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I. INTRODUCTION

It is well known that autonomous Hamiltonian systems with one

degree of freedom H(p,q) are integrable. For two or more degrees of

freedom, integrability is exceptional [Without loss of generality, we

consider autonomous systems for which the Hamiltonian is explicitly

independent of time. Nonautonomous systems in N degrees of freedom can

be made autonomous in N+1 degrees of freedom by introducing an extended

phase space; thus H(p,q,t) is equivalent to H(pt, q1f p2, q2); see Lichtenberg

and Lieberman, 1983, Sec. 1.2b].

Practically all that is known about nonintegrable Hamiltonian systems

is for the near integrable case having two degrees of freedom [Near

integrable Hamiltonians have the form H=H0+<eH1 with H0 integrable, H not

integrable, and the perturbation strength €«11. Yet, such systems are

special in many respects and do not exhibit the generic behavior of higher

dimensional systems. In this manuscript, we compare systems having two

degrees of freedom with systems having more than two degrees of

freedom.

For systems having one degree of freedom, the motion is on the

smooth level curves H(p,q) =const in the (p,q) phase space, as illustrated

in Fig. la for the pendulum Hamiltonian

H= p2/2 - cos q. (1)

The elliptically-shaped orbits inside the singular separatrix curve

correspond to oscillations of the pendulum, and the orbits outside the

separatrix correspond to rotations. The motion can also be represented in
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the action-angle variables (1,8) of the pendulum, where

I =(2TT)-1$pdq (2)

is the canonical action and 8 is the canonical angle. In these coordinates,

the new Hamiltonian K is a function of I alone, independent of 8, yielding

the solution of Hamilton's equations I=const and 8=ci>t+90, where <o=8K/8l

is the frequency of oscillation or rotation. The level curves of K are the

straight lines shown in Fig. lb.

For N degrees of freedom, the motion can also be described using the

action-angle variables of the unperturbed system, for which the

Hamiltonian takes the form

K = K0(I) +^(1,8) (3)

with

<i> = 9K0/8I (4)

the N-vector of unperturbed frequencies.

It is convenient to introduce a Poincare surface of section ER in the

phase space(Fig. 2a). First recall that if z=(p,q) represents 2N canonical

variables, then Hamilton's equations with Hamiltonian H(z) cause an initial

phase point z to evolve in time to a new point z?z,t). The transformation

from z to z"is canonical; i.e., it preserves the Poisson bracket structure
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tPi>Pj] =[%q"jl =0,

(5)

IqjiPjl =Sjj,

where

m. J p9JLMi (6)
k=i Laqk apk aqkapkJ.

One consequence of (5) is that a Hamiltonian flow preserves the phase

space volume(Liouville's Theorem).

Since the motion lies on a constant energy surface H(z)=const, one of

the variables, say pN, can always be expressed in terms of the others:

pN =f(x,qN) (7)

where

x=(p1 ...pN_j, q^ .. .qN_j) (8)

has dimension M=2N-2. We define a surface of section SR by the equation

qN =9(*,pN), W)

where the function g is arbitrary, subject to the restriction that g be

nowhere tangent to the unperturbed flow. As the phase point z evolves

with time, it repeatedly piercesOn the same sense) the surface of section.
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As shown in Fig. 2a, the successive intersections n, n+1, n+2 etc of the

trajectory with the surface of section generate a map of dimension M,

xn+1=T(xn). (10)

Since different xn's usually return to £R at different times, yielding the

xn+i's>the transformation T is not generally canonical in x. This implies,

for example, that the map is not volume preserving(but measure preserving

instead). However, it can be shown that a particular g can be chosen to

preserve the Poisson bracket structure (5) for x. In this case, the map T

is canonical and volume preserving. We assume in the succeeding

discussion that this choice for SR has been made.

For two degrees of freedom, as shown in Fig 2b, the phase space is

four dimensional, but the motion lies on the three dimensional energy

surface H(p1,q1,p2,q2)=const. Choosing a surface of section q2=g yields

the two dimensional surface of section (p^qj) on which the map is

defined. For three degrees of freedom, the phase space is six dimensional,

with the motion on a five dimensional energy surface. Choosing a surface

of section q3=g yields a four dimensional surface of section, Fig. 2c(2).

The successive intersections of the motion with this surface of section

can be projected onto the (p^) and (p2,q2) planes, as shown in Fig. 2c(3).

The generic behavior of near integrable systems with two degrees of

freedom is now reasonably well known(Lichtenberg and Lieberman, 1983,

Sec. 3.2). The successive intersections of various trajectories with the
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(pt,qt) and (Ii,8j) surfaces of section are illustrated in Fig. 3a and Fig. 3b

respectively for a driven pendulum with Hamiltonian

H=pf2/2 - cosqf- €Cos(q-ftt), (11)

where ft is the external driving frequency. First, there is a set of

measure zero of singly periodic(closed) orbits that are dense in the phase

space. If an orbit pierces the surface of section exactly k times, then a

set of fixed points of period k is generated in the surface of section.

These sets of fixed points are dense in the surface. Their stability is

determined by two characteristic exponents. We will see that these

exponents are either purely imaginary, corresponding to stable elliptical

orbits encircling each fixed point, or they are purely real, corresponding to

unstable, hyperbolic orbits. As a system parameter is varied, the stable

orbits can undergo transitions such as period doubling bifurcations that

can alter orbit stability, create new periodic orbits, and generate local

chaotic behavior.

Almost all trajectories, however, are not singly periodic. A finite

fraction of the trajectories are the quasiperiodicCregular") trajectories of

KAM theory, and the remaining fraction are nonperiodicCstochastic"). The

regular trajectories depend discontinuously on initial conditions.

Stochastic and regular trajectories are intimately comingled, with some

stochastic trajectory lying arbitrarily close to every point both in the

four dimensional phase space and in the two dimensional surface of

section. The stochastic trajectories form in the neighborhood of

resonances of the motion between the two degrees of freedom,
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m-a> = m1a)1+m2o>2 =0, (12)

where <i> is given by (4) and m is a vector of integers. The stochastic

motion appears in thin layers surrounding the separatrices associated with

these resonances. The thickness of the layers increases with increasing

perturbation strength. For weak perturbation, stochastic layers

associated with different resonances are isolated from each other by KAM

surfaces. The motion is stable, lying either in a KAM surface or within a

thin stochastic layer bounded by nearby KAM surfaces. As the perturbation

increases, the thickness of the layers expands, leading to resonance

overlap (Chirikov, 1979; Lichtenberg and Lieberman, 1983, Sec 4.2), the

destruction of the last KAM surface separating the layers. This signals

the sudden appearance of strong stochasticity in the motion, in which the

previously separated layers merge, and the trajectory freely moves across

the layers.

The nature of the motion in systems with three or more degrees of

freedom is similar to the above in most respects, but there are some

major differences, probably not all discovered. For singly periodic orbits,

a new type of instability appears that is described by complex

characteristic exponents. Furthermore, the supposedly "universal" period

doubling bifurcation sequences that appear generically in all dissipative,

as well as in two degree of freedom Hamiltonian systems, are not generic

to Hamiltonian systems having three or more degrees of freedom. Turning

to the structure of the nonperiodic trajectories, we find the same

intermixing of stochastic and regular(KAM) orbits in the 2N-dimensiona!
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phase space. Stochastic layers form near the separatrices associated

with resonances of the motion among the degrees of freedom. For strong

perturbation, resonance overlap leads to motion across the layers and the

presence of strong stochasticity, as for two degrees of freedom. In the

limit of weak perturbation, however, resonance overlap does not occur. A

new physical behavior of the motion then makes its appearance: stochastic

motion along the resonance layers—the so-called weak instability or

Arnold diffusion. This motion is the consequence of two fundamental

properties of systems having three or more degrees of freedom:

1. Resonance layers are no longer isolated by KAM surfaces.

Generically, the layers intersect, forming a connected web dense in the

phase space.

2. Conservation of energy no longer prevents large chaotic motions of

the actions along the layers over long times.

As a result, large long-time excursions of the actions along resonance

layers are generic in systems with three or more degrees of freedom.

Furthermore, the interconnection of the dense set of layers ensures that

the chaotic motion, stepping from layer to layer, can carry the system

arbitrarily close to any region of the phase space consistent with energy

conservation.

In this manuscript, we first examine the linear stability of singly

periodic orbits, showing how complex instability arises. We then

summarize our present understanding regarding period doubling bifurcation

sequences in Hamiltonian systems. Finally, we discuss the phenomenon of

Arnold diffusion.
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II. LINEAR STABILITY

We consider for simplicity a period 1 fixed point x0=TxQ. Linearizing

(10) about x0, we obtain the equation

Axn+1 =S-Axn, (13)

where, as a consequence of (5), S is an M x Msymplectic matrix; i.e., S

has the symmetry property

ST-r-S =r, (14)

where

r= , (is)
4J, 0 J

and Uj is the unit (M/2)x(M/2) matrix. Letting Axn=Ax0Xn in (13), we

obtain the eigenvalues X from the equation

P(X) = det(S-XU) = 0, (16)

where U is the MxM unit matrix. Using (14) and (15), it is easy to show

that the polynomial P is reflexive:

P(X) =X2MP(1/X). (17)

Thus the eigenvalues occur in reciprocal pairs (X,1/X) [See Lichtenberg

and Lieberman, 1983, Sec. 3.3]. The characteristic exponents s are
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defined by the equation X=es.

For two degrees of freedom, M=2 and

P(X) = X2-AX+1 =0 (18)

yields two roots. The roots must either be complex conjugates that lie on

the unit circle in the complex X plane, as shown in Fig. 4a, or they must

lie on the real axis, as shown in Fig. 4b. The former case, obtained for

|a|<2, yields stable orbits encircling the fixed point in the surface of

section; the latter case yields unstable behavior, since there is always an

eigenvalue with magnitude greater than unity. As a system parameter is

varied, the two roots on the unit circle may collide at either X=1 or X=-1,

yielding a transition to unstable behavior via either a tangent or a period

doubling bifurcation.

For three degrees of freedom, M=4, and the eigenvalue equation

P(X) = X4-AX3+BX2-AX+1 =0 (19)

yields four roots. Pairs of roots may each be stable or unstable, as shown

in Figs. 4a and 4b. However a new case of "complex instability" arises in

which a 4-tuple of complex roots (X,X*,1/X,1/X*) lies off of the unit

circle(Fig. 4c). Since two of these roots have magnitude greater than

unity, the motion is unstable.

The transition from stability to complex instability as a system

parameter is varied occurs as follows: Initially, two pairs of complex

conjugate roots lie on the unit circle. The roots collide, producing one of
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the two cases shown in Fig. 4d. Either the roots "pass through" each

other(the motion remains stable), or they move off of the unit circle into

the complex plane, yielding complex instability. Which case occurs

depends on the sign of a quadratic form,

tfjssgnQj, (20)

where

fti =XfS-r-Xi (2D

and Xj is the eigenvector having eigenvalue X^or Xi ). The quantity tf^ is

called the Krein signature (Moser, 1958; Howard and MacKay, 1985). For

tfi=tf2, the roots pass through each other; for tf !=-tf2, the roots move off

of the unit circle, and the system becomes unstable. Figure 5 (Howard

and MacKay, 1985} shows the pattern of the eigenvalues in various regions

of the (B,A) parameter plane; the region of stability is shown

crosshatched. Detailed studies of the motion in the region of complex

instability have not been made.

III. PERIOD DOUBLING BIFURCATIONS

We consider the behavior of a singly periodic orbit in a two degree of

freedom Hamiltonian flow as a parameter C is varied. We assume that the

orbit pierces the surface of section once, yielding a stable period 1 fixed

point X! for C>C]. A generic behavior of such orbits can be as follows

(Lichtenberg and Lieberman, 1983, Sec. 7.3a and Appen. B): As C^C1? the

two eigenvalues on the unit circle collide at X=-1 and move out along the
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real axis(Fig. 4e). Thus Xj is unstable for C<C1. However, two stable

fixed points having period 2 bifurcate from x} at C=Ct. This pair in turn

destabilizes by the same mechanism at C=C2, giving birth to a stable

period 4 set of points, and so on, with a period 2k stable orbit appearing

at Ck. The sequence of parameters Cl5 C2, C3, . . . converges to a finite

limiting value C^, beyond which the orbit is nonperiodic(stochastic).

A remarkable feature of this behavior is that Ck converges

geometrically to CTO as

ck ~coo ~*"*> (22)

where, for two degree of freedom Hamiltonian systems, S is a universal

constant: 5^8.72.

An example of this behavior (van Zeyts, 1981; Helleman,1980) is

shown in Fig. 6 for the quadratic map

xn+1 =2Cxn +2xn2 - yn

(23)

%+1 = %

In this numerically generated figure, successive images of the surface of

section (xn+i»xn) are shown magnified by the factor A; the first four

bifurcations(period 16 stable orbit) can be clearly seen.
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The same generic behavior is found for aU dissipative(volume

contracting) maps, no matter what their dimensionality! For these maps,

(22) holds, but with a different universal constant: 5*4.66.

A final surprise is that (22) does not hold for Hamiltonian systems

having three or more degrees of freedom. The period doubling bifurcation

sequence appears not to exist generically. Apparently (Contopoulos,1983),

two mechanisms terminate the bifurcation sequence before it passes to

completion: inverse pitchfork(period doubling) bifurcations or complex

instability. We described complex instability in Sec. II. Figure 7

illustrates the two types of pitchfork bifurcations. A component of x is

plotted against a parameter i\ of the map. In Fig. 7a, a stable periodic

orb1t(solid line) at Xi destabilizes at t\u giving birth to a period 2 stable

orbit for t\>ti1. This is the normal period doubling bifurcation

mechanism. In Fig. 7b, the stable orbit at x^ destabilizes at t^ and gives

birth to two unstable orbits that restabilize at x+. Between i\l and t\u a

stable period 1 and period two orbit coexist. The discontinuous jump from

Xj to x± as t\ is varied can terminate the sequence of period doubling

bifurcations.

IV. ARNOLD DIFFUSION

For autonomous Hamiltonian systems having N>2 degrees of freedom,

the resonance layers near separatrices are not isolated by KAM surfaces.

This can be seen from the following table, which compares the dimension

of the energy and KAM surfaces in the 2N dimensional phase space.
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N degrees 2 degrees 3 degrees

Phase Space 2N 4 6

Energy Surface 2N-1 3 5

KAM Surface N 2 3

We recall that the energy surface(K=const) has dimension 2N-1. The KAM

surfaces have dimension N, being perturbed forms of the integrable

n-tori(I=const) of the unperturbed Hamiltonian K0.

To divide a 2N-1 dimensional surface into distinct pieces, the

dividing surface must have dimensionality 2N-2. The situation is

analogous to that shown in Fig. 8, where one dimensional "lines" can divide

a two dimensional "plane" into distinct parts, but cannot so divide a three

dimensional "volume". For two degrees of freedom, we see that the two

dimensional KAM tori do divide the three dimensional energy surface into

distinct pieces. For three degrees of freedom, the three dimensional KAM

tori cannot divide the five dimensional energy surface into distinct pieces.

Thus, alKfive dimensional) stochastic layers are connected together to

form the "Arnold web". The web is dense in the phase space, and its

measure varies wildly, but is never zero. For an initial condition within

the web, the chaotic motion on the web can carry the system point

arbitrarily close to any point on the energy surface. For an initial

condition not on the web, the motion is regular, and the unperturbed

actions I are conserved to within of order e1/2.

An essential feature of Arnold diffusion is the existence of long-time

chaotic motion along the resonance layers. If we look at a resonance

layer (I1,e1) in a three dimensional projection, adding an additional action
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variable I2, we obtain the structure shown in Fig. 9. The resonance layer

has thickness of order €1/2 and extends along I2. It is easy to see that

driving a large chaotic excursion along I2 requires a system with at least

three degrees of freedom. First, let's consider the dynamics with just

two degrees of freedom. The change in the Hamiltonian is

AK = AK0 + <£AK, = 0 (24)

since energy is conserved. Thus

AK0 = WjAIj + 0)2AI2 = <?(e), (25)

where the w's are given by (4). Since Ij is confined to the stochastic

layer, AIt=0(€1/2). From (25), it follows that AI2=tf(€1/2), and large

excursions of the actions are forbidden.

For three degrees of freedom, (25) is replaced by

AK0 = WjAIj + <o2AI2 + <o3AI3 = 0(e). (26)

Even if Al^O(e]/2)t large excursions of the two actions I2 and I3 along

the resonance are permitted by energy conservation, provided

w2AI2 + W3AI3 = tf(<=1/2). (27)

To understand Arnold diffusion geometrically, we consider the motion

in the N dimensional, unperturbed action space I in which all the angle

variables 6 have been projected out. For the unperturbed system, the
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actions are conserved, and each trajectory is a stationary point. For

example, for free particle motion in three dimensions,

K0 = I,2 + I22 +I32. (28)

The energy surface is a sphere, and the resonance surfaces (12) are flat

planes intersecting the origin, as shown in Fig. 10. Another example is

the two degree of freedom Hamiltonian

K0 =It2 +36I22 (29)

shown in Fig. 11, where the energy surface is an ellipse, and the

resonance surfaces are lines passing through the origin of the action

space.

Let us consider a perturbed system

K=K0(I) +e2vk(I)exp(imk-e), (30)

where the sum over k is for all sets of integer vectors mk, each having

driving amplitude Vk. The motion in action space is given by

I =-OK/de) =-i62mkVkexp(imk-e), (31)

and we see that each component k drives an oscillation in I in the

direction mk. For a given I, there is some value k=R that drives a
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resonant motion

mR-<i>(I) =mR-«K0/8l) * 0, (32)

yielding the chaotic motion across the resonance layer shown in Fig. 9.

Equation (32) implies that a resonance vector lies in an energy surface, as

shown in Fig. 11. In general, the direction mR of the resonance action

excursion is not perpendicular to the resonance surface.

It can be seen from Fig. 11 that for arbitrary m, the resonance

surfaces do not intersect on a constant energy surface. This property is

genenc for systems having two degrees of freedom. For three or more

degrees of freedom, the resonance surfaces generically intersect, as

shown in Fig. 12a for the free particle Hamiltonian. Two resonance planes

intersect at nonzero actions along a line. The resonance surfaces also

intersect the spherical energy surface in great circle meridians. An

energy conserving motion from one resonance to another is possible. The

motion may proceed along a meridian of one resonance to an intersection,

turn sharply, and move along a new meridian. This type of motion is

generic to systems with three or more degrees of freedom. The

intersection of resonances in the constant energy surface generates a

dense, interconnected network, the Arnold web. The web for this example

is illustrated in Fig. 12b, with all resonances shown for which |m^ |<3.

A number of systems exhibiting Arnold diffusion have been studied,

most of them by numerical techniques. The merging of stochastic

trajectories into a single web was proven by Arnold(1964) for the specific
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Hamiltonian

K=(I,2 +I22)/2 +(€ cos8r 1)(1 +u sine2 +iicos t). (33)

Another system studied analytically and numerically is the driven, two

dimensional nonlinear oscillator (Chirikov et al, 1979)

H=(pj2 +p22)/2 +(q,4 +q24)/4 -jiq^ -eq1 f(ftt). (34)

Other examples more amenable to extensive numerical computations that

have been studied are symplectic maps such as coupled sets of "standard"

maps (Froeschle, 1971, 1972; Froeschle and Scheidecker, 1973), or the

three dimensional billiards problem (Tennyson et al, 1979; Lieberman,

1980; Lieberman and Tennyson, 1982). We describe this latter problem as

representative of systems exhibiting Arnold diffusion.

The billiards system, shown schematically in Fig. 13a, is that of a

ball bouncing back and forth between a smooth wall at z=h and a fixed

wall at z=0 that is rippled in two dimensions x and y. The surface of

section is given in terms of the ball positions in the xn and yn directions

and the trajectory angles

«n=tan"1(vx/v2), ^n=tan"1(vy/v2),

evaluated just before the nth collision with the rippled wall. The

definition of the variables in the x, z plane is shown in Fig. 13b.
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Assuming that the ripple is small and the trajectories are not at grazing

angles, the rippled wall may be replaced by a flat wall at z=0 whose

normal vector is a function of x and y, analogous to the idea of a Fresnel

mirror. The simplified map exhibits the general features of the exact

equations and may be written in explicit form

where

<xn+1 = <xn - 2axkxsinkxxn + jikxtfc,

xn+1 =xn + 2htan<xn+j,

£n+1 =£n - 2aykysinkyyn +Mkytfc,
yn+j =yn + 2htan£n+1,

tfc =sin(kxxn +kyyn),

(35)

ax and a^ are the amplitudes of the ripple in the x and y directions,

respectively, and jji is the amplitude of the diagonal ripple and represents

the coupling between the x and y motions.

If jji=0, the system breaks into two uncoupled parts describing motion

in x-z and y-z separately. Figure 14 shows the motion in the <x-x surface

of section for the uncoupled case. Several different orbits are shown,

each run for 1000 iterations. We see the usual features of a system

having two degrees of freedom: (a) regular (KAM) orbits, (b) resonance

island orbits, and (c) stochastic orbits. The island orbits are examples of

"higher order" KAM curves. The central resonance at «=0, x=0 corresponds

to a stable motion for which the ball bounces up and down along z in the

valley of the rippled wall. The island orbits correspond to "adiabatic"
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motion in the valley with a small oscillation back and forth in x occurring

over many bounce times in z. There are two major stochastic regions

visible. The thick layers for a near +tt/2 are regions produced by all

overlapping resonances having one bounce period in z equal to one or more

periods along x, corresponding to grazing angle trajectories. A thin layer

has also formed near the separatrix of the central resonance,

corresponding to motion in x for which the ball is either just reflected or

just transmitted over a hill. These regions of stochasticity are separated

by KAM curves.

A numerical calculation of Arnold diffusion in the coupled system is

given in Fig. 15. The surface of section (<x,x,£,y) is represented in the

form of two plots (<x,x) and (£,y). Thus two points, one in (<x,x) and one in

(#,y), are required to specify a point in the four dimensional section. In

the figure, the two plots have been superimposed for convenience, and x

and y have been normalized to their respective wavelengths 2Tf/kx and

2Tr/kLj, respectively. The initial condition has been chosen on an island

orbit in x and within the thin separatrix layer in y. This corresponds to

an initial regular motion in x, well confined in the valley, while the

stochastic y motion just reaches or passes over a hill. The successive

stages of the Arnold diffusion of the x motion are shown in Figs. 15b-d

for 1.5x105, 3.5x106 and 107 iterations of the map, respectively. In the

absence of coup1ing(ji=0), the x motion would be confined to a smooth

closed curve. For finite coupling, x diffuses slowly due to the

randomizing influence of the stochastic y motion.

An analytical calculation of the Arnold diffusion rate was first
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performed by Chirikov (1971,1979) and his collaborators. For the billiards

problem, the diffusion rate has been calculated by Tennyson et al (1979)

(see also Lieberman (1980) and Lichtenberg and Lieberman (1983, Sec.

6.2)1. The basic procedure is to break the original three degree of freedom

system into two systems that each have two degrees of freedom, which

are successively solved. The simplest decomposition considers only three

resonances. The first (guiding) resonance can be chosen arbitrarily and

defines the local region within the Arnold web where the diffusion is to

be determined. The strongest remaining resonance drives the chaotic

motion across the separatrix layer of the guiding resonance. The

remaining strongest resonance drives the Arnold diffusion.

A form of diffusion related to Arnold diffusion is modulational

diffusion, in which chaotic motion is driven along a band of overlapping

resonances by a slow modulation of the driving perturbation. Both Arnold

and modulational diffusion only occur in (autonomous) systems having

three or more degrees of freedom. Whereas Arnold diffusion is universal

and generally weak, modulational diffusion requires that an overlap

condition be satisfied for a band of primary resonances, but the diffusion

can be strong. An example of a system exhibiting modulational diffusion

is the Hamiltonian

K=(I,2 + I22)/2 - ecosOj+Xsinftt) - jicos(ere2). (36)

Here, the 91 and 92 motions might represent vertical and radial betatron

oscillations that are coupled by the parameter \x, and the Xsinftt term

might represent the coupling of a slow synchrotron oscillation to the 81
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motion. Numerical results and analytical calculations of the modulational

diffusion rate are given in Chirikov et al (1981), Lichtenberg and

Lieberman (1983, Sec. 6.2d), and Chirikov et al (1985).
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VI. FIGURE CAPTIONS

Figure 1. Phase space for one degree of freedom; (a) in (p,q) coordinates;

(b) in action angle coordinates (1,8).

Figure 2. Motion in phase space and definition of the Poincare surface of

section, (a) Intersections of a trajectory with the surface of section,

(b) Two degrees of freedom showing: (1) four dimensional phase space

with the trajectory on a three dimensional energy surface; (2)

projection of the trajectory onto the (p1,q1,q2) volume; and (3)

successive intersections of the trajectory with the two dimensional

surface of section q2 = g. (c) Three degrees of freedom showing: (1)

six dimensional phase space with a trajectory on a five dimensional

energy surface; (2) three successive intersections of the trajectory

with the four dimensional surface of section q3 = g; and (3)

projections of these intersections of the surface of section onto the

(pi,qj) and (p2,q2) planes.

Figure 3. Near integrable motion in (a) the (pt,qi) and (b) the (lu$\)

surface of section for two degrees of freedom.

Figure 4. Eigenvalues Xj of a fixed point in the complex X plane. The

eigenvalues must occur in reciprocal pairs (X,1/X). (a) stability; (b)

instability; (c) complex instability for three or more degrees of

freedom; (d) a Krein collision; and (e) a period doubling bifurcation.

Figure 5. Pattern of eigenvalues in the (B,A) parameter plane for three

degrees of freedom. The dots are the eigenvalues Xj, and the circle

is a unit circle in the complex X plane. The stable region is hatched.
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Figure 6. Surface of section plots of the period doubling sequence for the

map (23). Here xn+1 is plotted versus xn for various values of the

parameter C. The parameter A indicates the magnification of the

plot.

Figure 7. Two types of bifurcations in x as a parameter -q is varied: (a)

period doubling and (b) inverse pitchfork. The solid(dotted) lines are

the stable(unstable) branches.

Figure 8. Dividing a surface into pieces. In (a) the two dimensional plane

is divided by lines into a set of distinct areas; in (b) the three

dimensional volume is not divided by lines into distinct volumes.

Figure 9. Illustrating the directions of the fast diffusion across a

resonance layer and the slow diffusion along the layer.

Figure 10. The three dimensional action space showing energy surfaces

(spheres) and resonance surfaces (planes) for the unperturbed free

particle Hamiltonian.

Figure 11. Resonance curves (lines) and energy contours (ellipses) in two

dimensional action space for the Hamiltonian (29). The resonance

labels are the values of m1f where <o1m1+<jD2=0. The direction of a

resonance vector mR is shown.

Figure 12. Illustrating Arnold Diffusion, (a) Intersection of two resonance

surfaces in an action space having three degrees of freedom. An

energy conserving motion (wiggly line) from one resonance surface to

another is possible, (b) The Arnold web for the free particle

Hamiltonian; only some of the intersecting resonances are shown.
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Figure 13. The three dimensional billiards system, (a) A point particle

bounces back and forth between a smooth and a periodically rippled

wall, (b) Motion in two degrees of freedom, illustrating the definition

of the trajectory angle <xn and the bounce position xn just before the

nth collision with the rippled wall.

Figure 14. Motion in the (<x,x) surface of section for the uncoupled

billiards system. The parameters are ji=0; Xx:h;ax as 100:10:2;

Xx=2rr/kx. Fifteen initial conditions at x=0 are each iterated for

1000 collisions with the rippled wall.

Figure 15. A numerical computation showing Arnold diffusion. The initial

condition is close to the central resonance in the (<x,x) plane and

within the separatrix stochastic layer in the (£,y) plane. The

parameters are n/h=0.004; Xx:h:ax and \.:h:ay as 100:10:2.
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