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ABSTRACT

We present a variable structure control scheme for the track

ing and compliance control of rigid-link robot manipulators. A sim

ple analysis of this scheme is achieved by using Clarke's general

ized gradient [1] and Filippov's solution concept for differential

equations with discontinuous right-hand side [2]. The technique

developed is quite general and may be applied to many variable

structure control schemes described by nonsmooth gradient sys

tems. .
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1. Introduction.

The theory of variable structure systems (VSS) as described in [3,4], and

[5] has been applied to the control of manipulators by Young [6] and SLotine and

Sastry [7]. Both of these schemes decouple the manipulator dynamics by intro

ducing one hyperplane of control discontinuity for each joint of the manipulator

via feedback control. In [6] a hierarchical method (see [4]) is used to move the

manipulator state to the hyperplanes of control discontinuity sequentially,

whereas in [7] the manipulator state moves to all the hyperplanes simultane

ously.

The qualitative properties of a VSS are shown in Figure 1. Figure 1(a) dep

icts a phase diagram for a hypothetical VSS with control discontinuities at Sj

and 52 . Trajectories for the flow in Figure 1(a) move to, and then slide along the

switching surface Si. This motion of the state along the control discontinuity

motivates the nomenclatures sliding mode and sliding surface. Although there

is a control discontinuity across Sg, no sliding mode exists there. Figure 1(b)

represents a disturbance which is added to the original flow in Figure 1(a). The

robust nature of the sliding surface is demonstrated in the resulting flow shown

in figure 1(c). The flows have changed but a sliding mode still exists along Si.

The primary reason that sliding modes are introduced into dynamical systems is

this robustness to disturbances.

•Research supported by the Semiconductor Research Corporation.
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The VSS control scheme proposed here for robot manipulators is a mul-

tivariable design which produces a sliding mode on the intersection of several

switching surfaces but does not necessarily generate sliding modes on the

switching surfaces independently. This type of sliding mode is mentioned in [3]

and is analyzed for the first time here. Figure 2 is a phase diagram of this type

of VSS having a sliding mode at the origin. The techniques used in this paper to

analyze this type of sliding mode are new. Essential to the analysis is the use of

Qarke's generalized gradient [l] and Filippov's solution concept for differential

equations with discontinuous right-hand side [2]. A simple relationship between

these two ideas is proved in Theorem 1 part (6). As is common in VSS, saturat

ing switching controls are used in our scheme. In addition to providing robust

tracking, there is a natural force limiting provided by these saturating controls

which allow the manipulator to "give" when a slight misalignment in an assem

bly operation requires the manipulator to deviate from its nominal trajectory.

We show that there is bounded set of forces that the manipulator can apply at its

gripper without deviating from the nominal trajectory. The size and shape of this

set can be be varied by adjusting the gains in the VSS controller. Thus, the

apparent stiffness of the gripper can be varied making the manipulator suitable

for compliant assembly.

Existing compliance control formulations which are important for com

parison are due to Salisbury, and Raibert and Craig. Salisbury [8] varies the

servo stiffness of a linear controller to control the stiffness of the manipulators

gripper. Our approach is similar in that we use the natural stiffness properties

of the control scheme to control compliance at the gripper. The resulting com

pliance forces of the two schemes is quite different however. In [9] Raibert and

Craig switch various degrees of freedom of the gripper from position to force

control to allow compliant motion. The VSS control scheme presented here

switches implicitly to force control when the manipulator is perturbed from its

nominal trajectory. This is a result of our choice of discontinuous control.
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Other control schemes using continuous control laws are closely related to

the VSS scheme contained in this paper. Corless and Leitmann [10] develop a

robust controller based on a Lyapunov design. Their controller becomes a VSS

controller in the limit as their saturation function parameter § tends to zero.

Related work appears in [ll] where Ha and Gilbert use the same saturation func

tion to achieve disturbance rejection.

It is important to point out that the direct application of discontinuous con

trol in mechanical systems is almost always impractical since the effects of

switching forces on actuators and gear trains can be destructive. Thus, in real

systems the control discontinuity is smoothed [7] so that the system trajectory

moves to a neighborhood of the approximate discontinuity. The study of the

idealized discontinuous control scheme, however, gives a clear picture of the

salient properties of the system dynamics. Nonidealities other than smoothed

discontinuities such as small delays and hysteresis produce chattering along

sliding surfaces rather the ideal sliding described above. Descriptions of the

ideal behavior as a limit of these nonideal motions are contained in[2,4] and [3]

and provide additional motivation for studying VSS.

The format of this paper is as follows. Section 2 contains the non-standard

mathematical framework used in the analysis of the control scheme. Section 3

presents the manipulator dynamics and formulates the tracking problem. The

control scheme is developed in section 4 and a design example is worked

through in section 5. The effects of a linear coordinate transformation of the

joint coordinates is discussed in section 6. Compliance properties are analyzed

in section 7 and section 8 contains our conclusions.
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2. Mathematical Framework.

2.1 Notation.

We adopt the following notation throughout this paper.

K natural numbers, j1,2,3,...]

K real numbers

C continuously diflerentiable r times

°,mini°'inax nunimum and maximum singular values

||-|| usual 2-norm of a vector

Hip 2-norm induced by the positive definite matrix P

i'lli usual 1-norm of a vector

2^ the collection of subsets of Rn

son.(•) sign function sgn(x) =
lifar >0
Oif x =0

-1 if x > 0

SGN{-) set-valued sign function sgn(x) =
(ljifs >0

[-1,1] if a: =0
J-irifa: >0

co "convex hull"

co "convex closure"

argmin "the argument which minimizes"

S denotes the complement of the set S

fJL Lebesgue measure

a.e. almost everywhere with respect to Lebesgue measure.

3/ generalized gradient of /

AT the transpose ofA

a(A) the spectrum of A

C+ the open right half complex plane

B(x,6) the open ball of radius 6 centered at x

f \u f restricted to U
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2.2 Differential Equations with Discontinuous RHS and Nonsmooth Potential

functions.

Since we will be considering control laws which are discontinuous and

potential functions which are not differentiable everywhere, the associated

(non-standard) mathematical framework is developed in this section. We begin

by defining a solution to differential equations with discontinuous right-hand

side. A solution concept for such differential equations has been developed by

Filippov and is used here. Other solution concepts are discussed and compared

with Filippov's in [12].

Consider the vector differential equation

x=f(x,t) (2.1)

where /:R*x]R-*]Rn satisfies the following condition [2].

Condition B : / is defined almost everywhere and measurable in an open region

Q C ]R*+1. Further, V compact D CQ 3 integrable A(t) such that

||/<x,0||<;4(*) a.e. inD.

Definition [Filippov] A vector function x() is called a solution of (2.1) on [*o.*i] if

x() is absolutely continuous on [£o.*i] and for almost all t e [£oi*i]

±£K[f](x) (2.2)

where

#[/](*)=n n cof(B(x,6)-N,t)

and n denotes the intersection over all sets N of Lebesgue measure zero.
mN-o

The time dependence in K[f](x) is dropped for economy - all results in this

paper that pertain to K[ • ] hold with time dependence since t can be viewed as a

parameter in the definition. Note that the definition of K[f] makes sense for

/:3Rm ->Kn; this is a minor generalization, but it is useful in theorem 1. We will

assume throughout that all functions are defined a.e. and Lebesgue
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measurable.

The definition of A" in (2.2) is quite cumbersome to use in applications so

that the set of properties summarized in Theorem 1 is useful Before proceeding

with the theorem we need to introduce Clarke's generalized gradient.

Definition: Let 7:lRn -»IR be locally Lipschitz continuous and define 37, the gen

eralized gradient of 7, by

3V(x) a co jlimV7(xi) | Xj -* x,Xi ft QvUNl

where Qy is the set of Lesbegue measure zero where V7 does not exist and N is

an arbitrary set of zero measure.

Theorem 1. (Properties of K[f]) The map K:\f |/:Rm -»IRnj -» \g \g:Um -» 2Rnj

has the following properties.

(1) Assume that /:Rm -» Rn is locally bounded. Then 3 Nf c Mm,fiNf = 0 such

that VW C TRm,fMN = 0

K[f](x) = coflim/fo)| 2* ->x,Xi £Nf\jN\ (2.3)

(2) Assume that / ,g -.IR171 -»lRn are locally bounded then

K[f + g](x) C K[f ](x) + K[g](x) (2.4)

(3) Assume that fj:TRm -» R71', j e {1,2 N\ are locally bounded, then

*l% fs ](x) CSxtf, ](*) * (2.5)

(4) Let f:JRm -»IRn be C1, rank Df (x) = n,and/:Rn -» Rp be locally bounded,

then

* Cartesian product notation and column vector notation are used interchangeably.
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*[/ °9 ](*) = *[/ ]fo<*)) (2.6)

(5) (equivalent control [4] ) Let ^:Rm -* Rpxn ( Le. matrix valued ) be C° and

/:Rm -> R* be locally bounded, then

K[9f](x)=g(x)K[f](x) (2.7)

whereflr/(x) s?(z)/(i) e RP.

(6) Let 7:Rn -» R be locally Iipschitz continuous, then

K[VV](x) = dV(x) (2.8)

(7) Let / :Rm ->Rn be continuous, then

*[/](*> = i/(*H (2.9)

Proof: See appendix A. |

The manipulator dynamics together with our proposed control law is best

described as a nonsmooth gradient system, i.e. a gradient system whose poten

tial function is not differentiable everywhere. The following definition and

theorem provide the formalism necessary to calculate certain time derivatives

associated with nonsmooth gradient systems.

Definition: 7:Rm-» R is called a max function if V(x) = max/y(x) where

fjiHm -»R are Cl and Y is a finite index set.

Theorem 2.

Let 7:Rm -» R be a max function and x\R -» Rm be differentiable at t. If

-jr{y{x{t))'] exists, then
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d nr/_/x\M _ t.T,(Cu^(t))] =4ri vfcev(«)

Proof: See Appendix A. B

3. Manipulator Dynamics and Problem Formulation.

The dynamics of an n-joint rigid-link manipulator may be described by the

equation

M{-$yi + C(tf.tf) + G(tf) + £(M,0 = F (3.1)

where

tf is the n x 1 vector of joint coordinates

M($) is the n x n inertia matrix

C(tf,#) is the n x 1 vector of Coriolis and centrifugal forces1

G{$) is the n x 1 vector of gravitational forces

D(fit4l,t ) is the n x 1 vector of disturbances

F is the n x 1 vector of generalized forces applied by

the actuators at the joints of the manipulator.

and (3.1) has the following properties.

(PI) #(tf) is symmetric and positive definite. M(-), C(v). and G() are C1 func

tions of the manipulator state [tf.tf]7*. D(-,,)is locally bounded.

The positive definiteness of M(iJ) is an important property of the manipula

tor dynamics as it is essential to the stability analysis of the proposed sliding

mode control scheme. This property is exploited in [6] and [7] to guarantee the

invertibility of Mi'd). Another important feature of the dynamics for earth-

bound manipulators is the gravitational force G(tf) which is usually large. To

1"Forces'* and "generalizedforces" will be used interchangeably throughout.
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accommodate this fact the joint forces will include a compensation2 term for the

gravitational forces. For the sake of generality we allow for the compensation of

other forces as welL We therefore write the joint forces applied by the actuators

in the form

F = £(0,0) + 5(0) + 5(0.0,*) +u (3.2)

where the hatted terms are estimates of the corresponding unhatted objects

and satisfy the following assumption.

(Al) C, Q, and 3 are locally bounded. (Note that no continuity assumption is

made so that discontinuous models of friction may be used in D.)

The vector u is the additional joint force beyond the compensation forces and

will be referred to as the control. The expression of the dynamics described by

(3.1) and (3.2) is simplified by defining the "disturbance" vector

3(0.0.*) s g(0) - G(0) + £(0,0) - C(0,0) +5(0,0,*) - £(0,0,*). (3.3)

Using (3.1),(3.2), and (3.3) the manipulator dynamics become

Jf(0)0 =u +27(4,0,*). (3.4)

Dropping the functional dependencies, the state equation form of (3.4) is

0
M~\u + D) (3.5)

Let [0d,0d]r be the desired state trajectory that we would like the manipu

lator to follow. Further, let it satisfy

(A2) [0d,0*]r is C1 on [t0,oa).

Any or all of the compensation terms may be set to zero.
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(3.6)

In terms of (3.5) and (3.6) the tracking problem is the following:

Find a feedback control u such that for any given initial state

[0,0](*o) = [0o,0oF . [e(*),e(*)]7'->0 as *-oo .

Once u is chosen to achieve accurate tracking, the usefulness of the feed

back control scheme for compliant motion is considered. The restoring forces

exerted by the manipulator when it is perturbed from a nominal trajectory

determine the suitability of the control scheme for tasks that require compli

ance. These forces are calculated in section 7.

4. The Control Scheme.

Choose B eX"*" such that a{B) c C?.

Define the "switching" vector

s := [B I]

and the control u by

U = -k(W,Vd,#d,#d)VV(s) 3

n*):=Ni=El*i

where the gain k satisfies

(A3)Ar:R5n -»RisC°.

9 W is not defined ona set ofLebesgue measure zero. The analysis to follow takesthis into
account.

(4.1)

(4.2)

(4.3)



-11-

Clearly, if s =0 then

e --Be (4.4)

and it follows that [e e]r-»0 exponentially for arbitrary initial conditions. Our

goal, then, is to choose k such that s becomes zero in finite time. To find such a

k a Lyapunov based design approach is used with the obvious choice of Lyapunov

function, V(s).

We begin by computing V and then choosing A: such that V is bounded below

zero (i.e. V{t) ^ -e V * ^ *o) whenever s * 0.

This will guarantee that s -» 0 in finite time. Lyapunov theory as developed say in

[13] holds for differential equations with continuous right hand side. However,

the nondiflerentiability of V(s) and the discontinuous nature of the control pose

some technical problems. Using the results of section 2 we can compute an

upper bound for V.

Theorem 3 Let the manipulator dynamics and control be described by (3.5) and

(4.1-4.3). Assume that PI, A2 and A3 are satisfied. If [0.0] is a solution to (3.5)

on [*o.°°) in the sense of Fillipov then

(i) V(s(t)) is the Lesbegue integral of its derivative

(ii) 3 6 e K\D] such that

7^ -*£rJTlf + f(M~l6 + Be -0d) a.e.

where £ = argminSbH^-i 177 e dV(s) J.

Proof: From (3.5), (4.2) and the fact that [0,0] is a solution to (3.5) on [*o.°°) we

have the following a.e. in [*o.°°).

i 0
•kM-^Vis) + M~lD (4.5)
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Now by Thm 1, property (3),

p[-*jirlv7(*') +wlD\

Next, by Properties (2),(5), and (7),

0
' \-kM~lK\yV{s)] +M~lK[D]

(3.6),(4.1),(4.7), and property (6) yield

s<=.-kM~ldV(s) +Be + STlX[B] -0d

(4.6)

(4.7)

(4.8)

The absolute continuity of the solution [0,0]r on compact intervals , and

the continuous differentiability of [0^,0*]r imply s is absolutely continuous on

compact intervals. This, in turn, implies the absolute continuity of V on com

pact intervals. Thus, V exists almost everywhere, V is the Lesbegue integral of

its derivative and (i) holds.

From (4.3) we have

v(s) = zlmax^s^Si). (4.9)
isl

Since the finite sum of max functions is a max function we have by Theorem 2,

and the absolute continuity of V and s that

V=fs a.e.

V $edV(s)

From (4.8) and (4.10)

V = -k$TM-l{S + f[M~l 6 + Be -0d] a.e.

V $edV(s), some pedV(s) , and some 6<z.K[D].

Choose

£ = argmin \\r\\u-x |??ed V(s) j

Then, from the convexity of the set dV(s),

(4.10)

(4.11)

(4.12)
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VsS-Jfcf rJBTlf + fr[j#-1 6 + Be - 0d] a.e. (4.13)

Whence we have (ii). |

Part (i) of theorem 3 tells us that we can ignore the set of measure zero

where 7 does not exist and obtain an upper bound on 7 by integrating the bound

on 7 in part (ii). The following corollary uses this fact to determine k such that

s -» 0 in finite time.

Corollary Let (3.5) satisfy the conditions of theorem 3, and let [0,0]r be a solu

tion of (3.5) on [*o.°°)- If & satisfies

**».„«(« +JfiL.+lat || +fit 1) (4.14)

for some constant s > 0, then 3 T € IR such that

s = 0 V * > T. (4.15)

Proof: From Theorem 3 we have

fc*-*I*^,ntoff-1 + I*I('™*ff-ll|Bl + iBi II + fell) «• (4.16)

where ||S|| s sup{|*|| 6<£K[B]l

The assumption (4.14) on k yields

MM-lffX-Wr'nSl +|A| +m - Ut* •••• on [»„») (4.17)

Since 97(0) = [-l,l]n, the unit cube in IR7*, we have by the convexity of the func

tion 7, 6V(s) n (-l.l)n = 0 Vs * 0 (see[l] proposition 2.2.9). Thus, by

definition of £, ||£|| 2s 1V s * 0 and from (4.17) we have

7^ -s V S!*0 a.e.on[*o.°°). Thus, since 7^0 and 7=0 <£$> s = 0 we have

s = 0 V*^7's*0+ 7(*0)/e. |

In order to use the corollary we must show that a Filippov solution to (3.5)

exists on [*oi°°). In appendix B it is proved, under the assumptions of the
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corollary and (A2), that a solution exists. Thus, under these assumptions, s -» 0

in finite time and by the definition of s, [e,e]r -* 0 exponentially. These results

justify the following design procedure for a manipulator controller. The pro

cedure generates a control law that solves the tracking problem.

Design Procedure

Data:

Manipulator dynamics of the form (3.1) satisfying (PI) and a class of

desired trajectories satisfying (A2).

Stepl:

Choose C,GtD satisfying (Al).

Step 2:

Choose B € IRnXn such that a{B) c <Ct

Step 3:

Choose k satisfying (A3) and (4.14).

Step 4:

Choose actuator forces according to (3.2) and (4.1-4.3).

In practice a large value of k may excite unmodeled dynamics. Thus, in

order to niinimize the required gain the estimates in step 1 of the procedure

should be as close to the true values as possible. Also, if the eigenvalues of B are

large, the gain k may be large due to (4.14); this should be considered in step 2.

Note that the only information necessary to design a controller satisfying

(4.14) is bounds on a^^M, GmaxM, and D. Thus, variation of M and D within these

bounds will not affect the tracking performance of the controller. This robust

ness to parameter variations and disturbances is common in VSS controllers.
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5. Design Example

Consider the two-degrees-of-freedom manipulator shown in Figure 3. Each

link has unit mass concentrated at its endpoint, unit length, and the accelera

tion of gravity is taken to be one. Each joint actuator has unit inertia also.

Given these parameters the dynamics are [14]

4 + 2cos(08) 1 + cos(02)
1 + cos(02) 2 02

20102sin(02) + 0fsin(02)
20102sin(02) + 0?sin(02)

sin(0i) + sin(0i + 02)
sin(0! + 02)

Fi
Fz (5.1)

Equation (5.1) satisfies (PI) and has the form of (3.1) where the disturbance

term is equal to zero. The only contribution to D will be from the error in

estimating C(0,0) and G(0) . A standard practice, which will be followed here, is

to estimate G(0) and to approximate the Coriolis and centrifugal terms by zero.

"With the simplifying assumption that the estimate of the gravitational forces is

exact it follows that

D = C(0,0) = 20102sin(08) + 0|sin(02)
20102sin(02) + 0?sin(02) (5.2)

and (Al) is satisfied. To simplify the form of the gain k the following bound for D

will be used.

11^1^2(0!+ 02)2-

We begin by choosing the matrix B diagonal;

B =
1 0

0 1

(5.3)

(5.4)

Next, for concreteness, set s = 1, and from (5.1), and a simple calculation, it fol

lows that
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(JmaxM < 7 (5.5)

(TmtaM > 1.

Now verify that

k = 7(1 + 2(02 + 02)2 + ||0 - 0d|| + ||0d||) (5.6)

satisfies (A3) and (4.14). Putting together (3.2),(4.1-4.3),(5.4), and (5.6) yields

F = -£(0) + u (5.7)

sin(0i) + sin(0i + 02)
sin(0i + 02)

-(7+u& +**+* -*j+7A.Dzlt:£: fc: j! (5.8)

where 0<j is any trajectory satisfying (A2). The choice of joint forces in (5.8) will

move the switching vector s to zero in finite time. Thus, by our choice of B, the

tracking error tends to zero exponentially.

There are many possible variations in deriving a gain that satisfies (4.14); in

practice all bounds used should be made as tight as possible without violating

constraints on computation time for the joint forces. The next section discusses

a method for reducing the required gain k by scaling.

6. linear Coordinate Transformation.

In the design example of the last section the link masses and lengths were

the same so that OmaxM/aT^rjU was not excessively large for any configuration.

However, this is not the case for most manipulators as their link masses and

lengths vary widely. From equation (4.14) it is clear that a large value of

ffmax-^/ QmnM will cause the gain k to be large. Also, equation (4.2) suggests that

all joint forces are approximately the same modulo the gravity compensation.

This is not appropriate for a manipulator with differing link sizes. The natural

modification to the "normalized" control (4.2) is a scaling. This is accomplished

by making a linear transformation of the joint coordinates.
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Choose nonsingular i4eRnXn and define transformed coordinates and forces

by

g:=i4~l0 (6.1)

and

f:=ATF (6.2)

Multiplying equation (3.1) on the left by AT yields

m(q)q + c(g,g) + g(q) + d(g.g,*) = / (6.3)

where

m{q) =ATM(Aq)A

c(q,q)=ATC(Aq,Aq)

g(q)=ATG(Aq)

d(q,q,t)=ATD(Aq,Aq,t)

This equation in the transformed variable g has the same form as (3.1) and

satisfies (PI). The design approach, therefore, works on these transformed

dynamics as well. The advantage of allowing this transformation is that we may

choose A t minimize axaa^m/ Ojc^m, n^ the joint forces to match the actuators

more closely, or achieve some compromise between the two.

The force transformation (6.2), and equation (4.2) suggest that a good

choice for A might be a diagonal matrix with An equal to the inverse of the ith

actuator force rating. A nonlinear transformation may be desirable to achieve a

particular dynamic behavior [15] but the discussion here will consider linear

transformations only.
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7. Compliance.

In assembly operations requiring compliance, the forces that are generated

when the manipulator moves one workpiece into contact with another must be

controlled. For example, consider the peg insertion task depicted in Figure 4; in

order to execute this task with the proposed VSS control scheme a nominal tra

jectory must be specified for the manipulator to follow. The manipulator follows

this trajectory until some misalignment of the peg or hole causes the manipula

tor to deviate from the nominal trajectory. If the resulting forces do not cause

binding or excessive friction, the manipulator will follow a path close to the nom

inal path and complete the task.

We use the approach of [8] and describe the compliance of the control

scheme by the restoring forces l generated by the control when the manipulator

is forced from the nominal trajectory. To study the performance of the pro

posed control scheme in compliant motion it is assumed that the motion is

quasi-static. That is, all time derivatives of the manipulator state and the

desired trajectory are approximated by zero. This approximation is reasonable

for most assembly operations requiring programmed compliance [16].

With this assumption the force exerted by the manipulator on its environ

ment is calculated. Let Fq be the force that the manipulator exerts at its

gripper in some set of workspace oriented coordinates. This force is translated

into joint forces by the usual Jacobian transformation [14] and is equal to

JT{ti)Fc where /(0) is the Jacobian of the workspace oriented coordinates with

respect to the joint coordinates. With this added force, which is not accounted

for in the design procedure, equation (3.1) becomes

Af(0)0 + C(0,0) + G(0) + £(0,0,*)=^ + JT{p)Fc. (7.1)

Making the linear transformation described in the last section yields

m(q)'q + c(g,g) + ^(g) + d(g,g,*) = / + ATJT{A'lq)Fc (7.2)

Applying the design procedure to (7.2) with Fc=0, we obtain
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/ =c(g,g)+£(g) + d(g,g,*)+u (7.3)

where

u = -A:V7(s)

V(s) = \\s\\i

*aww»(« +-"%-+ \\Be\\ +||0d||), (7.4)

and

s =B(qd -g) + (gd -g)

where qd is the desired trajectory and d is defined in (3.3) with upper-case char

acters replaced by lower-case. The dynamics are then

m(g)g =u +3(g,g,*) +ATJT(A"lq)FG. (7.5)

Choosing B to be the identity matrix and applying the quasi-static assumption

we have

A^<Wn.(e +JEM, (7.6)
°minm

* = fad - S) (7.7)

Given the control specified by (7.3) - (7.7) the compliance question is: what force

does the manipulator apply at its gripper when the manipulator is perturbed

slightly to qG *qd ? Using the quasi-static assumption again we set q = 0 in equa

tion (7.5) and from the Filippov definition of solution of section 2, it follows that

[ATJT]FC <E -K\u +3]. (7.8)

Equation (7.8) defines the compliance of the control scheme. We restrict

our attention now to manipulators with six degrees-of-freedom. Let 0o be the

approximate configuration of the manipulator for an assembly task and assume

/(0o) is nonstngular. Choosing A = J fa)'1 for the transformation will simplify

the compliance of the control scheme since (7.8) becomes

Fc € [kdV(s) -K[d]]. (7.9)
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Define

Ag=g*-gc (7.10)

= ^-H0d-0c)

= /(**-*•)

» Ax

where Ax represents a small change in the gripper coordinates by definition of

the Jacobian.

Then we have (approximately)

Fc € kdV(s) -K[d] =Jfe

SGNte!
SGN&Xz

SGNAxq

-K[d] (7.11)

Here the compliance behavior of the quasi-static manipulator is apparent. When

g = qd the manipulator can apply at its gripper any reaction force in [—k,k]e

modulo disturbances and modeling errors. Once the manipulator is forced from

the desired position the control applies an approximately constant restoring

force. The gain A: is a stiffness parameter which may be used to control the

compliance behavior of the manipulator. Note that equation (7.6) puts a lower

bound on the stiffness and that this bound is given primarily by the magnitude of

disturbances that must be rejected. In words, the stiffness of the manipulator

may be controlled but the manipulator can only be as compliant as modeling

errors, joint friction, and other disturbances allow.

Various choices of A and B will give different stiffness behavior to the mani

pulator. For example, stiffnesses along different axes may be controlled

independently by suitable choice of these matrices.
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8. Conclusions.

We have shown by using a multivariabie approach to VSS that an extremely

simple controller can be designed for robot manipulators. The control scheme

developed provides for robust tracking and for compliance control and the com

pliance behavior is such that when the manipulator is forced from a nominal tra

jectory the control switches implicitly to force control.

The techniques used for proving stability are new for VSS and should be use

ful for the analysis of a wide variety of VSS described by nonsmooth gradient

systems.

Appendix A

Proof of Theorem 1:

(1) To prove this property we first need two lemmas.

Lemma (1.1)

Let \ Em j be a sequence of compact subsets of lRn such that Em+i C Em. Then

ncoEm = co r\Fm. (A.1)

Proof: This is a simple application of Caratheodory's theorem for convex sets

[17]. I

Lemma (1.2)

Let / be defined almost everywhere and measurable on a set E, jj,E * 0. Then

3 N/ of measure zero such that

O cof(E-N) = cof(E-Nf). (A.2)
pJV=0

Proof: See [2]. |

Henceforth, N subscripted with a function will be interpreted in terms of this

lemma.
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Proceeding with the proof of the property.

*[/](*)= PI PI cof(B(xt6)-N) (A.3)

= 00 cof(B(x,l/m)-N) (A.4)
m £ N/iJV=0

Now, from lemma (1.2) we have

K[f](x) = n cof(B(x,l/m)-Nf,m) (A.5)
m e N

Define

then

ty = U Nfim (A.6)
meN

#[/](x) = O cof(B(x.l/m)-Nf) (A.7)
m 6 N

since JV/.m can be enlarged by a set of measure zero in (A.2).

Now / is locally bounded =>

#[/(*)]= O cof{B{x,l/m)-Nf). (A.8)
meN

= O co Jlim/(xi) ^^^(x.l/m) - Nf\ (A.9)
meN

By lemma 1.1

K[f(x)] = co n |lim/(xi) |x4e£(x,l/m) - tyj (A.10)
meN

= co (lim/(xt) | Xi-^x.Xi ft Nf j (A.11)

Finally, by noting that Nj can be enlarged by any set of measure zero in (A.2)

the result follows.

(2) By property (1)

Klf +g](x) = co{]hn(f +g)(xi)\xi^x,xi 2 Nf+g[jNfUNgl (A. 12)
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Since / and g are locally bounded, for each sequence Xj -» x such that the limit

in (A. 12) exists, 3 a subsequence (we do not reindex) X* -»x such that lim/ (x^)

andlim^(xi) exist and lim/(xj) + limflrfe) = lim(/ + g )(xt) Thus,

#[/ +9](*) = co(lim/(xj) + limsr(xi)|xi->x,xijZ Nf+g\jNf\jNg\

C co(lim5r(xt)|xi-»x,xt £ Nf+g\jNf\jNg\

+ co$lim/ (xijlx^x.xj £ Nf+g\jNf\jNg]

= tf[/](x)+;r[<7](x). (A. 13)

(3)

Define

then by property (1)

*C A //K*) =c°flini A Afe) Ixi -*x> *i * UNfjUNg]3s* J=l y-j •*

N N
c co XJlim/yfa) | Xi -*x,x<£ \jNfj\jNg\

J-1 y=i 7

JV JV

= XcoUim/yte) | a^ -x, x<£ \jMf.\jNg\
J551 i=i J

=,#*[//](*) (A. 15)

(4)

We begin the proof of this property with a lemma.

Lemma (4.1)

Let fiW+n^TK1 be Cl and x e Rm+n be such that rank(Df(x)) =n. Then 3

neighborhoods U of x and *K of /(x), such that V M <z!Rm+n,N c]Rn, with

fjJi = //AT = 0, we have
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vL\[f(unMc)]cr\w] = o

ri[f-l(wrv*c)]cr\ui = o (a.ib)

Proof: rank(Df (x)) = n :=>we can choose(WLOG) a partition (x^Xg) of ]Rm+n with

X!E]Rm,X2€lRn so that 2?2/(x1,x2) is nonsingular. By the implicit function

theorem, 3 a C1 function flr:!Rmx]Rn-»Rn« and neighborhoods Ui containing x1#

Uz containing x2, and W containing /(x^Xg) such that

f(xitg(xi,w)) =io V Xi € Ul9 w € W, (A.17)

and $ defined by $(xltio) = (xitg(xl$w)) is a C1 difleomorphism of Ux x W onto

U=UxxU2. By continuity of $ it follows (see [18] pg. 551) that $| ylXy maps null

(zero-measure) sets to null sets and similarly for #~1| y. It is therefore sufficient

to prove the result for / o$| r;lXy which is simply a projection. This is straight

forward and is left to the reader. |

Now the proof of the property: By lemma (4.1), 3 neighborhoods U of x and

Wof/(x) such that k~K^n#/)]Cntf and [g(UnNf0g)]cr\W are null sets.

Next, by property (l), and the fact that K[f](x) depends on / only near x we

obtain

K[fog](x) = coL[fog](x) (A.18)

where

L[f *g](x) = Him/ asooix^x,^ zur\N?.gr\9-l(wr\N?)i

and

K[f](g(x)) = co L[f](g(x)) (A.19)

where

L[f](g(x)) ^ \\hnf(yi)\yi^g(x),yi^Wr\9(Ur\Npag)nNp]

For every zeL[f °o/](x), 3 x^x such that XieUONf^Og'^WONf) , and

f(9(xi))^z.
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Now, let i/i =g(xi), then yiG.g(UC\Nfag)C\WC\N$ and y%-*g{x) since g is con

tinuous. Now f{yi)-*z =>

L\j°g](x) cL[f](g(x)). (A.20)

For the reverse inclusion, let z€.L[f]g(x) then 3 yi~>g(x) such that

yiG.WC\g(UC\Nfag)C\Nf and /(s/i)-»z. By the rank condition on 2&(x), g is

locally surjective (see [18] page 108) so 3 a subsequence of \yt\ (we do not

index) such that yt € WOgiUf^Np^OBix.Z^^ONf. Thus,

3 x^x.Xi GUf\N}agC\g-\WC\Nf) such that y^fe)and/(o^x*))-*z

=>*€£[/«*](*)

Thus we have £[/ °flr](x) = L[f](g(x)) and the result follows by taking the

convex hull of both sides.

(5)

By proposition 1, we obtain

jq;^/](x) = coilimflr(xi)/(xi) | Xi+z.ZifL Ngf\jNf\ (A.21)

Since g is continuous in its first argument and / is locally bounded

K[9f ]&) = co \g(x)\hnf fa) | i/i->x,x st Ngf\jNfl

-*(*)*[/](*). (A-22)

since co commutes with linear maps.

(6) Since V is locally Lipschitz, W is defined almost everywhere and is locally

bounded. Therefore by (l) we have

K[yV]{x) = co jlimV^xj)|xt -» x, x< £ Nw\

= dV(x) (A.23)
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w

This is a corollary of (4) obtained bytaking / to be the identity map. S

Proof of Thm 2: First, we have by definition

V(x(t)) = max /,(*(*)) (A-24)

Computing left and right derivatives we obtain .

~{V(x(t))] 3 <^ max V//(x)x(0 = min V//(x)x(t) (A.25)

where Y\x) = y |/,(x) = 7(x)j

Thus, the existence of V =^

i{F(x(0)] =V//"(x)x(0 V i € r(x) (A.26)

4W*(0)] =[ S ^V//(x)]x(0

V \\i\ such that 2 ** = 1 (A-27)

±{y{x{t))] =?x(t) V$eco jV/, \j € 7*(x)j (A.28)

and cojV/y |j e r*(x)j =3F(x).I

Appendix B

Here we prove the existence and continuation of a Filippov solution to (3.5).

Theorem 4 Let u be defined by (4.1-4.3) and (4.14). If A1.A2.A3, and Pi are

satisfied, then, for any initial condition [^,iS-]T(t0) = [tfo.^oF. (3-5) has a solution

continuabie on [to.00)-
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Proof: Let Q = IR2* x R and let D be an arbitrary compact set in Q. By A1.A2.A3,

and PI we have that tf, M~l, D, and A: are bounded on D. Also, V7 is defined a.e.

and bounded. Thus, RHS of (3.5) is bounded by, say, L on D. Choose A(t) = L

which is integrable on D. The RHS of (3.5) is measurable and defined a.e. .in Q.

Thus, the RHS of 3.5 satisfies condition B. Now by theorem 4 of [2] we have the

local existence of a solution to (3.5).

By theorem 5 of [2] any solution of (3.5) is continuabie on [£o»*i) where

tx = oo or ||[i>,t?]7'|| -» oo . By (4.15) we have for any solution of (3.5) that s is

bounded => [e.e]7* is bounded by (4.1) => l&tti]7 is bounded on bounded sets

by Al. Therefore, there exists a solution continuabie on [to,°°). |

We do not prove uniqueness. The interested reader is referred to [19].
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Fig. 1 Phase Portrait of Hypothetical VSS



Fig. 2 Phase Portrait of Multivariable VSS



Fig. 3 2 Degree—of-Freedom Manipulator



Fig. 4 Peg-in-Hole Task


	Copyright noticE 1985
	ERL-85-50

