

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN EXPERT DATABASE SYSTEM FOR THE

OVERLAND SEARCH PROBLEM

by

Oliver Glinther

Memorandum No. UCB/ERL M85/66

7 August 1985

AN EXPERT DATABASE SYSTEM FOR THE

OVERLAND SEARCH PROBLEM

by

Oliver Giinther

Memorandum No. UCB/ERL M85/66

7 August 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Expert Database System for the Overland Search Problem

by

Oliver Gunther

Department of Electrical Engineering and Computer Sciences

Computer Science Division

University of California at Berkeley

Berkeley, CA 94720

ABSTRACT

This paper describes a heuristic system to solve the overland search problem. The task in
this problem is to find the best path between two points on a geographic map. In this paper
the map is stored in an INGRES database. It is represented by a set of adjacent polygons.
The cost of moving between two points within the same polygon is proportional to the
distance between the two points. First, we present a basic system that performs a greedy
path search to find the best path. This system is implemented in QUEL**, an extension of
the INGRES query language QUEL. In order to speed up the path search we then suggest
the following improvements. First, we propose to utilize knowledge about the area to per
form a hierarchical decomposition of the given problem. Second, we propose to perform an
initial coarsening of the given map. On a coarsened map, the system will be able to find an
approximation of a solution path quickly. We propose several coarsening strategies,
including two that utilize quadtrees.

This research was sponsored by the Naval Electronics Systems Command Contract N39-82-C-0235.

-2-

1. INTRODUCTION

Every car driver knows one of the most common instances of the overland search

problem: to find the fastest route from his current location (say San Francisco Airport) to

a given destination (like the restaurant "Chez Panisse" in Berkeley).

This overland search problem has recently received a lot of attention [Harmon84.

Isik84. Kuan84. Kung84, Meystel84. Parodi84]. Besides the practical relevance of the prob

lem, there are several reasons for the increasing interest. The overland search problem is a

challenging application for expert systems [Hayes-Roth83] and heuristic search [Pearl84].

Furthermore, the problem raises interesting data management questions due to the enor

mous amount of data that is encoded in geographic maps. For example, one has to choose

appropriate data and storage structures. If a database is used to hold the map data, one

has to design an interface between the database and the path search system.

We believe that a database management system (DBMS) is a practical necessity. As

proposed in [Kung84], we also move the search portion of the expert system into the

DBMS. All proposed functions can be implemented in a classical query language like QUEL

[Stonebraker76] that has been extended in order to allow spatial operations [Stone-

braker83, Guttman84], and more sophisticated control structures for efficient rule process

ing [Stonebraker85a. Stonebraker85b]. This approach is in contrast to LISP-based

approaches which face difficulties in performing an efficient data management [Butler85,

Kung85].

The remainder of this paper is organized as follows. Section 2 gives a more concise

definition of the overland search problem and introduces the abstraction of the problem

that is employed in this paper. In this abstraction, the map is represented by a set of adja

cent polygons. The cost of moving between two points within the same polygon is propor

tional to the distance between the two points. Section 3 outlines a simple approach how to

transform the actual input data into this polygon representation. Section 4 describes a

heuristic system of rules for the greedy path search and discusses its implementation. The

-3-

following two sections discuss several improvements to this system. Section 5 describes a

knowledge-based approach for an initial hierarchical decomposition of the overland search

problem. Section 6 presents the concept of map coarsening; on a coarsened map the system

will be able to find a rough approximation of a solution path quickly. Several coarsening

strategies are presented, including two that utilize quadtrees. Section 7 is a summary of

our conclusions.

2. THE OVERLAND SEARCH PROBLEM

In the overland search problem one tries to find the best path between two given

points in a given environment. The solution to such an overland search problem does not

only depend on the starting point and destination point. It also depends on the kind of

vehicle used, on the road conditions, on the time of the day, on the cost function to be

used, and so on. For example, some vehicles are restricted to travel on roads, whereas other

vehicles can choose an overland route. The time to cross Golden Gate Bridge during rush

hour is much greater than during off-peak hours. To minimize fuel consumption one will

often choose a different route than to minimize travelling time.

Therefore, an instance of the overland search problem is formally given by a starting

point and a destination point in the plane, and a scalar cost function. The cost function is

completely defined over all points in the plane and indicates the marginal cost of moving

the vehicle under the given conditions from a given point into a given direction. The cost

function incorporates all data about the vehicle, the road conditions, the time of the day.

the minimization criterion, and so on.

For practical purposes, the cost function can be thought of as a grey-level map where

the grey level of an area reflects the marginal cost to move the given vehicle in this area.

It is a separate problem how to obtain this map quickly. A simple approach is outlined in

section 3.

-4-

This paper deals with the following abstraction of the overland search problem.

Given is a partition of the plane into polygons where the polygons may be concave and

may have holes. The cost of moving within the polygon P one unit of distance is given by

a cost coefficient Cp. The direction of the vehicle's movement does not matter as long as it

stays inside the same polygon. Clearly, this polygon partition of the plane is a discretized

version of the grey-level map described above.

This approach is in contrast to the approaches of [Kung84] and [Parodi84] where the

map is assumed to be discretized and processed into a grid-like graph. The graph has edges

and associated costs for each pair of points that are neighbors in the grid. For a discussion

of these and other ways to represent a map see [Meystel84].

3. MAP MAKING

The map making process is not directly part of the overland search problem: it is a

pre-processing step. This section will outline a simple approach how to transform the

actual input data first into a grey-level map. and then into the polygon representation

described above. This polygon representation serves as input for the algorithms in sections

4 and 6.

Suppose one is given several special-purpose maps of an area, such as a topographic

map. soil and vegetation maps for the current season, a traffic map for the current time of

the day, and so on. All these maps represent features that are significant for a route

planner. The union of these features represents the current state of the area where the

route planning process will take place. The first task is to produce a cost function that

takes all relevant special-purpose maps into account and represents the composition of

those maps. In other words, one would like to have a grey-level map that is a sufficiently

good approximation of the composition of the relevant special-purpose maps.

It seems that this approach is in fact a good approximation to the way a human reads

a map. Given several special-purpose maps of an area, most human map readers will first

-5-

conceptually compose those maps into a grey-level map. Then they perform the actual

path search on this conceptual composed map.

The grey-level map can be obtained as follows. We only give a short outline of the

steps of the algorithm. The details are beyond the scope of this paper and are not discussed

further.

(1) Picture Sampling and Quantization: All available special-purpose maps are transformed

into grey-level maps. Then the grey levels are transformed into a number representation.

The numbers indicate how expensive it is to move the given vehicle in the corresponding

areas. The discretized maps are stored as arrays of these numbers. This step has to be done

only once for each special-purpose map.

(2) Map Selection and Overlay: The maps that are significant for the given situation are

selected and overlaid. The number representation of the resulting composed map is deter

mined by the (maybe weighted) average of the corresponding numbers of the single layers.

(3) Picture Segmentation: Finally, the composed map has to be transformed into a polygon

representation as described above. This can be done by a split-and-merge algorithm as

described by Horowitz and Pavlidis [Horowitz76].

(3.1) Split: First the map is recursively split into smaller regions until each com

ponent map is homogeneous. Thus, a criterion must be chosen for deciding that a

region is homogeneous. One such criterion requires the definition of several disjoint

cost ranges whose union is the set of real numbers. Then a region is homogeneous if

the numbers that represent the grey levels in the region are all in the same cost range.

Another criterion is that the standard deviation of the grey levels of the region

(taken over all pixels) is below a given threshold.

(3.2) Merge: At the end of the splitting step all regions are homogeneous. However,

the regions are not necessarily maximal homogeneous regions. Therefore, a merge step

is performed. Each region checks its neighbor regions one by one. if the union region

would still be homogeneous. If yes. the two regions merge.

-6-

(3.3) Polygon Retrieval: The polygon representation of the map is determined by the

maximal homogeneous regions yielded by the merging step. The cost coefficient of a

polygon is the average of the numbers that represent the grey levels of the pixels in

the polygon.

Due to the merging step (3.2), the polygons that result from this map making process

may be concave and may have holes. This is not very good for path finding applications

because most path finding techniques will do better if the polygons are "simple" what may

mean convex, hole-free, or few vertices.

On the other hand it is desirable to keep the number of polygons in the map

representation low, because this number will have a direct impact on the running time of

the algorithm. There is a trade-off to be made between the number of polygons and the

complexity of their shapes. It seems like the only way to do this is to find out by practical

implementation experience.

If the granularity of a map seems too fine (i.e. the representation has too many

polygons), a map coarsening may be performed to decrease the number of polygons. This

is done by redefining the criterion for homogeneity and applying this criterion to the given

map. In this paper we discuss two ways of doing that. One way is to define cost ranges.

The coarsening algorithm will then merge all adjacent polygons with a cost coefficient in

the same range. Another way is to specify a (possibly large) threshold for the standard

deviation of grey levels in a homogeneous region. Then the coarsening algorithm merges

adjacent polygons if the standard deviation of the grey levels of their union region is

below the threshold. This kind of coarsening does usually not yield a unique result map.

Both approaches are discussed in section 6.

On the other hand, it might be the case that the map representation contains many

polygons with an "irregular" shape (i.e. they are convex, have holes, and so on). In this

case, one might be willing to accept a higher number of polygons if the shape of the

polygons was simpler. For this purpose one may perform a polygon simplification step that

-7-

decomposes the polygons into simpler components. It turns out that a trade-off has to be

made between the running time of such an algorithm and the number of yielded com

ponents. Algorithms that yield a minimum number of components are usually hyperqua-

dratic or even exponential. For example, the problem of decomposing a polygon with holes

into a minimum number of convex polygons has recently been proven NP-hard [Keil83]; if

the original polygon does not have holes, the same problem can be solved in polynomial,

however hyperquadratic. time [Chazelle79. Keil83]. It is an area of future research to

develop appropriate heuristics that do a faster decomposition without increasing the

number of yielded components too much above the optimum. As of yet, there are only

few heuristics known that address these problems.

4. A RULE SYSTEM

This section presents a system of path generation rules. This system is geared

towards simulating the path finding strategy of a human map reader. As our experiments

have shown, most human map readers perform a best-first strategy. They are looking for

the cheapest nearby areas that lead them closer to their destination and continue from

there. This strategy can be simulated by the following heuristical approach.

In the given abstraction of the overland search problem the map is represented by a

set of adjacent polygons. The cost of moving between two points within the same polygon

is proportional to their distance. The solution path will be represented by a list of path

nodes. The greedy path search retrieves this path, node by node. In order to to find the

next path node from the current path node the following algorithm FINDNEXT is per

formed.

-8-

4.1. Path Generation Rules

Let iTair denote the current path node, and War the current polygon. The current

polygon has been determined when tt^ was determined. It is the polygon that contains

the current path node iTaa. and that will contain the path segment from Tr^ to the next

path node ir^. Starting from tr^. FINDNEXT looks towards the destination Oand scans

the boundary segments of "9^ that lie within the optic angle. The optic angle is the angle

that is rooted at Var and halved by the axis (7^ ,fl). Its size is to be defined by the user;

typical sizesare between 30 and 120degrees. For an example see figure 1.

Figure 1: a is the optic angle, and the boundary segments of ^^ that lie within the

optic angle are shaded.

FINDNEXT selects the cheapest polygon Vnex among all feasible polygons (except

War) that are adjacent to any of those boundary segments. A polygon is feasible if its cost

coefficient is below a given threshold which depends on the vehicle. If "^ is no more

expensive than ¥<„. then the next path node 77^ will be the closest point within the optic

angle that lies on the boundaries of ^MX and %„.. If ^ is more expensive than ¥«*,. but

still feasible, then FINDNEXT prefers ^^ over ¥„« and stays in ¥«,. as long as it leads

closer to SI . Then the next path node ir^ will be the point that is within the optic angle,

lies on the boundaries of ^^ and ^. and is closest to the destination a . In any case.

*n« is the new current polygon.

-9-

If all the polygons within the optic angle are iiifeasible then there is some obstacle in

the way. In this case. FINDNEXT asks the user to provide a larger optic angle. If the user

provides one, FINDNEXT repeats the above procedure with the larger optic angle. Other

wise. FINDNEXT repeats the procedure with an optic angle of 360°. i.e. all adjacent

polygons are taken into consideration. If this does still not yield a new path node. FIND-

NEXT gives up. Note that a larger optic angle makes FINDNEXT less greedy: it does not

only take a rather direct route into consideration but also considers routes that might lead

to the destination less directly.

In order to avoid endless loops, FINDNEXT checks each pair (w^ St^x) whether it

has occurred previously. If yes, FINDNEXT is about to enter an endless loop. In this case,

the new path node is rejected and FINDNEXT continues from the current path node with

the next cheapest adjacent polygon within the optic angle.

If a new path node 77^ has been found and validated then FINDNEXT checks if the

straight line between irMX and the old path node Vc^ is completely within the current

polygon ^car. If ^atr is not convex there might be some obstacles (in most cases, more

expensive polygons) in the way. In this case, FINDNEXT constructs detour paths around

those other polgons along the boundary of ^^. These detour paths induce additional path

nodes and lie completely within ^^.

Finally, for each new path node w^x. FINDNEXT checks if 77^ is in the same

polygon as the destination CI. If yes. FINDNEXT is done: FINDNEXT draws the straight

line between ir^ and CI, and refines it according to the detour rule presented above.

FINDNEXT can be described more concisely by the rules on the following page. As

above. 77^ is the current path node, tt,,^ the next path node, ^c^ the current

polygon, CI the destination. Furthermore, (a0» a*) is the user defined increasing

sequence of optic angles, and G is the upper cost bound for a feasible polygon, i is initial

ized as 0.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

IF

THEN

ELSE

IF

THEN

ELSE

IF

THEN

ELSE

IF

THEN

ELSE

IF

THEN

ELSE

IF

THEN

IF

THEN

-10-

Wo,,, and Ciare in the same polygon

trMX is CI, execute rule (7), and STOP

the cheapest adjacent polygon within angle at (looking

towards ft) is no more expensive than ^axr

"*«ex is this polygon, ir,^ is the closest point of ¥„«

that lies within angle a,-; continue with rule (6)

the cheapest adjacent polygon within angle «j (looking

towards CS) is more expensive than ^^ but has cost ^ G

^nex is this polygon, tt,^ is the point on the common boundary of ^c^. and

^nex that lies within angle a, and is closest to CI; continue with rule (6)

IF i <k THEN { i := i + 1; continue with rule (2) }

ELSE continue with rule (4).

the cheapest adjacent polygon is no more expensive than ^aa-

Vnex is this polygon. 77^ is the closest point of ^^x

the cheapest adjacent polygon is more

expensive than *&&„. but has cost ^G

^nex is this polygon, tt^ is the point on the common boundary

of War and Vnex that is closest to CI

FAILURE. STOP.

the pair (7r„eX .Vrnex) has occurred previously

discard this new path node ttmx ; continue with the rule and the optic angle

that yielded this path node and take the next cheapest polygon for VtMX instead.

the straight line (77^ ,7rn€3e) intersects polygons other than Vcr

construct detour paths along the boundary of ^^.

-11-

Figures 2 and 3 give examples for the application of these rules. Note, that except the

start and the destination point, all path nodes will lie on polygon boundaries.

Figure 2: Rule 1 yields the straight line between 7Tcur and CI ; rule 7 yields the

detour path from point P± to point P2-

Figure 3: The circled numbers denote the cost coefficients of the polygons, the optic

angle is 90°. Initially, the polygon with cost coefficient 1 is the current

polygon, and tTair,\ is the current path node. First, rule 2 starts at point

- 12-

"cur.i and searches for polygons within the optic angle that have a cost

coefficient of less than 1. As this does not succeed, rule 3 is activated. Rule

3 finds the polygon with cost coefficient 5, and yields the straight line from

flcur.1 to iTnex.1- The polygon with cost coefficient 5 is now the current

polygon. Then rule 2 starts from point Trwx i = Wa^ % and finds the

polygon with cost coefficient 2. It yields the straight line from TTa^^ t0

W/iex^- Finally, rule 7 yields the detour path from point Pi to point iY

This example shows that rule 7, that takes care of the detour paths, is in

itself very clumsy. It might yield very strange paths if there are many

non-convex polygons that have irregular boundary shapes.

4.2. Implementation of Path Generation Rules

The map is stored in an INGRES [Stonebraker76] database. The rules are coded in

QUEL**, an extension of the query language QUEL [Stonebraker76] that allows abstract

data types [Stonebraker83, Guttman84], and more sophisticated control structures for

efficient rule processing [Stonebraker85a, Stonebraker85b]. This system makes especially

use of data types for spatial objects (polygons, lines, etc.) and for program code. The

current implemenUtion is written in EQUEL/FORTRAN [RTI84]. The above extensions are

simulated by EQUEL/FORTRAN programs.

The control structures used are the EXECUTE* command and the EXECUTE-UNTIL

command.

EXECUTE* {QUEL-COM) WHERE (WA)

executes the command sequence QUEL-COM over and over again until it fails to modify

the database or until the qualification WA is false. Note that QUEL-COM is an object of

the abstract data type QUEL-Code.

- 13-

EXECUTE-UNTIL {QUEL-COM)

tries to execute the commands in the command sequence QUEL-COM one after another

until one command does actually have some effect on the database. This command will be

the only command that will be executed.

The EXECUTE-UNTIL command is applied to the set of rules: EXECUTE-

UNTIL {RULES). Each command in RULES represents one of the rules (l), (2). (3), (4),

and (5). Hence, only one rule applies to a current point. This means, however, that only

one path is alive at a given time which is necessary to maintain computational efficiency.

Considering computational efficiency it does not make sense to keep alive an exponential

number of paths.

Note that explicit QUEL-statements are needed only for the rules (1). (2), (3), (4).

and (5). Rule (6) is implied by the 'stay-in' operator (see below), rule (7) is covered in the

WHERE clauses.

The solution uses the concept of abstract data types to implement the data types

'polygon', 'line*, 'path', and 'point'. The following operations are defined on those types.

>< . .. stay-in: line-1 ><pol-l returns a path of line segments
with endpoints in common with line-1 which stays inside pol-1
adjacent; this operator is simulated by a relation ADJACENT (pol-1,pol-2)
closest

@

//

0
&
II

k.X.a)
line(X,Y)
length(P)

in

concatenation

intersection

area covered by angle a that is rooted at X and halved by (X,il)
line from point X to point Y
length of path P

The solution uses the following relations:

MAP (polygon,cost) . .. polygons of the map
PATHS (path.cost.cur-poly.cur-pt,next-poly,next-pt) . .. paths
OLD (node.next-poly) . .. pairs (7^ .^^) that have

occurred previously

- 14-

It follows the code of the MAIN LOOP and of RULE 2. The complete code is listed in

appendix A.

range of m,ml,m2.m3 is MAP
range of p is PATHS
range of o is OLD

MAIN LOOP:

execute* {RULES; append to OLD (node «• p.next-pt,next-poly = p.next-poly))
where p.cur-pt != finish

RULE 2:

replace p (path = p.path & (line(p.cur-pt.p.next-pt) >< p.cur-poly).
cost = p.cost + ml.cost * length(line(p.cur-pt,p.next-pt) >< p.cur-poly),
cur-poly = p.next-poly,
next-poly = m3.polygon,
cur-pt = p.next-pt,
next-pt = p.next-pt // (#(p.next-pt.Q(i) !! m3.polygon)

where ml.polygon =» p.cur-poly
and m2.polygon = p.next-poly
and m3.cost = min (m.cost

where m.polygon @(p.next-poly !! #(p.next-pt.a,-))
and m.cost ^m2.cost)

and any (o.node where o.node= p.next-pt // (#(p.next-pt.aj) !! m3.polygon
and o.next-poly = m3.polygon)) = 0

So far we ran one experiment to test the performance of the path generation rules.

The map is a topographic map of a 36 square mile area of Santa Cruz county, California.

This area is extremely mountainous with deep valleys and an extensive river system. The

map is represented by a 420 adjacent polygons; the adjacency relation has 2039 tuples. The

starting point A and the destination point CI are at opposite corners of the map. The

sequence of optic angles was (90°,180°). The result path has 1928 nodes. The path search

took 1017 CPU seconds of INGRES time, and 352 CPU seconds of FORTRAN time.

Hence, in this example the path search takes about 23 minutes of CPU time. For prac

tical applications, this is not acceptable. The main reasons for this high running time are

the necessity of complicated queries in order to retrieve certain boundary segments, and

the expensive check which boundary segments lie in the optic angle.

-15-

In order to speed up the search we suggest the following improvements. First, we

propose to utilize knowledge about the area to perform a hierarchical decomposition of the

given problem. Second, we propose to perform an initial coarsening of the given map. On a

coarsened map. a system will be able to find an approximation of a solution path quickly.

From there, the path can be refined further. These suggestions are discussed in more detail

in the following two sections.

5. HIERARCHICAL PROBLEM DECOMPOSITION

5.1. Path Decomposition Rules

In order to speed up the path search, we propose the hierarchical decomposition of a

given overland search problem by rules which utilize knowledge about the area. A com

mon example is the following:

If one wants to go by car from any point in Berkeley to any point in San

Francisco as fast as possible then one has to use the Bay Bridge.

These path decomposition rules will usually be used before one resorts to the path genera

tion rules presented in section 4.

The system first uses the available local knowledge to construct path decomposition

rules. The application of these rules yields a hierarchical decomposition of the given over

land search problem. These rules are applied until none of the rules can be applied to any

of the yielded subproblems, i.e. one does not have any local knowledge about these sub-

problems.

For example, suppose a car driver wants to drive as fast as possible from his apart

ment on Blake Street in Berkeley to "Mc Donald's" in San Francisco. The only local

knowledge he has can be stated in the following two rules:

(1) If one wants to go by car from any point in Berkeley to any point in

San Francisco as fast as possible then one has to use the Bay Bridge.

-16-

(2) If one wants to go by car from Blake Street to the Bay Bridge as fast

as possible then one has to take Ashby Street.

The application of these two rules yields three subproblems: how to get from Blake

to Ashby, how to get from Ashby to the Bay Bridge and how to get from the Bay Bridge to

"Mc Donald's".

One does not have any local knowledge that is applicable to any of these subprob

lems. Instead one has to resort to a map that approximates the cost function and to a more

general rule system like the one described in section 4.

5.2. Implementation of Path Decomposition Rules

In an actual implementation, the number of path decomposition rules will typically

be at least several hundreds. One therefore encounters two problems when implementing

path decomposition rules. The first problem is to find applicable rules for a given situation

sufficiently fast. The second problem arises if there are several rules that all apply to the

current situation: one rule has to be selected.

These problems are addressed in [Stonebraker85b]. This paper proposes a mechanism

that extends a relational database system like INGRES by some inferencing capabilities.

When a retrieve command cannot be satisfied using only stored data, the data manager

determines if a rule in the knowledge base can be used to reformulate the query. In this

way. one works from the desired data toward database facts which must be ascertained

using backward chaining. The paper also proposes a mechanism to support priorities among

rules in case several rules are applicable to a certain situation. All priorities must be

defined explicitly by the user. If a priority has been followed and it leads to a dead end

the system will perform backtracking and apply the rule with the next lower priority.

With these new features, QUEL could process a query like

retrieve DEMAND PRIORITY (ROUTE.routing)
where ROUTE.start = "2423 Blake St., Berkeley"
and ROUTE.dest = "1122 Broadway. San Francisco"

-17-

as follows. The data manager finds that this query cannot be satisfied using only stored

data. The keyword DEMAND indicates that backward chaining should be performed in

this case. The backward chaining uses the rules in the knowledge base, thereby performing

a hierarchical decomposition of the route. If several rules apply to a given situation, the

keyword PRIORITY causes the data manager to consult the user-defined priorities to

resolve the conflict. Eventually there are no more rules applicable. The data manager col

lects the route pieces that were yielded by the hierarchical decomposition and passes them

to the user in the object "ROUTE.routing". For a more detailed discussion of these issues

see [Stonebraker85b].

6. MAP COARSENING

The comprehension of most human map readers often involves an initial conceptual

coarsening of the given map. The coarsened version of the map allows to find an approxi

mation of a solution path quickly. From this first approximation the human reader will

continue with further refinements of this path, taking more and more details into account.

This approach is also a hierarchical decomposition of the problem. Instead of applying

path decomposition rules that are based on local knowledge, the map is coarsened. On the

coarsened map it is much easier for the search heuristics to recognize larger areas where the

cost of moving is relatively low. The resulting "main road" paths are then subject to

further refinements by means of a less coarsened map.

Instead of such a top-down approach one could also solve the problem in a bottom-

up manner. The bottom-up approach first finds best paths from the start and destination

points to any main road, then searches a coarser map for the best path between the two

chosen points on the main roads.

This approach of coarsening the map is a generalization of the hierarchical algorithm

described by Kung et al. [Kung84]. Their approach requires the available maps to be

ordered in a tree. The leaf maps are detailed maps like plat maps, the higher levels contain

-18-

coarser maps like a state highway map or a USA map. To solve an overland search prob

lem, one could use this tree in a bottom-up or a top-down manner, in a similar way as

described above.

In the given abstraction of the overland search problem, the map coarsening will be

done by merging adjacent polygons. Thereby the number of polygons will be substantially

reduced and the path finding algorithm will yield a path much faster than on the original

map.

Map coarsening is done by defining a new criterion for homogeneity, and applying

this new criterion to the given map. One possibility would be to specify several disjoint

cost ranges whose union is the set of positive real numbers, [O.oo), such as. for example,

the following four ranges: [0.10), [10.30). [30.55), [55,oo). Then the union of several

polygons is considered to be homogeneous if all of their cost coefficients are in the same

range. The coarsening algorithm will merge all adjacent polygons with a cost coefficient in

the same range. The cost coefficient of a new polygon is, for example, the average of the

cost coefficients of its component polygons.

Note that this range merging has the following nice feature. Depending on the ranges,

the path finding algorithm performed on the coarsened map will yield paths of different

characteristics. Suppose, for example, that a vehicle can only manage areas with a cost

coefficient less than 100. Let us consider two coarsenings of a given map: coarsening A,

coarsened according to the ranges [0,100), [lOO.oo); and coarsening B, coarsened according

to the ranges [0.50), [50.80). [80.90), [90.100). [lOO.oo). The path found on coarsening A

might have long pieces in areas with cost coefficients close to 100. because here. FINDNEXT

cannot distinguish between areas of cost 1 and areas of cost 99; on the other hand this

path might be rather direct. The path found on coarsening B will try to avoid areas with

cost coefficients between 80 and 100; it might, however, be a longer path.

Both coarsenings reflect different planning goals. Coarsening A reflects the goals of a

planner who is looking for a feasible path that is as direct as possible. On the other hand,

-19-

coarsening B reflects the goals of a planner who would like to avoid areas that are close to

the feasibility limit and is willing to accept a longer path for that reason. This feature

allows the user to include his personal planning goals which is much harder to express in

the rather inflexible concept of a scalar cost function. It is a well-known fact in artificial

intelligence that the optimal solution (like the path with the minimum cost on the original

map) is not always what the user really wants. A cost function like the one proposed in

this paper is somewhat artificial in most cases; very often it will not be able to capture all

the aspects that a human would take into consideration. Therefore, it might well be that

the human would choose a solution that has a suboptimal cost, due to aspects that are

apparently not reflected well enough in the cost function. In our application, that would

mean that an expert might intuitively prefer a route A to a route B although route B has a

lower total cost (according to the cost function) than route A.

An experienced user could now perform several coarsenings with different cost

ranges, let the system find an optimal path for each of the coarsened maps, and then

choose the path that seems most appropriate to him. The selection of appropriate cost

ranges is a matter of practical experience with the system and has to be done by an experi

enced user.

A different coarsening strategy is the coarsening by standard deviation. Here, the

user specifies a (possibly large) threshold for the standard deviation of grey levels (taken

over all pixels) in a homogeneous region. Then the coarsening algorithm merges adjacent

polygons if the standard deviation of the grey levels of their union region is below the

new threshold. This kind of coarsening does usually not yield a unique result map. The

result is sensitive to the order in which the polygons are considered for merging.

In both coarsening strategies, the coarsening is done by merging adjacent polygons.

One way to do this is to retrieve the boundary segments of the original map that will not

appear on the coarsened map. For each such boundary segment the two adjacent polygons

are to be merged. This strategy is presented in section 6.1. Simpler strategies are possible

-20-

if the original map is given in a quadtree data structure. In this case one bottom-up traver

sal of the quadtree will yield the coarsened map. This case is discussed in section 6.2.

6.1. Map Coarsening by Direct Polygon Merging

In this section we only consider the coarsening by cost ranges. The coarsening by

standard deviation could be performed in a similar manner, but it would not be fast

enough for practical applications. There are two reasons for that. First, to do that it is

necessary to compute the standard deviation of grey levels in the union of two given

polygons. This has to be done once per pair of polygons that is considered for merging.

However, to do this requires information about the area of the two polygons. If this infor

mation is not stored the computational overhead will be tremendous. Second, the result of

the map coarsening by standard deviation is sensitive to the order in which the polygons

are considered for merging. This fact yields additional computation overhead.

6.1.1. The Algorithm MERGEPOL

In order to merge adjacent polygons whose cost coefficients are in the same range, the

following algorithm MERGEPOL is executed. MERGEPOL builds a graph that has one ver

tex per polygon of the original map, and initially no edges. For each pair of polygons

{Pi , P2) such that Pi and P2 are adjacent in the original map, MERGEPOL considers the

two cost coefficients of Pi and P2. If both coefficients are in the same cost range then the

edge {Pi , P2) is inserted into the graph. The resulting graph MERGE contains one vertex

per polygon and one edge between each pair of vertices whose corresponding polygons are

to be merged.

Then MERGEPOL finds the connected components of MERGE. Each connected com

ponent corresponds to a polygon of the coarsened map and vice versa. MERGEPOL merges

all polygons whose corresponding vertices are in the same connected component. The merg

ing is done pairwise. A pair of polygons can be merged by concatenating the boundaries of

the two polygons in the following manner.

-21-

Let (TTi . TT2 7Tn . TTi)

and (Pi . p2 Pm . Pi)

be the boundary point sequences of the two adjacent component polygons Pi and P2,

respectively. W.Lo.g., let

(^1 = Pm) and {irn =Pi)

Hence, the boundary segment

(tt\ . irn) = (Pi . pm)

is the one that is shared by the two polygons. Then

(TTl . TT2 7Tn = Pi . P2 Pm = ^1)

is a boundary point sequence of the result polygon Pi (JP2. Note that the boundary may

contain several points more than once. This is the case if Px and P2 have more than one

boundary segment in common. Then Px \JP2 might even have holes. Figure 4 gives an

example.

Figure 4: The polygons Px and P2 have three edges in common: edge (7Ti0 , ir{) =

(Pi •Ps)» edge Ori , 7r2) = (p8 . p7), and edge {w5 . 7r6) = (p5 , p4). Hence,

the boundary of the polygon Px [JP2.

(• ^1 •^2 """io = Pi . P2 . • • • . Ps - ^i)

contains three points twice: points w2 = p7, 7T5 = p5, and 7Tg = p4. The

polygon Pi [JP2 has a hole.

-22-

As discussed in section 3. it is not Very convenient to have polygons with compli

cated boundaries like this one. They tend to make the search for a minimum cost path

more difficult. Furthermore, path generation rules often include some rule that makes the

path follow some polygon boundary (such as rule 7). In this case, the result path might

have a very undesirable shape. We therefore suggest to decompose these polygons into

components without holes. In-many cases, this can be done by k+1 cuts where k is the

number of holes. We are currently working on a more detailed analysis of this kind of

polygon decomposition. A simple example with k=3 is given in figure 5.

Figure 5: The shaded polygon which has three holes can be decomposed into two

polygons without holes by the three dashed cuts.

The time for the map coarsening by direct polygon merging is about linear in the

number of adjacencies, hence at most about quadratic in the number of polygons on the

map.

6.1.Z Implementation of MERGEPOL

The algorithm MERGEPOL can be implemented in a very straightforward manner if

the following relations are available and initialized with the data of the map.

MAP (polygon.cost)
ADJACENT (pol-l.pol-2)

-23-

First. MERGEPOL retrieves pairs of adjacent polygons whose cost coefficients are both

in the same cost range. i.e. the edges of the graph MERGE. For that purpose one has to

perform the following retrieve command for each cost range P,-. Let lower and upper be

the limits of the cost range Rt.

range of mal. ma2 is MAP
retrieve into MERGEDGE (ADJACENT.all)
where (ADJACENT.left-pol = mal.polygon and ADJACENT.right-pol = ma2.polygon
and (mal.cost Slower and mal.cost <upper and ma2.cost Slower and ma2.cost <upper)

Then MERGEPOL finds the connected components of MERGE, merges the polygons

in the same connected component one by one. and builds the boundaries of the result

polygons. This is done by a straightforward implementation of a labeling algorithm like

the one in [Papadimitriou83]. and of the boundary concatenation presented in section 6.1.

Finally, it builds the adjacency relation of the coarsened map.

So far we ran one experiment to test the performance of the map coarsening by

polygon merging. The original map is a topographic map of a 36 square mile area of Santa

Cruz county. California. It is represented by 420 adjacent polygons; the adjacency relation

has 2039 tuples. We chose the following cost ranges: [0.30). [30.100). and [lOO.oo). Of the

420 polygons, the cost of 174 polygons is in the first range, the cost of 149 polygons in the

second, and the cost of 97 polygons in the third.

First the program retrieves the relation MERGEDGE and finds the connected com

ponents of MERGE. This takes 930 CPU seconds INGRES time and 21 CPU seconds FOR

TRAN time. Then it performs a pairwise polygon merging by boundary concatenation:

finally it builds the new adjacency relation. This takes 2700 CPU seconds INGRES time

and 1897 CPU seconds FORTRAN time. Hence, the coarsening takes altogether 5548

seconds or about one and a half hour of CPU time. The resulting map is represented by

143 adjacent polygons. The new adjacency relation has 1293 tuples.

-24-

6.2. Map Coarsening by Quadtrees

So far the map was represented by a set of adjacent polygons, such that the cost of

moving between two points within a polygon is proportional to their distance. The shape

of the polygons was allowed to be arbitrary: even holes were allowed. This section consid

ers a special case of this model that allows the representation of a map as a quadtree

[Samet84]. The polygons are all squares, and their edge lengths are powers of 2. Each

square of the map corresponds to one leaf of the quadtree. The square partition is obtained

by a recursive subdivision of the map into four equal-size quadrants until the area in each

square is homogeneous. For an example for such a partition and its corresponding quad

tree see figure 6. The letters and numbers in figure 6 will be explained later.

N/OPa Rs?TW

Figure 6: A partition and its corresponding quadtree.

Quadtrees are useful to implement the map making process described in section 3. In

this process, several special-purpose maps are overlaid. The resulting map represents a cost

function which incorporates all data about vehicle and terrain that has to be taken into

account. If the special-purpose maps are given as quadtrees, then the quadtree of the result

map is obtained by overlaying these quadtrees. The overlay operation is a slight variation

of the union operation for which there are fast and simple algorithms [Hunter79]. The

resulting quadtree has a node at every position at which any of the input quadtrees has a

node. Its leafs represent the homogeneous subareas of the composed map. The cost

-25-

coefficients of each subarea are determined by the (maybe weighted) average of the cost

coefficients of the corresponding subareas in the single layers.

Quadtrees are also useful to implement the map coarsening. One bottom-up traversal

of the tree is sufficient. Hence, the time for the coarsening is about linear in the number of

blocks. On the other hand, the time for coarsening by direct polygon merging is about

linear in the number of adjacencies, which might be about quadratic in the number of

polygons. However, the number of blocks might exceed the number of polygons in a sim

ple polygon representation by far. It is therefore not immediately obvious which data

structure might be better for the map coarsening. Both ways have to be implemented to

allow a comparison.

6.2.1. Coarsening by Cost Ranges

If the original map is given in a quadtree one can apply a much more natural strategy

to do map coarsening. Coarsening by ranges can be done bottom-up in the quadtree. Each

leaf in the quadtree is assumed to have an associated cost coefficient. Each quadruple of

leaf nodes is checked if all four associated cost coefficients are in the same range. If yes. the

four leaf nodes are deleted, thereby making their ancestor node a leaf node. Its associated

cost coefficient is the average of the cost coefficients of its four former descendants. This

strategy requires only one bottom-up traversal through the quadtree.

If the granularity of the resulting map seems too fine, i.e. the number of polygons is

still high, one might even merge adjacent quadrants which have different ancestors. This

may be done if the cost coefficients of the quadrants are in the same cost range. The merg

ing may continue until there are no more pairs of adjacent polygons on the map whose cost

coefficients are in the same cost range. A detailed description of this kind of merging can be

found in [Horowitz76].

Note, however, that the resulting partition may no longer be representable by a

quadtree. Hence, this kind of coarsening should only be performed if the quadtree data

-26-

structure is no more required. An example is given in figure 6. Suppose, a bottom-up coar

sening with the cost ranges [0,10). [10,20). [20.30). [30.40). [40.oo) yielded the quadtree

and the corresponding polygon partition that are given in figure 6. The letters denote the

polygons, and the circled numbers are their corresponding cost coefficients. Then it is pos

sible to coarsen the polygon partition by merging the squares A, N, and K, as well as the

squares F and G because their corresponding cost coefficients are in the same cost ranges.

The resulting polygon partition can no longer be represented by a quadtree.

Note that the polygon partition resulting from this coarsening by ranges is unique for

a given input quadtree and given cost ranges.

6.2.2. Coarsening by Standard Deviation

Given a quadtree of the original map, one may also apply a different coarsening stra

tegy: coarsening by standard deviation. However, this is only possible if the construction

of the original quadtree used the standard deviation of grey levels as criterion for homo

geneity. In this case, the standard deviation of grey levels in each quadrant is below a

given threshold t.

Let Qt be the quadtree obtained from the original map by applying the threshold t. If

t* is greater than t then the map represented by the quadtree Qt* is a coarsened version of

the map represented by Qt. The problem is. how to obtain quickly a quadtree Qt* for a

given coarsening parameter t* and a given quadtree Qt {t «t*). Of course, one does not

want to repeat the whole process of building a quadtree in order to obtain Qt*.

This kind of coarsening can be performed easily with one bottom-up traversal of the

quadtree Qt. Each leaf of the quadtree Qt is required to store the mean and the standard

deviation of the grey levels of the associated map area (taken over all pixels). Let X, Y, Z,

and W be four sibling leafs in Qt and let A be their ancestor. Furthermore, let <rx, cry,crz.

cw, cra be their standard deviations, and x,y,z.w.a their means, correspondingly.

Because the number of pixels in the areas corresponding to X. Y, Z, and W is all the same

-27-

(namely one quarter of the number of pixels in the area corresponding to A), the following

equation holds.

cra2 =4- (<rx2 +a,2 +o~22 +o~w2)+-L (x2 +y2 +I2 +w2)

- — (xy + xz + xw + yz + yw + zw)
8

Hence, one can just perform a bottom-up traversal of the quadtree Qt, compute for

each quadrupel of leafs the standard deviation of their ancestor (according to the above

equation) and check if it is no more than t*. If yes, the four leafs are deleted, thereby

making their ancestor a leaf. Its standard deviation has just been computed, its mean is the

mean of the means of its four descendants. The resulting quadtree is the quadtree Qr. and

it represents the coarsened map. Again, the result of this coarsening strategy is unique,

because only sibling leafs are merged.

After this coarsening it is also possible to merge quadrants that have different ances

tors. This may be done if the union of the quadrants is still homogeneous. The merging

may continue until all yielded polygons are maximal homogeneous regions. This merging

process does not yield a unique result: the result is sensitive to the order in which the

polygons are considered for merging. In their "split-and-merge" algorithm. Horowitz and

Pavlidis [Horowitz76] solve the problem by imposing an arbitrary order on the polygons.

Again, the resulting map may no more be representable as a quadtree. Hence, this kind of

coarsening should be performed only if the quadtree data structure is no more required.

7. CONCLUSIONS

We presented some solution strategies for the overland search problem. The resulting

system is based on rules and the utilization of stored knowledge about the area. Our

experiences with using an extended query language for the implementation are very good.

The data management is becoming a lot easier. Due to the extensions, we did not encounter

major problems when programming the algorithms and rule constructs.

-28-

Our future research will focus on the implementation of the quadtree approach and

on a more detailed investigation of the hierarchical problem decomposition proposed in sec

tion 5. Furthermore, we are interested in heuristic algorithms to decompose polygons into

simpler components. We especially intend to work on fast heuristics for decomposition

into convex components, as well as on algorithms to decompose polygons into components

without holes, and into components whose number of vertices is below a given threshold.

Acknowledgements

I would like to thank my advisor. Mike Stonebraker. for introducing me to this area

of research and for his continuing support and encouragement. I have also benefited greatly

from many discussions with Ru-Mei Kung and from the support of ESL Inc.. Sunnyvale,

Ca. where the system was implemented.

References

[Aho74]

[Butler85]

[Chazelle79]

[Guttman84]

[Harmon84]

[Hayes-Roth83]

[Horowitz76]

[Hunter79]

[Isik84]

Aho, A.. Hopcroft. J., and Ullman. J., "The Design and Analysis of
Computer Algorithms", Addison Wesley, Reading. Mass.. 1974.
Butler. M.. private communication. 1985.

Chazelle, B., and Dobkin, D., "Decomposing a Polygon into its Convex
Parts", Proc. 11th Annual ACM Symposium on Theory of Computing,
pp. 34-48. 1979.

Guttman, A.. "New Features for a Relational Data Base System to Sup
port Computer Aided Design". PhD Thesis. University of California,
Berkeley, June 1984.

Harmon, S.Y., Gage, D.W., Aviles, W.A., and Bianchini, G.L., "Coordi
nation of Intelligent Subsystems in Complex Robots", Proc. The First
Conference on Artificial Intelligence Applications, IEEE, Dec. 1984.

Hayes-Roth. F., et al. (eds.). "Building Expert Systems". Addison Wes
ley. Reading, Mass.. 1983.

Horowitz. S.L.. and Pavlidis. T.. "Picture Segmentation by a Tree
Traversal Algorithm". J. ACM 23. 2. pp. 368-388, April 1976.
Hunter, G.M., and Steiglitz, K„ "Operations on Images Using Quad
trees", IEEE Trans. Pattern Anal. Mach. Intell. 1. 2, pp. 145-153, April
1979.

Isik, C, and Meystel. A., "Knowledge-Based Pilot for an Intelligent
Mobile Autonomous System", Proc. The First Conference on Artificial
Intelligence Applications. IEEE, Dec. 1984.

[Keil83]

[Kuan84]

[Kung84]

[Kung85]
[Meystel84]

[Papadimitriou83]

[Parodi84]

[Pearl84]

[RTI84]

[Samet84]

[Stonebraker76]

[Stonebraker83]

[Stonebraker85a]

[Stonebraker85b]

-29-

Keil, J.M., "Decomposing Polygons into Simpler Components". Ph.D.
thesis, Dept. Computer Science, U. of Toronto, 1983.

Kuan, D., et al.. "Automatic Path Planning for a Mobile Robot Using a
Mixed Representation of Free Space". Proc. The First Conference on
Artificial Intelligence Applications. IEEE, Dec. 1984.

Kung, R., et al., "Heuristic Search in Data Base Systems", Proc. 1st
International Conference on Expert Database Systems, Kiowah, S.C.,
October 1984.

Kung, R.. private communication, 1985.

Meystel, A.. "Automated Map Transformation for Unmanned Planning
and Navigation", Proc. 9th W.T. Pecora Memorial Remote Sensing Sym
posium. IEEE. Oct. 1984.

Papadimitriou. C. and Stieglitz. K., "Combinatorial Optimization", Pren
tice Hall, 1983.

Parodi, A., "A Route Planning System for an Autonomous Vehicle",
Proc. The First Conference on Artificial Intelligence Applications, IEEE.
Dec. 1984.

Pearl. J., "Heuristics: Intelligent Search Strategies for Computer Prob
lem Solving". Addison Wesley. Reading. Mass.. 1984.
Relational Technology Inc.. "INGRES/EQUEL/FORTRAN User's Guide".
Version 3.0. VAX/VMS. Oct. 1984.

Samet, H., "The Quadtree and Related Hierarchical Data Structures".
Computing Surveys. Vol. 16. No. 2, pp. 187-260, 1984.

Stonebraker, M., et al., "The Design and Implementation of INGRES",
ACM Transactions on Database Systems, Vol. 1. No. 3, pp. 189-222,
Sep. 1976.

Stonebraker, M., "Application of Abstract Data Types and Abstract
Indices to CAD Data", Proc. Engineering Applications Stream of the
ACM-SIGMOD International Conference on Management of Data. San
Jose. Ca., May 1983.

Stonebraker, M., et al., "Extending a Data Base System with Pro
cedures", unpublished manuscript. University of California. Berkeley.
Ca.. 1985.

Stonebraker. M., "Triggers and Inference in Data Base Systems". Proc.
1985 Islamoora Conference on Expert Systems. Islamoora. Fla.. Feb.
1985 (to appear as SpringerVerlag book, edited by M. Brodie).

-30-

Appendix A: Code for the Path Generation Rules

The solution uses the concept of abstract data types to implement the data types

'polygon', 'line', 'path*, and 'point'. The following operations are defined on those types.

>< . . . stay-in: line-1 >< pol-1 returns a path of line segments
with endpoints in common with line-1 which stays inside pol-1

@ ... adjacent: this operator is simulated by a relation ADJACENT (pol-l.pol-2)
// ... closest

0 ... in
& concatenation
!! ... intersection

#(X,or) . . . area covered by angle a that is rooted at X and halved by (X.ft)
line(X.Y) . . . line from point X to point Y
length(P) . . . length of path P

The solution uses the following relations:

MAP (polygon.cost) . .. polygons of the map
PATHS (path,cost.cur-poly,cur-pt,next-poly.next-pt) . .. paths
OLD (node,next-poly) . .. pairs {ir^ ."^^) that have

occurred previously

It follows the code.

range of m,ml,m2,m3 is MAP
range of p is PATHS
range of o is OLD

INITIALIZATION:

append to CAND (path = line(start,start),
cost = 0.

cur-poly = m.polygon,
cur-pt = start.

next-poly = m.polygon.
next-pt = start)

where start () m.polygon

append to OLD (node = start, next-poly = p.next-poly)

MAIN LOOP:

execute* {RULES: append to OLD (node «= p.next-pt, next-poly = p.next-poly))
where p.cur-pt !=» finish

-31 -

RULES:

execute-until {

{RULE 1}

replace p (path = p.path & (line(p.cur-pt.p.next-pt) >< p.cur-poly)
& (line(p.next-pt,finish) >< p.next-poly).

cost = p.cost + ml.cost * length(line(p.cur-pt.p.next-pt) >< p.cur-poly)
+ m2.cost * length(line(p.next-pt.finish) >< p.next-poly).

p.cur-pt = finish)

where ml.polygon = p.cur-poly
and m2.polygon = p.next-poly
and finish () p.next-poly

{RULE 2}

replace p (path = p.path & (line(p.cur-pt.p.next-pt) >< p.cur-poly),
cost = p.cost + ml.cost * length(line(p.cur-pt,p.next-pt) >< p.cur-poly),
cur-poly = p.next-poly,
next-poly = m3.polygon,
cur-pt •=> p.next-pt,
next-pt = p.next-pt // (#(p.next-pt,a0) !! m3.polygon)

where ml.polygon = p.cur-poly
and m2.polygon = p.next-poly
and m3.cost = min (m.cost

where m.polygon @(p.next-poly !! #(p.next-pt,a0))
and m.cost ^m2.cost)

and any (o.node where o.node = p.next-pt // (#(p-next-pt,a0) !! m3.polygon
and o.next-poly = m3.polygon)) = 0

{RULE 3}

replace p (path = p.path & (line(p.cur-pt,p.next-pt) >< p.cur-poly).
cost = p.cost + ml.cost * length(line(p.cur-pt,p.next-pt) ><p.cur-poly).
cur-poly = p.next-poly.
next-poly = m2.polygon.
cur-pt =* p.next-pt.
next-pt = (p.next-poly !! #(p.next-pt.a0) !! m2.polygon) // finish)

where ml.polygon = p.cur-poly
and m2.cost = min (m.cost

where m.polygon @(p.next-poly !! #(p.next-pt.a0))
and m.cost <G)

and any (o.node where o.node = (p.next-poly !! #(p.next-pt,a0) !! m2.polygon) // finish
and o.next-poly = m3 .polygon) » 0

Insert here the code for RULE 2 and RULE 3 where a0 is replaced by or,- (i = 1 k).

-32-

{RULE4}

replace p (path = p.path & (line(p.cur-pt.p.next-pt) >< p.cur-poly).
cost = p.cost + ml.cost * length(line(p.cur-pt.p.next-pt) ><p.cur-poly),
cur-poly = p.next-poly.
next-poly = m3.polygon.
cur-pt «• p.next-pt,
next-pt = p.next-pt // m3.polygon

where ml.polygon = p.cur-poly
and m2.polygon = p.next-poly
and m3.cost = min (m.cost

where m.polygon @ p.next-poly
and m.cost ^m2.cost)

and any (o.node where o.node = p.next-pt // m3.polygon
and o.next-poly = m3.polygon) = 0

{RULE 5}

replace p (path = p.path & (line(p.cur-pt.p.next-pt) >< p.cur-poly).
cost = p.cost + ml.cost * length(line(p.cur-pt.p.next-pt) >< p.cur-poly).
cur-poly - p.next-poly.
next-poly = m2.polygon,
cur-pt = p.next-pt,
next-pt = (p.next-poly !! m2.polygon) // finish

where ml.polygon = p.cur-poly
and m2.cost = min (m.cost

where m.polygon @ p.next-poly
and m.cost ^G)

and any (o.node where o.node = (p.next-poly !! m2.polygon) // finish
and o.next-poly = m2.polygon) = 0

{Algorithm gives up}

replace p (path = p.path & line(p.cur-pt,finish),
cost = oo,

cur-pt = finish)

} {end of RULES)

-33-

Appendix B: Building a Map from its Boundary Segments

During our investigations about efficient algorithms for the map coarsening by ranges

we also considered a constructive approach as follows. The algorithm selects the boundary

segments that will appear on the coarsened map, and builds the coarsened map from these

boundary segments. We found that this algorithm is more complicated and more time-

consuming than the one presented in section 6.1. We present it in the appendix because we

think that this algorithm is interesting in its own right.

The map is built by executing the procedure BUILDMAP for each cost range Rt. For

each boundary segment in the original map, BUILDMAP considers the cost coefficients of

the two polygons that are adjacent to this segment. BUILDMAP finds the segments where

exactly one of the two coefficients is in Rt. Let LSTi be the set of those segments. Note

that the segments where both coefficients are in Rt are not part of the coarsened map.

From the line segments in LSTi, BUILDMAP produces the vertex and edge lists of the

graph Gi that is formed by these line segments. Then BUILDMAP finds the connected

components of G,-. Let LSTij be the subset of line segments in LSTi that belong

to the j-th connected component. From the connected components BUILDMAP constructs

the polygons that are bounded by the line segments in the graph. Note that each connected

component corresponds to only one polygon but not necessarily to a simple one. Figure Bl

shows a connected component whose corresponding polygon is not simple. Its boundary

contains some points more than once. The shaded areas have a cost coefficient in i?,.

It seems obvious that the boundary of the polygon can be retrieved by tracing along

the line segments. It turns out, however, that there is no one-pass boundary tracing algo

rithm without backtracking that succeeds in every instance of the problem. The reason is

that there is no decision criterion how to continue at points that are in the boundary more

than once. For example: in figure Bl, at point iri coming from line segment Isi, it will not

work out to go left. i.e. to continue with line segment lsat. In order to obtain the whole

boundary in one pass one has to go right. However, at point rr2 coming from line segment

-34-

ls2, one has to go left and continue with line segment lsa2. Otherwise the small loop at the

bottom would be omitted. For a boundary tracing algorithm both situations are identical:

there is no decision criterion what to do.

Figure Bl: A connected component whose corresponding polygon is not simple.

We therefore resort to an algorithm that traces the polygon boundaries in such a way

that the area whose cost coefficient is in Rt is on the left hand sides of the boundary seg

ments as they are traced. If the algorithm comes to a point with several choices to continue

(i.e. there are several adjacent boundary segments that have not been traced yet), it

chooses the leftmost one. This method will often yield several polygons from the same

connected component. The "go left"-rule, however, has the following advantage. If it

yields two or more polygons from the same connected component, none of them lie in the

interior of another one. The importance of this observation will become clear later on.

-35-

With these considerations in mind, the boundary retrieval can be performed as fol

lows. BUILDMAP first selects a connected component and an arbitrary line segment Is in

the component's corresponding line segment set LSTij. BUILDMAP removes Is from

LSTi j . Let As be its starting point and C^ its end point such that the polygon whose cost

coefficient is in Rt is on Is "s left hand side.

To find the next boundary segment, BUILDMAP scans LSTij for line segments that

are adjacent to Q,. If there is none then the boundary of a polygon is complete; the boun

dary is stored and BUILDMAP picks an arbitrary segment from LSTij to continue with

the next boundary. If there is one adjacent segment then this one is the next boundary seg

ment. If there are several adjacent segments then BUILDMAP selects the one where the

angle between the new segment and Is is minimal ("go left"-rule). For example, in figure

Bl, from line segment Isi line segment lsat would be selected, from line segment ls2 it

would be line segment lsa2. The new boundary segment is removed from LSTij and

BUILDMAP continues from there the same way to find the following boundary segment.

If LSTitj is eventually empty then BUILDMAP continues with the next connected

component the same way.

After all connected components in Gj have been processed. BUILDMAP checks all

polygons retrieved and finds the ones that are just holes of other polygons. A polygon Pm

is a hole of /^ur if it lies completely in the interior of Pout. if it does not lie in the interior

of any other polygon that lies in P^ and if the cost coefficient of the area 2^ — Pm is in

Ri. Note that the boundaries of Pm and P0Ht have to be disjoint. For example, in figure Bl

the loop at the bottom is not considered to be a hole.

In order to find all such pairs {PttatPm), BUILDMAP first checks each pair of

polygons {PifP2) if Pi and P2 are in different connected components of G,- and if P2 lies

completely within Px. (As pointed out above, if Pi and P2 both belonged to the same con

nected component none of them could be a hole of the other.) Let LCWt be the set of such

pairs. Then BUILDMAP deletes the pairs in LCWt that are just transitive closure results of

-36-

other pairs in LCWt. Let LCWXi be the set of remaining pairs.

Then BUILDMAP checks each pair {PijP2) in LCWXi one by one if there is another

pair {Pi* J>2*) in LCWXi such that Pi = P2*. If yes, BUILDMAP continue with the next

pair. If no, then P2 is a hole of Px. The pair {PXP2) is added to the set HOLEi and

deleted from LCWXi. Furthermore, all pairs {P2jQ) in LCWXi have to be deleted because

P2 cannot be an outer polygon anymore. This process is repeated until LCWXi is eventu

ally empty.

For each polygon P^ that is not a hole, BUILDMAP retrieves all pairs

\Pout ** in ,l) » • • • »v*.out *P'm Jc)

from the set HOLEi •

Finally, BUILDMAP builds the boundary of the difference polygon

Pout " Pin ,1 ~ • • • " Pin Jc

and stores it in the polygon set of the coarsened map. The boundary of the difference

polygon can be obtained by concatenating the boundaries of the outer polygon and its

holes in the following manner. Let

{ TTi ,7T2 7T„ , TTi)

and

(Pi • P2 • • • . Pm . Pi)

be the boundary point sequences of an outer polygon Pout and one of its holes PM . respec

tively. Then

(ITl . 7T2 7Tn . Pi . p2 Pm »Pi . ^n . W"l)

is a boundary point sequence of the difference polygon. Note that the boundary contains

several points more than once. The polygon might even be self-intersecting because this

concept introduces two artificial edges, the edges {irn . pi) and (pi ,irn). Figure B2 gives

an example.

-37-

The algorithm BUILDMAP can be described more concisely as follows.

(1) For each boundary segment consider the cost coefficients of the two polygons that are

adjacent to this segment. Find the segments where exactly one of the two coefficients

is in Ri. Let LSTi be the set of those segments.

(2) Build the vertex list and the edge list of the graph G,- that is formed by the segments

in LSTi.

(3) Find the connected components of G,-.

(4) From these connected components, find the polygons whose cost coefficient is in Rt.

using the "go left"-rule. Let POLYi be the set of all those polygons.

(5) Determine the relation

HOLEi = { (a.b): a.b € POLYi. b is a hole of a }

= { (a.b): a.b € POLYi. b lies completely within a.

there is no c € POLYi such that c lies within a and b lies within c.

the cost coefficient of the area in a - b is in Rt }

by determining first

LCWi = { (a.b): a.b e POLYi, b lies completely within a.

the boundaries of a and b belong to different connected components of G, },

then

LCWXi = { (a.b): (a.b) € LCWX, there is no x € POLYi: (a.x) 6 LCW,. (x,b) € LCWt }

Clearly it is HOLE, QLCWXt QLCWt.

(6) For each polygon P^ in POLYi such that there is no XePOLYi'XX ,Pout)€HOLEi

build the polygon corresponding to

Pout ~ L/ "in
(PoutJ>tn)€HOLEi

and add it to the set that includes all polygons of the coarsened map.

"v

Figure B2: P^, Pm, and P^a - Pm (shaded). Pom - Pm is self-intersecting because

of the two artificial edges {tr^PO and (pi.^s)-

Let us give a brief example for steps (5) and (6) of the algorithm BUILDMAP. Sup

pose step (4) yields the following ten polygons.

-39-

From there one obtains

LCWi = { {PiJ>2). {Pi.P3). {PiJ>4). {PiJ>5). {P2J>t). {P2,P4),

{P2J>5). {P4J>5). {P7,P8). {P7J><>). {P1JP10). {P^ioJ J

and

LCWXi = { CP1.P2). (^2^3). CP2J>J. OV5). CP?^). CP7.P9). O^io) }

and

HOLEi = { {Pi,P2). {P4J>5). {P7J>8). {P7,P9) }

If polygons with holes are allowed, step (6) yields six polygons.

Figure BA:Pi- P2, P3, P4 - P5, P6, P7-P8- P9, P 10

	Copyright noticE 1985
	ERL-85-65

