these entries are clear from the above description. Some of them need however a more
detailed specification.

- The output of the complementer is a 1’scomplement (bitwise inversion) instead of a 2's-
complement inversion. This results in an error of one least significant bit. E.g. the inver-
sion of 0101 (5) yields 1010 (-6) instead of 1011 (-5). In digital filter implementations,
this results in a small amount of additional noise. The eflect must also be taken into
account when using subtraction to perform a comparison.

- The output of the adder is saturating, (cfr. hardware-description)

- The coef-instruction (abus) is used for serial-parallel, variable-variable multiplications.
One variable is Joaded in the sor-register, while the second (coefficient) controls in a bit-
serial way the output of the abus-multiplexer. In this way a shift-add multiplication is
possible. More information can be found in the coef-instruction below.

6.4.2.4. The aip instruction

instruction action
aip accumulate if positive : load adder output in accumulator
only if value is positive

This instruction makes the coding of a variable/variable division feasible (cfr. quotient-
instruction). Besides the conditional accumulation, the aip-instruction adds a 1-bit to the

-10 -

quotient-result when positive, otherwise a 0-bit is added.

Note : the sign bit of the accumulator (used in the finite state machine) is checked BEFORE
the aip-hardware. This makes a negative sign possible, even when a aip-instruction is executed.

6.4.2.5. The mbus instructions

These instructions assign the value of a certain register to the mbus. It is however
important to know that the mbus does not provide any storage and is not a stage in the pipe-
line. Storage is provided in the mir-register or an external global.

instruction action
mbus = acc (default)
mbus = mor assigns mor-register to mbus
mbus = global | input command : loads external global

If the global (mbus = global) is defined as an array-variable, the iy- (ix-) register is used as the
index-pointer 1o select the array-elements in the main- (sub-) program.

6.4.2.6. The latch-enable instruction (mir-register)

instruction action
le mir := mbus

The mir is a wransparent latch. This means that the Joaded value is immediately available and
can be used in the same cycle for a write operation. Meanwhile the value is stored in the mir
and remains there until the next "le" instruction. This in contrast with the other pipeline
registers where the value is updated every cvcle.

6.4.2.7. Output instructions

instruction action
global := mbus | output of mbus to external global
iv = mbus Joads the mbus into the iv-index register

When the global (global = mbus) is an array global, the iy- (ix-) register is used as the index-
pointer 1o select the array-elements in the main- (sub-) program.

The new value for iy (iy = mbus™instruction) is available in the iy-register on the second
instruction following the instruction in which the assignment to iy is performed.

6.4.2.8. Finite state machine instructions

instruction action

<FSM-instruction> | adapt fsm-status (execute user-defined
instruction)

with <I'SM-instruction > the user-defined kevword (called <cmd_pame> in 6.3).

The use of the finite state machine is illustrated with the following example : suppose
that we want to find the Jargest of 1two numbers, stored in the local variables a and b, and
that we want to store that number in the local c. We define a finite state machine with only
one instuction SET-:

-11 -

SET- : cc = sign; /* set cc if acc <0 %/
The following microprogram realizes the specified action :

r(a); /* 1d 8 in mor */

r(b), sor == mor, mbus = mor, le; /* Id a in sor and mir, 1d b in mor */
wic), sor = mor, acc = sor; /*1d a in ¢ and acc, 1d b in sor 3/
acc = acc + $oT; /facc=a-b?¥

r(b), SET-; /*1bbin mor,set ccif b >a */

wc(c), mbus « mor, le; /*ldbincifecc(b>a)?/

/% else keep a in ¢ ¥/

6.4.2.9. The coeflicient instruction — the multiplication operation

instruction action

coef := global | feeds global into a P/S and starts shifting bits to
the control of the abus-multiplexer

This instruction initiates a variable-variable multiplication. One of the variables, called the
coefficient, is regarded as a fractional number (-1 <= coefficient <1). The coefficieny, which
has 1o be defined as a global and is thus stored outside the processor’s local memory, is parallel
loaded into a P/S-converter and serially shifted into the control of the abus-multiplexer start-
ing with the msb (sign-bit). When a 'one-bit’ is presented, the contents of the sor-register is
added to the accumulator. The contents of the accumulator is left unchanged in the case of a
‘zero-bit’.

Basically, a variable-variable multiplication is performed in the following way. One
variable is loaded in sor. On the next cycle, the coefficient is loaded into the P/S converter and
the shifting is started. The msb (sign-bit) is presented to the multiplexer-control. The sor-
value is shified right repeatedly in the subsequent cycles, presenting a sequence of partial pro-
ducts to the adder input. The value of the coef-bit, present at that time, determines if this
product is added 1o the accumulator value or not.

The following microcode fragment presents a typical multiply action. We want to mul-
liply two variables a and b, stored as local variables in processor X. In a first step, b is
transferred 10 ¢, defined as a left-justified global of wordlength 8 (the basic multiply action is
going to take 8 cycles). Note that the tranfer of the n-bit variable b to the 8-bit global ¢
results in a truncation : only the 8 most significant bits of ¢ are retained.

Next, the serial shift-in of ¢ in the data-path is started. The rest of the algorithm is identical
to the two's-complement multiplication, defined in section 2.

-12-

/* multiplication - example %/

r(b);
r(a), mbus = mor, ¢ := mbus; /* load b in the global ¢ */
SOr = mor; /* load a in sor */

sor = sor >1, acc = coef.” sor, coef = &
/* sign-bit of ¢ (== b) shifted in coef :

if (coef == 1) Joad acc with ~ sor, else acc=0 */
SOT o= SOr >1, acc := acc + coef.sor; /* bit 2 of ¢ */
Sor = sor >1, acc := acc + coef.sor; /* bit 3 of ¢ */
SOr := sor >1, acc = acc + coefsor; /* .. */
SOT i= SOr >1, acc = acc + coef.sor;
SOT := SOr >1, acc := acc + coef.sor;
SOr := SOr >], acc := acc + coef.sor;
acc := acc + coef.sor; /*lsbof ¢ %/
/* result of multiplication in accumulator */

Note that in a variable-variable multiply, the local data is always multiplied by a global
coeflicient. Thus, if the coefficient is stored locally it must first be assigned 1o a global as in the
above example. Alternatively, the coefficient could originate from a different processor, where
the global assignment is made.

A multiplication with a signed constant is however much simpler : Consider e.g. an 8-bit
constant : 11100001 (represented in 2's complement representation). The f. ollowing microcode
fragment performs the multiplication of the mor-value with this constant.

/* multiplication with constant - example */

SOT := mor; .

sor := S0r >1; acc =" sor; /* negative sign-bit, invert sor */
SOT := sor >1, acc := acc + sor; /* 2nd 1-bit */

SOr := Sor >S5, acc = acc + sor; /* 3rd 1-bit */

acc = acc + sor; /* 4th 1-bit = Isb %/

/* result in accumulator */

The multiplication takes only four cycles here, the number of one-bits in the coefficient.

6.4.2.10. The quotient instruction — the division operation

instruction action
| global := guot | load result of division in global

Divide operations, by means of long division, are implemented using the "accumulate if

positive” control option for the accumulator, combined with the global := guot instruction.
This procedure results in a guotient, stored in & global variable (= fifo!) with a wordlength as
defined in the global-definition. The bits of the quotient are obtained sequentially. The global
‘= quot instruction closes the divide operation and stores the result in the global.
To find the quotient N/D with D >= 0 and D! > I\ the absolute value of N is loaded in the
accumulator and -D/2 is Joaded into the sor. The sign of N is automatically checked and
routed into the quotient (= sign of the sor-register 1two cycles before the first aip). On succesive
cvcles D/2, D/4, . is subtracted from the accumulator, the result being accumulated only if it
is positive. A one (zero) bit is routed into the quotient-S/P if the result is positive (negative).
This results in a sign-magnitude representation, which is converted automatically into a 2's
comp. representation for the global.

-13-
example : (see section 2 for numerical example)

x/z d)i.vision - example , ka is defined as 8-bit global*/

N (]

1(-D), sor = mor; /* N in sor - sign bit is tested */

sor := mor >1, acc = kort /* load absol. val. of N in acc */
/* start division */

soT = sor >1, acc = sor + acc, aip; /*sign bit routed in quot*/
SOr 3= sor >1, acc = sor + acc, aip; /*bit 1 in quot */

SOT = SoT >1, acc = sor + acc, aip;

SOT = 50T >1, ACC ™= SOT + acc, aip;.

SOr = SOr >1, ACC = SOT + ac, aip;

SOr o= S0r >1, acC = SOT + acc, aip;

acc = Sor + acc, aip;

Kka := quot; /*division finished, quot in global ka */

Note : this example assumes that the negative value of the denominator D is available. This
simplifies the code and also allows for a considerable noise reduction. Instead, we could have
used the acc := _ sor + acc -command for the subtraction, but this would have resulied in a
higher noise-Jevel.

6.4.2.11. The nop instruction

instruction action
nop No Operations (executes the default commands)

Following instructions are executed by default (when not overwritten by another com-
mand) : mor := -1, Sor = SOr, acc = acc, mbus = acc, mir := mir. The major effect of these
defaults is to refresh the values present in the pipeline registers.

7. The constraints

This block has been added to give the programmer a certain amount of control over the
setup of the timing (and of the control sequencer) of the different processors. Other constraints
than the ones listed can be considered on user’s demand.

Syntax :

<constraints> == constraintsCR begin <data_block >end

<data_block > == <data_line;> { <data_line;>}

<data_line> == sync : <master> <slave> | <couple : <master> <slave> |
external_sync

with <master> and <slave> processor-names.

The sync-option is used when the subroutines of two processors are communicating and
thus have to be synchronised : this is the case when the subroutine of the master processor
sends dawa (in the form of globals) to the subroutine of the slave. In order to avoid a sample-
delay in this data-transfer, the sync-constraint has been implemented : the emulator (& com-
piler) checks the globals (and their delay), send from master to slave, and adjusts the timing
of the slave so that the slave can access the data from the master in the same sample, and this
without timing conflicts. It is clear that this constraint only makes sense when both processors
have an equal number of subroutine iterations. Therefore, nops are added to the shortest sub-
routine.

-14 -

The couple-option includes the sync-option, but puts some more constraints on the sub-
routine alignment : in this case, the slave-subroutine not only receives daia from the master,
but also wants to send data back. This data has to be present at the master-side before it is
accessed in the NEXT iteration of master- subroutine. This asks for a somewhat more compli-
cated alignment of the subroutines and the inclusion of extra nop-instructions.

The sync- and couple-constraints are illustrated in a pictorial way in Fig. 1.

The external_sync-option allows for a synchronisation of the processors to an external
clock. To achieve this, the compiler routes the reset-control lines of the processors to the out-
side world (the reset-line initiates a new sample-cycle and starts the execution of the first
instruction of the instruction-rom).

8. Conclusions

The different aspects of the design file description of a concurrent signal processing sys-
tem have been discussed. This description serves as the input to the emulator and compiler
development tools.

References

[1) K. Jensen and N. Wirth , "Pascal, user manual and report”, Springer-Verlag, New York
1974

mOStET‘ %\o\za\. S\QVQ

o~

mawn masn
subhi
- \(:.)\ ;wxi 3 E'
T) Vs
subnQ
wn\(;*)\. sukh
T N
sub3 |
- s ‘°“) S\L\:\.
w/rz// N Reps.in
‘\ § 4 PR
\\\\\\\\\\ Y Pop's tn

[2 R

ol The S yn¢ op‘f.ion
O.VO'\aS $°.np\e. ae\m " t\g\;,& cgv-nu\'\cc\-\on %mm
f'\u'axtf ‘o 3\&\[{ \ ovr _&H—_ %\0\5&\-%)
- Cq.ll.n\'\tcs‘ \C“\\’\’ o? Awhrow\:.\ﬂes
b\a 040\30% A “°P‘S to &\507‘6\‘ "Ow\'\ng
with A= |iIm -1,
-59“ \Aks %n.L\rOu.\'mes Y r\o\\er 8 A\QVQ Jo
) . maies o
b‘k QA‘\‘“z E, no‘.‘s Ye man me\ro-a ug e‘\\vr S ‘\o‘,e
no bhat (£ = EL0N+ D)\ i
w’\\'\‘» Q= \'ten;Fer-o\cva.k

F'\%. io.

Part 3 : The emulator Demon

1. Introduction

In this part, the usage and basic functions of the emulator are described. The functions
of this emulator are as follows:

(1) Remove syntax errors from the design-file description.
(2) Check the consistency of the design-file microcode.
(3) Set up the timing and the basic structure of the control sequencer.

(4) Set up the timing and the stucture of the interprocessor communications. Check the
delays connected with the serial transfer.

(5) Debug the microcode and the algorithm. '
(6) Perform full and realistic emulation on large data-files (e.g. speech).

The emulator performs function (1) to (4) during the read-in of the design file. If this
description is found sane, an interactive siage is entered. In this stage, traces and breakpoints
can be set 10 debug the microcode or a number-crunching run can be started . Inpui-data and
output-data is 1aken from or dumped in files as defined in the design file.

2. Program evocation

SYNOPSIS
Demon {wcdio] design_file
DESCRIPTION

Demon reads in the design file and checks syntax and consistency. The data and control
structures needed for emulation are set up. The exact timing of the interprocessor com-
munications is evaluated and checked for consistency. The standard input (interactive
commands) and output can be redirected in the normal way.

Warning messages will be issued only when the -w flag is set. Most of these warnings
are concerned with possible i/0 or interprocessor communication problems (e.g. when a
global transfer causes a full sample delay).

A 1able, describing the timing of the different processors, can be obtained by setting the
= flag. Duration of main-program, subprogram, number of nop's, total sample execution
time are displayed.

The -d flag generates a display of the rom-contents of the different processors, showing
the status of the different control-lines for each micocommand.

A detailed overview of the interprocessor communications and the timing of the
transfers can be obtained. setting the -i flag.

The -o flag suppresses the accumulator-overflow warnings.

3. The emulation and debug - mode

After the input and check of the design-file, the emulator reguesis for the datafiles
(input and output). Demon remembers the datafile-names, used in the previous emulation.
After this. Demon enters the interactive mode, denoted with the prompt Demon> At that
point, a set of commands are avialable for debugging and running:

- run n(samples): execute n complete sample-cycles. Stop however when an intermediate
breakpoint is encountered. When n is not defined, the emulation goes on until one of the
input-data files is exhausted.

- list szartstop : list the input file from line szart 10 line stop.

- stop at line_nr : installs a breakpoint at the specified design-file line. The specified line
has 10 be an executable microcode-line.

master Q\\o\:a\ ' Qove

hauwn | wmeain —]
sud B .- II
uhd | I |
| " 31
n wr suky
() i
& AT 2l)
A R[22 () -—gur ' >
e I <--" ;
I
1Y
wr, @ o 2!
AL/, r
L y ___- wr :
suby rl-mT TN L 5Sh
W | Suba
- .
7/\///////\/\ o) . t"' : M ﬂosz\f)
\'\.. (b L) . .
\\\\\\\\\\\;. ----- -~ L) rops in

Y| The coup\z op&'\ov\ |
« avoids gg-’,\g Jg\a " ‘\o‘:\& Cov-nun.cc&‘iovs from rw.u\'-e»- bo
s\ave lc"\ '_o\z (ay) == S%nc.-o,ohon
* mohes h\so Aure \\mﬁ: %\o\;.ﬂ,uﬁ“‘en b% A\owg '
Weesbian (1) o) Hhe cubrouting s read ta iYerabion (i14)
oF the mas‘er-)w\;ro..\{v\g le-o. \a‘a& b).
Thig o‘a\‘\on oNovs For a \b'\a\ire(‘ﬁon§ COnhan:;a‘:o.) \J..u,\

*‘—VO PPOte&SQ'i o :%\C\PO’\O‘!S WO Wi a .h\’\ni:ﬁuq Q#W‘
of Yor awgre q Q

RcaSiS&":O—\ - tA?-\'f‘_QQ o Sqne
- Fk"ﬂl o.\'\'ymh\' A1S "cu\‘teed L-J\\’)\ exjfrl uop'_‘

in subrontive os badhwade- & lave
‘Exo—-p}c; Sce VocoJcr (ex anple- ""\"‘““\) F?g. 1\

-2-

- cont: resumes emulation after a breakpoint .

- focus processor : sets a pointer to the named processor. This processor is then considered
as the default search processor for the step, print and set commands.

- print variable of processor : outputs the value of a global, local or register. The *of
processor-name” is optional and is not needed for globals. For locals or registers however,
the processor-name has to be defined if the processor to be examined is not the one which
is in focus (see focus-command). Following registers (or flags) can be examined : mor, sor,
acc, mbus, mir, ix, iy, pc, cc, eof, mof. The "print pipe” command gives an overview of
the complete pipeline of the processor + the values of pc and index registers

- set variable of processor : overwrites the value of a global, local or register. The “of
pracessor-name” is optional and is not needed for globals. For locals or registers however,
the processor-name has to be defined if the processor in question is not the one which is
in focus (see focus-command). Demon displays the old value of the variable and asks
for the new one.

- trace register at line_nr : trace the value of the named register, when the named
microcode line is executed. The defined line has to be executable.

- step processor : performs a single step on the microcode of the named processor. The
processor-name can be omitted if the processor is in focus. The complete pipeline status is
printed after completion of the step.

- delete trace. break : remove all traces (if trace-keyword), breakpoints (if break -
kevword) or both (no keyword).

- status: displays a list of the currently set break points and traces.

. peset : Resets the status of the processors to the initial values and rewinds the input-files.
This allows the user 10 restart an emulation without a program-quit.

- timing : displays the timing tables of the processors (identical to the < flag).

- alias keyword expression : performs an alias from expression to kevword. This allows

the user to define his own keywords (which can be shorter than the standard set, pro-
vided by Demon). Alias without arguments shows the complete list of defined aliases. A

permanent set of aliases can be defined in a emrc file, located either in the current or
the home directory of the user. These aliases are read in on the invocation of the pro-
gram.

Example : "alias p print pipe” generates a new keyword "p", which is equivalent to
" print pipe". After this definition, "p of processor-name * is a perfectly legal construct.

. shell command : executes the defined cshellcommand. If no command is defined, a new
shell is fired up.

- help: gives an overview of the available commands.

- quit

- end : exits the emulator.

remark : the emulator assumes that all the input-data are in the right format and order (as
defined in the global and io-speciﬁcations). Data is outputted in a way, conform to the global
(word_length) and io (order)-specifications.

4. bugs
It is not yet possible to trace Jocals and globals. A format has 10 be defined to define this
in a consistent way (conform with indexing).

Part 4 : Examples

1. Example 1: 32 tap FIR lowpass filter

The first example contains the design file for a 32-tap fir lowpass filter (Figure 1). The

main program handles in- and output of the data and some initialization. The sub-program
implements a single tap (multiplication, addition and updating of the delay line). 32 iterations
over this subprogram yield the complete fir-filter. :
Note that the coefficients are stored as constants in the RAM-macrocell and that variable-
variable multiplications are used in the tap-implementation. This resuts in a small micro-
program, but is not very efficient in terms of execution time. Another possibility would be 1o
hardwire the coefficients in the microcode using the canonical signed digit representation as
done in Example 2.

/* design file for 32-tap FIR Lowpass Linear Phase Filter */
global

begin

in<125, out<12>, tap<12>;

end

do 12>
begin
in : signal_in;
out : signal_out;
end

-processor : one <16>
begin
Jdocal
begin
diy{33], resuly;
end

<onstant
begin .
/* tap weights scaled for 12 bit accuracy */
weight[32] = 0,-1,2,5.-8,-12,18,25,-35,-47,62,84,-117,-174,301,919,
919,301,-174,-117,84,62,-47,-35,25,18,-12,-8,5,2,-1,0;
end

smain_pr /* initialization, in- and output handling */

begin

r(result), mbus = in, le; /* input new sample */
w(d1y[32]), mbus = mor, out = mbus, acc = 0; /* output last result */
wiresult), Ie; /* clear result %/

end

Sub_pr <32> /* implements one tap of the fir */

begin

rx(weight);

rx(dly(1]), mbus = mor, tap := mbus;

r(result), sor=mor; /* start multplication */
sor:=sor >1,acci=mor + coef.” sor,coef = tap;
sor:=sor >] ,acc:=acc+coef.sor;
S01=s0r >1,accimacc+coef Sor;

« 32 \'QP For LowPaSS

F A&m \

-2-

#or=s0r >] acc=acc+coef.sor;
sor:=sor >1,acc:=acc+coef.sor;
80T =S0Tr >1,acC=acc+coef sor;
sor:=sor >1,acc:=acc+coef.sor;
sor:=sor >1,acc=acc+coef sor;
sor=sor >1,acc=acc+coef sor;
rx(dly{1]), sor=sor >1,acci=acc+coef.sor; /* update delay line */

mbus = mor, le, SOr:=sor >1,acc=acc+coef Sor;
wx(dly), acc:=acc+coef.sor;
wi(result), le;

end

end

-3-

2. Example 2 : Direct Form IIR bandpass filter

This example describes the implementation of the direct form implementation of a
bandpass filter, using two second order biquad sections (Figure 2). The zeroes are implemented
first, followed by the realization of the four poles. Note that in this example the coefficients
are implemented in the canonical signed digit representation, which allows for a considerable
reduction of the number of cycles/sample.

/* channel 7 of speech recognition filterbank - bandpassfilter */
.global
begin
in <16>, 0ut <16>;
end

Jo
begin
in : signal_in;
out : signal_out;
end

.processor : bp 20>
/* implements first a set of four zeros, followed by two direct form sections */
begin
Jocal
begin
zerol, zero2, zero3, zerod;
bpf11, bpf12;
bpf21, bpf22:
end

Jnain_pr

begin
/* implement 4-th order zero section (in form (1-z**-2)**2) *.
/* also : scale input with g0 : 0.0- */
r(zerol);
mor = mir, mbus = in, le, acc »= mor;
r(zero2), sor := mor >2, acc = acc;
w(zero2), le, sor := mor, acc ™= sor;
r{zerod), le, sor 1= mor, acc = acc + _ SoOr;
w{zero1), sor == mor, acc ™= acc;
r{(zero3), le, acc := acc + _ sor;
w{zero3), sor := mor, acc = acc;
mor = _ mir, le, SOr = Sor;

/* 1st bpf gl=.0001
al= 1.011
bl= -1.00-001

2nd bpf g2=.001

a2= 1.1
b2= -1.000—

s/
r(bpf12), sor = mor >4, acc := sor;
wi(zerod), sorz= mor, acc := sor, le;

S0T:= SOTr >3, acCi= acc + Sor;

r(bpf11), sors= sor >3, acc:= acc+ sor;

end

end

-4-

SOr= mMOT, acC:= acc+ Sor, le, mbus= mor;

wi{bpf12), sor:= sor >2, acci= acc+ 80T,
1(bpf22), sor:= sor >1, acc= acc+ sor;

$Or:= MOT, ACC:= 8CC+ 50T;
wibpf11), sor= sor >4, acc= " sor, le;
mor= " mir, sor:= sor >1, acci= acc+ S0T;
r(bpf21), sor= mor >3, acci= acc+ Sor;
w{bpf22), sor:= mor, acci= acc+ ~ sor, le, mbus= mor;

sors= SOT >1, acCi= &cc+ SOT,

acc:= acc+ SOr;

wi{bpf21), le, out = mbus;

Example 3 : Limiter Circuit

This example describes how the finite state machine can be used to perform decision
making. The processor, described below, acts as a limiter circuit with the saturation charac-
teristic of Figure 3. Two finite state machine commands are needed to implement this func-
tion, basically testing the sign bit of the accumulator after comparison of the signal with the
upper and Jower bounds.

global
begin

in<8>, out<3>;
end

Jo
begin
in : signal_in;
out : signal_out;
end

.processor : limiter <8>
begin
.Jocal
begin
Resuly;
end

<onstant
begin
Lower = -96;
Upper = 64;
end

Jfsm /* finite state machine definition */
in
SETIFLARGER : cc = sign; /* set cc if input > Upper %
SETIFSMALLER : cc = sign; /* set cc if input <Lower */
end

. Jnain_pr

begin
r(Result); /* output previous result */
wi(Result), mbus = in, acc := mor, le;
r{L pper), sor := mor, out = mbus,
r(].ower), sor := sor, acc i= SOT + mor; /* compare with Upper s/
r(Upper), acc := sor + mor, SETIFLARGER;

/* compare with Lower */
wc(Result), mbus = mor, le, SETIFSMALLER;
/* adjust if overflow */

r (Lower),
wec(Result), mbus = mor, le; /* adjust if underflow */

end

end

q9

. Pa.'\r

ZCro-~
_ 5t
poar —é)— FQ\: _é— :::‘::

B\ock &lo. %\'cun

zcro-Po:\r *

-

-~

% ?)‘ (i ..z")

Pcl-e- par

b

CsO (anon\u& s‘uxoeA. clsoé\) no\-a.\‘\on .

-41.00-0014

Fig. X Direct Form

= -4+ 1 - s

band ?uss?l\ker

out

-

L m 86

Ftﬂ' 3: Limiter C}\o\ro.c,‘.‘er\s_\‘"\g

3. Example 4 : LPC-10 vocoder

This example describes the implementation of an LPC-10 vocoder. (cfr. subsequent Fig-
ures). The speech input (to the analyser) and output (from the synthesizer) is performed over
the parallel signal-bus, while the low rate speech parameters are transferred to a host procee-
sor via the host-interfacea (lattice coefficients, speech energy and pitch).

The algorithm has been divided over three processors in the following way :

processor 1 : filter
- Speech input + Preemphasis (before analysis filter)
- LPC10 analysis lattice filter
- LPC10 synthesis lattice filter + deemphasis
Lowpass filtering of speech input before pitch detection
processor 2 : correlator
- implements the frame counter

- computes the excitation : using pitch and energy (from host-input). Generates unvoiced
as well as voiced signal and selects one of them based on pich value.

- computation of analysis filter coefficients (using Burg’s method)
processor 3: pitch

- Pitch computation using simplified Gold algorithm : six signals are computed and the
pitch for each of them is updated every sample. Each sample one of the signals is
selected and its pitch is compared with the six updated piwches. A score is computed.
Every six samples, the pitch with the highest score is selected as the new pitch and com-
pared with the voiced/unvoiced threshold.

A full description of the vocoder implementation can. be found in following reference :

S. Pope, Macrocell Design for Signal Processing. Chapter 1, Ph.D. Dissertation, University of
California, Berkeley, CA, December 1984

]
'

- -o-ad

h 4
-l
o
x

FROM
A/D)—‘— LPF

PIICH .
TRACKER

.. - e =)
PROCESSOR NO 3 118 B1T)

emmemise oo

'
| [PRE- EmPrASS

ANALYSIS
FILYER

e o o of on w> e @ o ol ©® &

= SPECTRAL
SYNTHESIS 2t T0 H || _anaLvsis
PARAMETERS! | T DA | [coRReLATOR WRRAME TERS
' ‘ ! o
PROCESSOR NO | (6 8IT) PROCESSOR NO 2 (26 BIT)

Multiprocessor organization

'f’v“’r-"]
.LLLL.._JJ

PITCH

)

SPEECH

RECEIVE

FILTER

TIME-VARYING | | W

\

Vocoder speech model

96000
bits/sec

VOCODER
CHIP

VOICING AMPLITUDE SPECTRUM

D/A |

DATA

HOST

| MICROPROCESSOR

Target system for the vocoder 1.C.

)

2400 bits/sec
—L——’ XMIT DATA

pitch period

A - - A
I |
- A /:——J =A /:—' ?me
Voiced excitation waveform
EXCITATION — o o o
(NC) e o o o
Lattice synthesis filter

s\zﬂ\\\c'u"\ S

SPEECH INPUT Ao
(AFTER-PRE EMPRHASIS)

Anglysis lattice filter
A, *+B,., F('.?‘ b " ——20)
¢ -
63/64 . A
- P '
Y
‘..‘-B..‘ (.’. 2 8.' e W
.
63/64
Correlator

Ano.\%S\S

5
A &

Six signals formed after peak-valley detection

. . . J—-[Fncn DE TECTOR |

PITCH DETECTOR
geH_] 2-POLE peax/ [IpiTcH DETECTOR
tgut LPF "‘J VALLEY

PITCH DETECTOR

PITCH DE TECTOR [

SCORING |_, PI1TCH
ALGO- ESTIMATE
RITHM

Gold Pitch Tracker algorithm

Pt Tradkin &

/* vocoder - full system */

/* the system is composed out of three processors :
* filter, correlator and pitch_tracker

s/

.global /* interprocessor and i/0 communications */

begin
ka[10)<8>, ks{10); /* only host i/o interconnections */
ka_connect <8 >, ka_shift <8 >; /* ka-connection + multiplier s/
plus 16>, min<16>;
speech_in <16 >, speech_out <16, residu <16, excitation <16 >;
energy_out 24>
energy_in<16>;
pitch_in <8 >, pitch_out <8 >: right_justified;
Jow_pass <16 >,
square <13>;

end

Jo <> ‘* jo-description */

begin
energy_in, pitch_in, ks : host_in;
energv_out, pitch_out, ka : host_out;
speech_in : signal_in;
speech_out : signal_out;
residu : signal_out;

end
/ ? /
.processor : filter <16> /* main_program : low_pass filtering and */
/* emphasis + deemphasis of signals */
/* subprogram : lattice filter : synthesis */
/* and analysis s/
/ andd /
begin
-Jacal
begin
a, 011}, c, d[11], temp;
e.f, g h;
ka_intern[11}
end
.main_pr <1>
begin

/* copy ¢ to d[10], output residual, input speech (in e) */
/* deemphasis filter */

r(a),

r{h), mbus = mor; /* residu = mbus; */

r(c), sor := mor>3, acc := mor;

w{d[10]). mbus = mor, sor := mor >1, acc = acc + _ sor, le;
r{e), acc = acc + sor;

wi(h), sor := mor, speech_out = mbus, le;

/* preemphasis filter */

SOT 3= SOT, 8CC ™= SOT;

wie), mbus = speech_in, sor = sor >2, acc ™= acc + sor, l¢;
SOT = IMOT, 4CC ™= aCC + SOT;

r{b{0)]), sor = sor, acc = acc + ~ sor;

wi(temp), acc = acc + ~ sor, mbus = mor, le ;

wia), le;

w(t{0]);

/* Lowpass filters, first and second stages, input excitation */
r(f);
r(e), sor := mor>2, acc := mor;
w(c), sor == mor>2, acc := acc + _ sor, mbus = excitation, le,
residu = mbus;
r(g), acc := acc + sor;
w(f), sor := mor >2, acc := mor, le;
/* input last ka -coefficient and write in 10 */
wi(ka_intern[10)]), mbus = ka_connect, sor := mor, acc := acc + _ sor, le;
acc := acc + Sor;
w(g), low_pass := mbus, le;
end

sub_pr 10>
begin
/* implements analysis and synthesis lattice filter */

/* compute ~ Ka + b{ilJland "Ka = bfi]¥ */
r{temp);
r(a), sor := mor;
r{a), sor := sor, ac¢ := sor + mor;
mor = _ mir, acc = _ sor + mor, le;
mor := _ mir, sor := mor, le;
rx(d[1)), sor = mor, acc := " bor}
r(c), sor := mor, acc := ~ bor|, plus := mbus;

/* compute ¢ = d(i+1)*ks + ¢ */

SOr = sor >1, acc = mor + coef.” sor, min := mbus, coef = ks; /*sign
bit %,

SOr := sor >1, acc = acc + coef.sor;

SOT = SOTr >1, acc = acc + coefsor;

SOT = SOT >], acc = acc + coef.sor;

rx(ka_intern[1]), sor := sor >1, acc = acc + coef.sor;

r(a), sor := sor >1, acc := acc + coef.sor, mbus = mor, ka_shift := mbus,

ka := mbus; /* output ka to hosi_interface */
r{temp), mbus = mor, sor := sor >1, acc = acc + coef.sor, le;
mor = ~ mir, SOr = mor, acc = acc + coef.sor;

/* compute a = a - b{jPka */

w(c), sor := sor >1, acc = mor + coef.” sor, coef = ka_shift, le;
SOT = SOT >1, acc := acc + coef.sor;

sor = SOr >1, acc := acc + coef.sor;

sor := sor >1, acc := acc + coef.sor;

sor := sor>1, acc = acc + coef.sor;

r{temp), sur := sor >1, acc := acc + coef.sor;

r{a), mbus = mor, sor := sor >1, acc := acc + coef.sor, le;

-9.

mor &=~ mir, SOr %= mMor, ac< = acc + coef.sor;

/* compute b(i+1) = b(i) - a*ka, update temp */

mor = mir, sor 3= sor >1, acc == mor + coef.” sor, coef = ka_shif't, l¢;
w{a), mbus = mor, sor = sor >1, acc = acc + coef.sor,le;

rx(t{1]), sor := sor >1, acc = acc + coef.sor;

w{temp), mbus = mor, sor >= sor >1, acc = acc + coef.sor, le;

sor = sor >1, acc = acc + coef.sor;

rx(d[1)), sor = sor>1, acc ™= acc + coefsor;

r{(c), mbus = mor, sor := sor >1, acc ™= acc + coef.sor, le;

mor = mir, Sor &= mor, acc = acc + coef.sor;

/* compute d(i) = d(i+1) - ks*c */

MOT i= Mmir, Sor = sor >1, acc := mor + coef.” sor, coel = ks, le;
wx(b{1]), mbus = mor, sor := sor >1, acc = acc + coef sor, le;
sor = sor >1, acc := acc + coef.sor;

sor := sor >1, acc := acc + coefsor;

sor := SOr >1, acc = acc + coef.sor;

sor := sor >1, acc = acc + coefsor;

Sor = sor >1, acc = acc + coef.sor;

* input new ka-coefficient (from correl) for cvclei-1 */
acc := acc + coef.sor, mbus = ka_connect, wx(ka_intern), le;
mor := _ mir, le;

wx(d), mbus = mor, le;

end

end

-10-

/ /
-processor : correlator 26> /* main_program : frame_counter and waveform - */
/* generator */
/* sub_program : correlator */
/ /
begin
.local
begin
energ_temp;
d10] dl10};

sample_counter;
pitch_counter, pitch, voiced, unvoiced;
random, gain;
end

Lonstant
begin
INCRENENT = 1;
MASK = 32767;
SIX = 6;
FRAME_LENGTH = -90;
MIDDLE_OF_FRAME = -70;
end

Jfsm
begin
SET_IF_PLUS : cc = Sign;
SET_IF_MINUS : cc = sign;
MINUS_FIVE : cc = cc & Sign;
CC_OR_MINUS : ¢cc = cc Isign;
EXOR : cc = kc&kign | cc&sign;
EOF : eof = sign, mof_fig = mof | (mof _fig & leof);
MOF : mof = kign & 'mof_fig:
end

main_pr <J>
begin
r(sample_counter),
r(INCREMENT), sor := mor;
r{FRAME_LENGTH), sor := mor, acc := sor;
r{MIDDLE_OF_FRAME), sor := mor, acc := acc + sor, SET_IF_MINUS;
r(pitch_counter), sor := mor, acc := acc + sor, aip;
w(sample_counter), sor := mor, le, acc := acc + sor, EOF;

/* increment pitch_counter - compare with pitch */
/* determine input-zone (<5, =5, >5)

* voiced = gain/4 if <§

* voiced = gainif 5

* voiced =0 if >5

s/

{INCREMENT), sor := sor, MOF;

w (pitch), acc := sor + mor, mbus = pitch_in, le;
w(pitch_counter), sor := mor, acc := 0, l¢;
wc(sample_counter), sor := mor, acc := ~ sor + mor, le;

-11 -

r{SIX), sor = sor, acc = 0, SET_JF_MINUS;
wc(pitch_counter), acc = sor + mor, le;

wi{voiced), sor = mor, acc = acc, SET_IF_PLUS;
wigain), mbus = energy_in, acc »= sor + ac, le;
wc{voiced), sor := mor >2, mbus = mor, le, MINUS_FIVE;
r(random), acc := ~ sor;

wc(voiced), sor := mor, le;

/* generate random number (for unvoiced case) */
/* technique : exor Isb with Isb -1 and circular shift */
/* first, we have to check that the initial random num-
* ber is different from zero : this tends 1o block the
® generator .
s/
r{INCREMENT), acc := sor:
acc := moré&acc;
r{random), sor := mor, acc := acc, le; /* mor = -1 %/
w{unvoiced), sor := mor > , acc = acc + sor;
{INCREMENT), acc := sor, SET_IF_PLUS; /* check 1sb */
acc := mor & acc, le;
MOr := mir, SOT != MOT, acC = acc;
SOT = MOT, acC = acc + Sor;
r (MASK), acc := ~ sor, EXOR; /* exor Isb & 1sb -1 */
SOT = mOr, acc = acc & mor;
wirandom), sor = sor, acc := acc + _ sor, le; /* left shift */

/* check if random number is zero */
/% if yes, transform to largest negative number */
r{lunvoiced), acc := acc + sor, le;

sor := mor, CC_OR_MINLS;

/* adjust unvoiced to gain/8 or -gain/8 */
r(gain), acc := sor + mor;

wc(random), sor := mor >3, SET_IF_MINUS;
r(pitch), acc = sor;

sor := mor, le;

w (unvoiced), acc := sor + mor;

/* make voiced-unvoiced decision : if pitch = O ;unvoiced */
/* output final waveform to excitation */

wc (unvoiced), mbus = mor, SET_IF_PLUS, le;

r (voiced); :

we (unvoiced), mbus = mor, le;

r (unvoiced),

excitation := mbus, mbus = mor, le;

/* send last energy_value to host_out */
r (energ_temp);
mbus = mor, energy_out &= mbus;

end

sub_pr 10>
begin
/* square plus-signal */

-12-

mor ™=~ mir, mbus = plus, le;

50T ™= mor, mbus = mor, square = mbus;

sor = sor >1, acc ™= coef.” sor, coef = square;

SOT = sor >], acc = acc + coef.sor;

SOT = Sor >1, acc = acc + coef.sor;

80T = Sor >1, acc = acc + coef.sor;

SOT = sor >1, acc := acc + coef.sor;

SOT = sor >1, acc = acc + coef.sor;

$Or M= SOr >1, acc »= acc + coef.sor;

SOr = S0r >], acc = acc + coef.sor;

SOT = SOr >], acc = acc + coef.sor;

sor = $0r >1, 8CC = acc + coef.sor:

SOr = sor >], acc = acc + coef.sor;

mOor := ~ mir, sor = sor >1, acc := acc + coef.sor, mbus = min, le;
SOT = MmOr, acc = acc + coef.sor, mbus = mor, square := mbus;

/* square minus-signal */

SOr = S0r >1, acc = coef.” sor, coel = square, le;
sor := sor >1, acc = acc + coef.sor;

SOr := sor >1, acc = acc + coefsor;

SOr = sor >1, acc = acc + coef.sor;

SOT = SOr >1, acc i= acc + coefsor;

sor = sor >1, ac¢ = acc + coef.sor;

sor = sor >], acc := acc + coef.sor;

SOr = sor >1, acc := acc + coef.sor;

SOT = SuT >1, acc = acc + coef sor;

SOT := sor >, acc = acc + coef.sor;

SOr = Sor >], acc = acc + coef.sor;

mor = mir, sor := sor >1, acc = acc + coef.sor;
rx(c), sor := mor, acc = acc + coef.sor;

/* start lowpass filtering of squared signals */
mor = mir, sor & mor >6, acc = mor + _ sor, le;
rx(d), sor := mor, acc := acc + _ sor;

wx(c), sor := mor >6, acc = mor + _ sor, le;

SOT i= MOT, acC = acC + SOr;

wx(d), sor := sor >1, acc = sor + acc, le;

/* accumulator contains now D-C - calculate now (C-D)/2 & (C+D)/2 */
sor := mor >1, acc := _ sor, le;

mor := _ mir, acc = _ sor + acc; /* (C+D)./2 in acc */

w (energ_temp), sor := mor>1, le;

sor = mor >, acc := sor}

/* start division */
sor = sor >1, acc = S0r + acc, aip; /*sign bit av. */
0T := Sor >1, acc = sor + acc, aip;
$OT = sor >1, acc = sor + acc, 8ip;
$Or := sor >1, acc = sor + acc, aip;
SOT = S0r >], acc = SOT + acc, 2ip;
sor := sor >1, acc := sor + acc, aip;
acc = 0T + ac, aip;
ka_connect = quot; /*division finished */
end

end

-14 -

.processor : pitch <18>
/* implements the GOLD -pitchtrack algorithm (can be improved) */

begin
Jocal

begin
thresh[6] ppcl6), ppl7) 1ppl6). signall6}
Is, Ip, v, score, topscore, pitch, winner;
end

Lonstant

begin
TWO = 2;
BLANK = 24;
VOICED = 9,
WINDOW1 = §;
WINDOW2 = -14;

end

£sm /* finite state machine description */
begin
SET : cc = kign;
AND_MINUS :cc = cc & sign;
APV : cc = cc & (fix O>&SIpklsp | ix <0 >&s1p&'lsp);
VPE : cc = iylO}
SIP : cc = slp & Isp;
SIV : cc = slp & lsp;
SSL : Isp = slp, slp = sign;
end

Jmain_pr <6>
begin
/* finish up calculation of previous time */
r (score);
r (1opscore), sor = mor >1;
sor s= mor >1, acc > SOT;
r (score), acc = acc + SOT;
ry (pp), acc = mor, SET;
we (1opscore), acc = mor, le;
we (winner), le;

/% if VPE (every six samples) compare topscore to constant VOICED,
set pitch to either winner or zero and reset topscore s/

r (winner);

r (VOICED), acc = mor, VPE;

wec (pitch), sor = mor, le;

r (opscore), sor o= sor, acc = 0;

we (topscore), acc := ~ sor + mor, le;

r (signal), acc = 0, AND_MINUS;

we (pitch), acc = mor, le, SIP;

we (1p), le, SIV;

we (Iv);

w (is)

-15-

/* beginning of new sample . Compare new signal to last and set SSL,
clear score */

w (signal), sor = mor>1, mbus = low_pass, acc = 0, le;

w (score), sor == mor >1, acc ™= sor, le;

r (signal), acc = acc + ~ sor;

mor =~ mir, mbus = mor, SSL, le;

/* send pitch to output port . Form signal1] through signal(5] . */
r (1v), sor = mor >1, mbus = mor, le;)
w (signal{1]), sor = mor>1, acc = sor;

r (1p), sor s=mor >1, acc = Sor + acc;
w (signal[3]), sor = mor>1, acc = " sor, l¢;
w (signal[2]), acc := sor + acc, mbus = mor, le;
r (pitch), le;
w (signal[5)), sor := mor>1;
w (signal[4]), mbus = mer, acc := sor, le;
pitch_out = mbus;
end

Sub_pr
begin
/* increment pitch_counter by two and set condition code
if greater than BLANK . Conditionally decay threshold .
And condition code with peak-valley indicator . s/
rx (thresh);
rx (ppc), mbus = mor, le;
r (TWQ), sor := mor;
r (BLANK), sor = mor, acc = Sor;
wx (thresh), sor ©= mor, acc = SOr + acc;
wx (ppc), sor := mor, acc =~ sor + acc, le;
r (1p), sor := sor >6, acc =~ sor, SET;
rx (signal), sor := sor>1, acc = acc + sor, mbus = mor,le;
w (1p), sor = mor >1, acc = acc + Sor,
wxc (thresh), sor = sor, acc = acc + sor, le, APV;

/% And condition code With result of (signal > threshold)
comparison, Conditionally update thresh, 1pp, ppc. pp */

rx(pp), acc := sor, AND_MINUS;

wxc (thresh), acc = mor, le;

wxc (ipp), le;

rx (ppc), acc = O;

wxc (ppe), acc = mor, le;

wxc (pp), e

r (v

w (lv), mbus = mor, le;

/% add contribution for this channel to score of current cand.
do three window comparisons with current candidate and pp,
1pp and pp + 1pp - In each case, increment score with 2 if true */
r (pplOD);
w (ppl6]), mbus = mor, le;
ry (ppl1)X
rx (pp), sor := mor >1;
r (WINDOW1), sor := mor>1, acc =~ sor;

-16 -

r (WINDOW?2), sor = mor >1, acc ™= acc + sor
r (TWO), sor := mor>1, acc = acc + sor:

r (score), sor = mor, acc := acc + sor, SET;

ry (ppl1]), acc = mor + sor, AND_MINUS;
wc (score), sor = mor>], le;

rx (1pp), acc = " sor;

"1 (WINDOW1), sor = mor>1, acc = acc;

r (WINDOW?2), sor == mor>1, acc = acc + sor;
r (TWQ), sor := mor>1, acc = acc + sor;

r (score), sor s= mor, acc := acc + sor, SET:

rv (pp(1]), acc = mor + sor, AND_MINUS;
w¢ (score), sor := mor>1, le;

rx (Ipp), acc = " sor;

rx (pp), sor := mor >1, acc := acc;

r (WINDOW1), sor := mor>1, acc := acc + sor
r (WINDOW?2), sor = mor >1, acc := acc + sor;
r (TWQ), sor := mor>1, acc := acc + sor:

r (score), sor := mor, acc := acc + sor, SET:

acc := mor + sor, AND_MINLUS;

wc (score), Je;

end

end

Lonstraints
begin
couple : filter, correlator;

end

/* end vocoder description */

	Copyright noticE 1985
	ERL-85-5

