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1. INTRODUCTION

This paper deals with optimal control problems with state constraints and

control constraints. To place the contributions of this paper in context it

is useful to consider a few earlier results.

For optimal control problems with (hard) control constraints (i.e.

constraints of the form u(t) e a for all t) only it is possible, as Bertsekas

[1] has shown, to employ the Goldstein Levitin-Polyak Gradient Projection

Method. Accumulation points, if they exist (in L,,,), satisfy a weak condition

of optimality. An alternative approach, based on differentiable dynamic

programming [2], is described in [3]. In this approach the Hamiltonian is

minimized at each time, and the new control u, is set equal to the minimizing

control on a subset 1^ of the total time interval T and the original control

elsewhere. The step length A (the total "length" of 1^) is chosen to minimize

(approximately) the cost g°(u^). It is shown in [3] that L„ accumulation

points of sequences generated by the algorithm (if they exist) satisfy a

strong condition of optimality (the maximum principle). A further study of

this algorithm in [U] showed that if the controls generated by the algorithm

were regarded as degenerate relaxed controls, then accumulation points, in the

sense of control measures, always exist and satisfy a strong condition of

optimality for the relaxed problem (i.e. the relaxed maximum principle).

Warga describes a steepest descent algorithm which he employs for solving

optimal control problems with control constraints using relaxed controls and

establishes a similar result [5]. This kind of approach is attractive in that

accumulation points always exist and satisfy a strong condition of optimality;

however the determination of a (relaxed) control which minimizes the

Hamiltonian (at each t) is computationally expensive.



Control problems with terminal constraints (e.g. constraints on control

energy) can be formulated as

min{g°(u)|gJ(u) <0, j e M}

where g , g^ are Frechet differentiable and can thus be handled by the natural

analogs of finite dimensional algorithms.

Problems with terminal constraints and (hard) control constraints are more

complex because the control constraints are not differentiable in the space

of control functions (e.g. L,,,,). Hence the following approach was adopted in

[6,7]. A convex optimal control problem is defined whose (approximate)

solution yields a search direction which, to first order, satisfies the

control constraints and which either reduces the cost and nearby active

terminal constraints for problems with terminal inequality constraints or

reduces an exact penalty function for problems involving terminal equality

constraints. The components of this sub problem are a linear dynamic system,

a cost function which is the maximum of several functions affine in the search

direction s and a hard constraint on s. To facilitate implementation weak

variations were employed so that accumulation points (which always exist in

the sense of control measures) satisfy a weak condition of optimality for the

relaxed problem. Although convergence (in the above sense) was proven in

[6,7], later numerical studies showed that convergence could be slow; the

difficulty appeared to lie in the fact that the search direction does not

converge to zero as a solution is approached. An improved version of this

algorithm [8] utilizes automatic scaling of the search direction.

A substantial advance has been recently made by Warga [9] for control

problems with state constraints. Relaxed controls are employed and, perhaps

more importantly, it is shown how a satisfactory search direction for this



problem can be obtained by solving a convex optimal control problem as in

[6,7]; however in this case the associated multipliers (defining a supporting

hyperplane to the reachable set of the "linearized" system) are functions

rather than scalars. The resultant algorithm provides a potentially very

useful method for state constrainted optimal control problems; accumulation

points of sequences generated by the algorithm satisfy a strong condition

of optimality. However, the algorithm requires (exact) minimization of the

Hamiltonian at each t which is computationally very demanding in most

applications and does not handle equality constraints.

The algorithm presented in this paper lies in the same family as those in

[6-9], i.e. they determine a search direction by (approximately) solving a

convex optimal control problem. In order to avoid excessive computation, the

linearized model of the system equations are linear in state and control,

avoiding the necessity for global minimization of the Hamiltonian; an

inevitable consequence is that accumulation points of infinite sequence

generated by the algorithm satisfy a weaker condition of optimality. The

algorithms cope with terminal equality and inequality constraints in addition

to the control and state constraints; an exact penalty function is employed to

handle constraints except the control constraint. The algorithm includes

automatic scaling of the search direction which, as shown in [8], improves

numerical performance.

Large motions of robot arms and large space structures are governed by

nonlinear dynamics and are best carried out open loop via optimal control. In

the case of robots, the presence of obstacles leads to state space

constraints on these motions. While the need to control vibrations generates

state space constraints in large space structures the requirement to position

or aim these devices exactly at the end of a large manoeuver results in

terminal equality constraints. Clearly, control constraints are always



present in these positioning problems. As a result there is renewed interest

in developing efficient optimal control algorithms which can cope with complex

constraints.

2. THE PROBLEM

We consider the following optimal control problem

P: inf{gQ(u)|gl(u) = 0, g2(u) < 0, g3(u) < 0, u e G} (1)

where G, the (convex) set of admissible controls, is defined by

G A {u e L00|u(t) e 8 for all t e T A [0, 1]} (2)

Dip TClr m«a
and gQ: G •+• R, g^ G * R , g2: G -*• R x, g3: G: •* C ° are defined by:

g0(u) A h0(xu(D), (3)

gi(u) A hi(xu(1)), 1-1,2, (4)

g3(u)(t) A h3(xu(t)). (5)

m«a
In these definitions C ° denotes the Banach space of continuous functions from

T to R s with the sup norm ||-||w and xu: T -»• Rn is the solution of

x(t) - f(x(t), u(t), t) (6)

x(0) = xn. (7)



Hence the constraints gt(u) = 0, g2(u) < 0 are conventional terminal

constraints whereas g3(u) < 0 is a state constraint. The functions g^, i =

0,...,4, are Frechet differentiable. To deal with the terminal and state

constraints we introduce the penalty function Yc: G -*• R defined, for all c >

0, by:

Vu) A SoM/c + Y(u) (8)

where Y: G *• R is defined by:

Y(u) A max{0; |g^(u)| , j e mE; g2^(u), j emj;

g3J(u)(t), j e ms, t e T} (9)

where

mg A {1,2,...,mE} (10)

with similar definitions for mlt m3. The term 0 is included in (10) in case

there are no equality constraints. To solve problem P we solve Pc:

Pc: inf{Yc(u)|u e G} (11)

increasing c adaptively finitely often when required to ensure convergence to

a solution of P (more precisely, to a point satisfying necessary conditions

of optimality for P).

Our algorithm therefore has two components: one solves P„ for fixed c and

the other adjusts c. The first component generates at u a search direction

v - u which is admissible (v e G) and which is a descent direction for

Yc at u, i.e. v satisfies



Yc(v, u) < Vu>

where, for all u,v in G, Yc(v, u) is a first order estimate of Yc(v) defined

by:

Ye(v,u) A [g°(u) + Dg°(u; v-u)]/c + Y(v,u) (12)

where

Y(v,u) A max{0;|gx (u) + Dgl (u,v-u)|,j e mg; [g2 (u) + Dg2 (u,v-u)],

J e«!ii [gs (u)(t) + Dg3 (u,v-u)(t)], j e ms, t e T}. (13)

A suitable step along this direction is then obtained by a modified version of

Armijo's rule. The second component of the algorithm chooses the penalty

coefficient c to satisfy a test of the form tc(u) < 0.

3. ASSUMPTIONS AND PRELIMINARY RESULTS

The following assumptions are made

A1 The functions f: Rn x fl x T -»» Rn

Iiq: Rn >r, hl: Rn -• R^, h2: Rn - R™1 and

n m<?
h3: R" -*• R a are continuously differentiable,

A2 There exists a M e (0, •) such that



|f(x,u,t)|| < M(1 + llxl!)

for all (x,u,t) e Rn x n x T.

A3 The set fl is compact and convex.

It follows from our assumptions that, for each u in G, there exists a

unique absolutely continuous solution xu; an elementary application of

Gronwall's lemma yields

Proposition 1

There exists a compact subset X of Rn such that xu(t) lies in X for all u

•in G and all t in T. V

For all u,v in G let zv'u: T -*• Rn denote the (unique, absolutely

continuous) solution of:

z(t) - Au(t)z(t) + Bu(t)[v(t) - u(t)] (1i|)

z(0) = 0 (15)

where Au: T + Rnxn and Bu: T -• Rnxn are defined by:

Au(t) A fx(xu(t), u(t), t) (16)

Bu(t) A fu(xu(t), u(t), t). (17)

Clearly zv»u is an estimate (in the sense to be made precise later) of

xv - xu.



Proposition 2

There exists a d e (0, °°) such that

(a) ||xv - xu\\a < d||v - u||tt for all u, v e G,

(b) ||zv»u|L < dllv - u|L for all u, v e G.

(c) For all n > 0, there exists a 6 > 0 such that

(xw _ xv} . zw,v||w < n||w . v||w (18)

for all w,v satisfying

|w - v|L < 6. (19)

Proof

(a), (b) These results follow from the Gronwall lemma and the fact that fx

and fu are bounded in the compact set X x 12 x T (see proof of (c)).

(c) Since

t

(xw - xv)(t) = fQ [f(xw(s), w(s),s) - f(xv(s),v(s),s)]ds
t 1

- f0 [ Sq fx(xv(s) + a(xw(s) - xv(s)), w(s) + a(w(s) -

v(s)),s)da] [xw(s) - xv(s)]
1

+ C/0 fu(xv(s) + a(xw(s) - xv(s), w(s) + a(w(s)

- v(s)), s)da] [w(s) - v(s)]]ds

and



t

zw»v(t) = ;0 [fx(xv(s), v(s), s)zw»v(s)

+ fu(xv(s), v(s), s)(w(s) - v(s))]ds

it follows from (b) and the uniform continuity of fx and fu in X x 12 x T that

for all n1 > 0 there exists a 5 > 0 such that e A (xw - xv) - zw,v satisfies:

t

Nfc)|| < 'o E|IaV<s>II lle<s>ll + n,[||xw(s) - xv(s)|| + ||w(s) - v(s)||]]ds

_< eafc n* d||w - v||.

for 'all w,v in Bfi(u) where a is an upper bound for ||fx|| on X x 12 x T. The

desired result follows easily. 7

It follows that u -• xu, G •» LB is Frechet differentiable, the

differential at u in the direction v-u being zv»u. Similarly the functions

u * gj(u), j - 0-3 are Frechet differentiable; for j = 0,1,2 the

differential at u in the direction v-u is Dg, (u; v-u) = <Vhj(xu(D) ,zv»u(1)>

whereas the differential of g3 is given by

Dg3(u; v-u)(t) - <Vh3(xu(t)), zv'u(t)>. (20)

These differentials will later be expressed in terms of adjoints. Note that

t * Dg3(u, v-u)(t) is continuous.

For any u in G let R(u) denote the set of admissible trajectories of the

linearized system, that is

R(u) A {zv»u|v e G}. (21)

Proposition 3

(a) For all u in G the set R(u) is convex.
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(b) For all u,v,w in G

|ZT.W - zU,W|jco + Q(

uniformly in w as v •* u,

Proof

(a) This follows from the linearity (in z and v) of the linearized system

(14) and the convexity of G.

(b) The proof of this result is essentially the same as the proof of.

Proposition 2.3 in [73. v

We shall use the latter result, which ensures, in a certain sense, the

continuity of R(u), to establish the convergence of an algorithm to solve Pc

4. AN ALGORITHM FOR SOLVING P„

The master algorithm has two major components, a subalgorithm for solving

Pc (for fixed c) and a rule for updating the penalty parameter c. We consider

first a convergent algorithm for problem Pr defined in (11).

The procedure for solving ?Q is, in principle, very simple. Given a

control u in G it determines a search direction sc(u) A v-u where v is an

control in G which satisfies

Yc(v,u) - Yc(u) < <f)C(u)/2 (22)
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where

<{>c(u) Ainf{(1/2c)||v-u||2 ♦ Yc(v,u)lv e 5} - Yc(u) <0. (23)

Let w°(u) denote the minimizer in (23), i.e.

2 A

w°(u) A arg min {(1/2c)||v-u||2 +Yc(v,u)|v e 5}. (24)

In (23), (24) G denotes the set of relaxed controls and Yc(v,u), where v is a

relaxed control, is interpreted in the usual way by replacing any function

<j>(x(t),v(t),t) (for example, f(x(t),v(t),t), fx(x(t),v(t),t) and

fu(x(t),v(t),t)) occurring in the evaluation of (23)) by /n<j>(x(t),a>,t)dv(t)(u>);

2 1
similarly ||v-u||2 = fQ ||v(t) - u(t)||2dt is replaced by

1

/q /Q||a)-u(t)||2v(t)(a))dw.dt. It is easily established that the minimum in (24)

is achieved so that w°(u) exists. Since w^(u) can be approximated (by means

of the proximity algorithm desribed later) arbitrarily closely it is clear

that a control problem v in G satisfying (22) can be computed in a finite

number of iterations. The step length Ac(u) is then determined by a step size

rule of the Armijo type, i.e. Ac(u) is the largest A in S A {1,B,B2,...}, B e

(0, 1), satisfying

Yc(u + Asc(u)) - Yc(u) < A<0c(u)/4 (25)

Obviously the constants (1/2) and (1/4) in (22) and (24) may be replaced by

any other constants qx > c2 in (0, 1). Let Ac: G •»• G denote the map

Ac(u) « u + Ac(u)sc(u) (26)
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To analyse the algorithm it is convenient to introduce a few terms. Let

the functions yQf ylt y2, y3 be defined by:

y0(v;u) A [(1/2)||v-u||2 + g0(u) + Dg0(u, v-u)] (27)

Vj(v;u) A gj(u) + Dgj(u, v-u), j = 1~3. (28)

Clearly, yQ and yj, j = 1,2 are mappings from G x G into, respectively,

R, RmE and Rmi while y3 is amapping from G xG into C s* L2 s (with the norm

||*||2). Let Y(u) denote the "reachable set" achieved by these functions, i.e.

Y(u) A y(G;u) A {y(v;u)|v e G} (29)

where

y(v;u) A (y0(v;u), y^vju), y2(v;u), y3(v;u)). (30)

Let Y(u) denote

Y(u) A y(G;u) A {y(v;u)|v e G} (3D

where y(v;u), when v is a relaxed control, is interpreted as described earlier

It is known that Y(u) is the closure of Y(u).

Proposition 4

For all u in G the set Y(u) is a closed, bounded and convex subset of
msmp nix m0 rop nij R

FARxRLxR1xCs and, hence, ofHARxR1LxR-LxL2.
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Proof

See Warga [8]. Convexity follows from the fact that the variational

equation (14) is already linear in z and v and the fact that

1

<|>(v) A /0 /Q||w~u(t)||2 v(t)(uj)du> (v is a relaxed control) has the property that

$(v) = ckKvx) + (1-a)<|>(v2) if v = avx + (1-a)v2. V

We next note from (23) and (24) that

9c(u) < 4>c(u) <32)

where ec: G -»• R is defined by

ec(u) A Vw°(u),u) ~ Vu> (33)

We can express $Q in terms of Y as follows:

♦c(u) - min{nG(y)|y e Y(u)} - Yc(u) (34)

where y » (yQ, yx, y2, y3) e D and nc: F + R is defined by

nc(y) A y0/c + max{0;| yx|, j e mE; y2 , j e mx; y3(t), j e ms, t e T}.

(35)

Proposition 5

For all c > 0, <(> • g -»• R is continuous

Proof

Let ij/: G x G •* R be defined by
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i|>(vfu) A nc(y(v,u))

so that

<J>c(u) » min{ij/(v,u)|v e G} - Yc(u).

By slight extension to Proposition 3 (see [73), zw»v -»- zw»u in L,,, uniformly

in w in G, as v * u in G. It follows from the definition of y and the

continuity of Vhj, j= 0-3, that yw'v + yw'u and i|;(w,v) * ^(w,u), uniformly in

w in G, as v •* u in G. Since

<f>c(v) - <|>c(u) <iKw°(u), v) - i|>(w°(u), u)

and

*c(v) - (J)C(U) > *(w°(v), v) - l»(w°(v), u)

it follows that <j>c(v) -*• $c(u) as v •* u in G. V

We can now commence establishing the convergence properties of the

algorithm map AQ.

Proposition 6

(a) For any u in G, &c(u) < 0 if and only if <J>c(u) < 0.

(b) Suppose that u* in G is optimal for Pc. Then e0(u*) = (j)G(u*) = 0,
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Proof

(a) Since 6c(u) < <j)c(u) it is clear that 8c(u) < 0 of <j>c(u) < 0. Suppose

than that 6c(u) < 0. From (33) there exists a v in G such that

Y(v,u) - Yc(u) < 8c(u)/2 < 0.

For all a in [0, 13 let va in G be defined by

va = u + a(v - u).

Then, by (23), for all a in [0, 13,

*c(u) < (1/2c)||va - u||2 * Yc(va, u) - Yc(u)

< (a2/2c)||v - u||2 + a9c(u)

so that <|>c(u) < 0 for a sufficiently small.

(b) If 8c(u*) < $c(u*) < 0 there exists a v in G such that

Yc(v, u*) - Yc(u*) < <j>c(u*)/2. The desired result can be shown to follow

from Proposition 2(c). V

Proposition 7

For all u in G such that <j>c(u) < 0 (equivalently 8G(u) < 0) there exists a

6 > 0 and a \x > 0, Ax in S, such that

Ac(v) > Ax (36)
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for all v e B6(u) A {w e G|||w-v||. < 6}.

Proof

For all A in [0, 1]:

Yc(v+Asc(v)) - Yc(v) < Yc(v+AsG(v),v) - Yc(v)

+ |Yc(v+Asc(v)) - Yc(v+Asc(v),v)|

< A«>G(v)/2 + e(v, A)

where e(v, A) A |yg(v + Asc(v)) - Yc(v + Asc(v), v)|.

Choose 6 > 0 so that <j>G(v) <(|>c(u)/2 < 0 (and |<j>c(u)| < 2|«frc(v)|) for all

v e B5(u). Let r denote sup{||v - ulUu, v e G} so that r is an upper bound

for se(u). Since ||AsG(u)||08 < Ar it follows from Proposition 2 and the

continuity of YG and Yc that there exists a Ax in S such that

e(v, A) < A[(1/8)|(J>G(u)|] < A|<j>c(v)/4| for all A e [0, Aj and all v. Hence

YG(v + Asc(v)) - Yc(v) < Al(j)c(v)/4

for all v in B6(u). V

We can now establish our main result.
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Theorem 1

Let {u^ be an infinite sequence in G satisfying ui+l = Ac(ui). Then any

L,, accumulation point u* satisfies <|>c(u*) = 0 (8c(u*) =0). V

Proof

Suppose u* + u* in G along a subsequence I and that, contrary to what is

to be proven, <J>G(u*) < 0. It follows from Proposition 7 that there exist an

it in I and a Aj, > 0 such that

Vui+x) " yQ^uO < Xl<|)c(ui)/4

< Al(J)G(u*)/8 < 0

for all i in I, i > ix. But this contradicts the convergence of ^(uj) to

Y0(u*) as i * -, i e I. Hence 8G(u*) = <(>G(u*) =0. V

5. THE TEST FUNCTION tG

The second ingredient of the algorithm is a test function tG. At

iteration i, the penalty parameter ci is left unchanged if t- (u..) < 0;
1 Ci x "

otherwise it is increased. In order to ensure that accumulation points

satisfy necessary conditions of optimality for P (rather than PG) the test

function must have certain properties. These are [10]:
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(i) for all c > 0, tG: G + R is continuous

(ii) for all c > 0, <|>G(u*) = 0 and tG(u*) < 0 implies that u* satisfies

necessary conditions of optimality for P.

(iii) for all u* in G there exists a c* > 0 and a 6 > 0 such that tG(u)<0

for all u in Bfi(u*) and all c £ c*.

The test function that we propose is modelled on that employed in [8]; it

is:

tc(u) = *c(u) + Y(u)/c. (37)

Before proceeding it is necessary to introduce a constraint qualification. In

conventional mathematical programming this usually takes the form of

(positive) linear independence of the (most) active constraint gradients.

Because the control constraint is not differentiable, a more sophisticated

test is necessary. Let A denote the set of all possible vectors in R whose

elements are ± 1. Our constraint qualification can now be specified.

A4 Constraint Qualification

(a) For all u such that Y(u) > 0

X(u) A inf{Y(v,u) - Y(u)|v e G} < 0.

(b) For all u such that Y(u) = 0 there exists an e > 0 and, for each a in A,

a va in G such that
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c^Dgxtu; va-u) < -e, j = 1 mE,

gi(u) +Dgi(u; va-u) <-e, j - 1 mIf (38)
g3(u)(t) + Dg3(u; va-u)(t) < -e, j = 1,...,ms, t e T

The first condition ensures that Y can be reduced if Y(u) > 0. Since Y(v,

u) » 0 if Y(u) = 0, an alternative qualification is needed for this case (if

there are no equality constraints, condition (b) reduces to condition (a)).

If there are no inequality or state constraints then condition (b) is equiva

lent to the linear independence of the equality constraints.

Necessary conditions of optimality for P are well known (see [7,9]).

Proposition 8

Let u* be optimal for P. Then Y(u*) = 0 and there exists a AQ > 0,

multipliers Ax, j » 1 - nig, multipliers A2 ^ 0, j = 1 -mj and a positive
1 niq m«3

Radon measure A3 - (A3,...,A3 ) on T with values in R ° such that

(a) A = (A0, Alf A2, A3) * 0

(b) A"! »0 if gi(u») <0, j =1- mj
(c) A3({t e T|g3(u*)(t) < 0}) - 0, j - 1 - ms

(d) A0DgQ(u, v-u) + <Alf Dgx(u, v-u)>

+ <A2, Dg2(u, v-u)>
1

+ / <Dg3(u, v-u)(t), A3(dt)> > 0

for all v in G. 7
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Corollary

If u* in G is optimal.for P and the constraint qualification holds, then

A0 > 0 and may be normalized to unity.

Proof

Suppose u* e G but Aq = 0. Then there exist Ax = (Ax,...,Ax ),
i nij x ms

A2 = (A2,...,A2 ) ^ 0 and a positive Radon measure A3 » (A3,...,A3 )

satisfying (a), (b) and (c) in Proposition 8 and:

<Ax, Dgx(u*, v-u*)> + <A2, Dg2(u», v-u*)>

1

+ J <Dg3(u*, v-u*)(t), A3(dt)> > 0 (39)

for all v in G. But, by the constraint qualification there exists a v in G

and a e > 0 such that

(sgn Ax)Dgx(u*, v-u*) < -e, j e mg

Dg2(u*, v-u*) < -e, j e {j e mj|g2(u*) = 0}

Dg3(u*, v-u*)(t) < -e, t e {t|g3(u*)(t) - 0}, J e nj3.

which contradicts (39). Hence AQ > 0.

We now examine the properties of our proposed test function tG. We assume in

the sequel that assumptions A1-A4 hold.
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Proposition 9

For all c > 0 the function tG: G -• R is continuous

Proof

This follows from the continuity of <j>„ and Y.

Proposition 10

If u* in G satisfies <frc(u*) = 0 (8c(u*) = 0) and tG(u*) < 0 then u* is

desirable for P(i.e. u* satisfies the conditions in Proposition 8).

Proof

Suppose u* in G and c > 0 satisfy <j>G(u*) = 0 and tG(u*) < 0. It follows

from the definition of tG that Y(u*) = 0. Suppose, contrary to what is to be

proven, that u* is not desirable for P. Since Y(u*) = 0 it follows (from the

usual arguments in deriving necessary conditions of optimality) that there

exists a v* in G such that
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(a) DgQ(u*; v*-u*) < 0

(b) Dgx(u*; v*-u*) - 0

(c) g2(u*) + Dg2(u*; v*-u*) < 0

(d) g3(u*)(t) + Dg3(u*; v*-u*)(t) < 0, t e T.

It follows that Yc(v*, u*) <Yc(u*) (see (12), (13)) so that 8c(u*) <0

U„(u*) < 0), contradicting our hypothesis. Hence u* is desirable. V

The final property required of tG is the most difficult to establish.

The proof is given in the Appendix.

Proposition 11

For all u* in G there exists a c* > 0 and a 6 > 0 such that tc(u*) < 0 for

all u in B5(u*), c ^ c*.

6. AN ALGORITHM FOR SOLVING P

The algorithm for solving the original problem P can now be stated. A

proximity algorithm is employed to solve PG approximately (full details are

given later). The procedure for choosing the penalty parameter c employs a

monotonically increasing sequence {cj} (Cj / » as j -*• •).
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Algorithm 1

Parameters: S = (1, B, B2,...), Be (0, 1), C = {^Jq where cA / «, as i-*<».

Data: ux e G.

Step 0: Set i = 1 .

Step 1: If t (ut) < 0 set c* - c. ,;
ci-1 ~ 1"1

if t (u^) > 0 set Cjl equal to the smallest c in C

such that tG (uA) < 0.

Step 2: Compute a control v* in G satisfying

YCi<Vi» ui> " yo^uO <*c<ui>/2-

Step 3: Compute Ait the smallest A in S such that

VCi(ui + A(Vi - ut)) - Yq^^) <A«()c(ui)/4.

Step 4: Set ui+1 = ut + Ai(vi - ut).
Set i = i + 1

Go to Step 1. 7

Theorem 2

Let {ui} be an infinite sequence of controls generated by Algorithm 2.

(i) If c, .. is increased finitely often and then remains constant, then any

L^ accumulation point u of {u±} is desirable for P.

(ii) If q^ is increased infinitely often (i.e. J A t i-hcf-i (ui) >°J

has infinite cardinality) then the subsequence iu^\i e J} has no L.

accumulation points.
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Proof

The result follows directly from Theorem 1, Proposition 9, 10 and 11 and

Theorem 4 in [10]. 7

The only remaining task is the specification of an algorithm for

determining, given any u in G and any c > 0, a control v satisfying

Vv'u) " Vu) < ♦o(u)/2« (40)

This is required for Step 2 of Algorithm 1. We obtain v by using a proximity

algorithm described below. The algorithm generates, at each iteration, a

yj e Y(u) and z± £ Y(u) such that;

Yc(u) + <DG(u) e [nc(zi), nc(yi)] (41)

The algorithm stops when

^C(yi)-Yc(u)] < [nc(Zi)-Yc(u)]/2 <*c(u)/2. (42)

Since V£ e Y(u), the control v generating yi (yi « y(u, v)) satisfies (40) and

hence may be used in the main algorithm.

To describe the algorithm it is useful to introduce, for all a > 0, the

set D(a) in H defined by:

D(o) A {y e H|nc(y) < a; y0/c > a0; y2 > a2,

j e mi; y3(t) > a3, j e ms, t e T} (43)
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where a0, a2 and a3 (which depend on u) are defined in the Appendix. Recalling

the definition of nG in (35) it is easily seen that this set is convex and

bounded.

The algorithm employed is a fairly standard proximity algorithm, except

for two modifications. At iteration i the sub-algorithm determines

a,+1, y^ and ylt both generated by ordinary controls (i.e.lying in Y(u)) and
z± and z± lying in D(ai+1). Then yA e [yif y^] A{y|y =yj +a^ -

y^, a e T} and z± e [z^, z^] are chosen to minimise ||y-z||2 subject to the

constraint y e [yif y^], z e [zif z^]. A conventional proximity algorithm

would set y. =» yif z,+1 » z±. However, although Y(u) is convex, it is

difficult, owing to the presence of the quadratic term in the first component

of y(v,u) (see (27)-(30)) to determine a v in G such that y(v,u) » j^. The

sub-algorithm proceeds as follows. Suppose y^ » y^ + a^(y^ - y^) where y^

• y(Vi» u) and y± - y(vit u), Vj, v± lie in G, and a^ e T. Set vi+1 =

vi + ai^i ~ vi)« Because of the convexity of G, v.+1lies in G. Set y.+-

» y(v.+1 , u). Because of the quadratic term in the first component of y, ,

^i+iV) <^i^' (vi • UyOo* t*Oi* (yOz, (yi)3) e f =r xr Emx r imx

m«

C a) etc); however (yl+1)j = ^vi^i» J B 1~3* because these components of

y(v;u) are linear in (v-u). Hence set zi+1 = ((zi+1)o» (zi+1) 1» (zi+-|)2t

where:

<zi+i>o - (5i)o + <y1+1>o - (yi)o w)

(zi+1)j = (z)j , j = 1,2 (45)

and
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(zi+1)3 =arg min{||(yi+1)3 - w||2|( (zi+1 )0, (z1+1)lf

(zi+1)2, w) eD(ai+1)}

Since (yi+1 )0 = (yi)0.+ (yi+1 )o " tfito and

(yi+1)j = (yi)j, j = 1-3 it follows that

l|zi+1 - yi+1IU < ll^ - y±!U

which is the essential property required by the algorithm. The computation of

the function (zl+1 )3 is simple (see Appendix).

Algorithm 2 (to determine <f>G(u) approximately)

Parameters:

Data: u e G, c > 0, Vq e G (e.g. vQ = u)).

Step 0 : (Initialization)

Set i = 0.

Compute a0 - arg min{y0/c|y = (y0, yit y2» Yz) e Y(u)}.

Set y0 » y(v0, u).

Set zQ = (a0, 0, 0, 0).

Step 1: Compute si = yi - zi#

Compute r\± = min{<Sj., y>2|y e Y(u)}.

Set yi - arg min{<si, y>2|, y e Y(u)}

and set v^ equal to corresponding control (i.e. yi =» y(vi;u)).

Compute n^ - max{<s^, yi>a|y e D(a,)}

Set zi = arg max{<sif y>2|y e D(a )}

t

If ^i 2l ^i» set ai+i = ai

If rii < ni choose ai+1 to satisfy

max{<s,y>|y e D(ai+1).} =t^ and

(46)
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set zi = arg max{<s,y>|y e D(a )}.
i+1

Step 2: Ccmpute (yit z^) - arg min [||y-z||2|y e [yif y^, z e [zj^z^]

and aA e T satisfying

H = vi + ai^vi " ^

Set Vi+1= Vi +ai'"vi " ^

Set yi+1 = y(vi+1, Ul)

Compute zi+1(see (44) - (46)).

Step 3: If [nG(yi+1)-Yc(u)] < Cn0(z1+1)-Yc(u)]/2 stop.

Else set i = i+1 and go to Step 1. 7

Proposition 12

For all u. such that <J>c(u) < 0, algorithm 2 terminates in a finite number

of iterations yielding a v in G satisfying:

YG(v,u) - Yc(u) < <j>c(u)/2.

Proof

Let a0 solve inf{a|D(a) Y(u) * 0}. Consider the cost function c(y,z)

Y(u) x D(ct°) -• R+ defined by;

c(y, z) - (1/2)||y - z||2 .

At any point (y, z) in Y(u) x D(a°) the gradient of c(y, z) is (y-z,z-y).

The algorithm first computes a (y, z) satisfying
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<y-z, y - z>2 < 0

Hence

DC((y,z);(y,z) - (y,z)) = <y-z, y - y>2 + <z-y, z-z>2

= <y-z, (y - y) - (z - z)>2

- - <y~z, y-z>2 + <y-z, y - z>2

< -2 c(y,z).

The successor point (y',z») minimizes c(y«,z») subject to the constraints

y" e [y,y], z" e [z, z] and, hence, satisfies:

c(y,,zt) - c(y,z) < min{ - 2Ac(y,z) + (1/2)dA2}
AeT

where the upper bound (1/2)dA2 on the second order term in the expansion of

c(yl,zt - c(y,z) arises from the boundedness of Y(u) and D(a°). It easily

follows that

c(y\z?) - c(y,z) < -4>(y,z)

where

<|)(y,z) A c(y,z)2/d if c(y,z) < d

A d if c(y,z) > d.
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Clearly 4»(y,z) » 0 if and only if c(y,z) = 0.

Consider now a sequence {u^}, o^ A (y^Zi), generated by the algorithm.

From the above {cdi^)} is non-increasing and bounded below by zero, so that

the sequences {ctu^)} and {^(oj^)} converge. If c(wi) ^ 0 so that ^(oj^) to

as i + n there exist a 6 > 0 and an integer i, such that ^(w^) >_ 6 for all i.

But this implies that 0(0^) * —, a contradiction since c is bounded below by

0. Hence 0(0^) * 0 as i -*• », i.e. IJyj^—z^||a * 0 as i •* *.

The sequences {(y^} and {(z^) are uniformly Lipschitz continuous and

hence e qui continuous so (by Ascoli's Theorem) there exist a y* and z* and

a subsequence I such that

y± + y* and z± + z* in F and in H. Since \\y^ - zjla •*• 0 as i •»• 0 it

follows that y* • z* and that |nc(yi) - nc(zi)| •»• 0 as i •*• ».

The desired result follows easily. 7

We have now to show how the various steps on Algorithm 2 can be performed,

In Step 1 we require the solution of min{<s,y>2|y e Y(u)} making use of the

characterization of Y(u) we can see that the problem is equivalent to

min {/s0[(1/2)||v(t) - u(t)||2dt +s0g0(u)+s0h0x(xu(1) )zv'u(1))
0

+ / <s3(t), h-(xu(t)) zv»u(t)dt + <Sx, hx„(xu(D) zv»u(1)>
0

+ <s2, h2x(xu(1)) zv»u(1)>|v e G}
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subject to the system equations

zv'u(t) 0 Au(t)zv>u(t) ♦ Bu(t)[v(t) - u(t)]

zv»u(t) » 0

and the control constraint

v(t) efi, t e T.

This is a standard optimal control problem. The minimizer v satisfies

v°(t) = arg min[(1/2)||v(t) - u(t)||2 +

<X(t)t Au(t)zv'u(t) + Bu(t)[v(t)-u(t)]| v(t) e Q]. (47)

where A(t) is the solution of

-A(t) =[Au(t)]TA(t) +h3x(xu(t))Ts3(t)

A(1) - h0x(xu(1))Ts0 hlx(xu(1))TSx +h2x(xu(1))Ts2

It is known that there exists a control in G satisfying (47).

Step 1 also requires the solution of max{<s,y>2|y e D(a)}. The

computation of this is discussed in the appendix.
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APPENDIX

1. Computation of max{<s,y>2|y e D(ct)}.

Using the characterisation of D(a) this reduces to
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max{s0y0 + <Sx,yx> + <s2,y2> + <s3,y3>2|

yo/c + \Yi\ < a» J e jfc;

j j
Yz > a2,y0/c + y2 < a, j ebj;

y3 > a3, y0/c + y3 < a, j e ms;

y0/c e [a0, a]}

where a2 << 0 and a3 « 0. Since the term yQ/c is common, we consider the

• J.equivalent problem P« in which the constraints are replaced by |yx | < B,

Yz e Caa, B], y3 e [a3, B], where B Aa - y0/c e [0, a - a0]. Pg can be

decomposed into the following independent problems:

i I j
Pe: max{<Sx,yx>l|yx| < B, j e mE} = fx(B)

2 J iPft: max{<s2,y2>ly2 e [a2,8], j e nij} » f2(B)

3 j
P3: max{<s3,y3>2 y3 e [a3,B], j e ms} = f3(B).

Let dx, d2, d3, e2, e3 be defined by

mE j
dx A Z |sx|,

J-1

raI j mj j
d2 A Z (s2)+, e2 A ZJ(s2)_

j=1 j=1

ms 1 j ms t ,
d3 A Z / (s3(t))+ dt, e3 A Z / (s3(t))_ dt

j-1 0 "" j=1 0

where (a)+ A max{0, a}, and (a). A max{0, -a}. Then

S0V0 ° s0ca ~ s0cB

MB) - dxB

f2(B) - d2B - e2a2

MB) - d3B - e3a3

B is chosen to solve
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max{s0y0+fx(B) + f2(B) + f3(8)|B e [0, a - a0]}

- max{p + B[dx + d2 + d3 - s0c]|B e [0, a - a^}

where p A sQca - e2a2 - e3a3. Clearly 8°, the maximising B, satisfies

B° = a - a0 if dx + d2 + d3 > s0c

=0 if dx + d2 + d3 < Sqc

and the maximizing yQ, ylt y2, jr3 satisfy

y0 =c(o - B°)
J «0 / J \ 4yx = Bu sgn(Sx), j enig

y2 - 8° if s2 > 0

» a2 if s2 ^ 0, j e mj

yf(t) =B° if sf(t) >0
if s3(t) < 0, j e ms, t e T.

:{<s,y>|y e D(o)} - s0c(a-8°)+fi(B°)+f2(B°)+f3(B°)

a3

maxf

2. Computation of (zi+1),

The constraint in (50) is equivalent to:

wJ(t) > a3

wJ(t) < m(t)

where

m(t) A a - (zi+1)0/c

Hence (zi+x)3 defined by

(zi+1)3(t) A m if (yi+1)3(t) > m

A (y1+1)»(t) if (yi+1)3(t) e [a3, m]

Aa3 if (yi+1)f(t) <a3
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for all j e ms and all t e T minimises both ||(yi+1)3 " w||2 and

II(vi+i ^3 " WIU subject to the constraint in (50). Since {(y^g} is uniformly

Lipschitz continuous it follows that {(zi)3} is also uniformly Lipschitz

continuous.

3. Proof of Proposition 11

(a) Suppose Y(u*) > 0. From constraint qualification (a), there exists a

6 > 0 and a v* in G such that Y(v*, u*) - Y(u*) < -35. It is easily

established that u *• Y(v*, u), G •* R, is continuous. Hence there exists

an e > 0 such that Y(v*, u) - Y(u) < -26 for all u in B£(u*). Since

2

||v* - u||2 and Dg^(u, v*-u) are uniformly bounded in Bg(u*), there exists

a c, > 0 such that:

♦c(u) <[(1/2c)||v*-ujj2 +[g°(u)/c ♦ Dgb(u; v*-u)/c

+ Y(v*, u)] - [g°(u)/c + Y(u)]] < -6

for all u e B£(u*), c > Cx. Choosing c* > cx so that Y(u)/c* _< 6/2 for

all u in Bc.(u*) yields t-(u) < -6/2 for all u in Bc.(u*), all c > c*.

(b) Suppose Y(u*) » 0 so that gx(u*) =0, j = 1,..., mE. From constraint

qualification (b) there exists a 6 > 0 and, for each a in A, a v in G

such that

o^Dgi(u*; va-u*) < -26, j = 1,...,mE

g2(u*) + Dg2(u*; va-u*) < -26, j = 1, ....mj;
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g3(u*) + Dg3(u*; va-u*) < -26, j = 1,...,ms

the last inequality being interpreted as holding for all

t in T. From the continuity of gi and u -• Dgi(u; va-u) for all i, j,

there exists an e > 0 such that these inequalities hold with u* replaced

by u and 26 by 6 for all u in Be(u*), all a in A. For each u choose

ot(u) =(a1(u),...,omE(u)) in A so that aj(u) gx(u) = |gx(u)| , j e Jfe.

Since |a| = max{a, -a} • max{c^a, -a^a} we have

max{|gx(u) + Dgx(u; s)|, j e mE}

= max{|gx(u)| +aJ(u)Dgx(u; s),- |g^ (u) |- aj (u)Dgx (u; s), j e nig}

Let d be an upper bound for (1/2)||va-u||2, and Man upper bound for

D8b(u» va"u^» D8i(u; va~u)» J e Be> as u ranges over G,a.over A.

Replacing (v-u) by *(va(u)-u) in definition (23) of <|>c yields, for all u

in Be(u»):

4>c(u) < min max {dX2/c + MX/c + (|gi (u) | - Y(u)) - X6,
XeT

dX2/c + MX/c - (|gx(u)| + Y(u)) + MX, j e mg;

dX2/c + MX/c - X6 - Y(u); dX2/c + MX/c - Y(u)) (A1)

2

In (40),dX2/c is an upper bound for (1/2c)||x(va(u)-u))||2 and MX/c an upper

bound for DgQ(u; X(va/U\ - u))/c. The first two terms in (A1) arise from

the terms involving gx in the definition of <|>c, the third term from terms

involving g2 and g3 and the last term from the constraint that t(v,u) >_

0. It follows that

<J>c(u) < min max{dX2/c - X[6 - M/c]; dX2/c + bX- Y(u)} (A2)
XeT
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where b A 2M, for all u in B£(u*), all c>1. Hence:

tc(u) < min max{dX2/c - X[6 - M/c] + Y(u)/c;
" XeT

dX2/c + bX- Y(u)[1 - 1/c]} (A3)

for all u in B£(u*), all c > 1. The first term in (42) is negative if

X[6 - M/c - dX/c] > Y(u)/c

i.e. if

X > Y(u)/[c(6 - M/c - dX/c)]

and

[6 - M/c - dX/c] > 0

Since X e [0,1], the latter two inequalities hold if:

X > Xx(u) A Y(u)/[c(6-M/c - d/c)] and c > (M + d)/6 (A4)

The second term in (42) is negative if

X[b + dX/c] < Y(u)[1 - 1/c]

and c > 1. Since X e [0,1], these inequalities hold if

X < X2(u) A Y(u)[1 - 1/c]/[b + d/c] and c > 1. (A5)

Hence c* can be chosen to satisfy Xx(u) < X2(u), c > (M + d)/6 and c > 1

thus ensuring tc(u) < 0 for all i* in B£(u*) and all c ^ c*. V

Finally we show how (for any u in G) a0, a2 and a3 may be computed.

Recall that:

2

y0(v;u) = (1/2)||v-u||2 + g0(u) + DgQ(u, v-u)

Vj(v;u) = gj(u) + Dgj(u, v-u), j e 3

where

Dgj(u, v-u) - <Vhj(xu(D), zv»u(1)>, j = 0,1,2
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and

Dg3(u, v-u) = <Vh3(xu(0), zv»u(0>.

For any given u ||Vhj(xu(1))|| , j - 0,1,2 and ||Vh3(xu(0)||2 are easily

calculated. Using Gronwall1 s inequality an upper bound ir(u) for ||zv'u(t)|| as

v ranges over G and t ranges over T is easily computed. Finally a value r

2

such that u,v e 8 implies (1/2) ||v - u||2 < r can be computed. Hence

y0(v; u) >. r + g0(u) - ||Vh0(xu(1))||ir(u)

yj(v; u) > gj(u) - ||Vhj(xu(1))||Tr(u), j = 1,2,

y3(v; u) > g,(u) - ||Vh3(xu(.))||2 ir(u),

for all v in G. Hence we may employ

*0 = Cr + g0<u) " llVn0(xU(1))ll ir(u)]/c

a2 = [g2(u) - ||Vh2(xu(1))|| ir(u)]

a3 - Cg.(u) - ||Vh3(xu(.))||2 ir(u)]

in the definition of D(a).
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