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"April 15M - "March 15" = 31 days

This definition of subtraction is appropriate for most users; however, some applications

require all months to have 30 days (e.g. programs which compute interest on bonds).

Hence, they require a definition of subtraction which yields 30 days as the answer to the

above computation. Only a user-defined data type facility allows such customization to

occur.

Current data base systems implement hashing and B-trees as fast access paths for

built-in data types. Some user-defined data types (e.g. date and time) can use existing

access methods (if certain extensions are made): however other data types (e.g. polygons)

require new access methods. For example R-trees [GUTM84], KDB trees [ROBI81] fad

Grid files are appropriate for spatial objects. In addition, the introduction of new access

methods for conventional business applications (e.g. extendible hashing [FAGI79.

LITW80]) would be expeditied by a facility to add new access methods.

A complete extended type system should allow:

1) the definition of user-defined data types
2) the definition of new operators for these data types
3) the implementation of new access methods for data types
4) optimized query processing for commands containing new data types and operators

The solution to requirements 1 and 2 was described in [STON83]; in this paper we present

a complete proposal. In Section 2 we begin by presenting a motivating example of the need

for new data types, and then briefly review our earlier proposal and comment on its

implementation. Section 3 turns to the definition of new access methods and suggests

mechanisms to allow the designer of a new data type to use access methods written for

another data type and to implement his own access methods with as little work as possi

ble. Then Section 4 concludes by showing how query optimization can be automatically

performed in this extended environment.
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Abstract

This paper explores a mechanism to support user-defined data types for columns in a
relational data base system. Previous work suggested how to support new operators and
new data types. The contribution of this work is to suggest ways to allow query optimi
zation on commands which include new data types and operators and ways to allow access
methods to be used for new data types.

1. INTRODUCTION

The collection of built-in data types in a data base system (e.g. integer, floating point

number, character string) and built-in operators (e.g. +. -. *, /) were motivated by the

needs of business data processing applications. However, in many engineering applications

this collection of types is not appropriate. For example, in a geographic application a user

typically wants points, lines, line groups and polygons as basic data types and operators

which include intersection, distance and containment. In scientific application, one requires

complex numbers and time series with appropriate operators. In such applications one is

currently required to simulate these data types and operators using the basic data types

and operators provided by the DBMS at substantial inefficiency and complexity. Even in

business applications, one sometimes needs user-defined data types. For example, one sys

tem [RTI84] has implemented a sophisticated date and time data type to add to its basic

collection. This implementation allows subtraction of dates, and returns "correct**

answers, e.g.
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2. ABSTRACT DATA TYPES

2.1. A Motivating Example

Consider a relation consisting of data on two dimensional boxes. If each box has an

identifier, then it can be represented by the coordinates of two corner points as follows:

create box (id - i4. xl = f8. x2 = f8, yl = f8. y2 - f8)

Now consider a simple query to find all the boxes that overlap the unit square, ie. the box

with coordinates (0. 1. 0. 1). The following is a compact representation of this request in

QUEL:

retrieve (box .all) where not
(box.x2 <f= 0 or box.xl >= 1 or box.y2 <» 0 or box.yl >= 1)

The problems with this representation are:

The command is too hard to understand.

The command is too slow because the query planner will not be able to
optimize something this complex.

The command is too slow because there are too many clauses to check.

The solution to these difficulties is to support a box data type whereby the box rela

tion can be defined as:

create box (id => i4. desc = box)

and the resulting user query is:

retrieve (box.all) where box.desc !! "0. 1. 0. 1"

Here "!!" is an overlaps operator with two operands of data type box which returns a

boolean. One would want a substantial collection of operators for user defined types. For

example. Table 1 lists a collection of useful operators for the box data type.

Fast access paths must be supported for queries with qualifications utilizing new data

types and operators. Consequently, current access methods must be extended to operate in

this environment. For example, a reasonable collating sequence for boxes would be on



Binary operator symbol left operand right operand result

overlaps !! box box boolean

contained in « box box boolean

is to the left of <L box box boolean

is to the right of >R box box boolean

intersection V. box box box

distance
N

box box float

area less than AL box box boolean

area equals AE box box boolean

area greater AG box box boolean

Unary operator symbol operand- result

area AA box float

length LL box float

height HH box float
diagonal DD box line

Operators for Boxes

Table 1

ascending area, and a B-tree storage structure could be built for boxes using this sequence.

Hence, queries such as

retrieve (box.all) where box.desc AE "0,5.0,5"

should use this index. Moreover, if a user wishes to optimize access for the !! operator,

then an R-tree [GUTM84] may be a reasonable access path. Hence, it should be possible to

add a user defined access method. Lastly, a user may submit a query to find all pairs of

boxes which overlap, e.g:

range of bl is box
range of b2 is box
retrieve (bl.aU. b2.all) where bl.desc !! b2.desc

A query optimizer must be able to construct an access plan for solving queries which con

tains user defined operators.



We turn now to a review of the prototype presented in [STON83] which supports

some of the above function.

2.2. DEFINITION OF NEW TYPES

To define a new type, a user must follow a registration process which indicates the

existence of the new type, gives the length of its internal representation and provides input

and output conversion routines, e.g:

define type-name length = value.
input = file-name
output = file-name

The new data type must occupy a fixed amount of space, since only fixed length data is

allowed by the built-in access methods in INGRES. Moreover, whenever new values are

input from a program or output to a user, a conversion routine must be called. This rou

tine must convert from character string to the new type and back. A data base system

calls such routines for built-in data types (e.g. ascii-to-int. int-to-ascii) and they must be

provided for user-defined data types. The input conversion routine must accept a pointer

to a value of type character string and return a pointer to a value of the new data type.

The output routine must perform the converse transformation.

Then, zero or more operators can be implemented for the new type. Each can be

defined with the following syntax:

define operator token = value.
left-operand = type-name,
right-operand = type-name,
result =» type-name,
precedence-level like operator-2,
file = file-name

For example:

define operator token = !!,
left-operand = box.
right-operand = box.
result = boolean,
precedence like *.
file - /usr/foobar



All fields are self explanatory except the precedence level which is required when several

user defined operators are present and precedence must be established among them. The file

/usr/foobar indicates the location of a procedure which can accept two operands of type

box and return true if they overlap. This procedure is written in a general purpose pro

gramming language and is linked into the run-time system and called as appropriate dur

ing query processing.

2.3. Comments on the Prototype

The above constructs have been implemented in the University of California version

of INGRES [STON76]. Modest changes were required to the parser and a dynamic loader

was built to load the required user-defined routines on demand into the INGRES address

space. The system was described in [ONG84].

Our initial experience with the system is that dynamic linking is not preferable to

static linking. One problem is that initial loading of routines is slow. Also, the ADT rou

tines must be loaded into data space to preserve sharability of the DBMS code segment.

This capability requires the construction of a non-trivial loader. An "industrial strength"

implementation might choose to specify the user types which an installation wants at the

time the DBMS is installed. In this case, all routines could be linked into the run time

system at system installation time by the linker provided by the operating system. Of

course, a data base system implemented as a single server process with internal multitask

ing would not be subject to any code sharing difficulties, and a dynamic loading solution

might be reconsidered.

An added difficulty with ADT routines is that they provide a serious safety loophole.

For example, if an ADT routine has an error, it can easily crash the DBMS by overwriting

DBMS data structures accidentally. Mure seriously, a malicious ADT routine can

overwrite the entire data base with zeros. In addition, it is unclear whether such errors are

due to bugs in the user routines or in the DBMS, and finger-pointing between the DBMS

implementor and the ADT implementor is likely to result.
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ADT routines can be run in a separate address space to solve both problems, but the

performance penalty is severe. Every procedure call to an ADT operator must be turned

into a round trip message to a separate address space. Alternately, the DBMS can interpret

the ADT procedure and guarantee safety, but only by building a language processor into

the run-time system and paying the performance penalty of interpretation. Lastly,

hardware support for protected procedure calls (e.g. as in Multics) would also solve the

problem.

However, on current hardware the prefered solution may be to provide two environ

ments for ADT procedures. A protected environment would be provided for debugging

purposes. When a user was confident that his routines worked correctly, he could install

them in the unprotected DBMS. In this way. the DBMS implementor could refuse to be

concerned unless a bug could be produced in the safe version.

We now turn to extending this environment to support new access methods.

3. NEW ACCESS METHODS

A DBMS should provide a wide variety of access methods, and it should be easy to

add new ones. Hence, our goal in this section is to describe how users can add new access

methods that will efficiently support user-defined data types. In the first subsection we

indicate a registration process that allows im piementors of new data types to use access

methods written by others. Then, we turn to designing lower level DBMS interfaces so

the access method designer has minimal work to perform. In this section we restrict our

attention to access methods for a single key field. Support for composite keys is a straight

forward extension. However, multidimensional access methods that allow efficient

retrieval utilizing subsets of the collection of keys are beyond the scope of this paper.

3.1. Registration of a New Access Method

The basic idea which we exploit is that a properly implemented access method con

tains only a small number of procedures that define the characteristics of the access



method. Such procedures can be replaced by others which operate on a different data type

and allow the access method to "work" for the new type. For example, consider a B-tree

and the following generic query:

retrieve (target-list) where relation.key OPR value

A B-tree supports fast access if OPR is one of the set:

{=. < <f». >=. >}

and includes appropriate procedure calls to support these operators for a data type (s).

For example, to search for the record matching a specific key value, one need only descend

the B-tree at each level searching for the minimum key whose value exceeds or equals the

indicated key. Only calls on the operator " <=" are required with a final call or calls to the

routine supporting "=".

Moreover, this collection of operators has the following properties:

PI) key-1 <key-2 and key-2 <key-3 then key-1 <key-3
P2) key-1 < key-2 implies not key-2 <key-1
P3) key-1 < key-2 or key-2 < key-1 or key-1 = key-2
P4) key-1 <» key-2 if key-1 < key-2 or key-1 = key-2
P5) key-1 = key-2 implies key-2 - key-1
P6) key-1 > key-2 if key-2 < key-1
P7) key-1 >= key-2 if key-2 «= key-1

In theory, the procedures which implement these operators can be replaced by any collec

tion of procedures for new operators that have these properties and the B-tree will "work"

correctly. Lastly, the designer of a B-tree access method may disallow variable length

keys. For example, if a binary search of index pages is performed, then only fixed length

keys are possible. Information of this restriction must be available to a type designer who

wishes to use the access method.

The above information must be recorded in a data structure called an access method

template. We propose to store templates in two relations called TEMPLATE-1 and

TEMPLATE-2 which would have the composition indicated in Table 2 for a B-tree access

method. TEMPLATE-1 simply documents the conditions which must be true for the
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operators provided by the access method. It is included only to provide guidance to a

human wishing to utilize the access method for a new data type and is not used internally

in the system. TEMPLATE-2, on the other hand, provides necessary information on the

data types of operators. The column "opt" indicates whether the operator is required or

optional. A B-tree must have the operator "<=»" to build the tree: however, the other

operators are optional. Typel. type2 and result are possible types for the left operand, the

right operand, and the result of a given operator. Values for these fields should come from

the following collection:

a specific type. e.g. int. float, boolean, char
fixed, i.e. any type with fixed length
variable. i.e. any type with a prescribed varying length format
fix-var. i.e. fixed or variable
typel. i.e. the same type as typel
type2. i.e. the same as type2

After indicating the template for an access method, the designer can propose one or

more collections of operators which satisfy the template in another relation. AM. In Table

TEMPLATE-1 AM-name condition

B-tree PI

B-tree P2

B-tree P3

B-tree P4

B-tree P5

B-t? ee P6

B-tree P7

TEMPLATE-2 AM-name opr-name opt left right result

B-tree = opt fixed typel boolean

B-tree < opt fixed typel boolean

B-tree <= req fixed typel boolean
* B-tree > opt fixed typel boolean

B-tree >= opt fixed typel boolean

Templates for Access Methods

Table 2
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AM class

int-ops
int-ops
int-ops
int-ops
int-ops
area-op

area-op

area-op

AM-name

B-tree

B-tree

B-tree

B-tree

B-tree

B-tree

B-tree

B-tree

opr generic opr-id
name opr

SI s idl

< < id2

«= <f= id3

> > id4

>= >= id5

AE 13 id6

AL < id7

AG > id8

The AM Relation

Table 3

Ntups

N / Ituples
F1*N

F1*N

F2*N

F2*N

N / Ituples
F1*N

F1*N

Npages

Fl * NUMpages
Fl * NUMpages
F2 * NUMpages
F2 * NUMpages

3

Fl * NUMpages
Fl * NUMpages

3 we have shown an AM containing the original set of integer operators provided by the

access method designer along with a collection added later by the designer of the box data

type. Since operator names do not need to be unique, the field opr-id must be included to

specify a unique identifier for a given operator. This field is present in a relation which

contains the operator specific information discussed in Section 2. The fields. Ntups and

Npages are query processing parameters which estimate the number of tuples which satisfy

the qualification and the number of pages touched when running a query using the opera

tor to compare a key field in a relation to a constant. Both are formulas which utilize the

variables found in Table 4, and values reflect approximations to the computations found in

[SELI79] for the case that each record set occupies an individual file. Moreover, Fl and F2

are surogates for the following quantities:

Fl = (value - low-key) / (high-key - low-key)
F2 = (high-key - value) / (high-key - low-key)

With these data structures in place, a user can simply modify relations to B-tree

using any class of operators defined in the AM relation. The only addition to the modify

command is a clause "using class" which specifies what operator class to use in building

and accessing the relation. For example the command

modify box to B-tree on desc using area-op
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Variable

N

NUMpages

Ituples

Ipages
value

high-key

low-key

Meaning
number of tuples in a relation

number of pages of storage used by the relation

number of index keys in an index

number of pages in the index
the constant appearing in:

rel-na me.field-name OPR value

the maximum value in the key range if known

the minimum value in the key range if known

Variables for Computing Ntups and Npages

Table 4

will allow the DBMS to provide optimized access on data of type box using the operators

{AE.AL.AG}. The same extension must be provided to the index command which con

structs a secondary index on a field, e.g:

index on box is box-index (desc) using area-op

To illustrate the generality of these constructs, the AM and TEMPLATE relations are

shown in Tables 5 and 6 for both a hash and an R-tree access method. The R-tree is

assumed to support three operators, contained-in («). equals (=) and contained-in-or-

equals («=). Moreover, a fourth operator (UU) is required during page splits and finds

the box which is the union of two other boxes. UU is needed solely for maintaining the

R-tree data structure, and is not useful for search purposes. Similarly, a hash access

method requires a hash function. H, which accepts a key as a left operand and an integer

number of buckets as a right operand to produce a hash bucket as a result. Again. H can

not be used for searching purposes. For compactness, formulas for Ntups and Npages have

been omitted from Table 6.

3.2. Implementing New Access Methods

In general an access method is simply a collection of procedure calls that retrieve and

update records. A generic abstraction for an access method could be the following:
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TEMPLATE-1 AM-name condition

hash Key-1 = Key-2 implies H(keyl) = H(key-2)

R-tree Key-1 « Key-2 and Key-2 « Key-2 implies Key-1 «key-3
R-tree Key-1 « Key-2 implies not Key-2 « Key-1

R-tree Key-1 «- Key-2 implies Key-1 « Key-2 or Key-1 =» Key-2
R-tree Key-1 -= Key-2 implies Key-2 =- Key-1
R-tree Key-1 « Key-1 UU Key-2
R-tree Key-2 « Key-1 UU Key-2

TEMPLATE-2 AM-name opr-name opt left right result

hash = opt fixed typel boolean

hash H req fixed int int

R-tree « req fixed typel boolean

R-tree = opt fixed typel boolean

R-tree «= opt fixed typel boolean

R-tree UU req fixed typel boolean

Templates for Access Methods

Table 5

AM class AM-name opr

name

generic
opr

opr-id Ntups Npages

box-ops R-tree = = idlO

box-ops R-tree « « idll

box-ops R-tree «^ <«= idl2

box-ops R-tree UU UU idl3

hash-op hash S3 SI idl4

hash-op hash H H idl5

open (relation-name)

close (descriptor)

get-first (descriptor. OPR. value)

The AM Relation

Table 6

This procedure returns a pointer to a structure
containing all relevant information about a rela
tion. Such a "relation control block" will be
called a descriptor. The effect is to .make the
relation accessible.

This procedure terminates access to the relation
indicated by the descriptor.

This procedure returns the first record wLirh
satisfies the qualification

* o



..where key OPR value

get-next (descriptor. OPR. value, tuple-id)
This procedure gets the next tuple following the
one indicated by tuple-id which satisfies the
qualification.

get-unique (descriptor, tuple-id) This procedure gets the tuple which corresponds
to the indicated tuple identifier.

insert (descriptor, tuple) This procedure inserts a tuple into the indicated
relation

delete (descriptor, tuple-id) This procedure deletes a tuple from the indi
cated relation.

replace (descriptor, tuple-id. new-tuple) This procedure replaces the indicated tuple by a
new one.

build (descriptor, keyname. OPR) Of course it is possible to build a new access
method for a relation by successively inserting
tuples using the insert procedure. However,
higher performance can usually be obtained by a
bulk loading utility. Build is this utility and
accepts a descriptor for a relation along with a
key and operator to use in the build process.

There are many different (more or less similar) access method interfaces: see

[ASTR76, ALLC80] for other proposals. Each DBMS implementation will choose their

own collection of procedures and calling conventions.

If this interface is publicly available, then it is feasible to implement these procedures

using a different organizing principle. A clean design of open and close should make these

routines universally usable, so an implementor need only construct the remainder. More

over, if the designer of a new access method chooses to utilize the same physical page lay

out as some existing access method, then replace and delete do not require modification,

and additional effort is spared.

The hard problem is to have a new access method interface correctly to the transac

tion management code. (One commercial system found this function to present the most

difficulties when a new access method was coded.) If a DBMS (or the underlying operating

system) s. pports transactions by physically logging pages and executing one of the
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popular concurrency control algorithms for page size granules, (e.g. [BROW81. POPE81,

SPEC83, STON85] then the designer of a new access method need not concern himself with

transaction management. Higher level software will begin and end transactions, and the

access method can freely read and write pages with a guarantee of atomicity and serializa-

bility. In this case the access method designer has no problems concerning transactions,

and this is a significant advantage for transparent transactions. Unfortunately, much

higher performance will typically result if a different approach is taken to both crash

recovery and concurrency control. We now sketch roughly what this alternate interface

might be.

With regard to crash recovery, most current systems have a variety of special case

code to perform logical logging of events rather than physical logging of the changes of

bits. There are at least two reasons for this method of logging. First, changes to the

schema (e.g. create a relation) often require additional work besides changes to the system

catalogs (e.g. creating an operating system file in which to put tuples of the relation).

Undoing a create command because a transaction is aborted will require deletion of the

newly created file. Physical backout cannot accomplish such extra function. Second, some

data base updates are extremely inefficient when physically logged. For example, if a rela

tion is modified from B-tree to hash, then the entire relation will be written to the log

(perhaps more than once depending on the implementation of the modify utility). This

costly extra I/O can be avoided by simply logging the command that is being performed.

In the unlikely event that this event in the log must be undone or redone, then the modify

utility can be rerun to make the changes anew. Of course, this sacrifices performance at

recovery time for a compression of the log by several orders of magnitude.

If such logical logging is performed, then a new access method must become involved

in logging process and a clean event-oriented interface to logging services p.iould be pro

vided. Hence, the log should be a collection of events, each having an event-id. an associ

ated event type and an arbitrary collection of data. Lastly, for each event type. T. two

procedures, REDO(T) and UNDO(T) are required which will be called when the lop

14



manager is rolling forward redoing log events and rolling backward undoing logged events

respectively. The system must also provide a procedure,

LOG (event-type, event-data)

which will actually insert events into the log. Moreover, the system will provide a collec

tion of built-in event types. For each such event. UNDO and REDO are available in sys

tem libraries. Built-in events would include:

replace a tuple
insert a tuple at a specific tuple identifier address
delete a tuple
change the storage structure of a relation
create a relation

destroy a relation

A designer of a new access method could use the built-in events if they were appropriate

to his needs. Alternately, he could specify new event types by writing UNDO and REDO

procedures for the events and making entries in a system relation holding event informa

tion. Such an interface is similar to the one provided by CICS [IBM80].

We turn now to discussing the ^concurrency control subsystem. If this service is pro

vided transparently and automatically by an underlying module, then special case con

currency control for the system catalogs and index records will be impossible. This

approach will severely impact performance as noted in [STON85]. Alternately, one can

follow the standard scheduler model [BERN81] in which a module is callable by code in

the access methods when a concurrency control decision must be made. The necessary

calls are:

read (object-identifier)
write (object-identifier)
begin
abort

commit

savepoint

and the scheduler responds with yes. no or abort. The calls to begin, abort, commit and

savepoint are made by higher level software, and the access methods need not be concerned

with them. The access method need only make the appropriate calls on the schedule.
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when it reads or writes an object. The only burden which falls on the implementor is to

choose the appropriate size for objects.

The above interface is appropriate for data records which are handled by a conven

tional algorithm guaranteeing serializability. To provide special case parallelism on index

or system catalog records, an access method requires more control over concurrency deci

sions. For example, most B-tree implementations do not hold write locks on index pages

which are split until the end of the transaction which performed the insert. It appears

easiest to provide specific lock and unlock calls for such special situations, i.e:

lock (object, mode)
unlock (object)

These can be used by the access method designer to implement special case parallelism in

his data structures.

The last interface of concern to the designer of an access method is the one to the

buffer manager. One requires five procedures:

get (system-page-identifier)
fix (system-page-identifier)
unfix (system-pa ge-identifier)
put (system-page-identifier)
order (system-page-identifier, event-id or system-page-identifier)

The first procedure accepts a page identifier and returns a pointer to the page in the buffer

pool. The second and third procedures pin and unpin pages in the buffer pool. The last call

specifies that the page holding the given event should be written to disk prior to the indi

cated data page. This information is necessary in write-ahead log protocols. More gen

erally, it allows two data pages to be forced out of memory in a specific order.

An access method implementor must code the necessary access method procedures

utilizing the above interfaces to the log manager, the concurrency control manager and the

buffer manager. Then, he simply registers his access method in the two TEMPLATE rela

tions.
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3.3* Discussion

A transparent interface to the transaction system is clearly much preferred to the

complex collection of routines discussed above. Moreover, the access method designer who

utilizes these routines must design his own events, specify any special purpose concurrency

control in his data structures, and indicate any necessary order in forcing pages out of the

buffer pool. An open research question is the design of a simpler interface to these services

that will provide the required functions.

In addition, the performance of the crash recovery facility will be inferior to the

recovery facilities in a conventional system. In current transaction managers, changes to

indexes are typically not logged. Rather, index changes are recreated from the correspond

ing update to the data record. Hence, if there are n indexes for a given object, a single log

entry for the data update will result in n+1 events (the data update and n index updates)

being undone or redone in a conventional system. Using our proposed interface all n+1

events will appear in the log, and efficiency will be sacrificed.

The access method designer has the least work to perform if he uses the same page

layout as one of the built-in access methods. Such an access method requires get-first,

get-next, and insert to be coded specially. Moreover, no extra event types are required,

since the built-in ones provide all the required functions. R-trees are an example of such

an access method. On the other hand, access methods which do not use the same page lay

out will require the designer to write considerably more code.

4. QUERY PROCESSING AND ACCESS PATH SELECTION

To allow optimization of a query plan that contains new operators and types, only

four additional pieces of information are required when defining an operator. First, a selec

tivity factor, Stups, is required which estimates the expected number of records satisfying

the clause:

...where rel-name.field-name OPR value

17



A second selectivity factor, S, is the expected number of records which satisfy the clause

...where relname-l.field-1 OPR relname-2.field-2

Stups and S are arithmetic formulas containing the predefined variables indicated ear

lier in Table 4. Moreover, each variable can have a suffix of 1 or 2 to specify the left or

right operand respectively.

Notice that the same selectivity appears both in the definition of an operator (Stups)

and in the entry (Ntups) in AM if the operator is used in an index. In this case, Ntups

from AM should be used first, and supports an if-then-else specification used for example

in the [SELI79] for the operator "=" as follows:

selectivity = (1 / Ituples) ELSE 1/10

In this example selectivity is the reciprocal of the number of index tuples if an index exists

else it is 1/10. The entry for Ntups in AM would be (N / Ituples) while Stups in the

operator definition would be N / 10.

The third piece of necessary information is whether merge-sort is feasible for the

operator being defined. More exactly, the existence of a second operator. OPR-2 is required

such that OPR and OPR-2 have properties P1-P3 from Section 3 with OPR replacing "="

and OPR-2 replacing " <C. If so. the relations to be joined using OPR can be sorted using

OPR-2 and then merged to produce the required answer.

The last piece of needed information is whether hash-join is a feasible joining stra

tegy for this operator. More exactly, the hash condition from Table 6 must be true with

OPR replacing "->".

An example of these pieces of information for the operator, AE, would be:

define operator token = AE,
left-operand = box,
right-operand = box.
result = boolean,

precedence like *.
file = /usr/foobar.
Stups = 1.
S = min (Nl. N2),
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. merge-sort with AL.
hash-join

We now turn to generating the query processing plan. We assume that relations are

stored keyed on one field in a single file and that secondary indexes can exist for other

fields. Moreover, queries involving a single relation can be processed with a scan of the

relation, a scan of a portion of the primary index, or a scan of a portion of one secondary

index. Joins can be processed by iterative substitution, merge-sort or a hash-join algo

rithm. Modification to the following rules for different environments appears straigth-

forward.

Legal query processing plans are described by the following statements.

1) Mergesort is feasible for a clause of the form:
relname-1.field-1 OPR relname-2.field-2

if field-1 and field-2 are of the same data type and OPR has the merge-sort
property. Moreover, the expected size of the result is S. The cost to sort
one or both relations is a built-in computation.

2) Iterative substitution is always feasible to perform the join specified by
a clause of the form:

relname-1.field-1 OPR relname-2 .field-2

The expected size of the result is calculated as above. The cost of this
operation is the cardinality of the outer relation multiplied by the expected
cost of the one-variable query on the inner relation.

3) A hash join algorithm can be used to perform a join specified by:
relname-1.field-1 OPR relname-2 .field-2

if OPR has the hash-join property. The expected size of the result is as
above, and the cost to hash one or both relations is another built-in compu
tation.

4) An access method. A for relname can be used to restrict a clause of the
form

relname.field-name OPR value

only if relname uses field-name as a key and OPR appears in the class used
in the modify command to organize relname. The expected number of page
and tuple accesses are given by the appropriate row in AM.

5) A secondary index. I for relname can be used to restrict a clause of the
form:

relname.field-name OPR value

only if the index uses field-name as a key and OPR appears in the class
used to build the index. The expected number of index page and tuple
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accesses is given by the appropriate row in AM. To these must be added 1
data page and 1 data tuple per index tuple.

6) A sequential search can always be used to restrict a relation on a clause
of the form:

relname.field-name OPR value

One must read NUMpages to access the relation and the expected size of the
result is given by Stups from the definition of OPR.

A query planner, such as the one discussed in [SELI79] can now be easily modified to

compute a best plan using the above rules to generate legal plans and the above selectivi-

ties rather than the current hard-wired collection of rules and selectivities. Moreover, a

more sophisticated optimizer which uses statistics (e.g. [KOOI82. PIAT84] can be easily

built that uses the above information.

5, CONCLUSIONS

This paper has described how an abstract data type facility can be extended to sup

port automatic generation of optimized query processing plans, utilization of existing access

methods for new data types, and coding of new access methods. Only the last capability

will be difficult to use. and a cleaner high performance interface to the transaction manager

would be highly desirable. Moreover, additional rules in the query optimizer would prob

ably be a useful direction for evolution. These could include when to cease investigating

alternate plans, and the ability to specify one's own optimizer parameters. e.g. the constant

W relating the cost of I/O to the cost of CPU activity in [SEU79].
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