

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SPECIFYING INTEGRATED CIRCUIT PHOTOLITHOGRAPHY

PROCESSES USING HEURISTIC AND ALGORITHMIC TECHNIQUES

by

Michael Frank Klein

Memorandum No. UCB/ERL M85/73

10 September 1985

SPECIFYING INTEGRATED CIRCUIT PHOTOLITHOGRAPHY

PROCESSES USING HEURISTIC AND ALGORITHMIC TECHNIQUES

by

Michael Frank Klein

Memorandum No. UCB/ERL M85/73

10 September 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Specifying Integrated Circuit Photolithography Processes Using Heuristic

and Algorithmic Techniques

Copyright © 1985

Michael Frank Klein

Specifying Integrated Circuit Photolithography Processes
Using Heuristic and Algorithmic Techniques

Michael Frank Klein

ABSTRACT

In synthesizing the fabrication process for an integrated circuit (IC), process

engineers spend a great deal of time manually "integrating" existing CAD

tools, algorithms, technical literature, and advice from local experts. Because

of its difficulty and scope, this "integration" is rarely performed completely,

and is usually only performed for a few alternative IC processes.

An expert computer-aided design system called Cameo has been developed

that interactively leads the user through the synthesis steps for IC pho

tolithography. At each step, Cameo offers the user a unique "mini-expert"

from its knowledge base which reflects the method an expert would use to

synthesize the process step. Thus the different kinds of knowledge used to

synthesize an IC fabrication process may be integrated into a single system.

The user may also provide his own solution, and may ask for further infor

mation and references on the step. Cameo is exceptionally easy to use, and

allows the user to synthesize and evaluate photolithography alternatives with

the SAMPLE process simulator in a matter of minutes.

Cameo is a specific application of a general framework which partitions a

knowledge base consisting of heuristics, algorithms, graphs, and/or formulas

into individual mini-experts, each of which can be assigned to a'single design

decision. The framework allows new mini-experts to be added or the system's

decision structure to be modified quickly and easily. Its knowledge base is

highly modular, leading to easy modification and maintenance. Its data base
structure reflects the tentative, hierarchical nature of engineering design and

allows the user to incorporate previously-developed photolithography steps

from libraries. Cameo is implemented in Hewlett-Packard's HPRL I and

the University ofUtah's Portable Standard Lisp, and presently runs on an

H-P 9836 desktop computer.

Chairman

Contents

1 Introduction

1.1 Motivation for This Research

1.2 Research Contributions . . .

1.3 A Running Example

1.4 Outline of Dissertation

2 Survey of Previous Approaches 7

2.1 Simulators 8

2.1.1 SPICE 9

2.1.2 SAMPLE 9

2.1.3 SUPREM-I11 10

2.1.4 PISCES 11 11

2.1.5 FABRICS II . . 12

11

2.2 Integrated CAD Systems 12

2.3 Al-Based CAD 14

2.4 Mixed Approaches 16

2.5 Other Approaches 18

2.5.1 Symbolic Algebra 19

2.5.2 Deep Reasoning 19

2.5.3 Constraint Propagation 20

2.6 Other Important Work 21

2.7 Chapter Summary 21

3 Terminology and General Background 23

3.1 IC Processing Terminology 24

3.2 Software Terminology' 25

3.2.1. Artificial Intelligence 25

3.2.2 Object-Oriented Programming 31

4 Characteristics of an Ideal CAD System 33

4.1 Part of an Integrated System 33

4.2 Specific Characteristics for IC CAD 37

4.3 The System Must be Flexible 40

4.4 Interface to Other Resources 41

4.5 Chapter Summary 42

Ill

5 The Design Process for IC Photolithography 44

5.1 The IC Process 44

5.2 IC Photolithography Design 48

5.3 Initial Planning Decisions 48

5.3.1 Choosing the Aligner ; 49

5.3.2 Choosing the Etch Method 50

5.3.3 Choosing the Resist Scheme .*.... 52

5.4 Refining the Initial Plan 53

5.5 The Example 54

6 Overview of Cameo's Structure 56

6.1 Features Differentiating Cameo 56

6.2 Overall Description of Cameo 58

6.2.1 Implementation 58

6.2.2 Appearance of Cameo to the User 59

6.2.3 Organization of the Knowledge and Data Bases 60

6.3 Description of HPRL and PSL 62

6.4 Overall Structure 64

6.5 The Display Manager 66

6.6 The Program Control Manager 66

IV

6.7 The Knowledge Base • • • 69

6.8 The Data Base 72

6.8.1 The Plan Skeleton 72

6.8.2 The Working Plans 73

6.8.3 The Description Frames 74

6.8.4 The Step Libraries 76

6.8.5 The Reference Files 76

6.9 Chapter Summary 77

7 Cameo's Knowledge Base 82

7.1 Kinds of Knowledge 83

7.1.1 Heuristic Knowledge • 84

7.1.2 Numeric Tables, or Graphs 87

7.1.3 Symbolic Tables 91

7.1.4 Formulas and Arbitrary Procedure Calls 94

7.2 Meta Knowledge 95

7.3 Example 96

7.4 Chapter Summary 99

V

8 Cameo's Data Base 107

8.1 Elements of the Data Base 107

8.1.1 The Plans Data Base 108

8.1.2 The Description Frames 115

8.1.3 The Step Libraries 120

8.1.4 The Reference Files 122

8.2 An Example 123

8.3 Chapter Summary 128

9 Cameo's User Interface 130

9.1 Importance of the User Interface ..." 131

9.2 User Interface Design Considerations 132

9.2.1 Conceptual Operations 132

9.2.2 Data Presentation 134

9.2.3 Psychological Issues 135

9.3 User Interface Description 136

9.4 Implementation of the User Interface 137

9.5 Example 142

9.5.1 Expand Previous Heading 142

9.5.2 Show References on the Item 143

VI

9.5.3 Derive an Answer 143

9.6 Chapter Summary 146

10 The Application 147

10.1 Choosing a Specific Application 148

10.2 Understanding the Application 150

10.2.1 The Causes of Linewidth Variation 150

10.2.2 Estimating Linewidth Variation 151

10.3 Implementing the Application 154

10.3.1 Implementing the Decision Sequence 154

10.3.2 Implementing the Mini-Experts 157

10.3.3 Verification or Simulation 161

10.4 Chapter Summary 165

11 Conclusions 169

11.1 Contributions 170

11.2 Observations 171

11.2.1 Observations from Potential Users 171

11.2.2 Observations from Cameo's Development 173

11.3 Directions for Future Work 175

11.3.1 Extending Cameo 175

Vll

11.3.2 Increase Cameo's Portability 176

11.3.3 General System Improvements 377

11.4 Other Applications for Cameo's Framework 184

List of Figures

2.1 SAMPLE output example 10

4.1 Data Base Design for Ideal CAD/CAM System 36

5.1 Isotropic and Anisotropic Etching 51

6.1 Cameo's overall software structure « 65

6.2 Screen example from actual running of Cameo 78

6.3 The main components of the data base 80

6.4 Splitting a working plan 81

7.1 Plot of spin speed graph for KTl 820 resist 90

8.1 Splitting a design 109

8.2 Structure of the plan skeleton Ill

8.3 Splitting a working plan 116

vni

IX

8.4 Links between frames after choosing library step 123

8.5 Detail of links of split working plan 124

8.6 Example of a reference file 125

8.7 Reference file for viscosity design decision 127

9.1 Complete screen example ' 138

9.2 Structure of browser item objects 140

10.1 Screen example of estimating linewidth variation 155

10.2 Graph for finding horizontal contrast 163

10.3 Plan verified with SAMPLE 166

10.4 SAMPLE input file 167

10.5 SAMPLE output 168

List of Tables

6.1 Operations supported by Cameo's Display Manager 67

6.2 Knowledge in the form of a symbolic table 71

7.1 Knowledge in the form of a symbolic table 93

7.2 Mini-expert types summary 106

9.1 Browser object messages 141

11.1 Improved internal structure 182

List of Code Lists

6.1 Example of a rule and rule domain in the knowledge base . . 79

.7.1 Example of a rule and rule domain in the knowledge base . . 85

7.2 The solve-specif ic method for backward chaining 101

7.3 Example of a three-dimensional numeric table 102

7.4 The solve-specif ic method for the three-d-graph-control

object 103

7.5 An excerpt from the code defining a symbolic table 103

7.6 Example of a formula mini-expert 104

7.7 Example of meta knowledge rule 104

7.8 Rule for deciding whether HMDS is needed 105

7.9 Rule for choosing KTl 820 viscosity 106

8.1 Example of the plan skeleton's process-plan frame 112

8.2 Excerpt from a plan skeleton's step frame 113

xi

Xll

8.3 Description frame example 117

8.4 Example library step frame 121

8.5 Rule for finding mini-expert for viscosity 127

10.1 Mini-expert for vertical contrast calculation 159

10.2 Code for horizontal contrast graph 162

10.3 A rule for generating SAMPLE input 164

Acknowledgments

The first votes of thanks must go to the IC processing experts at UC Berke

ley's Electronics Research Laboratory who volunteered much time and effort

during all phases of this research. They are Gino Addiego, Prof. Ping K. Ko,

Dr. Ping Wai Li, Prof. Andrew Neureuther, Prof. William G. Oldham, and

Dr. Yosi Shacham. It is their collective expertise that forms the backbone of

this research.

1 also thank the people in Hewlett-Packard's Expert Systems Project,

led by Dr. Steven Rosenberg, for helping me learn the basics of HPRL and

the development system running on the H-P 9836 computer, and for arrang

ing for the donation of the system I used. I would also like to thank Drs.

Jeff Y.-C. Pan, Harry G. Barrow, and Jay M. Tenenbaum, and the oth

ers at Schlumberger's Laboratory for Artificial Intelligence Research for the

stimulating exchanges of ideas we had in the early phases of this research.

Special thanks go to Professor David A. Hodges, my research advisor,

for his support and advice, and for the just-enough guidance he gave to this

xni

XIV

research's direction. Professors Randy Katz and Frederick E. Balderston, the

other members of my thesis committee, made many substantive and stylistic

suggestions on drafts of this dissertation that greatly helped its focus.

Cliff Lob, whose RUBICC circuit critic was an inspiration that Al-based

CAD systems can be successful, deserves thanks for his help in getting me

off the ground. It is impossible to thank everyone else who helped during my

years at UC Berkeley individually, but I must make special mention of Ron

Gyurcsik, Dr. Mark Hoffman, Karti Mayaram, Peter Moore, Tom Quarles,

Rick Spickelmier, and Christopher Williams.

And, of course, to June, my wife, whose continuous support throughout

this research allowed me to concentrate on doing the best I could.

This research was supported in part by a grant from the Semiconductor Research
Corporation, and in part by a grant from Xerox Corporation with a matching grant
from the University of California's MICRO program.

CHAPTER 1

Introduction

Many computer aided design (CAD) tools are available to the integrated cir

cuit (IC) fabrication process designer. Other resources, such as local experts

and technical literature, are also often easily available. But in most cases,

these design resources are isolated from each other and therefore can not be

used to their fullest potential.

Some areas of engineering design have been well addressed by CAD

research and now have integrated CAD systems available for designers. Oth

ers, including IC process design, have not yet had the same research activity

aimed at them. The main intent of the research described in this disserta

tion is to tie together these many IC process design resources using a wide

selection of computer-based techniques.

U-i 2

1.1 Motivation for This Research

Research in IC processing is a major thrust at the Electronics Research Lab

oratory (ERL) of the University of California at Berkeley. Over 50 students

and 10 professors are engaged in IC process research. A wealth of valu

able resources exists at UC Berkeley's ERL for IC process design, such as

computer-based tools like circuit, device, and process simulators, technical

literature, and local experts in all phases of IC processing.

Because these resources are not tied together, however, they cannot

be used to their fullest potential. The resources are difficult to find and

may be difficult to apply to particular design problems. These limitations

often apply to all users, even experienced IC process researchers. A CAD

system that serves to tie together existing resources would be an important

contribution to the UC Berkeley Electronic Research Laboratory's IC process

design community.

When this research project began in 1983, its goal was to develop a CAD

system for IC process design, with emphasis on investigating the usefulness of

artificial intelligence (AI) techniques for this specific problem. AI techniques,

particularly those of expert systems, were considered to be useful for this

application because of the great deal of heuristic l knowledge that appeared

to separate the expert designer from the beginner.

1Heuristic describes solution methods that are learned by observing the solution methods
to other problems (Poly57), or those learned by experience. In the context of AI, heuristic
specifically refers to the 'rules of thumb" knowledge that experts in an area bu.ld from
experience [Haye83].

§i.2 3

Developing a complete CAD system for IC process design is far too

ambitious a task for one person to undertake. Instead, this research has

concentrated on the photolithography steps of the overall IC process. Three

reasons make this a good choice for this system. First, the photolithography

steps are repeated once for every mask layer in the fabrication process, and

thus improving this one step can provide great leverage. The second reason

is that this is the area of IC processing in which UC Berkeley's ERL has the

most local expertise. Lastly, photolithography is a relatively bounded area

that can be considered independently of many other facets of IC processing

without oversimplification.

Closely related to this research is a parallel effort to provide a computer

aided manufacturing (CAM) system for the Berkeley integrated circuit fabri

cation laboratory. While well beyond the scope of this research project, the

eventual integration of these CAD and CAM systems is a primary design

goal for both research projects. The eventual system should provide inte

grated services spanning design, fabrication, fabrication equipment control

and monitoring, yield and other engineering data analysis, cost analysis, and

inventory.

1.2 Research Contributions

The contributions of the research described in this dissertation are three-fold.

First, an investigation was undertaken to learn what kind of CAD system

would be most useful for the particular environment at UC Berkeley's IC

$1.2 4

laboratory. The initial work was along the lines of a typical expert system

where the system consists of a large knowledge base and an inference engine

(these terms will be explained in Section 3.2.1 on Page 25). The system

would ask the user some questions and would eventually generate its "best"

solution. As work progressed, goals were revised in response to user reactions,

and the system's structure evolved into a highly interactive, step-by-step

design advisor under the user's control.

Second, it is shown that the overall photolithography design process can

be decomposed into subproblems, each of which can have a "best" solution

method assigned to- it. The decomposition relies on assembling an IC pro

cess from libraries of previously-used process steps, then refining the steps

to customize them to the specific requirements the user has entered. This

decomposition, while admittedly limiting the set of solutions that may be

found with it, helps the user find a starting point for his IC process design,

a valuable contribution in itself. In the case of IC process design, the design

process itself is not well structured and can benefit from a system that helps

designers structure the problem as an expert might.

Third, a system called Cameo has been implemented that reflects these

observations and provides a useful service to IC process designers. Cameo

is really a specific application built on an underlying framework developed

as a result of the initial work described just above. The framework allows a

large and complex synthesis problem to be broken into small, manageable,

relatively-independent subproblems and assigns a specialized "mini-expert"

to each one. The "mini-expert" may represent the knowledge for solving

each subproblem in whatever way is most appropriate. It was found that

an equally important contribution was the set of "reference files," short,

descriptive files explaining the how and why of each subproblem. A reference

file can be seen by the user at any time with a single keystroke.

1.3 A Running Example

After Cameo's framework was designed and implemented, an application was

chosen to evaluate it. More about the choice is discussed in Chapter 10. In

short, Cameo was made to be an expert on linewidth control for the metal

and polysilicon layers, for a linewidth of 2 fim.

This example will be referred to or expanded upon in many of the re

maining chapters of this dissertation to help ground the discussion to a real

problem. Chapter 10 is devoted to a detailed discussion of the application.

1.4 Outline of Dissertation

Chapters 2 through 5 are largel> descriptive chapters introducing many con

cepts and current work in the fields of artificial intelligence, computer-aided

design, and IC processing. Chapters 6 through 9 describe the specific struc

ture of Cameo and its major contributions.

Readers interested in a short summary of the research work and re

sults should probably read first this chapter and the concluding chapter

§1.4 6

(Chapter 11). For an introduction to Cameo's structure with some but not

overwhelming detail, Chapter 6 ("Overview of Cameo's Structure") is most

useful. The remaining chapters will be of varying interest to readers depend

ing on their backgrounds and interests. A short description of each chapter

follows.

Chapter 2 presents a short survey of current approaches to CAD sys

tems, with the aim of finding a direction that a new Al-based CAD system

should take. Chapter 3 introduces terminology used throughout the disser

tation and gives general background on the application of those terms in

this dissertation. Chapter 4 examines an abstract view of the design pro

cess and how an ideal (but realistic) CAD system might look. Chapter 5

gives a very short overview of IC processing and describes a typical design

process for IC photolithography. Chapter 6 introduces the structure of the

system developed for this project, and describes the tools and development

system used. Chapters 7 and 8 describe the knowledge base and data base

of the system, respectively, in detail. Chapter 9 explains the importance and

describes the structure of the user interface. Chapter 10 describes the spe

cific application addressed by this research in detail. Chapter 11 summarizes

conclusions about the research done for this project and points to areas for

further work.

CHAPTER 2

Survey of Previous Approaches

Most previous contributions to IC processing CAD have been simulation pro

grams. Outside of IC processing, previous CAD systems have ranged from

simulation programs to a CAD "toolbox" whose tools are integrated by a

standardized data format or a data base and a consistent, often graphic,

user interface. These approaches to CAD tools and systems can be called

algorithmic, since they are based on either numeric or algorithmic computa

tions or algorithms provided for special data structures.

A few CAD systems based on artificial intelligence (AI) techniques are

beginning to appear. These may be divided into two categories: those that

use solely or predominantly AI techniques, and those that freely mix AI

techniques and conventional tools. However, the dividing line between AI

and non-Al techniques is often hazy.

$2.1 8

2.1 Simulators

Simulation programs (simulators) model physical processes. Using simula

tors allows many alternative processes to be investigated and data from any

point in the physical process to be studied. This is especially valuable when

the physical process is difficult to carry out or data is difficult to collect.

An example is simulating the stress points of a bridge under many different

loading conditions. The physical process itself is extremely costly to carry

out, and measuring all the important stress points is essentially impossible.

For IC process design, simulation programs are as valuable as for bridge

design. It is impossible to measure all the changes that a semiconductor wafer

undergoes during a processing step. It is also expensive and time-consuming

to route wafers through a sufficiently complete set of alternative processing

steps to characterize an IC process. A simulator can .provide access to a

"virtual" IC processing line that has ideal measuring instruments on every

wafer at every point on the processing line.

It is important to remember that simulation programs have limitations.

Assuming accurate physical models, simulators may accurately simulate the

world described by the user's input, but they cannot indicate whether the

input describes a "reasonable" world, or whether it comes close to satisfying

the user's design requirements. Thus simulators are most valuable when used

as verification tools for designs arrived at by other means. One problem noted

during this research is that many IC process designers tend to use simulation

programs too early and too often in the design cycle.

12.1 9

Some popular and important simulation programs for IC processing are

described in the following sections. All of these programs have contributed

greatly to the state of IC processing and form a rich base of resources to

build upon.

2.1.1 SPICE

Originally developed as an assemblage of class projects in a computer simu

lation class at UC Berkeley, SPICE [Nage75j has evolved to become perhaps

the best-known circuit simulation program, currently in use at over 2000

locations. Its main virtues are its popularity and its robustness [Gyur85j.

Input to SPICE is a sequence of text lines describing the circuit interconnec

tions, models for devices, and analysis commands. Output is line-oriented

ASCII, either as a table or as rough plots of node voltages or currents at

each time step.

2.1.2 SAMPLE

SAMPLE |Oldh79,Oldh80] is a two-dimensional IC process simulator also de

veloped at UC Berkeley to study the IC fabrication processes that shape the

topography on a wafer [Nand84j. SAMPLE'S development philosophy was to

take advantage of recent advances in the availability of computing resources

to allow the simulator to be "substituted" for the actual physical processes,

ideally making operation of the simulator transparent to the user. SAMPLE

simulates the lithographic, deposition, and etching processing steps.

12.1 10

S 0.3-

0.T9

Figure 2.1: SAMPLE output example. This example shows the simulated
resist line-edge profiles for two resist thicknesses and development times.
This figure is Figure 9 of [01dh79].

Designed for interactive use, SAMPLE'S input format is more flexible

than that of SPICE. Output can be in the forms of SPICE or as standard

graphics commands suitable for interpretation by a graphics display device

such as a Hewlett-Packard 2648A graphics terminal. A typical output graph

from SAMPLE (see Figure 2.1) would be a cross section of the photoresist

layer on a wafer after exposure and developing for a range ofdeveloping times,

showing the shape and extent of the developed region for each develop time.

2.1.3 SUPREM-III

SUPREM-III, developed at Stanford University, is also an IC process simula

tor [Ho83,Anto79j. While it is strictly one-dimensional, being able to report

only on thicknesses of layers and the distribution of impurities in those layers

§2.1 H

as a function of depth, SUPREM-III can simulate most steps of a complete

IC process. Input to SUPREM-III is similar to that of SAMPLE, in that

IC process parameter values are entered in a flexible command language.

Output is either line-oriented ASCII or graphic.

2.1.4 PISCES II

PISCES II, recently developed at Stanford University, simulates the behavior

of individual devices (transistors, for the most part) as opposed to circuits

like SPICE does or physical processes like SAMPLE and SUPREM-III do

[Pint84j. It does so by simultaneously solving the fundamental equations

for charge and electric current for two-dimensional finite elements through

out the semiconducting material described in the input. Each element is

assumed to have constant material properties inside it. The elements can be

of different shapes and sizes so that smaller elements can represent parts of

the material where its properties vary more widely over small regions.

Some initial decisions in PISCES II are based on heuristics (rules of

thumb) which help PISCES II converge quickly to an initial starting point

for further simulation. This knowledge is built into the code and is not

separate as in an expert-system knowledge base.1

Input to PISCES II can be in the form of line-oriented ASCII input, or

a preprocessor may be used to enter the same information in an interactive

'One of the major distinctions between expert systems and conventional programs is the
explicit separation of the knowledge needed to solve a problem from the mechanism that
solves it. More about this is presented in Chapter 3.

12.2 12

graphic form. Output is in tabular ASCII form, but plotting postprocessors

are available for graphic output.

2.1.5 FABRICS II

FABRICS II is different from all other simulators discussed so far, in that

it simulates the variances in outcomes of an IC process due to disturbances

or random perturbations in the process [Nass83{. Output includes probabil

ity distributions of outcomes such as yield as a function of sheet resistance

[Stro84J. It uses simplified analytic models of the steps of the IC process

derived from solving boundary conditions of the complete analytic models

to keep computation time to a minimum.

2.2 Integrated CAD Systems

Many recent CAD systems have taken the approach of providing an easy-

to-use "front end" to a CAD toolbox. These systems vary a great deal in

how open their architecture is. An open architecture allows others to add

capabilities to the system, while a "turnkey" closed architecture is available

only as a monolithic system with continued product and customer support

a major part of the system's cost.

Commercial integrated CAD systems abound, of which General Elec-

tric's Calma system is the most widely used. The Calma system, like other

commercially available systems, has a closed architecture. In contrast, most

research CAD systems have open architectures. This difference is mainly

§2.2 13

due to strategic reasons. The vendor of a monolithic turnkey system knows

that customers will incur high "switching costs" to switch from one sys

tem to another and are therefore reluctant to do so. Most customers of

the commercial systems would prefer a turnkey monolithic system to avoid

potential support problems, while the research community usually prefers

the flexibility an open architecture provides and is not as concerned about

compatibility and support, and is concerned about being locked in to any

particular commercial product.

As part of a major research program at the Massachusetts Institute of

Technology in computer aided manufacturing, a program called MASTIF

jBoni85J has been developed. MASTIF uses graphics and a window-oriented

user interface to tie together existing simulation, synthesis, and analysis tools

in a uniform fashion. Quoting from the abstract to [Boni85l,

MASTIF provides a common, interactive user interface to different pro
cess simulators (both one- and two-dimensional)... MASTIF provides
process design tools including incremental Process Description develop
ment and analysis, as well as version management of Process Descrip
tions and physical cross-sections.

MASTIF helps solve one of the major problems in IC process CAD, the

inaccessibility and incompatibility of many of the available IC processing

CAD tools.

A widely used open-architecture IC layout system called Kic [Kell82a],

developed at UC Berkeley, is a good example of an integrated CAD system. It

provides a central CAD data base (Squid [Kell82b]) and a graphics-oriented

user interface. Special programs that perform specific tasks like simulation,

§2.3 14

layout rule checking, layout compaction, PLA generation, and so on, are

easily interfaced with the data base and user interface. Another important

toolbox-based CAD system, also developed at UC Berkeley, is the Magic

layout editor [Oust84].

An optimization program that serves as a front end for other specialized

programs that is in use at UC Berkeley is DELIGHT [Nye83]. DELIGHT

consists of optimization algorithms and an interfacelanguage that links other

programs such as simulators with the optimization algorithms in well-defined

ways. DELIGHT is used less interactively than the previous examples.

2.3 AI-Based CAD

Whereas an integrated toolbox CAD system provides the tools needed to

perform a design task, most recent Al-based CAD systems help the user

find a design strategy. The design strategy can then be carried out using

a CAD toolbox system. Some Al-based CAD systems perform only strate

gic decisions, while others (detailed in Section 2.4) mix AI techniques with

conventional CAD tools.

The VLSI Design Automation Assistant (DAA) being developed

at Carnegie-Mellon University uses heuristic knowledge to generate a

technology-independent layout description of a VLSI system given an al

gorithmic description [Kowa83]. DAA first decides on the system's "global

allocations," such as the number of global registers and ports, and estab

lishes constraints and timing information if not all of these are supplied. It

§2.3 15

then iteratively makes decisions about dividing the system into modules and

routing the data path. When this is done, global improvements are made

such as removing or combining redundant registers and logic. DAA is im

plemented almost exclusively in OPS5 (Forg81j. Its designers recognized the

need for algorithmic routines such as counting, cost estimation for evaluat

ing choices, and checking set membership of elements, and rewrofe rules for

these operations as procedures in the C language [Kowa85j.

A research group at the Massachusetts Institute of Technology has been

applying AI techniques to VLSI circuit and systems design and layout since

1979 [Suss79]. This group has emphasized the development of integrated

systems, decomposing complex design problems into hierarchical or other

structured abstractions in order to simplify the problems. The current direc

tion of their work is to develop "junior assistant" systems where the system

works interactively with the user, using its knowledge about the design prob

lem to be able to offer timely and relevant help to the user. This approach

is modeled after work done to develop a "programmer's apprentice," also at

MIT |Rich79].

An interesting application of expert systems to circuit design is RUB1CC

|Lob84]. RUBICC uses knowledge about NMOS digital circuit design to act

as a circuit critic, pointing out possible errors in a design such as floating

nodes, too many threshold drops, and other typical design problems. Work

on a more general, technology-independent version of RUBICC is described

in [Spic85j.

12.4 16

Another AI approach to CAD focuses on developing "consultation sys

tems" for a specific problem, where the user answers a series of questions and

the system generates one or more plausible solutions. The usage of this type

of system is less interactive than with the junior assistant system. The con

sultation system relies on an extensive knowledge base about its application

field, so may be difficult to maintain in a fast-changing field.

One system using AI techniques for IC processing was developed at

Hewlett Packard Laboratories for diagnosing problems with photolithogra

phy while the wafers are undergoing processing [Clin85j. This is a diagnosis

system as opposed to a design or synthesis system.

2.4 Mixed Approaches

A mixed approach to a CAD system is one that uses a combination of algo

rithmic and Al-based approaches smoothly integrated into a single system.

The appeal of a mixed approach is that the "best" solution method—AI,

algorithmic, or a combination—can be used for each problem in the decom

position of the overall design problem. This is an area of active current

research.

A major effort in this area is ARSENIC, the work of Prof. Daniel Gajski

at the University of Illinois at Urbana-Champaign [Gajs84]. ARSENIC is a

"quasi-expert system" for IC system and layout design. Gajski has decom

posed the IC design problem into a three-level hierarchical design process.

§2.4 17

ARSENIC consists of a library of specialized silicon compilers that are as

signed to subproblems of this decomposed IC design process. A combination

of heuristics and algorithms determines the assignment of these silicon com

pilers to the subproblems. The system is highly interactive. As will be

seen, there are many similarities between ARSENIC'S and Cameo's design

philosophies.

A major research program in VLSI chip design is proceeding at Schlum

berger's Laboratory for Artificial Intelligence Research [Kram85]. This re

search combines ideas from a number of areas being researched at both

Schlumberger and Stanford University, including developing representations

for designs, using these design representations to reason about the design,

and incorporating the reasoning mechanisms with other synthesis and anal-
#

ysis tools. Current and previous work relevant to this research includes the

Palladio system, a circuit design environment [Brow83]; MARS, a hierarchi

cal rule-based circuit simulator [Sing83|; Corona, a design description lan

guage [Sing84]; and DIRT, a program that derives heuristic rules describing

a device's behavior from a functional description of the device [Kram84].

Another research program at CMU is developing an expert-system-based

VLSI design environment [Bush85]. ULYSSES (Unified LaYout Specifica

tion and Simulation Environment for Silicon) accepts IC descriptions as

logic equations and analog circuit descriptions. With assistance from the

designer, it will produce a geometric layout for the design, then verify that

the layout meets desired electrical specifications. The emphasis is on con

trolling existing CAD tools rather than writing new CAD tools. Current

12.5 18

and previous research work relevant to this project includes the Palladio sys

tem described above [Brow83j; a hardware description language called DIF

[Bush83b]; Delilah, a graphic user interface |Bush83aj; OPS5, the knowl

edge representation language used [Forg8lJ; the Designer's Workbench, an

early design environment developed at Bell Laboratories [ONei79]; Demeter,

a design methodology and environment for the highest levels of computer

and computer network design [Siew83]; and SRL (Schema Representation

Language), used in ULYSSES for archival storage of designs [Wrig83].

The SRC-CMU Center for Computer-Aided Design at Carnegie-Mellon

University has been investigating mixed and otherwise integrated approaches

to developing a large CAD and Computer Aided Manufacturing (CAM) sys

tem for VLSI |Dire8l].

Much work in a large integrated CAD system defies easy categorization

into Al-based vs. algorithmic approaches, however. A chip routing or place

ment program certainly incorporates some heuristic knowledge in addition

to algorithmic routines. Many layout design rule checkers, to ensure flexibil

ity in the face of constantly changing technology, express knowledge about

allowed and disallowed layout combinations as "layout rules" separate from

the control and algorithms of the rest of the program.

2.5 Other Approaches

Other approaches that do not fall cleanly into Al-based approaches, algorith

mic approaches, or a combination of the two are currently active research

12.5 19

areas. The work at MIT referred to earlier (Section 2.3 on Page 15) mixes a

number of approaches, including those detailed below.

2.5.1 Symbolic Algebra

Most programs can perform some aspects of algebra by repetitively plugging

values into a given equation to find answers. Others can solve complex sys

tems of linear equations once the equations' coefficients have been entered.

Symbolic algebra programs like MACSYMA [Math77j, however, work with

the actual symbolic representations of the equations. These programs can

perform operations on the equations by factoring, algebraic simplification,

definite and indefinite integration, etc. Thus a system incorporating sym

bolic algebra might be able to mimic an expert's approach to a problem

by performing the same algebraic operations on equations that the expert

might.

2.5.2 Deep Reasoning

Deep reasoning systems use special models to simulate the systems they

represent |Brow77,Pan83j. Often these models are qualitative in nature,

specifying the behavior of the system in inexact terms.2

While this is a similar approach to the algorithmic simulators discussed

earlier, deep reasoning systems use some AI techniques in their operation.

An example is describing a resistor by saying that the voltage across it increases as the
current through it increases.

12.6 20

primarily the separation of the application-specific knowledge from the con

trol portion of the program, and the qualitative, often heuristic, models used.

A very good example ofa deep reasoning system is described in [Pan83].

This system uses its deep knowledge about the specific application to diag

nose multiple dependent failures,3 something most diagnosis systems cannot

do.

2.5.3 Constraint Propagation

Any two or more variables that are not completely independent of each other

are somehow constrained in the sets of values they take jdeK180]. Whenever

any variable in an equation takes a value, this immediately constrains each of

the remaining variables to a smaller set of values. For most useful constraints

of N variables, if TV - 1 variables have taken values, the value of the Arth

variable can be immediately determined.

Typically one variable will take part in more than one constraint, analo

gous to most analytic problems where any one variable appears in more than

one equation. Thus a single variable changing can cause a rippling effect

throughout all variables related to it. When one variable's value is assigned

or changed, the constraint propagation system checks to see if any other vari

ables or parameters can be calculated or updated. Constraint propagation

can be used to maintain correct system state under changing conditions.

3Multiple dependent failures occur when a primary failure, such as a transistor shorting,
causes secondary failures, such as a resistor burning and a fuse blowing, to occur. A
simple-minded diagnosis system might simply suggest replacing the fuse or the resistor,
or may not even be'able to diagnose anything since this particular combination of failure?
does not match anything it is programmed for.

12.7 21

2.6 Other Important Work

One important factor in Cameo's development was work done by Clancey

|Clan84] on Classification Expert Systems. These systems do not attempt to

piece together a complete solution to a problem from scratch but instead have

coded into them a number of potential solutions expressed in highly general

ways; their job is to choose from among these solutions by classifying the

problem to fit the known solutions, and to refine the chosen solution(s) until

the desired level of specificity is reached.

Clancey's work led to the idea of using step libraries (as explained in

Section 6.8.4 on Page 76) of "canned" photolithography steps. After choosing

one or more steps from libraries, the system would concentrate on refining

the choices.

2.7 Chapter Summary

Simulation programs are very valuable tools but their limitations must be

kept in mind. They are best used as verification tools.

Open-architecture integrated CAD systems appear to have great

promise in improving designer productivity. The main reasons are that they

provide a standardized data structure and consistent user interface to a host

of special tools, and their open architecture allows new users to add special-

purpose tools of their own. This latter capability is essential for most CAD

systems since the technology they address is constantly changing.

12.7 22

Recent integrated CAD system efforts emphasize integrating existing

tools rather than developing yet more new tools. Integrated CAD systems

built with a "toolbox" approach assume that the design process itself has

been decomposed into phases that can each be addressed by a special-purpose

tool.

Most CAD systems surveyed cannot answer a user's question of why

a certain step should be performed a certain way. Most assume a quite

competent level of user expertise in the design field. Often the novice designer

must find his own way through the trees to see the forest.

AI techniques hold great promise in addressing certain problems where

heuristic knowledge, rather than numeric or algorithmic routines, is the pre

dominant method of solving problems. A few systems haverecently appeared

that mix AI techniques and conventional CAD tools. Like recent integrated

non-Al CAD systems, these emphasize the integration of existing CAD tools.

The AI techniques are usually used to help the user make initial design de

cisions and choose appropriate tools for further designing.

A successful design philosophy for this CAD system may be one that

combines all these observations. It should offer a standardized data struc

ture and a user interface that tie various special-purpose tools together. Its

architecture should be open, allowing users and future system developers to

add tools easily. It should be able to mix conventional and Al-based tools,

depending on the specific problem the tool addresses. The user should be

able to ask "Why?" of the system.

CHAPTER 3

Terminology and General Background

Since this research combines technical concepts and terminology from the

two diverse areas of IC processing and computer science, and readers will

probably be more familiar with one area than the other, some explanation

of terminology is in order. In the following two sections, some of the most

common terms used in this dissertation are described. Other terms used less

commonly will be described as they are introduced in context.

The first section of this chapter introduces terms used in IC processing,

while the second section concentrates on software terminology. Both sections

introduce terms that are used extensively throughout the remainder of this

dissertation. While intimate familiarity is certainly not required of either

area, some understanding will help greatly in following the discussions in

the rest of the dissertation. Thus some terms are defined rather narrowly,

reflecting only the context in which they will be used in this dissertation.

23

§3. J 24

3.1 IC Processing Terminology

An integrated circuit (IC) process is the set of fabrication steps that a semi

conductor wafer goes through to become a finished product. A complete IC

process normally consists of about 8 to 16 major process steps, each of which

consists of a photolithography step and a processing step.

Photolithography is the step that transfers an image from a mask to the

wafer. The photolithography step defines regions on the wafer corresponding

to patterns on the mask, and is usually followed by the actual processing step

that affects those regions.

IC process design is the design activity that results in a set of process

steps, often called the process flow. In most cases, IC process design is

separate from circuit or system design and physical layout design of the IC.

It is strictly involved with the fabrication process, and assumes that the

person performing the processing already has a set of masks generated by

other CAD resources like layout tools.

However, all three of these IC design phases are interrelated, although

the extent to which they interrelate varies: One extreme is the case where an

IC design pushes the state of the art in all three areas. In this case, design

of the circuitry, layout, and processing steps cannot be considered separately

at all and iterative design of all three phases must be done. This is also

the matter of course when the final product is a high volume item and sales

volume will justify the cost of iterative development. Primary examples are

dynamic memories and analog circuits.

13.2 25

The other extreme is beginning to appear, where a "silicon foundry"

provides a standardized IC process. It publishes the specifications for that

process, and anyone using it must adhere to its requirements. This affects

both the circuit or system design and the physical layout of the chip, as

compromises may have to be made in both these areas to accommodate the

given IC process.

For the purposes of this dissertation, the result of the process design

activity is a process plan, since the result looks very much like a step-by-step

description of actions to take. Usually the goal of IC process design is a

complete IC process, but sometimes it is just one or a few specific process

steps that might form a subset of the overall IC process.

3.2 Software Terminology

3.2.1 Artificial Intelligence

Cameo is an expert system, a system that has some amount of knowledge built

into it that enables it to perform certain limited tasks as well as or better

than a human expert in the same area. Expert systems combine many results

of artificial intelligence research into areas such as knowledge representation

and the human decision method. Expert systems are specifically intended to

emulate human performance in a very narrow area.

A number of properties are generally accepted as differentiating an ex

pert system from conventional software systems, among them:

§3.2 26

• Expert systems separate the method of solving problems from the in

formation used by the solution methods. Most computer programs are

written with knowledge and method intertwined in the same code. An

expert system separates the two into a knowledge base and an inference

engine. The inference engine is intended to be general purpose and ide

ally makes no assumptions about the content of the knowledge base,

while the knowledge base customizes the expert system to its specific

application. The price to pay for this flexibility is execution speed.

• Expert systems can deal with complex application fields by using

heuristic knowledge to narrow the set of solutions to a problem to

a much smaller set that deserve further investigation.

• Most of the knowledge entered into an expert system is surface knowl

edge, or superficial knowledge. This knowledge is often in the form of

indirect cause-and-effect relationships gained by experience, and is not

based on rigorous application of theory. Most conventional programs

use deep knowledge, like circuit simulators that use precise models of

devices to simulate their behavior.

• Most expert systems are goal-directed, in that the user specifies a goal

for the system to solve, and the system uses its store of knowledge in

whatever order is needed to attempt to "prove" that goal. In contrast,

most conventional programs work through a sequence of steps deter

mined by the input data to arrive at an answer. In other words, most

13.2 27

conventional programs are deterministic, whereas expert systems are

not.

• Most expert systems rely heavily on pattern matching instead of nu

meric computation to identify the bits of knowledge in their knowledge

base that might aid in proving a goal.

Most expert systems are goal-directed, using a process called backward

chaining. A goal is given to the system to attempt to prove. All parts of

Cameo's knowledge base that employ AI techniques are based on the goal-

directed model of reasoning.

In backward chaining, the expert system follows the following steps until

it has succeeded or failed to prove the goal:

1. If the goal matches an item that is already in its data base, then the

goal is already proven and backward chaining is finished.

2. If the goal does not yet exist in the expert system's data base, its

knowledge base is consulted to find any bits of knowledge that might

prove the goal. These bits of knowledge are most often expressed as

production rules, or "IF... THEN..." rules. If the "THEN" part of

the rule matches the goal, then the "IF" part of the rule is adopted as

another goal and the system runs through these same steps with it.

A short example will illustrate. Suppose it is known that Bill is going

to London and he is trying to decide whether to take a raincoat. Bill would

§3.2 28

ask his expert system whether a raincoat is necessary in London. Further

suppose that the expert system has the following rules already entered into

it:

IF the weather is raining,

THEN you will need a raincoat.

IF you are in London,

AND it is winter,

THEN the weather is raining.

The expert system finds that the successful conclusion of the first production

rule would prove the goal, so it uses it. The premise of this rule (IF the

weather is raining) is then checked against the data base to see if this fact

already exists. It does not, so the expert system adopts it as a goal and

attempts to prove it.

The second rule's conclusion could prove the new goal, so it is now

selected. Bill has already told the system that he will be in London, so the

first part of the premise exists in the data base. The data for the second part

is not anywhere to be found (assuming the system is not tied into a weather

information service), so the system asks Bill, ttls it winter?" If Bill replies

uYes," then the second rule's premise is satisfied, so it concludes successfully.

This now satisfies the premise of the first rule, so it concludes successfully in

turn, informing Bill that he will need a raincoat.

13.2 29

Some expert systems are data-directed and use what is known as forward

chaining. Whenever a new fact is entered into a data-directed expert system,

all rules whose premises contain that data are checked to see if their entire

premises are satisfied. If so, the rules conclude successfully and the data

specified in their conclusions are added to the system's data base. This may

in turn cause other rules to become satisfied, and so on.

There are many ways to implement expert systems. One way is by using

frames as data structures to hold data in the data base [Robe77a,Robe77bL

A frame data base is the major part of Cameo's internal structure.

A frame is much like a record in Pascal or a structure in C with two

important exceptions:

• A frame's members (slots) can appear and disappear dynamically.

• Frame systems use the properties of hierarchical inheritance.

A data base of frames most closely resembles a hierarchical data base

Date81i, but frame systems allow referring to frame members or to other

frames by their names instead of by pointers or addresses. This allows the

dynamic nature of such a system to be more easily implemented since address

and size information is not kept with the link itself.

Whereas Pascal's records and C's structures are fixed data structures

with explicitly defined members, a frame can both vary in size after its initial

definition and can appear to have slots that were defined in another frame.

The inheritance properties of frames are well suited to expressing data in

§3.2 30

a manner more natural to people. When a frame is defined as a child of

another frame, the new frame "inherits" all the structure and data of the

other frame, and may also add members and data of its own. People like to

classify things and then make statements that are applicable to all members

of a classification. We know, for instance, that all mammals have hair, so

we define a classification called "mammal" all of whose "children" have hair.

We store the information about hair with the definition of the mammal class,

not with the definition of every single mammal.

Frames with inheritance allow expressing data in the same fashion. One

might define a frame called "mammal" (which in turn might be a child of the

"animal" frame) where one of the slots is called "hair" and the data stored

in that slot is "yes." Any frame which inherits from the "mammal" frame

will automatically appear to have its own slot called "hair" with the data

"yes." The elephant frame might also define additional slots like "trunk."

One of the most important results of expressing data with inheritance

frames is that rules can be written about whole groups of things at once. It

might have been better to express the fact about hair as a rule that said

IF the thing is a mammal,

THEN the thing has hair.

Either forward- or backward-chaining would be able to apply this rule to any

child of the "mammal" frame and immediately conclude that the mammal

in question has hair.

13.2 31

3.2.2 Object-Oriented Programming

Another programming technique used heavily in Cameo is object-oriented

programming. This type of programming involves defining objects, which

are independent packages of data and code. The major difference be

tween object-oriented programming and conventional programming is that in

object-oriented programming, each object type may define its own set of op

erations that it can perform. The real advantage occurs when many different

types of objects define operations that are called by the same name.

Again, an example will illustrate. In most programming languages, a

system call is provided that can print a few types of data, such as numbers

and strings. One cannot usually print the contents of a graphics screen by

using the same system call. In an object-oriented programming system, each

data type would define its own "print" method. If the message "print" is sent

to that object, it would run its "print" method, as defined for that object.

Now imagine that all objects in the system that might ever be printed

have all had "print" methods defined. Whenever the programmer would

like an object printed, he simply sends it the "print" message. Two very

important advantages result from using object-oriented programming:

• A high degree of consistency.

• Since each object has its own implementation of its methods, a high de

gree of modularity is preserved. One object's method might be altered

but its effect is strictly local.

$3.2 32

The major disadvantage of object-oriented programming is a decrease in po

tential performance as measured by speed of execution of the finished system.

Unless the system has been intelligently compiled, locating the actual code

for each method requires two lookups instead of one: first to find the object's

type, then to find the code in the object that executes the method.

Most object-oriented programming systems also implement a form of

inheritance, like frames. The idea is almost identical, in that an object

defined as a child of another one inherits all its data (local variables) and

also its methods (code). The child object may also add data and methods of

its own, or may override those that it inherited. For instance, an object called

"number" might be defined that defines local variables such as "value," and

a method for adding two numbers. Most children of the "number" object,

like integers and reals, will probably not change anything inherited from the

"number" object, but the object "complex" will add local variables like "real-

part" and "imaginary part," and will override the method for addition.

CHAPTER 4

Characteristics of an Ideal CAD System

4.1 Part of an Integrated System

An ideal solution to the problems faced by IC process designers is an easily

used, easily accessible CAD system that i§ part of a comprehensive, inte

grated design and manufacturing system. It must be equally useful for be

ginning fabricators as well as experts, must be easy to modify incrementally,

and must interface with arbitrary other resources. The ideal CAD system

provides a complete design environment.

The key to a fully integrated design and manufacturing system is the

organization of data |Beeb83j. The different applications or services all work

from a central data base, converting the data in it to forms which they can

use. Communication between applications is largely through the data base.

An overview of data base requirements for engineering design is contained

in [EastS!•.

§4.1 34

The "central data base" may be implemented exactly as such, on a large

mainframe computer with high-speed networks linking it to the computers

running applications, or the entire system may be implemented on a large,

high-performance computer. An alternative, currently being considered for

UC Berkeley's integrated CAM system, is to distribute the data base among

many smaller computers running the applications, linked by a high-speed lo

cal area network, and provide each application with data interface routines

that convert requested data from one application's format to the requesting

application's format. Another computer on the network would perform con

ventional data base functions in addition. Figure 4.1 illustrates this approach

to a CAD/CAM system.

A distinct advantage of this approach is its inherent modularity. Each

individual application contains its own data base in whatever form is optimal

for it; all that is required for integration with the rest of. the system is the

ability to convert its data from its own format to the format required by

the requesting application. The potential drawbacks are those afflicting all

distributed data-base systems, such as problems with concurrent access of

the data base, stale data, duplicated data, etc. The planned implementation

uses concepts from object-oriented operating systems. It is hoped that many

of these drawbacks can be minimized or eliminated, since in a pure object-

oriented operating system, data can only be received by requesting it from

another object in the system; all objects have complete control over their

own data.1

This is a new research area and no published information is available. Faculty member.
in charge are Professors D.A. Hodges and L. Rowe.

14.1 35

An example of a large, successful CAD and CAM system is one in place

at the Boeing Commercial Airplane Company and is described in [Beeb83].

The title of the paper describing this system, "The Heart of Integration: A

Sound Data Base," leaves no doubt about the most important component of

such a system.

One application in this ideal integrated system would be the design

function—the system described in this dissertation. Another would be

a verification function using a modeler or simulator. Others might in

clude a critique function analogous to the critiquing performed by RUBICC

[Lob84,Spic85] on digital circuits, an execution function that controls fab

rication equipment, a statistical analysis function using a program such as

FABRICS [Nass83], a scheduling function to help the user schedule critical

equipment use, and inventory and other bookkeeping functions.

The user's interaction with the design application of the system must be

intuitively straightforward and not impede the user's natural design process.

It should be modeled after the structure that an expert designer assigns to

the design problem, supporting the same abstractions, decompositions, and

fundamental design activities the expert designer performs. Hopefully good

hardware and software performance allows the user interaction to be modeled

after what is best for the user's efficiency, not the machine's.

An ideal CAD system allows the user to explore potential solutions to

his design problem comfortably. The following principle was referred to when

making decisions that affect the user interface of .the system:

§4. J

u8£r interface layer

application layer

cot«jnicatiqn layer

36

Figure 4.1: Data base design for ideal CAD/CAM system based on a dis
tributed .-ipproach. Communication is between applications by converting
data form;il«*.

• No matter what sort of data structuring is used internally by the sys

tem, it must present the data to the user in a manner intuitively un

derstood by the user and provide operations that manipulate this pre

sentation of the data consistent with the expectation of the user.

Much recent research has been directed at producing more concrete

guidelines for user interfaces for interactive computer systems. An excellent

§4.2 3~

overview ofthis subject, with many useful references, is contained in [Shne80j.

A recent paper that should prove to be of great use in identifying the theo

retical underpinnings of user interfaces for interactive technical applications

is [Fole84]. Although this paper deals specifically with identifying funda

mental properties of interactive graphics interfaces, the methods used in the

research described by the authors are applicable to many other interactive

computer applications.

This aspect of the ideal CAD system assumes very low cost of computing

resources and high information bandwidth to and from the system's display.

While this is a valid assumption for this research, it may not be so universally.

Appropriate tradeoffs must be recognized in the design of the user interface.

For instance, users for whom computing resources are very expensive will

probably prefer to forego this principle in exchange for investing considerably

more of their own effort in using the system.

4.2 Specific Characteristics for IC CAD

Two kinds of wishes about the capabilities of the system were expressed by

people consulted during this research. One I will call the "professor's view,"

which was that beginning students tended to spend too much time doing

detailed investigation of IC process designs that were not always close to a

good solution, and not enough time on exploring general directions of process

designs. This view held that a CAD system thai would help students make

the beginning planning decisions of process design would be highly desirable.

§4.2 38

The other view, the "student's view," held that the most valuable con

tribution of an IC process CAD system would be to help the IC fabricator

while he was in the midst of a fabrication process (at UC Berkeley, students

perform most of the steps of the IC fabrication process themselves). The

students envisioned a system that would allow them to enter the steps they

had already performed and ask, "What should I do next?" This question of

ten comes up when something in their process has not worked quite the way

it should have, and they would like to find out if it is possible to compensate

novt or in a future step.

In an industrial environment, these two conflicting requirements are

equally evident but take different forms. A typical company will only have a

few different IC processes available for fabricating ICs due to the enormous

difficulty of fine-tuning a process for acceptable yield and performance. Be

cause of the difficulty of designing new processes, most industrial processes

are essentially perturbations or relatively slight modifications on earlier suc

cessful processes. If an advanced CAD system along the lines of the pro

fessor's view were available, new processes optimized for a certain set of

requirements could be quickly investigated for feasibility. These processes

could be entirely unlike previous ones.

On the other hand, there are many times when a very useful capability

would be investigating the slight perturbations on an existing process. This

is the kind of work most often performed by industrial process engineers. A

CAD system modeled after the student's view would be most helpful here.

§4.2 39

These are two very different requirements for a CAD system, and not

many (if any) current systems address them equally well. Many systems

assume the user to be an expert in the field, and provide specialized tools

relieving the user of some design details. Primary examples of systems like

this are most VLSI layout editors, which present the design on a graphics

screen as it would look physically, and provide cell abstraction features, au

tomatic replication of cells, data base functions, and sometimes layout rule

checking. The user must still begin with an architecture and chip topology

or floor plan before a VLSI layout editor can be used.

Another type of system is the expert system. An expert system is sup

posed to mimic a human expert's performance in a very narrow field, or

domain. The design philosophy behind some expert systems tends to be op

posite that of conventional CAD systems, in that the expert systems assume

the user to be a novice, and are designed to make high-level or initial deci

sions. Often these systems first ask the user some questions and then give

him its solutions. Other expert systems perform tasks that are helpful to

more expert users. This type of expert system keeps track of design context

and is able to perform appropriate actions when requested to do so by the

user. Most expert systems are limited to using heuristic knowledge, and are

not easily able to integrate conventional CAD capabilities.

Each of these system types is geared toward a certain user sophistication,

but neither one alone can serve all kinds of users. An ideal CAD system would

be able to provide services both at the initial, high-level planning stage and

§4-4 40

at later stages where most of the work is algorithmically oriented. Expert

users must be able to bypass the initial stages since these users will often

have their own process design already developed. Novice users must be able

to find the system useful for initial planning.

4.3 The System Must be Flexible

Building a CAD system for a fast-changing field like IC process design

presents some sharp contrasts. The ideal CAD system must be useful for

both novices and experts. These groups of users have very different CAD

needs. Another sharp contrast is that the overall design procedure for IC pro

cesses changes slowiy over time, but the specific steps of a design, like which

exposure machine to use, change quickly in response to constant technology

changes. The design of the system must allow for these contrasts. .

The CAD system should be structured around the way that an expert

approaches the design problem, but allow its individual elements to be easily

changed. In other words, the system's framework can be designed assuming

a certain method of use, but must allow almost arbitrary modules to be

connected into the framework.

A good analogy would be a technical book. While books are all largely

made in the same way, their contents (which are easily changed by the

printer) define their subject. An expert and a novice can use the same

book; the novice probably reads it by leafing through the table of contents

and reading introductory and concluding sections, while the expert probably

leafs through the index to find the specific section he needs.

14.4

4.4 Interface to Other Resources

The ideal CAD system interfaces to the many other elements of the inte

grated design and manufacturing environment. This might include entering
data from measurement equipment toanalyze intermediate results ofthe pro

cess while it is in progress. In keeping with the model of the system shown

in Section 4.1 with applications clustered around a central data base, inte

gration of this sort is accomplished through the data base interface routines

of each separate application.

A researcher may be considering the next step in his process after the

application of photoresist. To derive specific values for the next steps (expo
sure intensity and time, developing time), he will need to know the precise

thickness ofthe photoresist coating. He may also need to know the variation

of the photoresist thickness over the wafer. An ideal CAD system would be

able to interface directly with the film thickness measurement instrument,

and use the results of the measurement in future steps.

An ideal integrated system, once a process step is designed, can also

interface directly to control the fabrication equipment for that step. The

results of the fabrication step are recorded and noted, and can be saved, to

be used to help design future processes. This particular goal is the most far

reaching, for two reasons:

• Few manufacturers of IC fabrication equipment provide consistent com

puter interfaces to their equipment.2

2A communications standard, SECS 11, ha.« been developed specifically for IC fabrication

§4.5 42

• Attainment of this goal assumes that an intelligent system capable of a

limited form of learning can be built and its performance relied upon,

which has not yet been shown.

A more limited but still useful goal is to provide instructions for the

operator of the fabrication equipment. The operator would actually operate

the equipment and note the results.

4.5 Chapter Summary

An ideal CAD system, which at this point in the development of CAD tech

nology is probably not possible to build, is a part of an integrated design

and manufacturing system. The heart of the integrated system is a univer

sally accessible data base, either physically centralized or distributed among

the applications. Each application (the CAD function is but one) ideally

interfaces only with this data base. Other applications would include a veri

fication or simulation application, a critiquing application, a control or pro

cess execution application, a scheduling application, and inventory and other

bookkeeping applications.

equipment. At present, however, few IC equipment manufacturer? are incorporating
the SECS II standard into their equipment. Another equipment interface standard has
evolved from automobile manufacturing. The MAP equipment interface jointly developed
by General Motors and many of its computing and manufacturing equipment suppliers.
This appears to be becoming a de facto standard among manufacturers of certain types
ofequipment due to GM's purchasing power. It remains to be seen whether this standard
can be carried over into the IC fabrication equipment arena. See iLeop84,Gene84J for
further information.

14.5 43

Two apparently conflicting desires for an ideal IC process CAD system

are often expressed. The first, the experts' view, implies that the system

be able to make initial decisions about the direction of the resulting design.

The other, the novices' view, asks that the system be able to understand a

fairly complete process design and advise the user on the current step of the

process. The ideal CAD system can address both these requirements equally

well.

The Design Process for IC
Photolithography

CHAPTER 5

This chapter begins with a short description of the integrated circuit (IC)

fabrication process and how IC photolithography fits into ii. Then a t> pical

design process for the photolithography steps is described for a particular

set of goals, and more details are added to the example design problem

introduced in Section 1.3 on Page 5.

5.1 The IC Process

The IC fabrication process consists of from roughly 8 to 16 major separate

sequential fabrication steps. Each step consist? of transferring an image to

the wafer, and performing an actual processing step on the wafer that affects

the regions of the wafer that were defined by the image-transfer operation.

44

15.1 45

The accurate transfer of this image is crucial to the final function of the IC

being fabricated.

The steps that transfer the image to the wafer are lithography. When

these steps are performed u?:ng masks, waves of visible light, and photo

sensitive emulsions, the process is known as optical lithography, or pho

tolithography. Most current lithography is done optically because it is fast

(high wafer throughput), relatively well understood, can be done with com

monly available equipment, and is relatively inexpensive. Photolithography

is, however, fundamentally limited in its capability to reproduce features

on the wafer that are on the order of a wavelength of the exposing light.

(Currently the best experimental photolithographic processes have almost

reached this limit—about 0.5 to 0.7 /zm.) Other lithographic methods de

veloped to advance this resolution capability include "direct writing" on an

emulsion on the wafer with a focused electron beam scanned over the wafer,

and a method similar to photolithography but using x-ray radiation which

has a much shorter wavelength than visible light.

The design of a complete IC process is an immensely complex task that

can only be successfully carried out by experts. The difficulty stems from

many causes, among them:

• Interdependencies among virtually all steps of the process.

• High degree of divergence between theory and practice—actual fabri

cation equipment does not behave like the ideal conditions under which

theoretical principles are derived.

§5.J 46

• Little generally accepted structure to help simplify the conceptual un

derstanding of the entire fabrication process.

• Great economic and competitive pressures to find optimal processes

instead of more easily designed and reproduced adequate ones.

• Literature and other resources that are scattered and largely relevant

only to highly specific IC processes.

• Rigidity, inaccessibility, difficulty of use, or irrelevance of computer

based design and analysis aids.

In these regards, the state of IC process design is similar to the state

of IC circuit and system design ten to fifteen years ago. We can observe the

rapid progress of IC circuit and system design over the last decade and apply

some of those observations almost directly to IC process design. Here are

some relevant observations taken from this reflection:

• IC process designers and their managers must realize that creating op

timal IC process designs is approaching or has already passed the point

of reasonable economic return. The complexities involved greatly favor

accepting less than optimal IC process in return for being able to cre

ate those processes more quickly, more reproducibly, more reliably, and

with a greater understanding of causes of problems. Recent work in UC

Berkeley's Graduate Business School |Byer83; shows the attractiveness

of being able to choose from among an envelope of "near-optimal" solu

tions to a problem, leaving the choice of the most appropriate solution

15.2 47

in light of the tradeoffs involved to the person best able to make these

qualitative judgments.

• IC processes should be decomposed into more independent steps with

simple and well-understood interfaces between the steps. The price is

settling for less-than-optimal IC processes.

• IC processes need to be more portable than currently, so a process

can be reliably transferred from one facility to another, whether in

the same company, between cooperating companies, or from a research

organization to an industrial concern. This favors the decomposition of

the IC process and understanding the interfaces between components.

• IC processes need to be amenable to continuous improvement by in

crementally upgrading single process steps. This again favors decom

position and understanding the interfaces between steps.

• There will always be niches for the highest-speed IC processes, but the

great majority of finished IC products will be those that are fabricated

under the above assumptions.

The research undertaken for this project assumes that the future di

rection of IC process design is the same general direction as IC circuit and

system design has taken. This allows the simplification of the overall IC

process and enables investigating the photolithographic steps more indepen

dently from the rest of the IC process than is usually done in competitive

industrial settings today.

15.3 48

5.2 IC Photolithography Design

The initial design decisions made by an experienced IC photolithography de

signer revolve around the concept of transferring the image from the mask to

the wafer. Image transfer is conceptually divided into two major steps, based

on the physical processes involved. The first major step involves transferring

the image from the mask to the photo-sensitive emulsion ("photoresist," or

often simply "resist") coating the surface of the wafer. This involves choosing

the photoresist material and the piece of equipment that will do the actual

exposing. Since IC processing is a multi-step process, an important part of

this is how well alignment among layers is performed.

The second major step involves transferring the image now on the pho

toresist to the actual wafer underneath. This is usually performed by devel

oping the photoresist, (removing the photoresist that was exposed1), harden

ing the remaining resist, and finally actually performing the processing step

which affects only the parts of the wafer not covered by the remaining resist.

5-3 Initial Planning Decisions

Design decisions span over a range from purely numeric calculations, like cal

culating the required exposure energy from a given graph, to purely heuristic

'Developing positive resist removes exposed resist; developing negative re.-ist removes unex
posed resist. Most resists used in modern IC processes are positive alt hough most resists
in current use (including older technologies) axe negative. All known negative resists
are limited at a resolution of about 3 pm (E1U82! and so are unsuitable for modern IC
processes.

§5.3 49

decisions. This section examines the major initial planning decisions made

when an expert IC process designer works with a set of specifications or re

quirements to plan the general direction that the IC process will take. It is

seen that these decisions are often based on experience and "rules of thumb,"

and that they are best represented in a CAD system by heuristics.

5.3ol Choosing the Aligner

The first major design decision is usually the choice of the aligner, otherwise

known as the stepper or the wafer stepper. This is because any given fab

rication facility usually offers few choices due to the very high cost of these

machines—often about $1 million to purchase and up to $200,000 per year

to maintain and operate for the most advanced aligners. In addition, certain

IC process requirements, the most important of which is resolution, often

narrow the choice of the aligner to very few candidates. Two major factors

influence the choice of an aligner: its optics determine the resolution capa

bility, while its alignment method determines the accuracy with which an

exposure is aligned, or registered, over the exposures of previous processing

steps. Often physical factors, such as wafer size, material, thickness, and

shape, preclude the use of some aligners. In most settings outside the re

search laboratory, the aligner's throughput (wafers per hour) is also a major

consideration.

While specifications are published for the resolution and alignment ca-

bilities of any aligner, experience with these machines tends to dictate the

15.3 50

realistic capabilities used to form decisions. The resolution capability of the

GCA Corporation's 4800 Wafer Stepper is published as being 0.8 ^m. This

is under ideal conditions, with no vertical features on the wafer and no sig

nificant reflections of the exposing light by any boundaries under the resist

coating. Experience shows, however, that 1.2 fim resolution is the best that

can possibly obtained under typical conditions encountered at UC Berkeley's

Electronics Research Laboratory (ERL). The best resolution will vary some

what from this number due to vertical features on the wafer and reflections

from boundaries underneath the resist. This is a classic example of heuristic

knowledge.

5.3.2 Choosing the Etch Method

The second major decision is usually the etching method (for those processing

steps where this is the next step after exposing and developing the resist).

The etchant removes the material uncovered by the resist development step.

On some IC process steps, especially in analog IC processes where component

matching is crucial, this is a critical operation, as it often defines the sizes

of devices like transistors and capacitors.

The major decision concerning etching is wet vs. dry. Wet etching refers

to the conventional approach where the wafer is immersed in a bath of con

centrated acid which attacks the wafer surface where resist has been removed.

Wet etching is completely isotropic, meaning it has no sense of etch direc

tion. Dry etching is performed by subjecting the wafer to a stream or cloud

15.3

z

ANISOTROPIC ETCHING ISOTROPIC ETCHING

JKMST

2

MSVSt

vm vm
\\%CS v'/V

CTOCB

unci
CTCHBJ
UREX

era* oxaccriflM UWERCUT CTCH DIRECTION

51

Figure 5.1: Isotropic and anisotropic etching. Note the high sensitivity of
undercutting to etch extent for isotropic etching.

of ionized gases which reactively etch the wafer surface. The ionized gases

may also be directed by an electric field, thereby being "aimed*" at the wafer.

A strong electric field will overcome random motion of the ions and direct

them toward the wafer. This is called ion milling, in reference to the very

straight sides cut into the wafer by the ions. Ion milling is highly anisotropic,

having a highly directed etch direction. Weaker electric fields allow a higher

fraction of the ions' energy to be in random directions and result in some

undercutting of the wafer surface underneath the resist. Figure 5.1 shows the

spectrum of isotropy and the resulting undercutting.

The problem with undercutting is that it is very difficult to control its

§5.3 52

extent. As seen in Figure 5.1, undercutting is highly sensitive to etch extent

for isotropic etch methods. Some undercutting is unavoidable with isotropic

etching because the etched layer should be slightly overetched to guarantee

full etching across the whole layer. Most IC fabrication processes have a

known "etch bias" which is the increase in linewidth due to undercutting.

Layout designers must take this etch bias into account when deciding on line

widths. Due to thickness differences of the etched layer and fluctuations in

etch uniformity across a wafer or even across a single IC, undercut varia

tion can result in poor capacitor value matching, linewidth variation, and

transistor size variation.

Another good example of heuristic knowledge is evidenced by the ex

pert IC process designer when making a decision about etching. Professor

Ping K. Ko of UC Berkeley's Electronics Research Laboratory, when asked

about what type of etching should be used in the example video-speed A/D

converter, immediately replied "Dry!1* after just hearing that it was to be

an analog circuit. The degree of isotropy is still to be determined, however;

the general rule in this case is to use the highest degree ofanisotropy that

has been shown to work for someone else.

5.3.3 Choosing the Resist Scheme

The resist scheme choice, the third and last major initial planning decision, is

fairly straightforward but is again based almost entirely on heuristic knowl

edge. The general rule here is more or less to ignore published specifications

§5.4

for resists, instead using what has been shown to work under comparable

conditions for previous fabricators.

5.4 Refining the Initial Plan

Once the initial planning decisions have been made, the remainder of the

design process is an iterative refining and verification process. The design
decisions made during the remainder of the design process tend to be less

and less slanted toward heuristics and more toward numeric computations. A

complete listing of the actual design decisions would be too large for inclusion

here, so I will list a few exemplary decisions.

After choosing the resist scheme, for instance, the IC process designer

might first want to derive the required resist film thickness to use. Once

the type of resis't and the current state of the wafer is known, finding the

resist thickness is mostly a matter ofa few table lookups. Given a resist and

desired resist thickness, it is a straightforward curve interpolation exercise

to find the spin speed of the resist spinner2 to obtain the desired thickness.

Once this set of design decisions has been completed, the IC process designer

could actually perform the resist application operation.

Another design decision that would be analogous is finding the ion en

ergy to use if the IC process calls for some degree of anisotropic dry etching.

:Resist is usually applied to a wafer by dripping a small quantity of resist onto the center
of the wafer and spinning the wafer at higli speed*

§5.5 54

The first decision to make is more heuristic in nature, which would be es

timating the maximum allowable undercut. The second decision would be

finding the actual ion energy, which would best be implemented by some

table lookups, using tables specific to each type of dry etcher.

5.5 The Example

In reference to the example introduced in Section 1.3 on Page 5, the set of

design decisions are first broken into the three fundamental steps, the choices

for the aligner, resist, and etch method. Practical and heuristic knowledge

form the basis for these decisions. About 95% of the alignment and exposure

work in ERL's IC laboratory is done with the GCA 4800. so that is usually

the first choice for this step. Its resolution capability is sufficient for most

process requirements.

Once the aligner has been chosen (or assumed, as is usually done), the

next steps are to make some rough calculations to find how closely the pro

cess requirements push the aligner to its resolution limits. These calculations

will usually take into account worst-case projected image degradation due to

focusing errors and reflections from layer boundaries. The image degrada

tion forms the basis for estimating the potential variation of the projected

linewidth. Based on these calculations, the process designer may decide to

choose another aligner, or more typically, to perforin a special step on this

layer that will enhance the projected image and therefore improve the reso

lution.

15.5 30

The next fundamental step to be chosen is the resist scheme. Again,

heuristics usually make this decision. The current favorite resist used at UC

Berkeley's Electronics Research Laboratory for high-definition work is the

KTl 820 positive resist. A few decisions will be made that will form the

rest of the resist scheme, such as whether a special coating will be needed

(an anti-reflection coating may be needed if reflections from the wafer surface

will seriously degrade the projected image). After the resist scheme itself has

been refined, a few calculations need to be performed to find the preferred

resist dilution, spin speed for application, and the exposure dose.

The last fundamental step to be chosen and refined is the etch step.

For good linewidth control; the etch method needs to be at least partially

anisotropic. The only way to perform anisotropic etching at UC Berkeley's

ERL is by dry etching. Once this has been decided, the next decision is the

choice of gas used in the etcher. Some calculations follow this choice to find

what ion energy should be used, the etch rate expected, and the etch time.

It can be seen that the model of selecting the three fundamental IC

photolithography steps from libraries and then refining them one step at a

time is highly applicable to the real IC process design procedure. It is also

clear that different forms of knowledge are used for each decision. Initial

decisions tend to be guided by heuristic knowledge, while later decisions to

refine the initial ones are largely numeric in nature. Seen in another way,

this synthesis procedure begins with a set of strategic decisions that point

the solution in a general direction: these are followed by tactical decisions

that carry the strategy out.

CHAPTER 6

Overview of Cameo's Structure

Cameo's structure attempts to balance the most important requirements

of its application domain using a number of unique techniques. The com

bination of these" techniques into a single integrated and easy to use and

understand system appears to be unique and successful.

6.1 Features Differentiating Cameo

Numerous features differentiate Cameo from other CAD systems. Some stem

directly from the requirements of its application domain, others are poten

tially unique features applicable to many CAD systems, while others are

adaptations of known features to the special case of IC process CAD. The

most important features differentiating Cameo from other CAD systems are:

• Cameo works with a decomposition of the IC photolithography design

process into a set of smaller, more bounded design decisions.

56

16.1 Ol

• Cameo's large body of knowledge is structured into small bits, each

applied to a specific design decision. Each bit of knowledge is imple

mented in whatever fashion is best for the specific design decision.

• The assigning of different types of knowledge to design decisions is

entirely transparent to the user and the rest of the system. Thus new

types of knowledge can be added to the system with a minimal amount

of work.

• Recognizing that most IC process designs are modifications of earlier

designs, an important part of Cameo's data base is a set of libraries of

complete, documented lithography steps.

• Few CAD systems allow users to ask why or how certain decisions are

made. Novice users need this feature to gain confidence in the sys

tem's actions. Every possible design decision that appears on Cameo's

screen has an associated "references file" that can be viewed with a sin

gle keystroke. This references file lists a summary of notes and other

information in a short, easily readable form, and includes a list of fur

ther references for users interested in more detail. These references

often include local experts.

• Cameo's data base design was driven by the tentative nature of any

design process, in which the designer often wishes to explore a number

of alternative designs while keeping uback upsM of earlier designs to

which he can always retreat. This is done with a minimal penalty in

§6.2 58

storage space by taking advantage of the hierarchical inheritance of the

underlying frame-based data representation system.

• Cameo keeps as much information about its own structure as possible

in frames so that rules can be written that reason about the system

itself. One particularly useful application of this structuring is that one

can write meta knowledge, or "rules about rules," which can choose the

best solution method for a design decision.

The explicit separation of Cameo's knowledge from the mechanisms that

use the knowledge is also different from most CAD systems but is a property

of expert systems in general. Cameo also has the potential (not yet exploited)

of explaining its design decision solutions, also different from most CAD

systems but a property of expert systems.

6.2 Overall Description of Cameo

6.2.1 Implementation

Cameo is written in the Heuristic Programming and Representation Lan

guage (HPRL), Hewlett-Packard's frame-based expert systems development

system [Rose82,Lana83a,Lana83b] and runs on a Hewlett-Packard 9836C

computer. HPRL is written in Portable Standard Lisp (PSL)1, developed at

the Universitv of Utah and adapted for the Hewlett-Packard desktop 9830

Portable Standard Lisp (PSL) was developed by the Utah Symbolic Computation Group
at the University of Utah and is copyrighted by it? author?. It is available as public
domain software.

16.2 . 59

computer. The 9836C computer is a Motorola MC68000-based workstation

with capabilities for color graphics, main memory of over 16 megabytes, and

interfaces through the Hewlett-Packard Interface Bus (HP1B)2 to many types

of laboratory instruments.

6.2.2 Appearance of Cameo to the User

The version of PSL available for the 9836 computer includes some extensions

to PSL's standard editor which take advantage of the high bandwidth to the

9836's screen. One of these extensions is a browser facility for many of the

selection tasks constantly performed while editing, such as selecting files to

edit or buffers to visit, finding documentation, and editing directories. This

browser facility is based on the assumption that many tasks are preferably

performed interactively as long as the information bandwidth to and from

the screen is very high, which is the case with the 9836. Cameo's appearance

to the user is based on a special adaptation of the 9836 PSL's browser facility.

This browser facility displays a screen full of lines to the user, where each

line represents one specific object on which the user can perform operations.

In the case of selecting files to edit, the screen shows a list of files, one per

line, and the user can position the cursor over one line and press a key to

perform the operation on the corresponding file. Examples of operations are

editing or deleting the file, searching for matching file names, or reordering

the listing according to size or modification time.

2Hewlett-Packard's implementation of the IEEE-488 1975 Standard Digital Interface for
Programmable Instrumentation.

§6.2 60

Cameo works on much the same idea. Each line in the main browser

represents one design task ofthe overall design problem of photolithography.

The user may position the cursor over any one visible step and press a key

to perform an operation on that step.

Other browsers are used in the system, for instance to display a library of

previously used and documented process steps. Again, the user can position

the cursor over the line that represents that step and perform an operation

like read documentation on the step or choose that step for incorporation

into his process.

6.2.3 Organization of the Knowledge and Data Bases

The key element in the overall design of Cameo is to provide a framework

for assigning specialized mini-experts to specific problems in the overall pho

tolithography design problem. Thus the knowledge base is composed of many

small groupings of knowledge. In this system, as opposed to most others,

the term "knowledge" does not mean only heuristic knowledge, or knowl

edge written as expert-system-type rules, but any collection of information
or methods that is used to solve problems. The most appropriate type of

knowledge is assigned to each specific design task, whether that means plug-

ging values into a formula or calling HPRL's inference engine.

Cameo's data base is composed of five major parts, as follows:

• the plan skeleton. This is essentially a template of a complete lithog

raphy plan with no data in it. Each slot of this frame (a slot is much

S6.2

like a field of a record or structure in other programming languages)

will represent one specific design task. The plan skeleton reflects the

research results of the decomposition of the overall photolithography

design task into the separate subproblems. The plan skeleton has very

little structure of its own; only providing data storage.

• the evolving set of working plans (refer to the short summary of ter

minology in Section 3.1 on Page 24 for this use of "plan"). These are

dynamically changing under the user's control.

• a set of description frames. The description frames describe the struc

ture of the plans, both in terms of the time-sequence of the design

decisions and the data dependencies among them. Each description

frame describes one slot in the plan skeleton, and specifies things like

the appearance of that slot in the browser, its dependence on other

slots in the plan skeleton, which design decisions to show after this one

has been answered, the type of mini-expert to use to find a value for

the slot, and many other pieces of information that are needed to tie

together the various other parts of the system.

• the libraries of previously used and documented steps. The user may

browse through these libraries and select a step for incorporation into

his lithography steps. This approach was used because many design

decisions rely heavily on previously successful designs, and often consist

of picking appropriate existing designs and making minor modification:*

or refinements on them. Thus the idea of a set of step libraries is useful.

16.3 62

• the reference files, one of which is assigned to each slot of the plan

skeleton. The user may view the reference file for the design decision

he is considering at any time. The files are short (less than one screenful

if possible) and hold summary information about the design decision

plus pointers to further references.

Only the working plans change as the system works on a particular IC process

design. All other parts of the data base are static during each use of the

system.

6.3 Description of HPRL and PSL

Hewlett-Packard's Heuristic Programming and Representation Language is

a frame-based system modeled after FRL [Robe77a,Robe77bJ. A frame, is a

data structure that is similar to a structure or record in languages like C or

Pascal. Where members of structures or records are called fields, members of

frames are called slots. Two major differences between frames and structures

of other languages are that

• frames can be dynamically changed. They can have slots added and

removed after the frame has been defined.

• frame-based systems often support inheritance. With inheritance, a

frame appears to have slots that were actually defined in a parent.

Adding data to a slot in a parent frame makes that data appear to

exist in a child as well.

§6.3 63

A short example will explain. Say a frame is defined, called

"aligner." Slots of this frame may include some named "alignment-accuracy,"

"alignment-method," and "location." Now define another frame, called

"GCA." This is a specific aligner, so the definition of this frame will specify

that it shall inherit from the "aligner" frame defined earlier. (In keeping with

the terminology of frame-based systems, the "GCA" frame is an instance of

the "aligner" frame.) The alignment method of a GCA aligner is "Fresnel

Zone," so that data will be put in the "GCA" frame. Suppose that in the

fabrication line we are describing, all aligners are in the same physical area

on the fabrication line and so can be considered to have the same location.

To accomplish this, the value "aligner-area" is installed in the "location" slot

of the "aligner" frame. Now all frames that inherit data from the "aligner"

frame will all have the value "aligner-area" in their "location" slots.

The structuring of data into hierarchical inheritance trees closely resem

bles how people often think of data. It seems natural to think of things as

belonging to classes, and apply general rules to all things in that class. This

is how rules can be written in HPRL. A rule might express the fact that all

aligners are expensive. Only one rule needs to be written, as long as the

data is structured as in the example above. If the program needs to know

whether a specific object is expensive, the system might discover that the

object is a kind of aligner and that a rule exists that says that aligners are

expensive.

Cameo's working plans data base also takes advantage of the hierarchical

inheritance provided by HPRL frames. Any new plans that are generated

§6.4 64

inherit all the information from the older plans (their parent plans) from

which they are generated. The new plans will also add some data of their

own. This mimics the exploratory manner in which process designers develop

processes, where a single design might be split into several at many points

in the design process, in order to try out different alternatives.

The step libraries are good examples of the inheritance technique. Each

step in a library is an instance of a blank step frame "template" with no

data. Each complete step in the library inherits all of the slots of the step

frame template, and provides all its own data.

6.4 Overall Structure

The overall structure of Cameo is shown in Figure 6.1. Major functions are

performed by separate parts of the system, leading to higher flexibility and

modularity.

The user interacts solely with the display manager. A plan is displayed

on the computer's screen as a set of lines, one line per problem. The user

performs an operation on one ofthese problems by scrolling acursor over the

plan, leaving it on the line representing the problem, and selecting operations

to perform on the plan by typing a single key. The lines representing prob

lems are grouped and indented to reflect the problems' hierarchical structure.

Figure 6.2 shows an example of the screen during the system's running.

When the user has selected a problem and has pushed a key to perform

an-operation, the display manager sends a message to the program control

§6.4

USER

i
D1SPLHY

RRNR6ER

U

"

PROGRfiTt CONTROL

nfiNRGER

A i

V

KNOWLEDGE DflTfi

BflSE BftSE

Figure 6.1: Cameo's overall software structure

65

manager telling it which operation the user selected and which problem to

operate on. The program control manager performs the operation, looking

up additional information in the plan skeleton and the description frame for

this problem.

For instance, one of the operations the user can perform on a problem is

the derive operation, which uses the mini-expert for this problem to attempt

to solve it. If the user selects the derive operation, the program control

manager activates the mini-expert found by examining the corresponding

16.6 66

description frame. The mini-expert then attempts to find a solution for the

selected problem. When the operation is completed, control returns to the

display manager, which updates the screen if necessary and waits for new

input from the user.

6.5 The Display Manager

Cameo's display manager is based on the NMODE3 browser extensions to

PSL for the Hewlett Packard 9836 desktop computer. The browser facility

is implemented using PSL's object-oriented programming features. An item

in a browser is represented by a PSL object which has methods for a few

standard messages needed to maintain and update the browser.

An example of the display screen during the running of the system

is shown in Figure 6.2. The operations shown in Table 6.1 are currently

supported in the most recent version of Cameo. Each operation is performed

by positioning the cursor on the desired line and typing the first letter of the

operation shown.

6.6 The Program Control Manager

As described in Section 6.5 on Page 66, each item in the browser is repre

sented by a PSL object which responds to a few standard messages related

3NMODE is an EMACS-like extension to PSL developed at Hewlett-Packard Laboratories
and copyrighted by Hewlett-Packard Company. It if based on an earlier editor, EMODE,
developed by William F. Galway at the University of Utah.

§6.6 67

Operation Operation
Type*

Description

7 View Help on using this screen.

Refs View Shows a reference file specific to this problem.
References files give the user the purpose of
the step, special notes on it, references to lit
erature or other people, etc.

Derive Plan Have the system use the mini-expert for this
problem to attempt to solve it.

Provide Plan Allow the user to provide his own solution to
this design decision.

Override Plan Override (replace) the solution for this design
decision. Ideally, this would invalidate other
answers that depend on this one. Currently it
does only a part of this.

Expand Display Shows the next level of detail below the prob

Collapse Display
lem.

Collapses all levels of detail below the selected
problem (in the same plan).

Split Plan Copies (splits) the plan of which the selected |
problem is a part. Results in two identical |
plans which can be operated on independently. !

Nev/ Plan Builds a new plan that has no problems
solved.

Kill Plan Kills the entire plan of the selected problem.
After user confirmation, it is removed from the
data base. |

*A view operation type temporarily shows another buffer on the screen, a
plan operation type alters the plan and possibly also the display, and a display
operation type alters only the display.

Table 6.1: Operations supported by Cameo's Display Manager

§6.6 68

to maintaining and updating the browser. Each object represented in the

browser has additional methods defined that control the solution of the spe

cific problems it represents. The inheritance feature of PSL objects allows the

definition of the common methods in a "generic" object while other objects

may inherit all those methods and add their own specific ones. The defini

tions of these specific objects and their methods form the program control

manager.

While each specific type of object may define different methods, all are

required to respond to the same messages. For instance, the generic object

defines a "solve" method which is invoked when the user chooses to run the

"Derive" operation. The "solve" method ofthe generic object performs some

operations common to all solution methods, then sends the "solve-specific"

message to itself. Each specific type of object must respond to this "solve-

specific" message in whatever way is appropriate for its own type. Defining

an entirely new type of object mainly involves defining its own method for the

"solve-specific" message. Thus extensions to Cameo are easily accomplished,

and the specific type of an object does not need to be known by any part of

the rest of the system.

The current version of Cameo defines four specific types of objects, de

pending on the solution method required. The use of these different solution
methods and the transparent manner of assigning them to design problem?

is unique to Cameo. The four object types defined are:

§6./

• Backward-chain-control— for problems that require calling HPRL's in

ference engine.4

• Matrix-control—for problems that require looking up in a one- or two-

dimensional symbolic table. Only exact matches to row and column

values are allowed, and no interpolation can be done.

• Graph-control—for problems that require looking up in a two- or three-

dimensional graph or table. Numeric interpolation is performed.

• Nothing-control—for placeholders or outline headings in the browser,

where no actual problem is represented but a line of text is desired

simply for aiding the displayed structure of the screen.

6.7 The Knowledge Base

Cameo's knowledge base, in contrast to many other systems using heuristics,

is a collection of different kinds of knowledge. Each bit of knowledge that is

intended to be used for one specific problem is called a mini-expert.

Even though most knowledge can be expressed in terms of production

rules, often forcing knowledge into a single form is both computationally

inefficient and conceptually difficult. The ability to provide different ways

of expressing knowledge allows matching the problem type with the most

appropriate solution. If the use of different knowledge types is transparent

'Backward-chain-control objects are also used for problem? that use formula* or call arbi
trary procedures. See Section 7.1.4 on Page 94 for a detailed discussion.

§6./

to the remainder of the system, the knowledge base can be incrementally

changed as needed.

The one type of knowledge most often associated with heuristic-based

systems is acollection of heuristic rules. In HPRL and many other heuristic
programming systems it is possible to group rules into domains (sometimes
called rule sets). For problems which are solved by backward-chaining with

a certain rule domain, that rule domain is the mini-expert for that problem.

See Code List 6.1 for an example of a rule that is a member of a certain

rule domain. As will be described later (Section 6.8.3 on Page 74), some of

the knowledge in Cameo's knowledge base is designed to choose from among

a number of mini-experts for a specific design decision. This allows meta

knowledge, or "rules about rules," to be used, giving Cameo something like

strategic knowledge in addition to tactical knowledge.

The heuristic programming system's inference engine can.be told which

rule domain to use to attempt to solve for a certain goal. Specifying a sin

gle rule domain to use limits the number of rules that are used to attempt

to satisfy a goal. In addition, it allows the heuristic programming system

designers to take advantage of special indexing or hashing schemes to speed
rule searching. The most important benefit from the standpoint of Cameo's

development is that dividing rules into domains greatly improves the mod

ularity of the knowledge base. This was acritical requirement for Cameo's

development, since its design assumes the ability to divide a large body of

knowledge into small and manageable bits.

16.7

Current

Mask

Layer:

Which Mask Layer to Align to

Optimizing For:
Yield Linewidth Control

N Well — —

Active Area N Well N Well

Field Implant Active Area Active Area

Gate Active Area Active Area

N-j- Implant Active Area Active Area

P-f Implant Active Area Active Area

Contact Gate Active Area

Metal Contact Contact

71

Table 6.2: Knowledge in the form of a symbolic table. This table shows the
previous mask layer that should be aligned to as a function of which quantity
the user is trying to optimize.

Often solutions to a problem can be found without relying on the

pattern-matching and goal-solving abilities of artificial intelligence tech

niques. Instead, an answer can often be found simply by looking in a table.

So two other forms of knowledge supported by Cameo are table lookup, one

symbolic and the other numeric. The knowledge of a symbolic table is in the

form of a table, or matrix, as shown in Table 6.2. To find an answer for a

problem using a symbolic table, the system must provide exact matches for

the row and column. Clearly no interpolation can be done.

The knowledge in a numeric table is similar to the symbolic table but

interpolation can be done between adjacent rows and columns. Cameo al

lows the use of two-dimensional or three-dimensional numeric tables. Three-

16.8 72

dimensional tables are internally expressed as a family of two-dimensional

tables.

6.8 The Data Base

Cameo's data base consists of five major components. Four, the plan skeleton,

the description frames, the step libraries, and the reference files, are static, in

that they do not change during a single run of the system. The other major

component, the set of evolving working plans, is the part of the data base

that reflects the current set of IC photolithography designs being considered

by the user. Figure 6.3 shows these five elements of the data base.

6.8.1 The Plan Skeleton

Functioning much as a template for the working plans, the plan skeleton

provides only the structure of the slots where data will eventually reside in

the working plans. Working plans (described later in Section 6.8.2) use the

inheritance properties of HPRL frames to inherit the slots from the plan

skeleton. Each problem shown in the browser is a single slot in a frame of

the plan skeleton.

The structure of the plan skeleton is that of a two-level tree. The top

level (root) is an HPRL frame that contains slots for common information

about the plan, pointers to major steps of the photolithography process, and

pointers to frames that contains requirements, specifications, and informa

tion about the current state of the wafer. Nothing is installed in these slots

yet, as the plan skeleton functions strictly as a template.

16.8 73

6.8.2 The Working Plans

All working plans inherit the slots defined in the plan skeleton. Whenever

the user finds or provides an answer to any problem, data is added to a

working plan. In addition, when a major step is chosen from a step library

(see Section 6.8.4 on Page 76), the name of that step's frame is installed in

the current working plan.

The structure of the working plans data base was developed to provide

support for the tentative nature of exploratory design. A major requirement

of a synthesis system such as Cameo is to allow the user to make tentative

decisions, explore their ramifications, and either proceed or retract the deci

sions. Since a general solution to this problem is a major area of research in

itself, only a simple (and limited) capability was built into Cameo.

The user can split a working plan into two identical, independent plans

(see Figure 6.4). This is accomplished by building two entirely new working

plans, both immediate children of the original working plan the user wants to

split. The two new working plans are added to the browser and the original

working plan is removed from it. Thus the user cannot change the original

working plan (because it is not shown on the browser) but must now work

with the new children. The original working plan is not, however, removed

from the data base, because it probably contains data that its children in

herit.

The user may now work on one plan (splitting it again if he desires) and

can always back up to the original state of the plan. Plans may be split as

16.8 74

many times as desired. One may think of splitting a plan as performing a

"back up" of it. By using the "Collapse" command of the display manager,

the user may collapse the display of any plan on the system's screen down

to a single line, leaving the plan accessible but greatly reduces clutter on

the screen. Thus the user may make intermediate copies of plans but can

continue to concentrate on more up-to-date copies.

Sometimes a mini-expert will return more than one possible answer to a

problem. What this really means is that more than one working plan may be

a valid solution to the user's design problem, so the logically correct action

is to split the current working plan once for each answer. First, though,

the user is shown all the multiple solutions derived by the system, and may

choose any or all of them for further consideration. This again allows the

user more control over Cameo's reasoning process and prevents runaway plan

splits.

Each new working plan is a direct child of the original working plan.

As in two-way splitting under the user's control, the original working plan is

removed from the browser but remains in the data base.

6.8.3 The Description Frames

Description frames are the "glue" of the system. They contain the informa

tion that ties together and gives structure to the data in the plan skeleton

and working plans, and associates mini-experts in the knowledge base with

slots in the plan skeleton. One description frame is required for each problem

§6.5 ,0

that is displayed in the browser. The description frames and their contents

are static, in that they do not change as the system runs.

Some of the information given in a description frame includes

• The type ofmini-expert to use to find an answer for this problem.

• Any further information needed by the mini-expert. This information

will depend on the type of mini-expert.

• How the problem is to appear in the browser.

• A listing of the problems which may appear on the browser once a

value for this problem is found.

• A listing of the slots which the answer to this problem depends on.

Since the" basic structure, dependencies, and other vital information

about Cameo is stored in these dependency frames, rules can. be written

about these as well. This kind of knowledge, knowledge about its own struc

ture, is one criterion that is sometimes used to distinguish an expert system

from other kinds of systems. One useful application of this meta knowledge is

to enable the system to pick aspecific mini-expert from a number of possible

ones for a certain problem. One particularly useful application has been to

select a certain curve from a family of curves of a three-dimensional graph.

16.9

6.8.4 The Step Libraries

The last major component of Cameo's data base is the step libraries. These

are sets of frames with many values (answers) already provided. One library

of steps exists for each of the three major steps of photolithography, the resist
scheme, the alignment and exposure step, and the etch step. The user may

browse through each library, find references on each step in the library, and

may also read in a personal library from a floppy disk.

These frames can be linked into a working plan. The advantage of

using libraries of steps, especially in an area like photolithography, is that

a complete, tested, and documented major step can be added to anyone's
plan. Information and experience in the form of step libraries can be passed

along to future researchers.

6.8.5 The Reference Files

One reference file is provided for every design decision ever shown on Cameo's

screen. The reference file is supposed to answer the "Why?" questions about

the decision, or supply enough information for the user to find out more. The

user can view the reference file/or any item on Cameo's screen by positioning

the cursor on that item and typing the Rkey for "References." The reference

files are intended to be easily read and understood. They are kept to asingle

screenful if at all possible.

16.9 77

6.9 Chapter Summary

Numerous features differentiate Cameo from other CAD systems. Many are

unique because the combination of its application (IC process design) and

implementation as a flexible frame-based expert system is unique. Some

features, however, should be applicable to more general CAD problems.

The most important features are those having to do with the decom

position of the very complex IC process design problem into individually

manageable design decisions. The large body of knowledge about IC process

design is split into bits of knowledge, each of which is assigned to a single

design decision. Libraries of previously successful major steps are. provided

since much IC process design is modification of previous processes. All these

features were driven by Cameo's specific application.

Every design decision displayed on Cameo's screen has an associated

references file which answers questions like "How?" and "Why?" Cameo's

data base design reflects the tentative and exploratory nature of IC process

design. Use of Cameo is highly interactive and the user feels in control of

the system at all times. These features should be applicable to other CAD

systems beyond IC process design.

Together, these features enable Cameo to be used easily by novice IC

process designers. It is hoped that extensions to Cameo will enable it to be

equally useful to experts.

16.9

CAMEO PHOTOLITHOGRAPHY DESIGN

PLA1!: Initial Plan

—PROCESS REQUIREMENTS—
Alignment Accuracy (3 sigma): 1 micron
Field Size: 5 mm

Minimum Feature Size: 2 microns

Optimizing for: DIME!.'SI0i!-C0i!TR0L
—VfAFER STATE— [more...]
Aligning and Exposure: GCA-1

Machine: GCA

Type: PROJECTION
Field Size: 10 mm

Resolution: 1.2 microns

Alignment Error (3-sigma): 0.3 microns
Reduction Ratio: 10

Exposure V/avelength: 4360 angstroms
Numerical Aperture: 0.28

—Contrast and Linewidth Variation Calculations— [more...]
Align To

Resist Scheme: KTI820-1

--Preparation—
Resist: KTI820

Resist Thickness: 1.04 microns

Viscosity: 20.0 est
Spin Speed: 4928.47143 RPM

Refractive Index: 1.62 [more...]
Etch Method: DRY-1 [more...]

? Refs [Derive/Provide/Override] [Expand/Collapse] [Split] [Ile-A'/Kill-plan]

Figure 6.2: Screen example from actual running of Cameo. Note grouping
and indentation to reflect hierarchical structure of the design process. Avail
able commands are at the bottom of the screen. Items with [more. . .] can
be further expanded.

16.9

% Define the rule domain aligning-step-domain

(rule-domain aligning-step-domain backward-chain)

% Define the generic rule aligning-step-rule

(fassert aligning-step-rule
(ako ($value (backward-chain-rule)))

(domain ($value (aligning-step-domain))))

% When to use the GCA stepper

(rule use-gca aligning-step-rule
(premise (and (?process-plan specs ?specs)

(?process-plan wafer ?wafer)
(?specs minimum-linewidth ?lw

(geq ?lw 1.2))

(?wafer field-size ?wfs (leq ?wfs 10))

(*usable-equipment»• aligner gca)))
(conclusion (?process-plan aligning gca)))

79

Code List 6.1: example of a rule in the knowledge base. First is the defi
nition of a new rule domain, aligning-step-domain. Next is the definition
of a generic rule, aligning-step-rule, all of whose children will inherit
its domain. Finally, the rule, use-gca, is defined to be type of align
ing-step-rule, and so it is a member of the aligning-step-domain do
main. This rule says that the GCA is a valid aligner to use if the minimum
linewidth is greater than 1.2 microns, the field size less than 10mm, and the
GCA can be used by the user.

§6.9 80

STEP LIBRARIES

Figure 6.3: The main components of the data base.

16.9

BEFORE SPLIT

r PLAN

!SKELETON

t

VISIBLE
WORKING

PLRN

{vis
SwQR

RFTER SPLIT

PLAN

SKELETON

%

[previous]
! WORKING|
I PLBN

4nHERITRNc£\
LINKS

vSl I«pu£j I PLfiN

\

81

Figure 6.4: SpHtting aworking plan. Each working plan splits into tw,
children, and the previous working plan is removed from the browser.

_CHAPTER 7

Cameo's Knowledge Base

Cameo's knowledge base contains the "knowledge" which makes it an expert

in the domain of choosing and refining steps of an IC photolithography plan.

Its main features are its modularity and its ability to express different kinds

of knowledge in different ways. Each bit, or module, of special knowledge is

termed a "mini-expert."

Examples and listings of bit. of knowledge are given throughout this

chapter. It should be understood that Cameo is aconstantly evolving system,

and that the specific code fragments or listings shown in this chapter may

not be what is contained in the most recent version of the system. They

should be considered only as informative illustration? of the principles being

discussed.

83
§7.1

7-1 Kinds of Knowledge

Knowledge about any domain takes many forms. Most expert systems to

date have used only one form ofknowledge, heuristics. Most ofthese express

their knowledge in terms of production rules, or productions, which are IF
... THEN ... patterns. While production rules are ideal for expressing the

"rules of thumb" that make up a great deal of an expert's knowledge, the

best approach in building aknowledge base is to use production rules as yet

another programming tool for knowledge and data representation in addition

to more conventional tools like tables, graphs, and formulas. An expert

system that can truly be claimed to perform as an expert must have all

these forms of knowledge equally available to it.

Four major classifications of knowledge were identified as being partic

ularly necessary for an IC process CAD system: heuristics, numeric tables,

symbolic tables, and formulas. The kind of knowledge used for each design

decision is based on the method an experienced IC process designer uses to

solve the same problem. The types of knowledge can be- expected to grow

as more experience is gained in entering knowledge into the system. One

type of knowledge that might be a valuable addition is an interface to an

external, laboratory-wide data base system that could provide current data

such as equipment status, user permissions on equipment, reservation sched

ules on equipment, current and projected inventory of critical supplies and

chemicals.

§7.J 84

Each mini-expert type might be best considered as an abstract data

type. As will be explained in detail in this chapter, each type of mini-expert

has a certain internal data structure and a few special algorithms that operate

on that data structure to provide answers to design decisions.

7.1.1 Heuristic Knowledge

As seen in Section 5.3 on Page 48, many of the initial planning decisions tend

to be made on the basis of largely heuristic knowledge. Thus .the inclusion

of a way to represent heuristic knowledge is a critical factor in the success of

this system.

In HPRL, heuristic knowledge is expressed as a Lisp form. Code List 7.1

shows an example of a rule domain and rule definition in HPRL. (This is the

same code list as Code List 6.1 on Page 79.) The first line of the rule specifies

that the rule is named use-gca, and that it is a member of the aligning-

step-rule rule domain.

The premise is satisfied if all of the conditions listed are satisfied: the

specifications given to the system show the minimum required linewidth is

greater than or equal to 1.2 /im, the field size (maximum length or width of

the finished IC) is less than or equal to 10 mm, and the user is listed as a

valid user of the GCA aligner. When the premise is satisfied, the conclusion

installs the value gca into the aligning slot of the process-plan frame.

HPRL rules allow local variables to be used within each rule. Local

variables in a rule are introduced by a question mark (?). Each time a

§7.1

%Define the rule domain aligning-step-doaain
(rule-domain aligning-step-domain backward-chain)

•/, Define the generic rule aligning-step-rule
(fassert aligning-step-rule

(ako ($value (backward-chain-rule)))
(domain ($value (aligning-step-domain))))

7. When to use the GCA stepper
(rule use-gca aligning-step-rule

(premise (and (?process-plan specs ?specs)
(?process-plan wafer ?wafer)
(?specs minimum-linewidth ?lw

(geq ?lv; 1.2))
(?wafer field-size ?wfs (leq ?wfs 10))
(*usable-equipment* aligner gca)))

(conclusion (?process-plan aligning gca)))

85

Code List 7.1: Example of a rule and rule domain in the knowledge base.

rule is being considered, it may be applied to many different frames in the

data base. The rule is "instantiated" once each time a unique potential

match is found for it. Each instance of the rule then has its local variables

assigned specific values according to the data in the frames that this instance

is working with.

For instance, assume that the rule in Code List 7.3 is being run by

HPRL's inference engine, and the process plan it is being applied to is

process-plan-4. Assume further that the frame holding the specs step

§7.J . 86

(the "Process Requirements") is named specs-4 and the frame holding the

wafer step (the "Wafer State") is wafer-4. In the frame specs-4 the

minimum-linewidth slot has the value 2.0 and the field-size slot has

the value 7. The variables in this instance of this rule will now have the

following bindings, or values:

Rule's Local Variable Binding
?process-plan process-plan-4
?specs specs-4
?wafer wafer-4

?lw 2.0

?wfs 7

The second clause of the rule's premise,

(?specs minimum-linewidth ?lw (geq ?lw 1.2))

contains an extra form which only allows the clause to conclude successfully

if the current binding of the local variable ?lw is greater than or equal to

1.2. The third clause has a similar form that requires the wafer's field size

to be less than or equal to 10 mm.

Each HPRL rule domain is one mini-expert. The rules contained in a

rule domain form a self-contained bit of knowledge for the design decision

they are assigned to. HPRL's inference engine may be instructed to con

sider only the rules contained in a single rule domain while performing its

backward chaining, by assigning the name of the rule domain to a global

variable:

(setq ♦backward-chain-donain* 'aligning-step-donain)

§7.J 87

This requires that HPRL only use rules contained in the rule domain

aligning-step-domain.

A mini-expert type might be considered as being an abstract data type.

The code shown in Code List 7.2 is the code for the solve-specif ic method

of the mini-expert of type backward-chain-control. This is the major al

gorithm corresponding to the abstract data type. The major work in the

method is in the call to the solve-all function, a built-in HPRL function

that runs the inference engine on the goal given as the argument and us

ing only the rules contained in the rule domain given by the value of the

♦backward-chain-domain* variable.

7.1.2 Numeric Tables, or Graphs

In addition to heuristic knowledge, much of the information used by an

expert IC process designer is in the form of numeric tables. Once an initial

IC process design has been sketched out, an'expert will often refer to tables

or graphs to derive specific values for a design decision. For instance, once

a resist has been chosen and a desired film thickness has been decided on,

it is a simple matter of looking up in a published table or graph to find the

spin speed at which the resist should be applied to the wafer. The problem

is the availability of this data to the researcher.

Cameo's knowledge base contains data in the form of two- or three-

dimensional numeric tables, and can find values from these tables by using

simple linear interpolation. Each numeric table is a separate mini-expcr:

17.1 88

in the system's knowledge base. From the user's point of view, there is no

difference between finding information with heuristic knowledge or a numeric

operation.

Code List 7.3 shows an example of the definition of a three-dimensional

numeric table (or graph) in Cameo's knowledge base. Once the graph is

entered into the system by the commands shown in the code list, a lookup is

performed by sending the newly created graph object the "lookup" message

with arguments for the thickness and viscosity values. A separate function,

called find-graph-by-name, finds the appropriate graph given its name.

The entire lookup operation is performed by issuing the following command

inside Cameo's Lisp environment:

(=> (find-graph-byname 'kti820-spin-speed-graph)

lookup 20.0 1.0)

The function whose name is "=>" is how message sending is invoked in

PSL. Its first argument, the result of the function call

(find-graph-by-name 'kti820-spin-speed-graph)

is the object which is to receive the message; its second argument, lookup,

is the actual message; and the remaining arguments are arguments of the

message itself. The first one, 20.0, is the viscosity curve to use, and the

second, 1.0, is the desired thickness.

The solve-specific method for the three-d-graph-control object

is shown in Code List 7.4. Thus the three-d-graph-control mini-expert

/.J

type can be considered as an abstract data type that represents data in the

form of a numeric table and supports the solve-specif ic algorithm.

This graph's lookup method, which is defined in the definition of the

generic object three-d-graph, performs a linear interpolation between x-axis

points and between curves ofthe graph. In this case, there is an exact match

between the curve value, 20.0, and a curve in the graph, but interpolation is

required between two points specified on this curve, (1.03 5000.0) and (0.96

6000.0). The value returned by the message in this example is a spin speed of

5428.5714. Only the first two digits are meaningful for most resist spinners.

A graph in Cameo's knowledge base is viewed on a graphics screen when

the user requests further references on the corresponding design decision. A

plot of the grapn" defined in Code List 7.3 is shown in Figure 7.1. This plot

appears on a separate graphics screen when the user types the R key for

references on this design decision.

Graphs with only one curve may be entered into Cameo's knowledge

base either as three-dimensional graphs like the example above but with just

one curve, or as an object of type utwo-d-graph." From the user's point of

view, there is no difference. From the programmer's point of view, the only

differences are a slight syntactic difference in the initialization (since there

is only one curve, the initialization of the curve variable is slightly simpler),

and the lookup message requires only one argument, the x-axis value.

Data that are best represented by graphs are purely numeric rela

tionships that cannot be expressed analytically with the required accuracy.

§-; 90

KTI82B-SP IN-SP££D-«flPH VISCOSITY

ee. a

a. 28 THICKNESS 3.19

Figure 7.1: Plot of spin speed graph for KTI 820 resist. Each curve corre
sponds to one viscosity value,.shown at the bottom of each curve.

Graphs do, however, have a limited numeric range. They also take up much

more memory than a simple analytic relationship, for example. Other mini-

experts that are (or could be) expressed as either two- or three-dimensional

graphs include:

• Projected image contrast as a function of line pitch and optical system

defocus.

• Exposure time as a function of resist absorption and exposure ener2V

91

§7.J

density of the aligner.

• Required degree of anisotropy as a function of etched-film thickness
and desired maximum undercut.

• Developing time as afunction of resist thickness and exposure dose.

• Etch time (for wet etching) as afunction of etched-film thickness and

etchant concentration.

• Etch time (for anisotropic dry etching) as a function of etched-film

thickness and ion energy.

• Etch time (for isotropic dry etching) as afunction of etched-film thick

ness.

Note that the design decisions that are best implemented by graph

lookup are all relatively low-level decisions, occur late in the design pro

cess, and are involved mainly in refining the plan. The data expressed by

the graph is usually data that appear? as a graph or as numeric tables in

literature. This was a general observation made throughout this research.

It is an important observation because of the consistent manner in which it

appears to be true.

7.1.3 Symbolic Tables

Symbolic tables are similar to the numeric tables of Section 7.1.2 but have a

few significant differences, the most important of which is that exact matches

17.1 92

to values in the symbolic table are required. This implies that no interpola

tion can be performed. Each symbolic table is a mini-expert.

An example of the use of a symbolic table iswhen the user asks Cameo to

derive which previous layer the current mask should be aligned to. This is a

critical decision which involves a basic trade off between the finished circuit's

performance and manufacturing yield. When one mask layer is aligned to

an existing layer on the wafer, the alignment error between those two layers

is minimized. If the mask is aligned to layer A which was aligned to layer B,

the maximum alignment error between the current layer and layer B will be

greater than if the current layer were aligned directly to layer B.

The yield-performance tradeoff occurs because optimizing performance

requires minimizing overlap areas between layers, while optimizing yield re

quires maximizing some of these areas. Due to accumulating alignment er

rors, critical layers whose feature sizes need to minimized for optimizing

performance need to be aligned to each other. This increases the alignment

errors of these layers to other layers. If the alignment errors accumulate

sufficiently, two unrelated features on the wafer may be connected, causing

a catastrophic failure.

The knowledge involved in deciding which layer to align to can be ex

pressed as asimple symbolic table. The table in Table 7.1 shows the knowl
edge about aligning to layers for a simple single-gate-layer CMOS process

(this is the same table as Table 6.2 on Page 71). An excerpt from the actual
code that defines this table is shown in Code List 7.5. Here again an object

§7.1

Current

Mask

Layer:

Which Mask Layer to Align to

• N Well

Active Area

Field Implant
Gate

N-i- Implant
P-i- Implant

Contact

Metal

Optimizing For:
Yield Performance

N Well

Active Area

Active Area

Active Area

Active Area

Gate

Contact

N Well

Active Area

Active Area

Active Area

Active Area

Active Area

Contact

Table 7.1: knowledge in the form of a symbolic table. This table shows the
previous mask layer that should be aligned to as a function of which quantity
the user is trying to optimize.

of type matrix is instantiated. The next three lines initialize the variables

called matrix-name, columns-label, and rov/s-label, and then the vari

able init-values is initialized with the list of three-element lists, each of

the form

(value row column)

Again, the way to find a value is by sending the lookup message with

two arguments, the row and column values, to the object representing this

symbolic table.

\7.2 94

7.1.4 Formulas and Arbitrary Procedure Calls

For knowledge to be best expressed as a formula, the relationship between

the independent variable(s) and the dependent variables must be very close

to the .behavior of the physical phenomenon over a wide range of variable

values. The formula should probably express knowledge about ideal physical

phenomena, such as an inverse square law of light intensity. The relationship

seen earlier with spin speed as a function of resist viscosity and desired film

thickness would not be a suitable candidate because the relationship does not

correspond closely to an analytic formula. It is easier and more "natural"

to express this particular knowledge as a numeric graph. Knowledge in the

form of a formula will probably be much more compact in memory than a

graph, however, so a tradeoff must be made between accuracy and size.

In Cameo formulas and procedure calls are handled by a special use of

backward-chaining rules. HPRL's rule syntax allows formulas and arbitrary

procedure calls to be invoked a simple and elegant way while the inference

engine runs. An example of a mini-expert implemented as a formula is shown

in Code List 7.6. If all clauses of the premise of this rule return true, the rule

concludes. This then calls the function * with two arguments, the current

binding of ?ms (1.2) and 2. The function's return value is stored in the

thickness slot of the resist-scheme-4 frame.

The function called to provide the data in the conclusion of an HPRL

rule may be any function whatsoever with any combination of arguments.

This is how arbitrarily complex procedures are used as mini-experts for

Cameo.

\7.2 95

7.2 Meta Knowledge

Meta knowledge is knowledge about knowledge. In Cameo, meta knowledge

is used to choose a mini-expert from among a number of potential mini-

experts for a specific design decision. Other applications for meta knowledge

abound; much current research is investigating possible applications (see

Chapter 7 of (Haye83j). The general idea of a system using meta knowl

edge to reason about and modify its own structure is appealing for many

applications.

In the method for a "solve" message, if the mini-expert for the current

design decision has not been assigned yet. Cameo changes the backward

chaining domain to select-mini-expert-domain, which contains all the

rules about choosing mini-experts, and tries to find the appropriate mini-

expert by backward chaining. This situation occurs commonly, since the

three major photolithography steps are chosen from a library either by Cameo

or the user, and many further decisions will depend on this choice.

For instance, while the ideal photoresist might be perfectly char-

acterizable for the purpose of determining the spin speed resulting in

a desired film thickness, real resists are not so ideal. Each type and

brand of resist has different curves relating viscosity, film thickness, and

spin speed. The choice of mini-expert for this design decision cannot

be made until the resist scheme is chosen. The rule shown in Code

List 7.7, a member of the select-mini-expert-domain, says that the graph

§7.3 9G

kti820-spin-speed-graph should become the mini-expert for this problem

if this resist scheme's resist is kti820.

7.3 Example

The example introduced in Section 1.3 on Page 5 presents some informative

examples of the kinds of knowledge expressed in Cameo. Some of the design

decisions relating to choosing and refining the resist scheme are presented

here.

The first decision to make about a resist scheme is choosing the actual re

sist material. This decision is based largely on heuristics: the usual approach

is to use the same resist that someone else with similar requirements had used

successfully before. At the time this system was being developed, a favorite

resist for any high-definition work over about 1/im was KTI Chemicals's KTI

820 positive photoresist. Thus one rule in the resist-schece-step-donain

is

(rule use-kti820 resist-scheme-step-rule

(premise (in specs minimum-linewidth ?mlw (geq ?alw 1.0)))

(conclusion (?process-plan resist-scheme kti820)))

When HPRL's backward chaining begins to solve for the resist-scheae slot

ofprocess-plan with the appropriate backward chaining domain set. it will

consider this rule. The rule will succeed as long as the minimum-linev/idth

slot in the specs frame is greater than or equal to 1, which for this process

17.3 97

is equal to 2. When this rule succeeds and the backward chaining process

installs the value kti820 in the slot, a function that is called in this case will

find the complete library step associated with kti820 and install that step

in the process plan.

Other resist schemes may also be potential candidates. When more

than one resist scheme is found by HPRL's backward chaining, the user is

shown the choices and is asked which he would like to consider further. The

current plan is copied once for each user choice, and one choice is installed

in each newly generated plan. Thus the user has one independent plan for

each choice that he would like to consider further.

Once the resist is known, one of the next steps is to find out how to

deposit the resist on the wafer's surface. Design decisions for which a value

has been found can be "expanded," meaning the design decisions underneath

it in the outline format of the plan can be exposed. Exposing as many items

as possible, we run into some that have not been given values yet either by

our actions or by inheritance from the step chosen from the resist scheme

library.

One of these design decisions is finding out if a special adhesion film

called HMDS should be deposited on the wafer before the resist is applied.

HMDS improves the adhesion of a resist to the wafer surface, which is im

portant if resist liftoff1 is to be avoided. The rule for deciding on using

HMDS is shown in Code List 7.8. In this example, HMDS would definitely

Resist liftoff occurs when the etching action cut? underneath the resist layer and begin?
to etch there. Typically the resist "lifts off" from the wafer, and the etching quickly
proceeds along underneath the resist.

§7.3 98

be needed because the minimum linewidth requirement is only 2.0 fim and

the optimized quantity is dimension control.

The next step is actually planning how to apply the resist. The first

decision is the resist's thickness. Again, a heuristic rule decides this. The

rule will compute a thickness that is exactly 2.3 times the maximum vertical

step on the wafer, but in no event will choose a thickness under 1.2 fimr

Now thai the desired thickness of the resist has been found, the most

appropriate of the standard viscosities available is chosen. The heuristic for

choosing the viscosity is that the best results will be obtained by using the

thickest possible resist spun on at a speed under 7000 RPM. This is because

higher-viscosity resists result in more even coverage of vertical steps on the

wafer surface.

The mini-expert for this decision is a rule domain which contains one

rule for each standard viscosity. Each rule's premise matches the desired

thickness to a range known to be good for the corresponding viscosity; it

will succeed if the desired resist thickness falls in that range. An example is

shown in Code List 7.9 for the KTI 820 resist.

Now that the viscosity curve has been chosen, all that remains is to find

the spin speed of the resist spinner. This is a simple numeric graph lookup

with interpolation. Thus the mini-expert for this last design decision is a

three-dimensional graph. First a rule in the select-mini-e:cpert-do=ain

'This heuristic is one used by Professor A.R. Neureuther of VC Berkeley's Electronic-
Research Laboratory.

§7.4 99

is consulted to find the specific graph for the KTI 820 resist, and the lookup

is performed by sending the lookup message to that graph.

To perform all the operations described here, the user only would have

had to know two commands. The first, expanding an item on Cameo's

display, uncovers the next set of design decisions. The second is the "derive"

command which calls the mini-expert for the current design decision to find

an answer to it. By knowing two more commands, the user could have

requested further references on the current design decision if he had any

questions, and could have circumvented any or all of the mini-experts and

provided his own solutions.

7.4 Chapter Summary

The ability to assign specialized bits of knowledge, or "mini-experts." to

particular design decisions is an important requirement for a CAD expert

system. The kind of knowledge assigned to a certain design decision should

reflect the method an experienced designer uses to solve the problem. Heuris

tic knowledge, although necessary, is not sufficient to form a complete knowl

edge base for a CAD expert system. Other forms of knowledge that have

been shown to be valuable are numeric and symbolic tables and formulas.

Another form of knowledge not investigated in this research but expected

to be of great future value is an interface to a laboratory-wide data base

system to provide data about the laboratory itself such as equipment status

and inventorv.

§7.4 10°

Most early decisions in the design process tend to be based on heuristic

knowledge. The ability to make these decisions is often considered to separate

the expert from the novice designer. Later decisions, involved more with

refining a chosen design, use largely algorithmic or numeric techniques. This

observation was made consistently throughout this research. This can be

considered analogous to forming plans in other fields, where broad strategic

decisions are made first, then tactical decisions are made to refine the earlier

decisions.

A table summarizing these observations is shown in Table 7.2.

\7.4 101

(defmethod (backward-chain-control solve-specific) 0
(let* ((fr (*> self frame))

(si (»> self slot))

(dont-ask (member *dont (fdata-only fr si *$ask))))

% Only go through this if the mini-expert is already known.
% It should have been found by the generic object's solve method
% if it was not given statically in the description frame.

(when (=> self mini-expert)
(setq *backward-chain-domain* (=> self mini-expert))
(when solve-init

(eval (list solve-init self)))

% First turn off asking the user for this slot (HPRL's default)
% if it doesn't say to ask first.
% Then solve for all possible values, re-enable asking
% if it was enabled before, and

% run the solve-finish function if given,
(when (null dont-ask)

(fput-datum fr si '$ask 'dont))
(setq results (solve-all '(,fr ,sl ?x)))
(when (null dont-ask)

(fremove fr si '$ask 'dont))

(when results

(=> self set-previously-solved t))
(when solve-finish

(eval (list solve-finish self))))))

Code List 7.2: The solve-specific method for backward chaining. This
is the major algorithm supporting the heuristic knowledge mini-expert's rep
resentation.

17.4 102

(add-graph-to-list
(make-instance 'three-d-graph

'graph-name *krti820-spin-speed-graph
'x-axis 'thickness

'family-var 'viscosity

'curves '((5.0 (0.56 3000.0) (0.42 4000.0) (0.33 5000.0)

(0.30 6000.0) (0.28 7000.0))

(10.0 (1.04 3000.0) (0.79 4000.0) (0.67 5000.0)

(0.58 6000.0) (0.54 7000.0))

(20.0 (1.50 3000.0) (1.17 4000.0) (1.03 5000.0)

(0.96 6000.0) (0.95 7000.0))

(27.0 (1.79 3000.0) (1.46 4000.0) (1.28 5000.0)

(1.19 6000.0) (1.14 7000.0))

(60.0 (2.58 3000.0) (2.26 4000.0) (2.00 5000.0)

(1.76 6000.0) (1.57 7000.0))

(100.0 (3.19 3000.0) (2.82 4000.0) (2.49 5000.0)

(2.28 6000.0) (2.21 7000.0)))))

Code List 7.3: Example of a three-dimensional numeric table. Variable
initialization is performed from line 3 to the end, the last initialization of
which is the family of curves comprising the table. This table contains one
curve per viscosity value, each of which relates the thickness (in //m) of
KTI 820 photoresist for values of spin speed ranging from 3000 to 7000
rpm. The graph is internally stored as an object which inherits variables
and methods from the generic object three-d-graph.

§7.4 io:

(defmethod (three-d-graph-control solve-specific) ()
(let* ((graph (find-graph-by-name (=> self mini-expert)))

(ref-frame (=> self frame))

(x-fr (frame-in-same-plan x-frame ref-frame))
(z-fr (frarae-*in-same-plan z-frame ref-frame))
(val nil))

(cond ((null (and graph x-fr z-fr)) nil)
((null

(setq val
(=> graph lookup (fvalue-only z-fr z-slot)

(fvalue-only x-fr x-slot)))) nil)
(t (fput-value (=> self frame) (=> self slot) val)))))

Code List 7.4: The solve-specific method as implemented for the
three-d-graph-control object. The first lines find the graph to use and
the names of the specific frames in the current plan where values for lookup
are to be found. After making certain all the frames and the graph exist,
the lookup message is sent to the graph and the results, if any, installed in
the current frame.

(make-instance 'matrix

'matrix-name 'align-to-layer

'columns-label 'current-layer

'rows-label 'optimizing

'init-values '((active-area gate yield)
(gate contact yield)
(active-area gate performance)
(active-area contact performance)))

Code List 7.5: An excerpt from the code defining a symbolic table.

17.4 104

(rule resist-thickness-rule resist-thickness-domain

(premise (and (?process-plan wafer ?wafer)
(?process-plan resist-scheme ?resist-scheme)
(?wafer maximum-step ?ms (plusp ?ms))))

(conclusion (?resist-scheme thickness *(* ?ms 2))))

Code List 7.6: Example of a formula mini-expert. The rule is used only for
type- and range-checking of the procedure's arguments. The rule concludes
only when the local variables' bindings have been found to conform to the
requirements in the premise. When the rule concludes, it calls the function
* (multiplication) and "splices in" the function's return value.

(rule kti-820-spin-speed-rule select-mini-expert-rule
(premise (and (-system* current-step-being-solved-for

(resist-scheme thickness))

(?resist-scheme resist kti820)))

(conclusion

(?resist-scheme mini-expert kti820-spin-speed-graph)))

Code List 7.7: Example of meta knowledge rule. This rule says that if
the current step (design decision) being worked on is the thickness of the
resist-scheme, and the resist is kti820, then the mini-expert to use is
kti820-spin-speed-graph.

§7.4 10'

(rule need-hmds need-hmds-rule

(premise

(or

(and

(or (in specs optimized-quantity dimension-control)
(in specs optimized-quantity linewidth-minimization))

(in specs minimum-linewidth ?mlw (leq ?mlv/ 5.0))
(in specs current-layer ?cl (or (equal ?cl 'gate)

(equal ?cl 'contact)
(equal ?cl 'metal))))

(and

(or (in specs optimized-quantity dimension-control)
(in specs optimized-quantity linewidth-minimization))

(in specs minimum-linewidth ?mlw (leq ?mlw 3.0)))))
(conclusion (?resist-scheme hm'ds-needed yes)))

Code List 7.8: Rule for deciding whether HMDS is needed. This
is a fairly complex rule. It will succeed if the optimized-quantity
is dimension-control or linewidth-minimization and the minimum

linewidth requirement is 3.0 /im or less. If the linewidth requirement is
greater than 3.0 /im but less than or equal to 5.0 /im, the rule will still
succeed if the current mask laver is one of those listed.

17.4 10G

(rule kti-use-viscosity-20-rule kti-820-viscosity-rule
(premise (?resist-scheme thickness ?th (and (>= ?th 0.95)

(< ?th 1.14))))

(conclusion (?resist-scheme viscosity 20.0)))

Code List 7.9: Rule for choosing KTI 820 viscosity. If the desired resist
thickness falls within the range of 0.95 /-im and 1.14 /zm, this rule succeeds
and a viscositv value of 20.0 est is chosen.

Mini-Expert Type Best Applications
Backward Chain

Simple Formulas

Heuristic decisions; decisions based on experi
ence rather than theorv.

Decisions that involve ideal or near-ideal phys
ical processes.

Graphs Decisions that involve numeric interpolation of
theoretical or experimental data; data that is
numeric in nature but not accurately charac-
terizable by a formula.

Symbolic Tables Decisions that involve simple mappings among
symbolic values. No interpolations are done.

Arbitrary Procedures Only to be used if no simpler mini-expert can
be used, this allows an arbitarily complex func

tion to be called. Used when a design decision
cannot be decomposed to fit the other mini-
expert types.

Table 7.2: Summary of mini-expert types and what kinds of knowledge
they might best express.

CHAPTER 8

Cameo's Data Base

Cameo's data base consists of five major elements. These elements and their

overall structure were developed for the specific application to IC process

design, although many of the principles used can be extended to other areas

of CAD.

Examples and listings of contents of the data base are given throughout

this chapter. It should be understood that Cameo is a constantly evolving

system, and that the specific code fragments or listings shown in this chapter

may not be what is contained in the most recent version of the system. They

should be considered only as informative illustrations of the principles being

discussed.

8.1 Elements of the Data Base

The five major elements of Cameo's data base are detailed in this section.

107

§S.J 108

8.1.1 The Plans Data Base

The plans data base consists of two major parts, the plan skeleton and the

working plans. First an overview of the rationale behind this structuring is

presented, then the plan skeleton and working plans are described in detail.

Overview of Plans Data Base Structure

One of the characteristics of the design process in engineering is that many

tentative decisions about the design are made and their ramifications studied

before committing to those decisions. Therefore a CAD system that supports

this type of exploratory design process may have to keep many potential

designs in its data base. Further investigation of the design process shows

that these designs are closely related to one another, so a method should

be found that takes advantage of this property and organizes the evolving

designs in a "natural" way.

When a point is reached where the designer would like to evaluate several

alternative choices (such as deciding whether to use wet or dry etching), the

designer mentally "splits" the current design he is working on into two, one

using wet etching and the other using dry etching. The remainders of both

designs are identical to each other and to the previous design. This is shown

graphically in Figure 8.1.

This suggests the use of a frame system supporting hierarchical inher

itance for storing the plans data base. When a design is split into several

18.1 109

ORIGINAL DESIGN

ETCH ICTH0O:

ALTERNATIVE DESIGNS

Figure 8.1: Splitting a design. The only difference between the two new
designs is the etching method, dry for one and wet for the other. Both new
designs inherit all structure and data from the original design, and just add
the data for the etching method.

alternative designs, one for each potential answer to one design decision, a

new plan is instantiated from the original plan for each potential answer.

The frame system's hierarchical inheritance properties give each new plan

the structure and data of its ancestors through inheritance.

The new plans can be modified independently of each other with no

restrictions. If the designer decides to modify an inherited value, the data will

be entered in the new plan and will "hide" the inherited value, thus leaving all

other plans unaffected. An important part of this scheme is making sure that

the user can only work on plans that have no children. Cameo is designed

so that this is alwavs true.

§«.J 110

Cameo's plan skeleton is an empty plan (no values entered into it) which

serves strictly as a structural template for the working plans, which form the

hierarchical frame data base of evolving plans.

The Plan Skeleton

The plan skeleton is a set of frames that simply define one slot for each design

decision. The skeleton also provides up to four pieces of data in each slot for

very general purposes:

• Whether this slot is limited to holding only one value (answer) or mul

tiple values.

• The prompt to use when asking the user for the value(s) of this slot.

• The units for a numeric value, such as an for millimeters or deg-C for

degrees Centigrade.

• The type of the value(s), such as number or symbol.

The working plans (described in detail in Section 8.1.1 on Page 114) inherit

all the slots and the data defined in the plan skeleton.

The skeleton itself consists of six frames arranged as a two-level tree

as shown in Figure 8.2. The top-level frame of type process-plan serves

mainly to tie together the remaining frames of the plan skeleton. Point

ers to two lower-level frames, of type specs and wafer, are installed in the

top-level frame. The three remaining frames of the plan skeleton serve as

§5.J

PRDCESS-PLRN

t 4 #
^

\ •i

9LI8NIK6 SESIST-SCHERC CTCH-RETUCO SPECS

111

ifflFER

Figure 8.2: Structure of the plan skeleton. The top-level frame, a frame
of type process-plan, serves to tie together the other five frames. Pointers
to two of the remaining frames, specs and wafer, are installed in the plan
skeleton. The three remaining frames serve as skeletons for entries in the
three step libraries. Instances of these frames are not installed in the plan
skeleton, but will be installed in a working plan when chosen from the library.

skeletons for actual step frames chosen later from the step libraries (de

scribed in Section 8.1.3). When the actual step frames are chosen, pointers

to them are installed into the top-level frame of the current working plan

(see Section 8.1.1 on Page 114).

An example of the top level frame of the plan skeleton is shown in Code

List 8.1. For the sake of simplicity, only the most important slots of this

frame have been shown. An excerpt of the plan skeleton frame for the resist

scheme step is shown in Code List 8.2.

§5.1

(defraae process-plan
(ako ($value (process-frame)))
(resist-schene ($ask (single))

($type (resist-scheme))
($prompt ("Which resist scheme to use?"))
(Sstep-slot (t)))

(aligning ($ask (single))
($type (aligning))
(Sprompt ("Which aligning scheme to use?"))
(Sstep-slot (t)))

(etch-method (Sask (single))
(Stype (etch-method))
(Sprompt ("V/hich etch method to use?"))
(Sstep-slot (t)))

•/, For the wafer and specs slots, install the value
7, Only these have it because the others will be
7, chosen later from step libraries,

(wafer (Sask (single))
(Svalue (wafer))

(Stype (wafer))
(Sstep-slot (t)))

(specs (Sask (single))
(Svalue (specs))
(Stype (specs))
(Sstep-slot (t))))

112

Code List 8.1: Example of the plan skeleton's process-plan frame. The
form for defining a frame begins with the (deframe frame-name line. Each
slot being defined is a complete list, starting with the ako slot, which shows
the parent from which this frame inherits, process-frame in this case. Only
the data installed in the Svalue facet (subfield) of the slot is the actual
value. Data stored in other facets, such as Sask and Sprompt, hold ancillary
information specific to the slot.

§«.i * 11

(deframe resist-scheme

(ako (Svalue (process-step-frame)))
(step-type (Svalue (resist-scheme)))
(resist

(Sask (single))

(Stype (symbol))

(Sprompt ("V/hat type of resist to use?")))
(surface-preparation
- (Sask (single))
(Stype (symbol))

(Sprompt ("Any special surface preparation?"))
(Slegal-values (acid) (piranha)))

(hmds-needed

(Sask (single))

(Stype (affirmative))

(Sprompt ("Is HMDS needed for this layer?")))
(spin-speed

(Sask (single))
(Stype (number)) '
(Sunits (rpm))
(Sprompt ("What spin speed for resist application?")))

(thickness

(Sask (single))
(Stype (number))
(Sunits (microns))

(Sprompt ("What resist thickness (in microns)?"))))

Code List 8.2: Excerpt from a plan skeleton's step frame. This is
part of the resist-scheme step frame. The slots shown here, resist,
surface-preparation, etc., each represent an individual design decision.

18.1 m m

The Working Plans

The working plans form a hierarchical tree of instances of the plan skeleton.

The depth and width of the tree of working plans is not restricted except

by memory or addressing limitations of the hardware or operating system

of the computer. Minimal memory is used for each plan, however, because

each plan contains only data unique to it. All other data and structure is

inherited from its ancestors.

Two events can split a plan into two or more new plans. Either the user

requests Cameo to split a plan, or Cameo generates new plans because more

than one possible answer to a design decision was found. The case for the

user splitting a plan is simple: two new plans are generated that are identical

and hold no data of their own. The user may then manipulate these two new

plans independently.

The other case, where Cameo generates new plans because multiple

answers were found, is of greater theoretical interest. During early research

for this project, it was not clear what should be done when a mini-expert

returns more than one possible answer to a problem. Should all answers be

placed into the plan? Should all but the "best" one be rejected? If so. how

could the system decide which was "best?" After some reflection, it became

clear that all answers should definitely be retained, but that each answer,

together with the rest of the current plan, formed a new, unique parallel

plan.

§8.1 115

The method to deal with this is very easy with a frame-based system,

and is the approach taken here. The new plans share all structure and

data with the current plan except for the single design decision that resulted

in the multiple answers. Thus one new plan is generated for each answer,

inheriting directly from the current plan, and one of the answers is installed

in it. Figure 8.3 shows this graphically.

The only important caution that must be taken is that the plan from

which the new ones were generated can no longer be accessible, since any

change made to it will be reflected in all its children. Thus the user only has

access to "leaf plans, those that have no children. This is also true when

the user tells Cameo to split a plan into two. The user no longer has access

to the original plan.

8.1.2 The Description Frames

As described earlier (Section 6.8.3 on Page 74), the description frames are

the wgluer of the system. The information stored in these frames gives the

plan skeleton structure by specifying order or dependencies among the slots

in a plan, assigns mini-experts to design decisions, controls how the evolving

plans appear on the screen, and more.

In earlier versions of Cameo, the information now kept in the description

frames was entered into the plan skeleton. Although initially this was a good

approach, other important factors eventually ruled out this implementation.

The most important issue was that HPRL's rules can only use the data stored

in the Svalue facet of slots for pattern matching.

§8.1 116

ORIGINAL WORKING PLAN

flLIGMER* NONE

1NHERITRKCE UI4CS

flLIEKER: BC?» HLISNER: CSNON ALIGNER: UL.TWTTECH

NEW WORKING PLRNS

Figure 8.3: Splitting a working plan into multiple new plans because more
than one possible answer was found. Each new working plan inherits all the
data and structure of its parent, but adds its own unique answer of those
found. In any plan split due to multiple answers, each new working plan will
be unique.

When kept in the plan skeleton, this information was stored in the slot it

was describing, but in facets other than Svalue. Thus no rules forming meta

knowledge (see Section 7.2 on Page 95) could be written. Another appealing

result of storing the structure information in separate frames is the increased

modularity of the system.

The approach taken in Cameo for the system's description is to define

18.1

(deframe choose*resist-scheme*thickness-descr

(ako (Svalue (choose-descr-frame)))

(frame (Svalue (resist-scheme)))

(slot (Svalue (thickness)))

(view (Svalue (choose)))
(mini-expert-type (Svalue (backward-chain-control)))
(label (Svalue ("Resist Thickness")))

(sort-key (Svalue ("b")))
(show-next (Svalue ((resist-scheme viscosity))))

(depends-on (Svalue ((wafer maximum-step))))
(solvable (Svalue (t)))

(explain-file (Svalue ("r-thick.text")))
(mini-expert (Svalue (resist-thickness-domain))))

117

Code List 8.3: Example of a description frame. This description frame is
for the thickness slot of the resist-scheme frame.

a single description frame for each slot of the plan skeleton that might ever

represent a design decision shown on Cameo's screen. The name of each

description frame is formed by concatenating the names of the frame and

slot of the plan skeleton. An example of a description frame is shown in

Code List 8.3, which shows the description frame for the thickness slot of

the resist-scheme frame.

Following is a description of the slots shown in this description frame:

« ako

The frame type of which this frame is a child. "AKO" stands for ua

kind of."

18.1]]8

• frame

The frame type of which this description frame describes a slot.

• slot

The slot name for which this is the description frame.

• view

The view for which this is a description frame. A view is like an ab

straction space. Some earlier work in this project identified the possible

need for different views of the same data. Each slot can have one de

scription frame for each view in which it appears, which can change

the way the information in the slot is presented and how it relates with

other slots. At present only the uchooser view is implemented, which

is the view for "choosing" process steps. Other views might be for

viewing plans at different levels of abstraction or detail, or evaluating

the process step or executing it.

• mini-expert-type

The type of mini-expert used for this design decision, chosen from

among the four listed in Section 6.6 on Page 66.

• label

The text string that represents this design decision on Cameo's screen.

© sort-key

When more than one design decision appears at the same level under a

heading, their order can be determined bv entering a text string in this

§6\J 119

slot. The sorting is alphabetic by sort key; if no sort keys are given,

sorting is alphabetic by the label string.

• show-next

When the design decision represented by this slot has an answer, it

may be "expanded" by the user to show the next set of decisions that

may be made. This slot lists which plan skeleton slots are the ones to

appear. Since there are up to six frames in a working plan, the slots

are listed as two-element lists, the first element being the frame type

and the second the slot name.

• depends-on

This slot lists, in the same format as the show-next slot, the slots

on which the value for this slot depends. This slot can be used for

backtracking when an answer is invalidated or overridden, although

this capability is not yet implemented. Another application of this slot

is to tell the user which design decisions he must make first before he

can find an answer to this one.

• solvable

Some items shown on Cameo's screen serve only as headings to organize

information, and do not actually take values or have solution methods

assigned to them. If this slot were one of these, the value in this slot

would be nil. Otherwise it is t.

• explain-file

The file name of the reference file associated with this design decision.

§8.1 120

• mini-expert

The actual mini-expert to use when deriving an answer for this design

decision. This slot may be left empty if meta knowledge is entered into

the system that allows the mini-expert to be found dynamically.

In addition, the following slots are defined for the use of specific mini-expert

types. They hold information specific to each solution method.

• solve-init-func and solve-finish-func

For backward-chaining, these are the names of functions that are run

before and after the backward chaining occurs, respectively.

• column and row

For matrix lookups, these two slots indicate the plan slots used as the

column and row values respectively. Each holds a two-element list like

the show-next slot.

• x-variable and z-variable

For graph lookups, these two slots indicate the plan slot(s) used as

the independent variables. Each holds a two-element list like the

show-next slot. The z-variable slot is empty if a two-dimensional

graph is being used.

8.1.3 The Step Libraries

One separate step library exists for each of the three major photolithography

steps identified in Section 5.3 on Page 48. During early research for this

§8.1

(deframe gca

(ako (Svalue (aligning)))
(description (Svalue ("GCA 4800 Y/afer Stepper")))
(template? (Svalue (t)))
(machine (Svalue (gca)))
(reduction (Svalue (10)))

(resolution (Svalue (1.2)))

(alignment-method (Svalue (fresnel-zone)))
(type (Svalue (projection)))
(alignment-error (Svalue (0.3)))
(wavelength (Svalue (4360)))
(field-size (Svalue (10)))

(numerical-aperture (Svalue (2.8))))

121

Code List 8.4: Example of a library step frame. This frame is a member
of the "aligning" library, and is for the GCA 4800 wafer stepper.

project, it was observed that most IC processes are developed by assembling

existing process steps chosen from libraries (mental or otherwise) and then

refining them to meet specific requirements. For this reason, the first design

decisions made by Cameo's users are choosing standardized and documented

steps from the three step libraries.

Each frame in a step library is a child of one of the three frames of the

plan skeleton that are not yet installed in the top-level plan skeleton frame.

The step frames in the library simply install values in the slots defined in

the corresponding skeleton frame. An example of a step frame for the GCA

4800 wafer stepper is shown in Code List S.4.

§8.2 122

When Cameo or the user has chosen to use this step as the step for

the "Aligning and Exposure" design decision, a pointer to an instance of the

step is installed in the current working plan. A graphic representation of

inheritance links at this point is shown in Figure 8.4.

When a step frame has been chosen from a step library for inclusion into

the current working plan, the working plan consists of one more frame than

before. If this plan is split, the new working plans will have corresponding

constituent frames instantiated from those of the parent plan. This is shown

graphically in Figure 8.5.

8.1.4 The Reference Files

One reference file is provided for every design decision ever shown on Cameo's

screen. The reference file is supposed to answer the "Why?" questions about

the decision, or supply enough information for the user to find out more.

The user can view the reference file for any item on Cameo's screen by

positioning the cursor on that item and typing the ;R* key for "References.

The reference files are intended to be easily read and understood and their

contents are kept to a single screenful if at all possible.

An example of a reference file for the "HMDS Needed?" decision is

shown in Figure 8.6.

§8.2

PLfiN SKELETON

STEP IN

LIBRfiRT

IT

*
t
t
i

»

SPECS MRFER

CURRENT WORKING PLflN\

^...

HEW STEP SPECS URFER

Figure 8.4: Links between frames after choosing a library step. Dotted
lines are inheritance links, solid lines are actual pointers.

8.2 An Example

One of the possible design decisions involved in the example introduced in

Section 1.3 on Page 5 is the determination of which standard viscosity of a

given resist to use. This section traces the data base activity involved in a

typical session where the user is deriving the viscosity. It is assumed that

§8.2

n nif w.-i v. if v. y* w.,y •%. \

\ / /VW\ \ i
/ / / / W\ \ \
^7< / / X \ \ V^,

124

Figure 8.5: Detail of links among working plans after a two-way split.
Dotted lines are inheritance links, solid lines are actual pointers.

the resist material has been chosen to be KTI Chemical's KTI 820 resist,

the most popular positive resist used in UC Berkeley's Elecrtronics Research

Laboratory processing line at this time.

After having chosen the standard KTI 820 step from the resist scheme

library, the user will expand the "Resist Scheme" heading to uncover a few

items, one of which is the "Resist" item (Chapter 9 describes the user inter

face in detail). The chosen resist step already has a value for this item (KTI

820) so it can also be expanded. One of the items under the "Resist" heading

is "Thickness," which must be determined before viscosity is selected, so let

us assume that the desired thickness has been chosen to be 1.2 /im. Now the

"Thickness" heading can be expanded, and underneath it the "Viscosity"

item appears.

§8.2 125

STEP NAME: HMDS Needed?

PURPOSE: Determining whether HMDS application is needed.

MODIFIED: Ol-May-85 21:10:56 (Mike Klein)

NOTES: HMDS (hexamethyl disilazane) is applied as a "primer"
to improve adhesion of the resist to the wafer surface to

minimize lift-off. HMDS application is desirable when oxide

is present on the wafer, when feature sizes are small (under

5 microns), or when linewidth control is important.

HMDS is applied to the wafer after other preparation and before

resist application. It is typically applied by vapor

deposition or spin coating at low RPM (2000) for up to

30 seconds.

REFERENCES:

Shipley Company. "Microposit S1400 Series Photo Resist".

technical brochure.

Tokyo Ohka America. Inc. (TOA). "OFPR-2 Photo Resist Series".

technical brochure.

Figure 8.6: Example of a reference file.

§8.2 12G

The user positions the cursor on the "Viscosity" item. He may want to

understand what the decision process for selecting a certain viscosity is, so

he presses the kR' key to see the reference file for this item. Cameo consults

the description frame for this design decision, found by concatenating the

view, frame, and slot names to generate

choose*resist-scheme*viscosity-descr

The explain-f ile slot of the description frame contains the text string

"r-visc.text." Cameo reads this file into a buffer and displays it on the screen.

The contents are shown in Figure 8.7.

If the user decides to let Cameo derive a viscosity value, he presses the

4D5 key. This causes the following chain of events to occur.

First, Cameo checks the mini-expert slot of the description frame to

see if a mini-expert has already been given for this design decision. Since

the actual mini-expert will depend on the particular resist type (KTI 820 in

this case), it will not be known yet. Thus the system must change the back

ward chaining domain to the select-mini-expert-dooain and use back

ward chaining to find the specific mini-expert to use. This domain contains

the rule shown in Code List 8.5, and so this backward chaining succeeds by

installing the value kti820-viscosity-domain as the mini-expert for this

particular design decision.

Once Cameo has found the mini-expert for this design decision, it can

use that mini-expert to attempt to derive an answer. The rules in the

§8.2

STEP NAME: Viscosity of Resist

PURPOSE: enter the viscosity of the resist to use.

MODIFIED: 29-Apr-85 09:57:24 (Mike Klein)

NOTES: Most available resists come in standard dilutions

for obtaining different viscosity values. A high viscosity
resist will result in a thicker film.

This step determines which of the standard viscosities for
this type of resist will be a good candidate for your
lithography. In general, best results (step coverage)
will be obtained by using the highest viscosity.

REFERENCES: Technical brochures for each resist type.

Figure 8.7: Reference file for viscosity design decision.

(rule kti-820-viscosity-rule select-mini-expert-rule

(premise
(and (*system* current-step-being-solved-for

(resist-scheme viscosity))
(?resist-scheme resist kti820)))

(conclusion

(?resist-scheme mini-expert kti820-viscosity-domain)))

127

Code List 8.5: Rule for finding mini-expert for selecting KTI 820 resist
viscosity.

§8.3 128

kti820-viscosity-domain take the form of the rule shown in Code List 7.9

on Page 106. One rule's thickness range includes the desired value of 1.2 fxm.

so it succeeds and installs the viscosity value of 27.0 est in the viscosity

slot of this resist-scheme frame of the current working plan.

Since only one answer to this design decision was found, no plan splitting

was done. If, however, more than one answer had been found, such as the

viscosities of 20.0 and 27.0 est, two new working plans would have been

generated, inheriting all data from the current working plan. The current

working plan would have been made inaccessible to the user, and both new-

plans made accessible. The 20.0 value would be installed in one new plan's

viscosity slot, while the 27.0 value would have been installed in the same

slot of the other new plan.

8.3 Chapter Summary

Cameo's data base is structured primarily for supporting the design of IC

processes. It is highly modular, consisting of independent parts that are tied

together by "description frames." Since much of the structure of the system

is kept as data in frames, HPRL rules can be written to understand and

modify the system's structure.

The evolving design plans are stored as a hierarchical tree, taking ad

vantage of the inheritance capabilities of the frame system. Each design plan

in the plans data base is unique but holds only the data unique to it, inher

iting the rest. This plans data base schema is a "natural" representation of

§8.3 129

the structure that an expert IC process designer gives to evolving designs.

It also allows many design plans to be stored with efficient use of memory.

From observing experienced IC process designers, it was seen that most

process designs are modifications of assemblies of previously proven steps.

Thus the data base also contains libraries of documented major photolithog

raphy steps. The user may browse through the libraries and choose a step

or have Cameo choose one for him.

Each possible design decision has a "reference file" associated with it.

Reference files are most useful for general information on the design decision,

and also as pointers to more detailed references. They are always short, less

than one screenful of information if at all possible. The reference files answer

the ttWhy?" questions of novice designers.

It appears that the combination of these data base elements makes

Cameo's data base unique. Many recent software systems have used the

approach of separately defining the system's structure and description from

the code that implements it. However, very few software systems use the

remaining structuring principles used in Cameo's data base. In particular,

the concept of reference files for every design decision does not appear to be

implemented in any other CAD system. These reference files were found to

be one of Cameo's most important contributions.

CHAPTER 9

Cameo's User Interface

Any computer system's user interface is an extremely important but often

overlooked part of the system. With recent advances in price and perfor

mance of computers more emphasis on the user interface, which is often

computationally expensive, is feasible. A good user interface makes the sys

tem more accessible to a wider range of users.

The remaining parts of Cameo's software structure are described in this

chapter. In reference to the description given in Section 6.4 on Page 64, these

remaining parts are the display manager and the program control manager.

Since these two are heavily dependent on one another, they will be discussed

together under the general heading of user interface.

A three-step method is proposed that was used to arrive at Cameo's

user interface design. This method is detailed in Section 9.2 and its imple

mentation in Section 9.4.

130

§9.2 131

9.1 Importance of the User Interface

As the costs of computer resources steadily decrease, these resources can

be made available to more potential users. Users who are not trained in

the conventional line-oriented computer system interface must be considered

when designing new computer system applications. Even Cameo's intended

users are not always well versed in the details of interacting with a typical

program.

On the other hand, the user interface cannot be so simplified that it

impedes the use of a system aimed at a complex technical task. The user

interface must balance these two conflicting requirements. The ideal user

interface allows new users to learn how to use the system rather quickly, but

allows experienced users to use it without impeding them unnecessarily.

For the kind of application that Cameo addresses, the user interface is of

undeniably high importance. Jack D. Grimes of Intel Corporation, in a Guest

Editor's Introduction to a series of articles on human factors, writes, "It is

about time (several [contributers] have said) that users be given their proper

place as the key 'factor' in the system" [Grim84j. A poor user interface can

make the system virtually useless, either by making the system so difficult to

use that the potential time saved in using it is nullified by the time spent in

learning and using it, or by so simplifying the problem the system addresses

that it can only help perform trivial tasks.

§9.2 132

9.2 User Interface Design Considerations

Several important considerations to designing a user interface for a partic

ular application must be addressed. These considerations revolve around

making the computer "transparent," giving the user the feeling that he is

manipulating the objects the display represents.

The three main steps used to design Cameo's user interface are:

1. Find the users' "conceptual operations"

2. Find a data presentation comfortable to the users

3. Implement the user interface as conveniently as possible on available

hardware and software.

The first two steps are described in detail in the following two subsections,

and the third is described in Section 9.4 on Page 137. Other considerations

important to the implementation, having to do with psychological factors,

are reviewed in Section 9.2.3.

9.2.1 Conceptual Operations

Beginning the design ofa user interface involves identifying the "conceptual

operations" that potential users would perform. In learning a new computer

system, the user is faced with something like learning a foreign language. The

"language" of this user interface should be "efficient and complete and should

have a natural grammar" (|Fole82| p. 219). This topic has been addressed for

§9.2 133

graphics systems, identifying a number of generic operations that graphics

systems users perform [Fole84~j.

For this application, a CAD system for IC process design, these concep

tual operations were identified by interviewing many process designers about

how they go about designing an IC process. Their methods included enough

common ground to identify the following conceptual operations:

• Provide a value—the designer provides a value for a design decision.

• Replace a value—the designer changes a value for a design decision.

• Split and Merge—The designer would like to try several alternative

designs. The first step is to split a design into several which can be

treated independently of each other. Afterwards, the designer may

merge the designs back together so that they are treated identically.

• Find further information—The designer will often have a question

about a certain aspect of the design or wish to refer to other resources.

This information should be available at any time in the design process.

• Verify—the designer verifies the state of the current design.

• Throw away—the current design will no longer be considered.

• Start fresh—a new, fresh, design is needed.

• Show more or less detail—Too much detail clutters the designer's mind

and the system's display. The user interface needs to support filtering

§9.2 134

out unwanted levels of detail in the design but retain detail where it is

needed.

Additional conceptual operations certainly exist, but were not observed

with sufficient consistency to establish a few fundamental operations to rep

resent them. These remaining conceptual operations have mostly to do with

"viewing" the design in different ways depending on the current design ac

tivity (see Section 8.1.2 on Page 117 for a short discussion of how views

might be implemented). For instance, a simulator requires a different way

of representing the design than the designer does. The designer sometimes

would like to check the representation given to the simulator directly. This

is an area that deserves further work.

9.2.2 Data Presentation

Once the conceptual operations have been identified, the next step is to

find a way to represent the evolving designs to the user naturally and allow

the user to manipulate them naturally with the conceptual operations. The

rule for representing designs effectively appears to be to present them in a

way that the user easily recognizes and expects to see. This will typically

use much more computer power and display bandwidth than conventional

program interfaces, in part because the interface is optimized for efficiency

on the user's part, not the computer's.

For IC process design, displaying the evolving designs naturally appears

to be by modeling the display after a process run sheet, the sequence of pro

cessing steps that a wafer goes through. Other representations considered

§9.2 135

were graphics-based, but no natural way of using graphics to display IC pro

cess steps could be identified. As a result, Cameo's display is line-oriented,

each line showing one design decision.

The lines are grouped and indented to form an outline. When the design

session begins, only the highest-level outline headings are shown. The user

may expand each heading, finding the next level of detail underneath it.

The items and their grouping are chosen so that a user can proceed through

one related and relatively independent set of design decisions by visiting the

items lying underneath a single heading.

9.2.3 Psychological Issues

The user interface must be highly interactive and allow the user to feel in

control. The following passage is from [Shne80], p. 227:

Nothing can contribute more to satisfactory system performance than
the conviction on the part of the terminal operators that they are in
control of the system and not the system in control of them. Equally,
nothing can be more damaging to satisfactory system operation, re
gardless of how well all other aspects of the implementation have been
handled, than the operator's conviction that the terminal and thus the
system are in control, have "a mind of their own," or are tugging against
rather than observing the operator's wishes.

Another very important factor is consistency of the interface. Again

referring to [ShneSO], people have very limited "short-term memory," the part

of human memory used to store information used over a short time span (30

seconds is typical). An inconsistent user interface forces the user consciously

to place the interaction techniques in long-term memory, a far more difficult

§9.3 136

task than leaving them in short-term memory, and requires the user to recall

the appropriate set of interaction techniques for each situation. This leads

to frustration and exhaustion. If the user interface is kept consistent and

simple, the user can retain most of the interaction techniques in short-term

memory.

The grouping method described in Section 9.2.2 helps produce the feel

ing of "closure" [ShneSO] by allowing the user to concentrate on a single set

of related design decisions and make those decisions relatively quickly. The

user proceeds to the next set of decisions with the feeling that the previous

ones are finished. This also reduces the amount of information the user needs

to keep in short-term memory.

The combination of a highly interactive system with operations that

the user is comfortable with and structuring design decisions so the user can

quickly attain closure should come close to guaranteeing that the user will

feel in control of the system.

9.3 User Interface Description

Cameo's interface technique, based on the line-oriented outline model, was

found to be a natural way of displaying the evolving design. The user can

position the system's display cursor on any line item of the outline, and

select a command from a short menu displayed at the bottom of the screen.

This serves both to allow the user to make his selection unambiguously, and

to inform the system of the context of the user's next actions. Most of the

§9.4 137

commands operate on the currently selected outline item. The commands

are virtually exact analogs of the conceptual operations listed earlier in this

section, with the exception of a few not yet implemented, and the addition

of the "Derive" command.

For almost all operations the user performs, this is the only mode of

interaction with Cameo. Any of the commands listed in the menu can be

used on any of the outline items shown on the screen. The total number of

commands, ten, areslightly more than the seven that might be ideal [Mill56],

but this has not been found to be a problem. The commands correspond

closely with the conceptual operations the user wishes to perform, so most

of Cameo's commands do not need to be learned as entirely new commands.

The names of the commands were carefully chosen so novice users can easily

recognize what they do just by seeing their names. See Table 6.1 on Page 67

for a table listing these commands. A menu at the bottom of screen lists

the commands grouped by type of operation, such as those that find design

decision answers, modify the display, or do global operations, so the user can

easily refresh his short-term memory if needed.

A complete example of the screen display at a certain stage of interaction

with Cameo is shown in Figure 9.1.

9.4 Implementation of the User Interface

Once the design of the user interface was decided, actual implementation

was relatively straightforward. The version of Portable Standard Lisp (PSL)

§9.4 138

CAMEO PHOTOLITHOGRAPHY DESIGN

PLAN: Initial Plan

—PROCESS REQUIREMENTS—
Aligsment Accuracy (3 sigma): 1 micron
Field Size: 5 ma

Minimum Feature Size: 2 microns

Optimizing for: DIMENSION-CONTROL
—WAFER STATE— [more...]
Aligning and Exposure: GCA-1

Machine: GCA

Type: PROJECTION
Field Size: 10 mm

Resolution: 1.2 microns

Alignment Error (3-sigma): 0.3 microns
Reduction Ratio: 10

Exposure Wavelength: 4360 angstroms
Numerical Aperture: 0.28

—Contrast and Linevidth Variation Calculations— [more...]
Align To

Resist Scheme: KTI820-1

--Preparation— [more...]
Resist: KTI820

Resist Thickness: 1.04 microns

Viscosity: 20.0 est
Spin Speed: 4928.47143 RPM

Refractive Index: 1.62+0.02j [more...]
Etch Method: DRY-1 [more...]

? Refs [Derive/Provide/Override] [Expand/Collapse] [Split] [New/Kill-plan]

Figure 9.1: Complete screen example. The user has gone through the de
sign decisions for Resist Thickness, Viscosity, and Spin Speed deriva
tion, and has completed this set of decisions, attaining "closure" (see text).
Headings ending in — serve as placeholders only and do not actually repre
sent design decisions. When a design decision is given a value, it appears on
the display with a colon, the value, and the units if appropriate, as in the
Viscosity item. Design decisions with no values yet are shown as in the
Align to item.

§9.4 139

available for the Hewlett-Packard 9836 computer has browser extensions built

into the NMODE editor (see Section 6.5 on Page 66). These browsers are

based on a line-oriented display buffer where the user can position the cursor

on a line and specify a command to be executed for that line. Of the many

different display and user interface options available for this system (includ

ing graphics), this was the closest to the desired interaction style and was

therefore chosen.

NMODE's browsers are implemented with object-oriented program

ming. A browser is an object that maintains a list of items (browser items),

and supports messages that affect both the browser itself (primarily its dis

play) and the browser items belonging to it. The main function of the browser

object is to interpret keystrokes typed by the user and send the appropriate

message to the browser item indicated by the cursor position when the user

types a key.

A browser item can be any object that responds to the messages that

the browser object might send it. Most of these have to do with keeping

the display updated. Others include killing (deleting) the browser item or

temporarily removing it from view.

The parts of Cameo's code that handle these basic capabilities form the

display manager. The objects implementing the actual browser items are

more complex than just this because they also respond to messages that

are logically part of the program control manager. The actual code is kept

separate by using PSL's object inheritance of code and variables. Figure 9.2

§9.5

DISPLflY ffiNRQER

CONTROL

QENERXC
CONTROL
OBJECT

PROGRflM CONTROL fflNRGER

ffTTRIX-

CONTROL

NOTHXIO-

CONTKOL

SPECIFIC
CONTROL

OBJECTS

140

Figure 9.2: Structure of browser item objects. The generic object, control,
defines methods common to all solution methods, including those for mes
sages required of any browser objects. The specific objects define methods
specific to each solution method. All items appearing in the browser are
instances of the specific object definitions.

shows how inheritance is used to separate the code and definitions of the

display manager from that of the program control manager. Table 9.1 lists

most of the actual messages supported by the objects, and shows where they

are implemented.

§9.5 141

Messages Logically Belonging in the Display Manager:

Message Defined in Description

display*text Generic Returns the text to be shown on screen.

expand Generic Finds items underneath this one, informs
browser object they are to be shown.

collapse Generic Sends the kill message to itself.

kill Generic Removes itself from the browser display
and sends the kill message to all items
underneath it.

Messages Logically Belonging in the Program Control Manager:

Message Defined in Description

explain
solve

user-input

replace

Generic

Generic

Generic

Generic

Shows reference file for item.

Finds the mini-expert for this item if
not known, sends the solve-specific
message to itself, takes care of splitting
plans if more than one potential answer
returned.

Prompts user for manual input. Also
takes care of splitting plans if more than
one answer.

Replaces existing answer, else same as
user-input method.

solve-specific Specific The only method that needs to be writ
ten to add a new solution method. This

method activates the mini-expert for
this problem to attempt to solve it.

Table 9.1: The "most interesting" browser object messages. More are im
plemented but these are the most illustrative.

§9.5 142

9.5 Example

To illustrate the operation of Cameo's user interface, the example introduced

in Section 1.3 on Page 5 will be used. Say that the user is solving the set

of design decisions referred to in Figure 9.1 on Page 138, and is specifically

working with the item representing the design decision for finding the resist

viscosity to use.

We assume that the user will perform the following actions: first he will

expand the previous heading (Resist Thickness), then ask for references

on the viscosity, then have Cameo derive an answer for it. The following

three sections detail the sequence of events that will occur.

9.5.1 Expand Previous Heading

The user must have already found an answer for the Resist Thickness item

for that item to be expanded. The user receives an informative error message

if not. To expand the item, the user positions the cursor on the item and

presses the 'E' key. The browser sends the expand message to the object that

this item represents. This message is defined in the generic control object,

so the actual object receiving the message must use inheritance to find the

method for this message.

When the method is located, it is executed and goes through the actions

described in Section 8.2 on Page 123 to find the description frame for this

item. In the show-next slot of the description frame are listed the next

§9.5 143

item(s) that should be displayed. One new browser object is instantiated for

each one, and the new objects are added to the browser. The browser takes

care of sorting the new items so they appear under the current item.

9.5.2 Show References on the Item

The user positions the cursor on the item for the viscosity design decision and

presses the 'R' key. Cameo's browser sends the explain message to the object

that this item represents. This message is defined in the generic control

object, so the actual object receiving the message must use inheritance to

find the method for this message. When the method is located, it is executed

and goes through the process described in Section 8.2 on Page 123 to find

the reference file associated with this design decision. The file is displayed

to the user. The only commands available to the user while viewing this file

are scrolling commands and the Quit command. When finished reading the

reference file, the user types 4Q' to return to the browser.

9.5.3 Derive an Answer

With the cursor positioned on the same Viscosity item, the user presses

the 'D' key. The browser then sends the solve message to the object that

this item represents. This message is defined in the generic control object,

so the actual object receiving the message must use inheritance to find the

method for this message.

§9.5 144

When the method begins executing, it first checks if the mini-expert is

known. In this case, it is not, because a different mini-expert is needed to se

lect the viscosity for each brand of resist. Thus the method goes through the

actions described in Section 8.2 on Page 123 to find the required mini-expert.

The next step taken is to send the current object the solve-specific mes

sage. This message is defined by each specific object type, and so each

solution method, or mini-expert type, has its own way of responding to this

message. The only requirement imposed by the rest of the system is that the

value or values found as answers be left in the current working plan's frame

and slot for this design decision.

In this case, backward chaining is used to find the answer. The mini-

expert is the rule domain to be used. As described in Section 7.3, the back

ward chaining domain is changed to the mini-expert and HPRL's inference

engine is called to find any answers.

After completion of the backward chaining, control returns to the solve

method inherited from the generic control object. The remainder of the

method checks the answers left in the current slot. If no answers were found,

that is reported and no data base updates are made. If one answer was found,

that is entered into the current working plan and the display is updated. For

instance, if a viscosity value of 27.0 est had been identified as being the best

choice, the browser item would have changed from

Viscosity

to

§9.6 145

Viscosity: 27.0 est [more...] The [more...] indicates that this

heading can be expanded further, in this case to expose the Spin Speed

decision.

If more than one answer had been found,1 the user would be presented

with the derived answers and be asked to choose one or more of the answers

(or none), depending on whether or not the plan skeleton specified that only

one answer was allowed. The solve method would then proceed through the

same actions as above, leaving all as is if none were chosen, or installing the

answer if just one was chosen.

If multiple answers were chosen by the user, and the plan skeleton only

allows one answer, the solve method instantiates a new plan from the cur

rent one for each answer and installs one of the answers in each one. It then

removes the current plan from the display by sending the object for the main

heading of the plan a kill message, and builds a new set of browser items

for each newly generated plan. The display is updated with these changes.

Thus it is guaranteed that only "leaf plans (those with no children)

can be operated on by the user. No other plans can be seen on the screen,

and since a plan can only be operated on if the cursor can be positioned over

one of its items, it is inaccessible for further modification.

'Multiple answers are not possible for this particular decision because of the way the rules
are structured. Most design decisions will have more than one potential answer.

§9.6 146

9.6 Chapter Summary

With the growing numbers of potential users of a computer system, user

interfaces are growing in importance. The quality of a system's user inter

face can be the most important element of the system's success or failure.

However, a good user interface is usually computationally expensive, and so

may not be feasible for some applications.

A three-step method is proposed that was used to arrive at Cameo's user

interface design. First, the conceptual operations that users perform were

first identified. Then a data presentation scheme that the users find natu

ral for the application was found. Lastly, an implementation using available

hardware and software was designed. Other application-independent psycho

logical issues need to be considered when implementing the user interface.

Cameo's user interface is modeled after an outline of an IC process,

similar to filling out a "run sheet." The user only needs to remember a few

commands which apply to any object shown on the screen in a consistent

fashion.

CHAPTER 10

The Application

In order to evaluate Cameo's underlying framework, a specific application

was chosen for implementation. Of three proposed applications, the one

chosen was to make Cameo a general-purpose expert for image transfer from

the mask to the resist for a few selected layers of the IC process.

Adapting Cameo from a previous simple demonstration system to this

real application involved a major restructuring and the implementation of

many new mini-experts. Aside from the time spent learning about the ap

plication, the actual coding took only a few days.

Cameo was tied to the SAMPLE process simulator for verification of

the plans. Simulation results appear to bear out Cameo's initial estimates

of linewidth variation.

147

§IO.J 148

10.1 Choosing a Specific Application

Three types of applications for Cameo were proposed and considered.1 The

main requirements of the application are that it be practical to implement,

be useful once implemented, and provide some way of evaluating the system's

usefulness. These applications were proposed:

1. Tailor Cameo to solving a specific, unique photolithography design

problem.

2. Find a "standard" photolithography benchmark problem with whose

solution experts are familiar, and evaluate the improvement in produc

tivity of novice IC process designers using Cameo.

3. Make Cameo an expert on a few important problems of general pho

tolithography design.

An example of a unique problem for the first proposed application is the

fabrication of integrated sensors. Experts familiar with the problem would be

able to give qualitative estimates of the system's usefulness. An advantage of

this approach is that the system would address a real problem and would be

immediately useful to at least a small group of users. Its application would

also be bounded, and thus hopefully practical to implement. A disadvantage

is that the system would be useful only to a relatively small group of users.

1These applications grew out of discussions with Professors F. Balderstou, UC Berkeley
Graduate Business School, R. Katz, UC Berkeley Computer Science Division, and W.
Oldham, UC Berkeley Electronics Research Laboratory.

§10.] 149

A benchmark photolithography design problem, in order to be useful in

a controlled evaluation environment, would most probably have to be arti

ficially crafted. The main advantage of aiming Cameo at this application is

that it comes close to an ideal controlled experiment. This application's ma

jor disadvantage is that once developed to help with this particular IC process

design problem. Cameo may not be useful for most real problems. Another

important disadvantage is that potential users will not be self-motivated to

use the system, since they will feel it is being used to test them, not to help

them.

The last application would make Cameo useful for a large variety of

typical design problems, and thus useful for a large group of users, but does

not provide the more controlled tests of the previous two applications. Eval

uation of the system's usefulness would probably best be accomplished' by

asking each user to fill out a short questionnaire after using Cameo.

After considering these applications and the original application require

ments, Cameo's application was chosen to be the last proposal above. Even

though evaluating its contribution is more difficult, Cameo would make a

more immediate contribution to IC process design. Evaluation would be dif

ficult, relying on users' comments, but would be under the conditions of real

IC process design problems.

Once the type of application was chosen, it remained to find the specific

application. One of the major problems in shrinking device geometries is

controlling the pattern dimensions. Limiting dimension variation becomes

§10.2 150

very important as the dimensions themselves shrink. A typical linewidth

variation in an IC process where linewidths are 2 pm could be as high as

0.25 fim on a polysilicon layer or 0.5 fim on a metal layer. In some cases,

such as analog circuits that require extremely close component matching,

such a linewidth variation is unacceptable.

Linewidth variation is affected by, among other factors, the distance of

the resist from the exposing machine's focal plane (due to a focusing error

or vertical features already on the wafer) and the types and thicknesses of

the layers underneath the resist. Linewidth variation is an inescapable fact

of optica] lithography. The challenge is to keep it within allowable limits.

10.2 Understanding the Application

The first steps in applying Cameo to linewidth control are understanding

the causes of linewidth variation, finding the methods used by experts to

estimate linewidth variation, and finding the heuristics used by experts to

suggest remedies if the linewidth variation is too high.2 These topics are

discussed in more detail in the following sections.

10.2.1 The Causes of Linewidth Variation

The single most important cause of linewidth variation in transferring an

image from mask to resist is non-uniformity of the exposing radiation energy

3Special thanks are in order to Professor A. Neureuther of UC Berkeley's Electronics
Research Laboratory for the time and effort he spent putting his knowledge into the
context needed for developing this application.

§10.2 151

in the photoresist. A perfect exposure operation will couple all available

exposure energy into the resist with the boundaries from light to dark areas

of the mask preserved. In reality this never happens, for a number of reasons

which can be classified into the following groups:

• Optical limitations—a given combination of optics and exposure radi

ation wavelength imposes a fundamental resolution limit.

• Reflective interference—some exposing radiation will be reflected at

all boundaries where refractive indices do not match. The reflected

radiation will interfere with the incoming radiation and cause standing

waves inside the resist. In severe cases (which happen often), the resist

at standing wave minima will be underexposed.

• Defocus—degradation of the projected image due to focusing error, a

tilted wafer, and large vertical features on the wafer, all of which serve

to displace the desired exposure plane from the optics' focal plane.

Other causes of final linewidth variation occur during the image transfer

from resist to wafer, the etching step. Cameo does not currently treat the

etching step in detail.

10.2.2 Estimating Linewidth Variation

A. Neureuther and W. Oldham have developed some useful heuristics for esti

mating linewidth variation |Neur81,01dh8l]. The methods are based on first

finding values for horizontal contrast (image contrast) and vertical contrast

§10.2 152

due to interference from reflections. A high horizontal contrast means that

the image projected into the resist has a large intensity variation between

lightest and darkest areas. A high vertical contrast means that substan

tial interference is occurring in the resist; the vertical contrast reflects the

standing wave ratio of the exposing radiation in the resist.

The exposure radiation at any point in the resist can be found by a

superposition of these two effects. For best linewidth control, the horizontal

contrast should be high and the vertical contrast should be low. The heuristic

derived by Neureuther and Oldham says that linewidth variation becomes

essentially uncontrollable when the vertical contrast exceeds the horizontal

contrast.

Thus one of the first things a user should do with Cameo is to derive

values for vertical and horizontal contrast, compare them, and make a de

cision on whether or not the plan he is building will have a good chance at

meeting his requirements.

Since some of the causes of linewidth variation depend on the specific

optics and exposure wavelength used, the user will first have to choose (or

let Cameo choose) an aligner step from the aligner step library. The GCA

4800 Wafer Stepper is used in an estimated 95% of the processing in UC

Berkeley's Electronics Research Laboratory's IC processing line, so this is

currently the only choice in Cameo's aligner step library. Once the user has

specified his process requirements and the current wafer state and an aligner

has been chosen, the vertical and horizontal contrasts can be found.

§10.2 153

The sequence of decisions made by an expert (Professor Neureuther) is

as follows:

1. Find the vertical contrast. This is found using a formula, from refrac

tive indices, exposure wavelength, and the resist's absorption.

2. Express the maximum defocus distance in terms of fundamental units.

The maximum defocus distance is the sum of the maximum vertical

features on the wafer, wafer tilt, and the focusing error of the aligner

itself. This distance can be expressed in terms of the optics' Rayleigh

limit,3 an indication of the optics' depth of field.

3. Express the desired minimum linewidth in terms of the optics' funda

mental resolution limit.4

4. Use the normalized defocus distance and normalized spatial frequency

to look up the horizontal contrast in an experimentally derived graph

[01dh8l].

5. Use the ratio of horizontal to vertical contrast to estimate actual

linewidth variation. This is also a lookup into an experimentally de

rived graph [01dh8lJ.

3The Rayleigh limit is jrjjjjf where Ais the wavelength ofthe exposing radiation and A\4
b the optics' numerical aperture.

4This fundamental resolution limit is jjrj.

§10.3 154

6. Based on the estimated linewidth variation and the user's requirements,

make a heuristic decision on whether or not the requirements can be

met with this plan. If so, suggest further courses of action that may

need to be taken to guarantee acceptable linewidth variation. This

might include using special coatings on the wafer before resist is applied

to enhance horizontal contrast, or using a special type of resist.

10.3 Implementing the Application

This section is divided into three subsections. The first examines how the

decision sequence for evaluating linewidth control was implemented. The

second shows the implementation of selected mini-experts. The third sub

section looks at verification of a complete plan with the SAMPLE process

simulator.

10.3.1 Implementing the Decision Sequence

The sequence of decisions outlined in Section 10.2.2 is straightforwardly im

plemented under Cameo's framework. Whenever one decision depends on

another, the dependent decision will appear on Cameo's screen underneath

and indented from the decision it depends on. Thus the dependent decision

is not accessible to the user until a value has been found for the decision it

depends on.

The fragment of Cameo's fully-expanded screen that shows these deci

sions is shown in Figure 10.1. The initial work in implementing a decision

§10.3 155

CAMEO PHOTOLITHOGRAPHY DESIGN

Plan: Initial Plan

Aligning and Exposure: GCA-3
—Contrast and Linewidth Variation Calculations-

Vertical Contrast: 87 percent
Normalized Defocus Distance: 1.47

normalized Spatial Frequency: .3871
Horizontal Contrast: 93 percent

Estimated Linewidth Variation: 0.217 microns

Recommended Resist Treatment: ANTI-REFLECTION-COATING

Recommended Etch. Treatment

? Refs [Derive/Provide/Override] [Expand/Collapse] [Split] [New/Kill-plan]

Figure 10.1: Screen fragment showing the decisions involved in estimating
linewidth variation.

sequence is the most difficult. This is finding the actual sequence of decisions

an expert uses and structuring them so that they represent easily-understood

concepts. If the values are numeric, hopefully they can be expressed in nor

malized unitless form like "Normalized Defocus Distance" and "Normalized

Spatial Frequency"5 shown in Figure 10.1. Normalized unitless quantities

are much easier to work with since a single graph or formula can be used for

more than one special case.

6"Normalized Spatial Frequency" if the inverse of the ratio of line pitch to the exposing
machine's fundamental resolution limit. Its inverse would probably be called "Normalized
Minimum Line Pitch." Convention dictates this quantity be in units of spatial frequency.

§10.3 156

Once the sequence of decisions has been identified, incorporating them

into Cameo's framework is quite easy, consisting of four steps for each design

decision:

1. Add a slot for the decision to the plan skeleton.

2. Make a description frame for the new slot. A special Lisp command

has been written that generates a template description frame automat

ically.

3. Write a reference file that describes the how and why of this decision. A

special Lisp command has also been written that generates a template

reference file.

4. Build the mini-expert for this decision.

For most decisions, the most difficult or time-consuming step is building the

mini-expert. For some decisions where the mini-expert is a simple rule or

formula, the most difficult step actually turns out to be writing a descriptive

reference file. Since the reference files are often as important as the mini-

experts in Cameo's knowledge base, this is not surprising.

When work began on applying Cameo specifically to linewidth control,

it had previously been structured for giving simple demonstrations. A nearly

complete restructuring was necessary. One measure of the success of Cameo's

framework was that it took approximately 15 to 20 hours of programming

time to convert Cameo from a simple demonstration system to a system that

§10.3 157

provides a useful IC process CAD service. This does not include the time

spent initially learning about the causes of linewidth variation and the initial

decision structuring, which will vary a great deal from one set of decisions

to another.

A typical user can progress through the decisions shown in Figure 10.1

on Page 155 in under five minutes, including estimating linewidth variation

and finding any suggestions for further special treatment of either the resist

scheme or the etch method. Thus Cameo enables the user to explore a

number of alternatives in a matter of minutes. This should be compared

to the typical observed case where the IC process designer can only explore

one or a very few alternatives, assuming he has the resources and knowledge

available to make accurate evaluations of these alternatives.

10.3*2 Implementing the Mini-Experts

Implementing the mini-experts is usually the most difficult and time-

consuming task once a decision sequence has been found. Some generic

examples of mini-experts are given in Chapter 7. This section details the

implementation of two mini-experts, one that relies on a complex procedure

and one that uses a graph lookup. Relevant examples of heuristic mini-

experts are given in Section 7.1.1 on Page 84.

Formulas and Procedures

As explained in Section 7.1.4 on Page 94, mini-experts that use formulas or

procedure calls are implemented using HPRL's rule facility for collecting ar-

§10.3 158

guments and performing type and range checking, and calling a Lisp function

and "splicing in" its returned value when the rule concludes. The example

shown here is the calculation of the vertical contrast.

The mini-expert for this decision is shown in Code List 10.1. The verti

cal contrast depends on the intensity of the light reflected at the boundary

between the resist and the top layer of the wafer. The maximum intensity

is where there is full constructive interference and the minimum intensity is

where there is full destructive interference, or

Imax = (1 + R)2

Imin = (1 " R)2

where R is the relative amplitude of the reflected radiation. The vertical

contrast is expressed as

+max "~ *min *•**•
c„ =

•/max "T imtrt 1 + jC

R depends on two factors, the reflection at the boundary and attenuation

in the resist due to absorption. The reflection coefficient Ar depends on the

refractive- indices

rii - n2
Ar = •

H\ -r TI2

In the general case, refractive indices are complex numbers, so Ar can be

expressed as

Ar = Aroe*

where .

^= Isssl

§10.3 159

(rule-domain vertical-contrast-estimate-domain backward-chain)

(fassert vertical-contrast-estiaate-rule

(ako (Svalue (backward-chain-rule)))

(domain (Svalue (vertical-contrast-estimato-domain))))

(rule estimate-vertical-contrast vertical-contrast-estimate-rule

(premise
(and (Tprocess-plan aligning Taligning)

(Tprocess-plan wafer ?wafer)
(?aligning wavelength ?wl (plusp ?wl))
(?wafer refractive-index ?ri (plusp ?ri))))

(conclusion

(?aligning vertical-contrast
"(contrast-fros-refractive-indices

'(1.65 -0.02) ?ri ?wl))))

(defun contrast-from-refractive-indices (index-1 index-2 lambda)

(let* ((num-real (- (car index-1) (car index-2)))

(nun-imag (- (cadr index-1) (cadr index-2)))
(den-real (+ (car index-1) (car index-2)))

(den-imag (♦ (cadr index-1) (cadr index-2)))
(refl (sqrt (/ (+ (* num-real num-real) (* num-imag nua-imag))

* (♦ (« den-real den-real) (* den-imag den-imag)))))
(angle (- (atan (/ num-imag num-real))

(atan (/ den-imag den-real))))
(internal-lambda (/ lambda

(sqrt (+ (* (car index-1) (car'index-1))
(* (cadr index-1) (cadr index-1))))))

(atten 1.0)
(r 0.0))

(cond ((minusp angle) (setq angle (+ 3.1416 angle)))
((geq angle 3.1416) (setq angle (- angle 3.1416))))

(setq atten (exp (- (* .000026 internal-lambda (/ angle 3.1416)))))
(setq r (* refl atten))
(/ (* 2.0 r) (♦ 1.0 (* r r)))))

Code List 10.1: The mini-expert for calculating the vertical contrast. The
mini-expert is a rule domain, but the rule is used only for argument collection
and range checking. When the rule concludes, the function is called and its
return value is "spliced in" to the appropriate frame's slot.

§10.3 160

9 becomes important when calculating the attenuation, as the phase shift

introduced by imaginary components of the reflection alters the distance of

the lmaz and /„„„ points from the boundary. The distance of the lma* point

from the boundary is

** = !T"~ ^internal

where Atn(ernaj is the wavelength of the exposing radiation inside the resist.

Attenuation is an exponential function of the distance traveled; since the re

flected radiation travels to the boundary and back, the attenuation coefficient

is

Aa = e",w

where A; is a known value of the resist, typically about 0.2-0.3 ^m"1.6 The

final relative amplitude of the reflected radiation R.\s then

R = ArAa

The function contrast-from-refractive-indices shown in Code

List 10.1 performs these calculations. It is passed the complex refractive

indices, each as a two-element list, and the exposuring radiation wavelength

in Angstroms. The resist's refractive index is assumed to be 1.65-0.02,/. The

function first finds the real and imaginary parts of the boundary reflection.

It then calculates Aro and 9 (called refl and angle respectively). After

correcting for 9 being negative or greater than tt, it calculates Aa (called

atten), finds R, and returns Cv.

°A value of 0.26 fim"1, the approximate mean of the popular resists in use at ERL, was
chosen for this calculation.

§10.3 161

Graph Lookup

The graph lookup mini-expert presented here is the one used to find hor

izontal contrast of the projected image. This is a three-dimensional graph

consisting of six. curves, each showing the relationship between horizontal

contrast and' normalized spatial frequency for a single value of normalized

defocus distance. The graph is shown in Figure 10.2. The code for this

mini-expert is shown in Code List 10.2.

10.3.3 Verification or Simulation

An important part of the IC process design loop is verifying or simulating

a proposed design. For this reason, the "Verify'9 command was added to

Cameo's main browser. At this time, Cameo only prepares a process de

scription for the SAMPLE [Oldh79,OIdh80] process simulator, and can only

perform verification once a complete plan has been designed. Ideally the

user would be able to verify plans incrementally in addition to globally, per

haps with a "check consistency* command that would perform fast local

consistency checks of the current design decision. Since SAMPLE is used

heavily at UC Berkeley for IC process simulation and is regarded as an accu

rate process simulator, a good agreement between Cameo's predictions and

SAMPLE results should help validate Cameo's performance.

A separate frame not associated with any plan, *sample*, has one

slot for each SAMPLE command. When the user gives the "Verify" com

mand, Cameo changes to the collect-sample-parameters-domain rule do

main and runs HPRL's inference engine once for each SAMPLE command

§10.3

(add-graph-to-list
(sake-instance 'three-d-graph

'graph-name 'horizontal-contrast-for-sigBa-7
"x-axis 'relative-spatial-frequency
•family-var 'relative-defocus
'curves '((0.0

(0.4

(0.8

(1.2

(1.6

(2.0

0.0 100.0) (.2 100.0) (.36 99.0)

.43 98.0) (.53 96.0) (.70 94.0)

.85 91.0) (1.0 80.0) (1.38 32.0)

1.58 9.0) (1.7 0.0) (2.0 0.0))

0.0 100.0) (.2 100.0) (.36 98.0)

.45 96.0) (.54 94.0) (.62 92.0)

.82 88.0) (.93 81.0) (1.04 71.0)

1.3 39.0) (1.55 11.0) (1.7 0.0)
2.0 0.0))

0.0 100.0) (.2 100.0) (.36 98.0)

41 94.0) (.5 90.0) (.96 71.0)

.54 10.0) (1.7 0.0) (2.0 0.0))

0.0 100.0) (.14 100.0) (.33 97.0)

.5 83.0) (.56 81.0) (1.0 52.0)

1.52 9.0) (1.7 0.0) (2.0 0.0))

0.0 100.0) (.14 100.0) (.32 93.0)

.84 45.0) (1.46 9.0) (1.7 0.0)

2.0 0.0))

0.0 100.0) (.12 100.0) (.26 95.0)

.32 89.0) (.39 81.0) (.51 60.0)

.76 33.0) (1.45 5.0) (1.7 0.0)

2.0 0.0)))))

162

Code List 10.2: Code for the horizontal contrast graph. The graph consists
of six curves, one for each value of normalized defocus distance from 0.0 to
2.0.

§10.3

»«ll20NTBL-C0MTH«T-F0(l-«XO«-7

tst.s

KLflTtVE-SPffflRL-nCOUEHCY

163

SELflTXVC-B

Figure 10.2: Graph for finding the horizontal contrast given normalized
spatial' frequency of the projected pattern and the normalized defocus dis
tance.

needed by solving for each slot in the *sample* frame. The rules in the

collect-sample-parameters-domain domain perform largely simple con

versions of data in the current plan to data in SAMPLE'S format. An ex

ample of one such rule is shown in Code List 10.3. When HPRL's inference

engine has been called on all slots in the *sample* frame, the data in the

frame is written out to a file.

Ideally, at this point a procedure would be called that transferred this

file to a "simulation server" running on a remote computer which has ex-

§10.3 164

X The DEVTIME command is given a set of arguments to simulate
X at 10, 30, 50, 70, and 90 seconds per micron of resist thickness.

(rule devtiae-generator collect-sample-parameters-rule
(premise (and (*sample* plan Tprocess-plan)

(Tprocess-plan resist-scheme Tresist-scheme)
(Tresist-scheme thickness ?th (plusp ?th))))

(conclusion ('sample* devtime '(list (round (* ?th 10))
(round (* ?th 90))

5))))

Code List 10.3: A rule for generating SAMPLE process simulator input.

cellent floating-point performance, and the output would be sent back to

Cameo in a graphic form for display. Currently, due to some minor technical

interface difficulties between the H-P 9836 computer and the VAXes used as

the remote computers, this is not yet done. The user may request a hardcopy

of the prepared SAMPLE input file and type it in to the remote computer

manually.

An example of the interface to SAMPLE is given here. The user has

prepared the photolithography plan shown in Figure 10.3. The SAMPLE

input file generated is shown in Figure 10.4, and SAMPLE'S output is shown

in Figure 10.5. The output shows a cross-section through the resist for the

five values of development time from 12 to 108 seconds. Note that the varia

tion of the linewidth at the 60-second mean development time, an increase of

about 0.11 fim, corresponds fairly closely to the estimated linewidth variation

predicted by Cameo, 0.07 fim.

§10.4 165

The capability of tying Cameo to existing resources such as SAMPLE

is a key element of Cameo's attractiveness. This interface was developed in

about two hours of programming time, and is very simplistic but already

useful.

§10.4 166

Plan: Initial Plan

—PROCESS REQUIREMENTS—

Minimum Feature Size: 2 microns

Maximum Allowable Linewidth Variation: 0.2 microns

Alignment Accuracy (3 sigma)
Optimizing For: DIMENSION-CONTROL

—VAFER STATE—

Wafer Diameter: 4 inches

Wafer Shape: ROUND
Maximum Non-Planarity (Varpage): 0.5 microns
Current Layer: POLY

Thickness of Current Layer: 1 microns
Refractive Index of Current Layer: 4.82-0.12j

Largest Die Dimension: 5 mm

Maximum Step Size: 0.4 microns
Previous Layers

Aligning and Exposure: 6CA-1
Machine: GCA [more...1
—Contrast and Linewidth Variation Calculations—

Vertical Contrast: 73 percent
Normalized Defocus Distance: 1.40

Normalized Spatial Frequency: .389
Horizontal Contrast: 89 percent

Estimated Linev.idth Variation: 0.06788 microns

Recommended Resist Treatment

Recommended Etch Treatment

Resist Scheme: KTI820-1

—Preparation— [more...]
Resist: KTI820

Resist Thickness: 1.2 microns

Viscosity: 27.0 est
Spin Speed: 5888.88889 rpm

Exposure Dose: 140 mj/cm-cm
Refractive Index: 1.62-0.02j [more...]

—Pre-Bake— [more...]
—Develop— [more...]

Etch Method

Figure 10.3: The plan verified with SAMPLE.

§10.4 167

lambda 0.4358;

proj 0.28;
linespace (2 2);
resmodel (0.4358 0.51 0.031 0.014 (1.62 -0.02) 1.2);

layers (1.47 0.0001 (4.82 -0.12) 1);
dose 140;

devrate 1;

devtime (12 108 5);

trial (20 0 0.7 3.9);

run;

Figure 10.4: The SAMPLE input file prepared from the plan.

U0.4]68

Symbol: tlaa: rsaist-sabatrata lateraectioa: aidavall aagla eatlaate
(by a straight llaa fit to all the CSmiaa)

a 12.0 sac

b 36.0 aac x • 0.1885 aicroaatara 70.6 dagraas
e 60.0 aac x» -0.0669 aicroaatara 81.0 dagraaa
d 84 0 aac x» -0.1668 aicreaatera 81.2 dagraaa
a 108 0 aac x« -0.2686 aiereaetara 80.9 dagraaa

The vladev is 2.0000 aicroaatara wida la x.
Iha edge is 1 0000 aicroaatara froa tha left oida of the wiadew. .

"b bb aa aa.aa aa aa aa 0 . .

*e cc ce cb bb bb a a

•ee ad dd cc c b aa

* a aaadaa dd c c b b aa a

* a ad dec b a a .

* e dd c b a

* e d c b aa

* eee de c bb aa

* a eed dec bb b a a

• a d ee b a

•• ad c b a .

* a ad cc ebb b aaa a

* aaaaddcee bbb .a aa

* a dd ee b .a

* a d e b .a

* a a dd e b aa

" aaaddedeebbbb aa a

• a d e e b aa

* a d c b a

* aaadd ee b bb a

aaaaddeeeb bb a aa' a
• a ad e bb aaa

a d e b a

' aaadd eeb b

' aaaadddceeb b bb .

a d dec bb

add e b

aadd e ee bb b

1 aaaadddeeee bbb

• a de e b b

'• a d e b

aaddde ebb

a aaaadddcec bbb.bbb

' a ddc b b

' a d e b

a addd e b b .

aa a d. ee e b.b.bb b

aa a. aa a*

Figure 10.5: SAMPLE output. This is a cross-section through the resist.

CHAPTER 11

Conclusions

This research, being interdisciplinary across the fields of IC processing and

Computer Science, contributes to both fields by tying them together. Its

contributions to IC processing lie mainly in finding a structure to experts'

problem structuring and solution methods. Its contributions to Computer

Science are more in how its implementation was driven by its application.

Some of Cameo's unique qualities differentiate it from other expert sys

tems in a way that users find especially useful. Other aspects of Cameo's

structure should prove to be valuable for easing future extensions or main

tenance. Some limitations have been pointed out that suggest directions for

future work.

Cameo's highly modular structure makes it very easy to extend and

modify. The ability to represent knowledge and data in their "most appro

priate" forms eliminates one difficult programming task. The Lisp language

169

W.l 170

made Cameo's implementation unusually easy.

11.1 Contributions

This research being interdisciplinary in nature, its contributions lie mainly in

tying the disciplines together rather than making fundamental contributions

to them. The most important contributions are that a structure to a subset

of the IC process design activity has been found, and that that structure has

been used to design a computer-based design assistant that leads the user

through the same structured decisions that an expert IC process designer

would.

These contributions are nonetheless important and valuable. IC process

design is currently in a state where it has little structure and few generally-

accepted design principles. One of the most difficult parts of this research

was to convince experts to think in general terms and specify their "rules of

thumb" about their problem structuring and solution methods. One specific

contribution, then, is an attempt to simplify and generalize the decision

process of an expert IC process designer evaluating potential approaches to

linewidth control.

Some of the ideas and principles behind Cameo's software implementa

tion have been used before in other CAD systems. Cameo's implementation,

however, is unique because its specific application is unique (aiding novice IC

process engineers at UC Berkeley's Electronics Research Laboratory (ERL)

understand and evaluate approaches to linewidth control). Drawing from

§11.2 171

comments of people to whom Cameo was demonstrated, it appears that

many of the ideas behind Cameo's implementation are applicable more gen

erally than to its current application. Thus it may be instructive to study

the derivation of the implementation in response to the application's require

ments.

11.2 Observations

11.2.1 Observations from Potential Users

As of this writing, Cameo has not been used for designing IC photolithog

raphy steps, but has been demonstrated to approximately twenty potential

users including both professional IC processing experts and complete novices.

Thus the following observations are npt the results of a rigorous user study

but are distilled from questions and comments voiced during these demon

strations.

Most people approached for giving demonstrations and potentially using

Cameo were initially reluctant to try an A1-based CAD system. Without

exception, however, once these people actually saw the system in use, they

were eager to use it. Four reasons were largely responsible for Cameo's

positive impression:

• Cameo is highly interactive and under the user's control much more

than most expert systems.

§11.2 172

• Most doubters asked something like, "What if the user doesn't know

what this item on the screen means?" This question quickly disap

peared once they saw that every item shown on the screen had an

associated references file that answered this question.

• Cameo allows the user to work on more than one alternative design

during a single session. Most CAD systems make it very difficult for

users to evaluate alternative designs.

• Cameo could be considered to be a "front end" for existing IC process

CAD tools like simulators. Thus these popular and well-known (among

Cameo's users) tools were being enhanced, not replaced.

Less important was Cameo's potential for establishing a "corporate

memory" of photolithography steps. Most expert IC process designers are

skeptical that such a library of photolithography steps will prove to be of

great value. Novice IC process designers, however, welcome this feature be

cause it gives them a starting point from which to design their own process

steps. Evaluation of this aspect of Cameo's structure will require more people

actively using the system.

Some potential users raised questions about whether Cameo could sup

port the highly iterative nature of design, and whether its relatively static

decision sequence structure would work against this. Most were satisfied, that

they could split a plan at any time and work on the resulting ones indepen

dently. A truly general solution to this issue encompasses dealing with the

§11-2 173

dependencies among the design decisions. This is a limitation that should

be addressed by future work; a later section (Section 11.3.3 on Page 178)

concentrates on what this work might entail.

Concerns were raised by most experts about the difficulty of maintaining

the system's knowledge base. This is a real concern, and although Cameo's

modularity should prove to minimize this problem, a substantial amount of

maintenance will be necessary. This maintenance is useful in its own right,

however, because it increases the understanding of the IC photolithography

steps themselves and serves to document new developments in the field in

an easily accessible system.

11.2.2 Observations from Cameo's Development

Cameo is a large system. Aside from PSL and HPRL itself, the code involved

with supporting its framework consists of about 3500 lines of well-commented

Lisp. The code that forms the knowledge base and the specific structure of

Cameo's application totals about 1500 lines of Lisp. The underlying PSL and

HPRL provide the basic foundations of the system such as the Lisp language

itself with object-oriented programming extensions, the screen-oriented edi

tor, the browser mechanism, and the frame and rule system.

Programming effort, however, was proportionally low for a system of

this size. Much of this is because an advanced Lisp system like PSL offers an

exploratory programming environment where new ideas can be tried within

moments and do not require recompilation. Bugs can be identified quickly

§IL2 174

with PSL's interactive debugger that takes over immediately whenever a

system exception occurs or a user-set breakpoint is reached. Another impor

tant programming feature is object-oriented programming which allows an

unusually highly modular system to be developed.

HPRL's frame and rule system is equally easy to program with. The

easy interface between PSL, HPRL's frames and rules, and object-oriented

programming allows combinations of these seemingly limited only by the pro

grammer's imagination. The inheritance properties of HPRL's frames and

rules allow the grouping of similar data structures in efficient and conceptu

ally simple ways. HPRL Ts inference engine for backward chaining is simple

but sufficient and allows an example expert system to be built very quickly.

There is, of course, a price to be paid for these advantages. With

out unconventional hardware support, Lisp runs slowly and inefficiently on

standard computers. This is not a fundamental drawback of Lisp, but is

a reflection on conventional styles of hardware design. Programming lan

guages have evolved over the last 20 to 30 years to take best advantage of

the hardware they are intended to run on. Their structure closely reflects

the hardware's architecture. Languages such as Lisp and Smalltalk [Gold83],

on the other hand, are designed for special applications and are not designed

primarily for efficient execution on commonly available hardware. Hardware

designed specifically for efficient execution of Lisp or Smalltalk has shown

that systems written in these languages can run very fast at high efficiency.

From a system development standpoint, dividing a large and complex

knowledge base about a technical field into small, relatively independent

§11.3 175

chunks makes the system easy to understand, highly modular, and easily ex

tended and modified. The flexibility of being able to represent these chunks

of knowledge in their most appropriate forms eliminates one of the more

difficult implementation problems, deciding how to fit a known bit of knowl

edge or data into an inflexible representation scheme. If new knowledge or

data representations are needed, they can easily be added to the existing

repertoire.

The four types of mini-experts used in Cameo's specific application are

production rules, numeric graph lookups with interpolation, symbolic tables,

and calls to formulas or arbitrary procedures. Once the application's struc

ture, or decision sequence, was found, it was never difficult to decide on the

mini-expert types.

11.3 Directions for Future Work

11.3.1 Extending Cameo

Cameo currently addresses a small subset of the overall IC photolithography

design problem, although the problems it addresses are especially important.

Cameo currently only handles resist exposure and development on metal and

polysilicon layers. Three directions suggest themselves immediately:

.♦ Extend Cameo to handle the etching step.

• Extend Cameo to the remaining layers of the IC process.

§11.3 176

• Improve the generation of simulator input from data in each process

plan.

11.3.2 Increase Cameo's Portability

While HPRL is an excellent environment for developing an expert system,

it has a major limitation in that it can currently only be run on a few

select Hewlett-Packard computer systems. The operating system used on

these computers does not allow easy access to other computers or a high

speed local area network. One of the highest priority further activities is to

port Cameo to more commonly available hardware and a standard operating

system. There are a number of possible ways, to do this. Each must be

evaluated in terms of the benefits versus the risks and the costs (monetary

and time) involved.

Cameo is implemented in HPRL I. The expert systems group at Hewlett-

Packard Laboratories has recently announced a new version of HPRL,

HPRL II. HPRL II is not upward compatible with HPRL I but its basic

structure is similar, so porting Cameo to HPRL 11 should not be difficult.

With Hewlett-Packard's recent corporate commitment to HP-UX, its ver

sion of the UNIX1 operating system, it can be assumed that HPRL II will

eventually be available for UNIX systems. Once available for a /mboxUNIX

system, it should be much easier to port to other systems. This strategy

'UNIX iff a trademark of AT&T.

§11.3 177

would probably be the least expensive and least time-consuming, but its

success depends on various factors that cannot be controlled.

As another porting strategy, the subset of HPRL I's capabilities actually

used by Cameo could be rewritten in a version of Lisp that is highly portable.

This might include PSL, Franz Lisp, Zeta Lisp, or Common Lisp. This

porting strategy probably entails substantially more work than the former,

but does not rely on HPRL H becoming available on a UNIX or UNIX-like

system. Thus this strategy entails less risk but will cost more in development

effort.

Another strategy would be to rewrite Cameo in a different expert sys

tems development environment. This has already been done with one expert

system developed in HPRL I at UC Berkeley, RUBICC [Spic85], which was

ported to run under OPS5 [Forg8l]. A number of expert systems devel

opment environments currently* exist or are being prepared as commercial

products. Again, this strategy entails substantially more work than the

first, but probably gives the most long-term flexibility at a low risk since

the development environment used will be complete and may offer increased

capabilities over the other porting strategies. The monetary cost may be

substantial, especially if a commercial product is used as the development

system.

11.3.3 General System Improvements

During the application of Cameo's framework to linewidth control, certain

limitations were found that suggest general improvements to the system.

§11.3 178

Dependencies

Cameo does not have a clear-cut way to deal with data dependencies. Each

description frame has a slot called depends-on which lists all the slots this

slot's value depends on, but the current version of Cameo does not use this

information.

One confusing problem occurs when a user asks Cameo to derive an

answer to a design decision, and Cameo responds that it cannot find an

answer. This is usually because some of the data needed has not yet been

found. The user does not know which data is needed, so the only real choice

he has is to go through all possible design decisions and make sure they have

values, then try again to derive the answer to the original design decision.

Since the dependency data is stored in the description frames, all data

necessary to solve the problem already exists. One method would be to use

a graphic representation of the complete decision tree showing all dependen

cies. The user could point to the desired decision and Cameo could tell him

which decisions need to be solved first. This should be interactive and tied

in to Cameo's main browser. This could also make use of the "view" concept

explained in Section 8.1.2 on Page 115 since the graphic data dependencies

form a different view of the same IC process plan.

Another dependency problem, related to the previous one, is that the

outline form of Cameo's browser will allow the user access to a design decision

whenever its superior decision in the outline has been given a value. In

practical design decisions, each decision depends on more than one other

§11.3 179

decision, and should not be accessible to the user until all the decisions it

depends on have been solved. Thus the plan structuring should actually

be dynamic, allowing the user access only to those decisions where all the

decisions they depend on have been solved. Again, since the entire structure

of the browser is kept in description frames, meta knowledge can be developed

that performs this function.

Another dependency problem occurs when the user overrides a value

already in a plan. Currently Cameo simply walks down the browser -out

line and removes values from design decisions that appear subordinate to

the overridden decision. While this is often sufficient, in reality some design

decisions in a different part of the plan outline may depend on one of the

values overridden or removed. The correct action is to invalidate all depen

dent decisions. Invalidation may involve removing the dependent value from

the plan, but it may be more helpful to the user to leave a marker with the

decision's display indicating that its value may be invalid. The user may de

cide to keep the value as it is or derive or provide a new one. Highly relevant

work to this problem is in the area of constraints |deK)80j.

Extending Cameo to Help Experts

Cameo's current structure enforces a relatively rigid structure on the decision

sequence and thus does not allow users to break away from this predeter

mined structure. For Cameo's current application this is desirable. Break

throughs in synthesis, however, are often accomplished by violating an ac

cepted structure. For Cameo to be most useful for experts, it should allow its

§11-3 180

novice-oriented decision structure to be broken, offering just "housekeeping"

services to the user to keep the plan structures intact.

Some parts of this extension can be accomplished by transferring more

of Cameo's structure to meta-knowledge and by letting the user override

its own structuring. This is an interesting and potentially fruitful area of

research, as experts using Cameo's capabilities could also realize significant

productivity gains if they are not hindered by too-rigid structuring.

Enabling Users to Add Knowledge

As users gain experience with Cameo, they will want to add notes and advice

to the reference files. This capability could be added relatively easily by using

existing capabilities of the NMODE editor. The users could be placed in a

special buffer and asked to contribute a short note. The contents of the

buffer, along with the user's name and the current time, could be inserted

into the existing reference file.

A long-term possibility is to allow users to add their own steps into

these libraries and make comments about any library steps, thereby making

this information immediately accessible to the entire user community. The

potential benefits of this possibility need to be evaluated carefully, as this

may lead to an explosion of data.

§11.3 181

Programming Aids

Modification or addition to the existing mini-experts requires some knowl

edge of Cameo's structure that is not evident from interacting with it on the

user's level, such as HPRL frame structure and syntax, and frame and slot

names of both the plan skeleton and the description frames. If HPRL rules

are used by the mini-expert, the rule syntax and semantics would need to be

understood too. Someone familiar with Lisp should be able to understand

this without too much difficulty.

A good long-term solution would be to have functions that build tem

plates of mini-experts and fill out or modify relevant slots. This is an inter

esting research project in itself. Some of the more advanced Lisp systems and

Xerox's Smalltalk-80 system have capabilities like this that could be used as

models.

Saving and Restoring Plans

Once a user has assembled one or more plans, a capability to save them on

mass storage is needed. An ideal way to do this is to use internal HPRL

functions that can dump the contents of a frame into a given file. HPRL

also provides companion functions to restore a dumped frame. The frame

hierarchy for the plan to be saved would have to be flattened so no inheritance

is used to find values. The restored plan would become a direct instance

of the plan skeleton. Some work would also need to be done to eliminate

session-specific data from the frame like pointers to specific frames.

§11.3

Object Type Representative Messages

item-display expand

collapse

kill

display-text

mini-expert solve

user-input

explain

replace

bw-chain-expert solve-specific

two-d-graph-expert solve-specific

three-d-graph-expert solve-specific

matrix-expert solve-specific

null-heading-expert solve-specific

182

Table 11.1: Improved internal structure. The display and problem-solving
actions are explicitly separated.

Internal Structure

Cameo's interna] software structure evolved over a period of about a year,

and so reflects ideas from earlier development that may not be applicable to

its current state. One structure improvement is explicitly dividing display

and problem solution actions. These are currently intermingled in the generic

control object and its five specific objects.

An improved structuring might be as shown in Table 11.1. Each item

on the screen is now represented by an object of type item-display which

controls only how items are to be shown. Each mini-expert is an instance

of one of the five specific expert objects. This is in contrast to the current

§11.3 183

implementation where each item on the screen is represented by an instance

of one of the five specific control objects and the division between display

and problem-solving actions is not nearly as explicit.

This restructuring would improve the modularity of the system and

ease modifications and extensions. Since the display mechanism, which will

probably vary from one computer system to another, is independent of the

problem-solving mechanism, Cameo's portability should be improved. With

the "view" concept introduced in Section 8.1.2 on Page 115 and suggested

for use with dependencies in Section 11.3.3 on Page 178, this structuring

could help show different views of IC process plans by defining a different

kind of item-display object for each view.

Performance Monitoring

Monitoring of certain aspects of Cameo's performance and use would be

useful for eventual optimizations. For instance, if a certain library step is

chosen much more often than others, then it might be useful to provide a

few popular versions of that library step.

Other monitoring that might be useful would be for the aim of improving

the user interface. A record can be kept of the operations performed by users.

Certain sequences of operations will undoubtedly be found to occur often.

Examining these operation sequences could point to an inefficiency in the

user interface, a missing feature, ambiguities, poor plan structure, or simply

new commands that could replace these sequences of commands.

§11.4 184

Other conventional performance monitoring would also be useful in a

longer term, such as identifying performance bottlenecks in the code and

finding more optimal data structures or algorithms that would speed Cameo's

execution. Two bottlenecks are already known by observation:

• Each time one or more items are added to Cameo's browser, all items

are resorted. Sorting over all items shown in the browser is the method

used to keep design decisions in the form of an outline. As the number

of items in the browser increases, this sorting time becomes quite long,

on the order of 10 seconds in some practical cases.

• When expanding a heading that results in many new items added to

the browser display, a great deal of time is spent finding the actual text

displayed for each item. While this is necessary to retain the dynamic

nature of the system, it costs quite a bit of performance.

11.4 Other Applications for Cameo's Frame
work

While Cameo is intended specifically for synthesis of IC processes, most of

the code and structure do not limit it to this application alone. Any applica

tion where the decision process can be structured into iterative paths along

decision trees with references and mini-experts at each node are candidates.

With more work on solving the problems referred to earlier on dependencies,

the decision process may not even need to be limited to a decision tree.

§11.4 185

Some potential applications of Cameo's framework are in diagnosis and

educational instruction.2 Both of these application areas appear to be rela

tively straightforward using Cameo's present framework.

Although Cameo is designed to work with libraries of fundamental IC

photolithography steps, the code that assumes this is not extensive. Cameo

does not make assumptions about the number of libraries (three in Cameo's

current application). Cameo could even be modified to work with a plan

skeleton that is a single frame, but this is probably not.particularly desirable

or necessary.

As an example of an application to educational instruction, a library

"step" could hold one lesson for each level of student expertise. Each library

would hold all the experience levels for a single lesson, and heuristic rules

would select the appropriate experience level based on the user's answers to

some initial questions that would take the place of Cameo's current "Process

Requirements" or *Wafer State." Each lesson would take the place of one of

the current fundamental IC photolithography steps.

2 These two application? were suggested by William Holton of the Semiconductor Research
Corporation on a visit to UC Berkeley's Electronics Research Laboratory in July 1985.

Bibliography

[Anto79] Antoniadis, D.A., Dutton, R.W., "Models for Computer Simu
lation of Complete IC Fabrication Process," IEEE Transactions
on Electron Devices, volume ED-26, Number 4, April 1979, pp.
490-500.

[Beeb83] Beeby, W.A., "The Heart of Integration: A Sound Data Base",
IEEE Spectrum, vol. 20, number 5, IEEE, New York, NY, May
1983, pp. 44-48.

[Boni85] Boning, D.S., Antoniadis, D.A., "MASTIF—A Workstation Ap
proach to Fabrication Process Design," submitted to ICCAD
1986.

[Brow77] Brown, A.L., "Qualitative Knowledge, Causal Reasoning, and
the Localization of Failures," Ph.D. dissertation, MIT AI Labs
Technical Report No. 362, 1977.

[Brow83] Brown, H., Tong, C, Foyster, G., "Palladio: An Exploratory
Environment for Circuit Design," IEEE Computer Magazine,
volume 16, number 12, December 1983, pp. 41-56.

|Bush83a] Bushnell, M.L., "Delilah II—An Enhanced Menu-Driven Input
Processor," Research Report CMUCAD-83-7, SRC-CMU Cen
ter for Computer-Aided Design, Department of Electrical and
Computer Engineering, Carnegie-Mellon University, February
1983.

186

BIBLIOGRAPHY 187

[Bush83b] Bushnell, M.L., et. al., "DIF: The CMU-DA Intermediate
Form," Research Report CMUCAD-88-11, SRC-CMU Center for
Computer-Aided Design, Department of Electrical and Com
puter Engineering, Carnegie-Mellon University, February 1983.

[Bush85] Bushnell, M.L., Director, S.W., "ULYSSES—An Expert-System
Based VLSI Design Environment," SIGART Newsletter, Asso
ciation for Computing Machinery Special Interest Group on Ar
tificial Intelligence, number 92, pp. 82-84, April 1985.

[Byer83] Byers, T., "Optimal and Near-Optimal Policies for Discrete De
terministic Dynamic Programming Models," Ph.D. dissertation,
Graduate School of Business, University of California at Berke
ley, 1983.

[Clan84] Clancey, W.J., "Knowledge Acquisition for Classification Expert
Systems," presented at ACM '84, San Francisco, CA, 1984.

[Clin85] Cline, T. et. al., "Photolithography Advisor," SIGART Newslet
ter, Association for Computing Machinery Special Interest
Group on Artificial Intelligence, number 92, pp. 42-43, April
1985.

[Date8l] Date, C.J., An Introduction to Database Systems, Third Edition,
volume 1, Addison-Wesley Publishing Company, Reading, MA.
ISBN 0-201-14471-9.

jdeK180] de Kleer, J., and Sussman, G.J., "Propagation of Constraints
Applied to Circuit Synthesis," Circuit Theory and Applications,
volume 8, John Wiley & Sons, 1980, pp. 127-144.

[Dire8l] Director, S.W., et. al., "A Design Methodology and Computer
Aids for Digital VLSI Systems," IEEE Transactions on Circuits
and Systems, CAS-28, July 1981, pp. 534-645.

[East8l] Eastman, CM., "Database Facilities for Engineering Design,"
IBS Research Report No. 14, Department of Architecture,
Carnegie-Mellon University, March 1981.

[E1K82] Elliot, D.J., Integrated Circuit Fabrication Technology, McGraw-
Hill, Inc., 1982. ISBN 0-07-019238-3.

BIBLIOGRAPHY 188

[Fole82]

[Fole84]

[Forg8l]

[Gajs84]

[Gene84]

[Grim84]

[Gold83]

|Gyur85]

(Haye83j

[Ho83j

Foley, J.D., Van Dam, A., Fundamentals of Interactive Com
puter Graphics, Addison-Wesley Publishing Company, Reading,
MA, 1983. ISBN 0-201-14468-9.

Foley, J.D., Wallace, V.L., Chan, P., "The Human Factors of
Computer Graphics Interaction Techniques," IEEE Computer
Graphics and Applications, volume 4, number 11, IEEE Com
puter Society, November, 1984, pp. 13-48.

Forgy, C.L., "OPS5 User's Manual," Research Report CMUCAD-
81-185, SRC-CMU Center for Computer-Aided Design, Depart
ment of Electrical and Computer Engineering, Carnegie-Mellon
University, July 1981.

Gajski, D.D., Bozek, J.J., "ARSENIC: Methodology and Im
plementation," Digest of Technical Papers, IEEE International
Conference on Computer-Aided Design, November 1984, pp.
116-118.

General Motors Corporation Public Relations Staff, "MAP: The
Tie That Binds — Communication on the Plant Floor," Public
Affairs Newsletter, volume 14, number 8, September 1984.

Grimes, J.D., Guest Editor's Introduction, "Human Factors—
Part 1," IEEE Computer Graphics and Applications, November
1984, pp. 10-11.

Goldberg, A., Robson, D., Smalltalk-80—The Language and its
Implementation, Addison-Wesley Publishing Company, Read
ing, MA, 1983.

Gyurcsik, R.S., private communication, Electronics Research
Laboratory, UC Berkeley, June 1985.

Hayes-Roth, F., Waterman, D.A., and Lenat, D.B., eds., Build
ing Expert Systems, Addison-Wesley Publishing Company, Inc.,
Reading, MA., 1983.

Ho, C.P., Hansen, S.E., "SUPREM III—A Program for Inte
grated Circuit Process Modeling and Simulation," Stanford Uni
versity Technical Report SEL 83-001, July 1983.

BIBLIOGRAPHY 189

[Kel182a] Keller, K., "A Symbolic Layout Design System," Proceedings of
the 1982 IEEE International Symposium on Circuits and Sys
tems, 1982.

|Kell82b] Keller, K., "A Symbolic Design System for Integrated Circuits,"
Proceedings of the 1982 Design Automation Conference, 1982.

[Krarn84] Kramer, G.A., "Brute Force and Complexity Management:
Two Approaches to Digital Test Generation," SM Thesis, Mas
sachusetts Institute of Technology, June 1984.

[Kram85] Kramer, G.A., "Helios Design Consultant System," SIGART
Newsletter, Association for Computing Machinery Special In
terest Group on Artificial Intelligence, number 92, pp. 76-78,
April 1985.

[Kowa83] Kowalski, T.J., Thomas, D.E., "The VLSI Design Automa
tion Assistant: A Prototype System," Proceedings of the 20th
ACM/IEEE Design Automation Conference, June 1983, pp.
479-483.

[Kowa85] Kowalski, T.J., Thomas, D.E., "The VLSI Design Automation
Assistant: What's in a Knowledge Base," Proceedings of the
22nd ACM/IEEE Design Automation Conference, June 1985,
pp. 252-258.

(Lana83aj Lanam, D., Letsinger, R., Rosenberg, S., "Guide to the Heuristic
Programming and Representation Language Part 1: Frames,4'
AT-MEMO-83-3, Applications Technology Laboratory, Com
puter Research Center, Hewlett-Packard Company, Palo Alto,
CA, 1983.

(Lana83b[Lanam, D., Rosenberg, S., Letsinger, R., "Guide to the Heuris
tic Programming and Representation Language Part 2: Rules,"
AT-MEMO-83-4, Applications Technology Laboratory, Com
puter Research Center, Hewlett-Packard Company, Palo Alto,
CA, 1983.

[Leop84] Leopold, G., "Factory Nets Follow a MAP," Electronics Week,
December 17, 1984, pp. 20-21.

[Lob84] Lob, C, "RUBICC—A Rule-Based Expert System for VLSI
Integrated Circuit Critique," M.S. thesis, Electronics Research
Lab, UC Berkeley, 1984.

BIBLIOGRAPHY 190

|Math77] Mathlab Group, The, MACSYMA Reference Manual, MIT Lab
oratory for Computer Science, Cambridge, MA, 1977.

|Mead80] Mead, C.A., Conway, L., Introduction to VLSI Systems, Addi
son-Wesley Publishing Company, Reading, MA, 1980.

[Mill56] Miller, G.A., "The Magical Number Seven—Plus or Minus Two:
Some Limits on Our Capacity for Processing Information," Psy
chological Review, 63, 1956, pp. 81-97.

|Nage75] Nagel, L.N., "Spice 2: A Computer Program to Simulate Semi
conductor Circuits," UCB/ERL Memo M520, Electronics Re
search Laboratory, University of California at Berkeley, May
1975.

;Nand84J Nandgaondkar, S.N., "A Family of Simulation Programs for IC
Fabrication Processes (Their Structure, Design and Implemen
tation)," Ph.D. dissertation, UCB/ERL Memo M84/90, Elec
tronics Research Laboratory, UC Berkeley, October 1984.

|Nass83] Nassif, S.R., Strojwas, A.J., and Director, S.W., "FABRICS II:
A Statistically Based IC Fabrication Process Simulator," IEEE
Transactions on CAD of ICAS, volume 3, number 1, January
1984, pp. 40-46.

[Neur8l] Neureuther, A.R., Jain, P.K., Oldham, W.G., "Factors Affect
ing Linewidth Control Including Multiple Wavelength Expo
sure and Chromatic Aberration," Semiconductor Microlithog-
raphy VI, Society of Photo-Optical Instrumentation Engineers,
volume 275, Bellingham, WA, 1981, pp. 110-116.

jNye83j Nye, W.T., "DELIGHT: An Interactive System for Optimization-
Based Engineering Design," Ph.D. dissertation, UCB/ERL
Memo M83/33, Electronics Research Laboratory, UC Berkeley,
1983.

[OJdh79j Oldham, W.G. et. al., "A General Simulator for VLSI Lithogra
phy and Etching Processes: Part I—Application to Projection
Lithography," IEEE Transactions on Electron Devices, volume
ED-26, number 4, April 1979, pp. 717-722.

BIBLIOGRAPHY 191

[Oldh80] Oldham, W.G. et. al., "A General Simulator for VLSI Lithogra
phy and Etching Processes: Part II—Application to Deposition
and Etching," IEEE Transactions on Electron Devices, volume
ED-27, number 8, August 1980, pp. 1455-1459.

[OldhSl] Oldham, W.G., Subramanian, S., Neureuther, A.R., "Optical
Requirements for Projection Lithography," Solid-State Electron
ics, volume 24, number 10, pp. 975-980, Great Britain, 1981.

[OJdh85] Oldham, W.G., private communication, Electronics Research
Laboratory, UC Berkeley, January 1985.

|ONei79] O'Neill, L.A. et. al., "Designer's Workbench—Efficient and Eco
nomical Design Aids," Proceedings of the 16th ACM/IEEE De
sign Automation Conference, June 1979, pp. 185-199.

jOust84] Ousterhout, J., et. al., "Magic, a VLSI Layout System," Pro
ceedings of the 21st ACM/IEEE Design Automation Conference,
June 1984, pp. 152-159.

[Pan83] Pan, Y-C, "Qualitative Reasonings with Deep-Level Mechanism
Models for Diagnosis of Dependent Failures," Ph.D. disserta
tion, Coordinated Science Laboratory, University of Illinois at
Urbana-Champaign, Report No. T-132, Dec. 1983.

[Pete83] Peterson, J.L., Silberschatz, A., Operating System Concepts,
Addison-Wesley Publishing Company, Reading, MA., 1983.
ISBN 0-201-06097-3.

;Pint84| Pinto, M.R., Rafferty, C.S., Dutton, R.W., "PISCES II: Poisson
and Continuity Equation Solver," Stanford Electronics Labora
tories Report, September 1984.

(Poly57] Polya, G., How to Solve It—A New Aspect of Mathematical
Method, Doubleday & Company, 1957.

[Rich79] Rich, C, and Shrobe, H.E., "Design of a Programmers Ap
prentice," Artificial Intelligencef an MIT Perspective, volume
1, Winston and Brown, eds., The MIT Press, Cambridge, MA,
1979.

[Robe77a] Roberts, R.B., Goldstein, LP., "The FRL Manual," MIT Al
Memo 409, Artificial Intelligence Laboratory, Massachusetts In
stitute of Technology, Cambridge, Massachusetts, June 1977.

BIBLIOGRAPHY 192

[Robe77b] Roberts, R.B., Goldstein, LP., "The FRL Primer," MIT Al
Memo 408, Artificial Intelligence Laboratory, Massachusetts In
stitute of Technology, Cambridge, MA, July 1977.

|Rose82] Rosenberg, S.,"HPRL: A Language for Building Expert Sys
tems," Proceedings ofthe International Joint Conference on Ar
tificial Intelligence, Karlsruhe, West Germany, 1982.

[ShneSO] Shneiderman, B., Software Psychology—Human Factors in
Computer and Information Systems, Winthrop Publishers, Inc.,
Cambridge, MA, 1980. ISBN 0-87626-816-5.

|Siew83] Siewiorek, D.P., Giuse, D., Birmingham, W.P., "Proposal for
Research on Demeter—A Design Methodology and Environ
ment," Research Report CMUCAD-88-5, SRC-CMU Center for
Computer-Aided Design, Department of Electrical and Com
puter Engineering, Carnegie-Mellon University, January 1983.

[Sing83] Singh, N., "MARS: A Multiple Abstraction Rule-Based Simula
tor," Memo HPP-83-43, Heuristic Programming Project, Stan
ford University, December 1983.

[Sing84] Singh, N., "Corona: ALanguage for Describing Designs," Memo
HPP-84-37, Heuristic Programming Project, Stanford Univer
sity, June 1984.

[Spic85; Spickelmier, R.L., Newton, A.R., "A General Knowledge-Based
Circuit Critic," SIGART Newsletter, Association for Comput
ing Machinery Special Interest Group on Artificial Intelligence,
number 92, pp. 78-79, April 1985.

|Stro84] Strojwas, A.J., "Statistical Process/Device Simulation and Its
Applications for the Control and Diagnosis of the IC Manufac
turing Line," presented at UC Berkeley Extension's Continu
ing Education in Engineering one-day course titled Com puter-
Aided Manufacture for Semiconductor Fabrication Applications,
February 17, 1984.

[Stro85] Strojwas, A.J., "CMU-CAM System," Proceedings of the 22nd
ACM/IEEE Design Automation Conference, June 1985, pp.
319-325.

§11.4 193

|Suss79] Sussman, G.J., Holloway, J., Knight, T.F. Jr., "Computer Aided
Evolutionary Design for Digital Integrated Systems," Al Memo
526, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA, May 1979.

[Wrig83j Wright, J.M., Fox, M.S., SRL/1.5 User Manual, Robotics Insti
tute, Intelligent Systems Laboratory, Carnegie-Mellon Univer
sity, 1983.

	Copyright noticE 1985
	ERL-85-73 (1 of 2)
	ERL-85-73 (2 of 2)

