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ABSTRACT

The goal of this thesis is to determine which architectural features are viable

alternatives for relational database machines. This requires consideration of both the

algorithms used during query processing and of the underlying hardware used to sup

port those algorithms.

Two general approaches have been proposed for augmenting database management

system performance: specialized hardware (database machines) and fast access data

structures coupled with query optimization. The database machine approach attempts

to increase the performance of key functions by implementing them in either firmware



or hardware. The query optimization approach attempts to minimize the computing

resources required to execute a query by storing relations in specialized data structures

and considering various alternative processing strategies. Although these two

approaches are clearly related, database machines typically restrict processing tech

niques to those directly supported by the specialized hardware and optimization stra

tegies largely ignore any unique characteristics of the underlying hardware.

The purpose of this research is twofold: to study and describe relational database

queries in sufficient detail to allow the functional resource requirements to be accu

rately ascertained; and to evaluate various uniprocessor and multiprocessor architec

tures in an implementation independent manner.

The principal technique used in this investigation is to extend the cost functions

used by query optimization routines to provide a more precise description of the func

tional resource requirements of database workloads.

The results of this thesis include a new high performance algorithm for distri

buted relational join processing (the Bloom-join algorithm), a new definition for selec

tivity which is consistent and which permits unbiased estimation of query resource

requirements, and detailed cost functions for both the uniprocessor and multiprocessor

join algorithms. Some specific results which follow immediately from these equations

are: reducing the amount of data during query processing does not universally increase

performance, adding additional processors to a multiprocessor does not necessarily

increase performance, and the response oriented speedup for at least one class of mul

tiprocessor algorithms and queries is closer to log2N than N.
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The more abstract the situation in which knowledge occurs, the more clear and

distinct this knowledge can be. Mathematical knowledge— at least in the first

place— is so clear and distinct because the degree of abstraction is correspond

ingly high. It is possible, however, to limit and delimit even the most fully liv

ing object of knowledge, to fit it in, so to speak— as any spatial object can be

fitted in— to geometrical figures. In this way. a mathematical-geometrical clarity

and distinctness is attained: but, as a result of such geometrizing, the living

object loses its concreteness and vitality. Any abstraction and reduction for the

sake of clarity and distinctness is at the expense of concrete substantiality and

fullness. Kant in his day drew attention to the fact that concrete knowledge is

richer than mathematical. Clarity and unclarity cannot be so unequivocally dis

tinguished in real life. There is a continual transition from the obscurity to the

clarity of the image, with infinitely many degrees and stages.

Hans Kung, Does God Exist?



CHAPTER 1

INTRODUCTION

1.1. Database Machine Architectures

This thesis describes a variety of algorithms for processing relational joins and

ways in which the underlying machine architecture may be modified to better support

this processing. Alihough the resuli of a relational join operation is well defined, there

exist a multitude of processing strategies that will produce the correct result and

which have execution costs that vary greatly depending on the characteristics of the

relations being joined. There is no consensus on the "best" join processing technique,

even when the alternatives are restricted to software solutions, and the problem

becomes more complex with the potential of enhancing various operations through

hardware assists.

1.2. Motivations

Database machines (computers designed specifically for database applications)

have been popular in the literature for many years. It is only within the last few

years, however, that they have gone beyond paper designs and prototype implementa

tions to become commercial products CI or example. IDM from Britton Lee [Epst80a],

iDBP from Intel [Inte82a], and the DBC'1012 from Teradata [84a] ).

One of the major benefits claimed for database machines is enhanced performance

of database operations. Presumably some machines will attain this goal to a greater

degree than others, depending on the individual design decisions made by the develop

ers. While the existing literature provides a wealth of possible design alternatives, it

does not provide criteria to guide ones' choice among them. The goal of this research is

1



to determine which architectural features are viable alternatives for database machines.

13. Relational Operations

In the relational model, all data appears to the user as two- dimensional tables

called relations. Each relation contains an arbitrary number of records or tuples which

have identically named fields or attributes While every tuple in a relation has the

same attributes, the values of those attributes are such that no two tuples are identical

in all their attribute values (i.e. relations contain no duplicate tuples). Figures one and

two contain examples of two relations. PILOTS and PLANES, with attributes "Name.

License. Duty" and "Number. Type, Status" respectively. Each relation contains three

tuples.

Of the various operators used for expressing relational queries (i.e. queries to data

stored as relations), three appear much more frequently than the others [Ullm82a]. In

this section we define these three operations, select, project and natural join, and dis

cuss the amount of processing required for each.

The select operation creates a relation which is a subset of another relation. Each

tuple in the result has attribute values which satisfy a qualification clause, where the

Name License Duty
Abe 727 on

Bob 727 off

Dee 707 on

Figure 1. PILOTS relation.

Number Type Status

101 727 ready

102 707 hold

103 707 readv

Figure 2. PLANES relation.



qualification clause may be any boolean expression involving at most a single attribute

in every term. For example, a select operation against the PILOTS relation with

qualification clause "LICENSE = 707" would create a relation whose tuples are a subset

of the PILOTS relation such that every tuple in the result has a LICENSE attribute

equal to 707. The result relation is shown in Figure 3 The maximum amount of pro

cessing required tc calculate the select result is a single scan of the original relation

(e.g. the PILOTS relation\

The project operation creates a relation each of whose tuples contains a subset of

the number of attributes appearing in the original relation. Duplicate tuples are

removed from the result so the number of tuples may decrease as well as the number

of attributes per tuple. For example, if the LICENSE attribute is projected from the

PILOTS relation, both the NAME and DUTY attributes are removed from each tuple,

and the resulting duplicates removed from the result. Figure four contains the projec

tion result. The processing required for this operation is at most a single scan to

remove the attributes plus the overhead to remove duplicate tuples from the result,

typical1} by sorting the result tuples.

The relational join operation provides a means of combining data from two rela

tions. Conceptually, the join operation selects those tuples from the cross product of

the two relations which have "qualifying" join attributes. In the case of an equi-join

Name LICENSE DUTY

Dee 1 707 on

Figure 3. SELECT (LICENSE = 707) FROM PILOTS

License

707

727

Figure 4. PROJECT LICENSE FROM PILOTS



qualifying tuples have equal join attributes. This is the only kind of join that will be

considered in this thesis: when the term "join** appears, equi-join will be implied. Fig

ure five contains the result of a join between PILOTS and PLANES on the License and

Type attributes. Nott that the result of a join operation is itself a relation. A number

of algorithms exist for calculating the natural join and the overhead varies greatly

depending on the storage structure of the two relations. In the best circumstances, one

relation must be scanned and for every tuple encountered one page of the other rela

tion read *. In the worst circumstances, the cross product of the two relations must be

formed and scanned to determine the result. Since the natural join overhead tends to

dominate the overhead required by the other two operations, it is the only operation

considered in this thesis. Several of the distributed join processing techniques evaluate

joins by breaking them into a sequence of simpler relational operations, including pro

jects and joins between various intermediate results. For these algorithms, we expli

citly include the project processing costs in addition to the join costs.

1.4. Survey of Database Machines

Database machines attempt to increase overall performance by implementing key

functions in either firmware or hardware. There is little agreement on which functions

are the most important and many of the proposals seem to be motivated by properties

of the hardware technology rather than a realistic appraisal of database management

Name License Duty Number Type Status

Abe 727 on 101 727 ready
Bob 727 off 101 727 readv

Dee 707 on 102 707 hold

Dee 707 on 103 707 ready

Figure 5. JOIN PILOTS ON LICENSE WITH PLANES ON TYPE

We assume that the numberof logicai page accesses is equal to the numberof physical page accesses, as
explained below.



system resource requirements This section gives a brief taxonomy of representative

machines of various kinds. Note that the the machines do not fit neatly into exclusive

categories and alternate taxonomies exisi which are equally justifiable. See, for exam

ple [Hawt79a, Good80a, Bray79a]. Our categories are hierarchically arranged. At the

highest level the machines are divided into uniprocessor and multiprocessor database

machines. These broad categories are further broken down into subcategories. Each

subcategory is defined below and several representative machines are described for

each.

1.4.1. Uniprocessor Database Machines

Uniprocessor database machines attempt to increase performance by increasing the

execution speed of particular functions without using multiprocessors. This may

involve firmware implementation of selected functions, hardware assists for cpu opera

tions or data filters which operate on data as it streams from the disk to the cpu.

1.4.1.1. Custom Microcode

Perhaps the most straightforward way to design a database machine is to begin

with a traditional von Neumann architecture and add custom microcode to enhance the

performance of database applications. This approach has been successfully used by the

IDMS and ADABAS database systems running on IBM 370 hardware [Ston83a].

A recent Japanese proposal [Seki83a] concluded that microcoded assists would

result in a factor of three to five decrease in the execution time of "basic database

operations" (e.g. index search and scan operations, bit-map operations, sorting opera

tions, address translation and tuple fetch) In addition. 1000 microsteps of microcoded

database management routines were found tu take about 40% of the execution time of

their software counterparts, resulting in <t tactor of two improvement in total execu

tion time. Another recent proposal [Ston83aJ evaluated the potential for performance



improvement through custom microcode fot the Ingres database management system

running on a Digital Vax 11/780 computer The conclusion was that the estimated 3-

5% improvement in total execution time did not justify the expense of microcoding an

estimated 1000 lines of microcode.

There are a several reasons for these widely varying conclusions. First, the Vax

11/780 has an extensive collection of high level instructions, including variants of all

the "basic database operations" described above except tuple fetch. It was deemed

unlikely that a novice programmer could write microcode that would outperform that

of the machine's developers. In addition, as explained in [Patt85a] the falling cost of

high speed memory has decreased the difference in access time between the fast, expen

sive memory used for microstore and the slower, less expensive memory used for main

memory. For modern implementations, the factor of three difference assumed in

[Seki83a] is not realistic. Finally, most recent high performance implementations of

von Neumann architectures utilize pipelined instruction fetch and hence do not incur

instruction fetch overhead, except for failed branch instructions. The Vax 11/780 has

an instruction prefetch unit. A non-pipelined architecture was assumed in [Seki83a]

and avoiding instruction fetch is one of the primary sources of performance improve

ment in that study.

A general conclusion from these studies is that older, simpler implementations of

architectures are more amenable to microcoded assists [Ston83a]. However [Patt85a]

claims that, with current technology, no machine with complex microcode is likely to

outperform a simple processor.

1.4.1.2. Sort/Search Hardware

The next most straightforward method to implement a database machine is to

augment the microarchitecture of a von Neuman machine with supplementary

(nonprogrammable) hardware to enhance the performance of database operations.



[Dohi82a] propose an architecture with a tree structured sorting network that operates

on compressed data to produce ordered relations. Algorithms for executing the rela

tional set operations and data manipulations on sorted relations are presented. In

[Tana84a] a similar architecture is proposed which uses VLSI to implement an interval

search engine and a two-way-merge sorter. The hardware is bit-sliced to allow for

variable wordlengths.

1.4.1.3. Filters

The previous two sections have described techniques for increasing the speed at

which data is processed. This section describes a collection of techniques to increase

performance by reducing the amount of data that is read from disk into the cpu for

processing. Database machines which use these techniques are called filters. This sub

section concludes with descriptions of three database machine filters: CAFS, IDM and

TUNABLE FILTERS.

CAFS

The CAFS machine [Ward84a. Bray79a] is a very early example of a data filter.

CAFS was designed to accept data in parallel from a channel multiplexor connected to

several disks, perform a fast keyword search to filter out superfluous data, and output

the result to the host computer. [Babb79a] describes ways in which the machine may

be enhanced with a hashed bit array for rapid execution of joins and removal of dupli

cate data after a project operation.

IDM

One shortcoming of the CAFS machine is the requirement that the entire relation

be scanned during processing. The IDM produced by Britton Lee [Epst80a] attempts to

overcome this difficulty by using low level access methods (e.g. index structures) to

reduce the amount of data that must be examined by the database machine itself. A
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multi-threaded environment permits several queries to execute concurrently and spe

cialized hardware allows data to be processed at the rate it is read from disk. In addi

tion, a disk cache is used to further reduce disk traffic.

TUNABLE FILTERS

Tunable filters are a recent proposal [kies84a] which use dynamic filters (i.e.

filters whose search criteria may be modified during execution) to allow more complex

search criteria for relations and sets of tuple id s. The filters are tunable: they will

always retrieve a superset of the qualifying tuples and may be made as precise as

desired at runtime by increasing the amount of time spent calculating the filter's

parameters. Tunable filters allow a variety of join processing algorithms. [Kies84b]

presents query optimization techniques using dynamic filters.

1.4.2. Multiprocessor Database Machines

The basic principle behind multiprocessor database machines is the contention

that a collection of many small slow processors can provide the same processing power

as one large, fast processorat a greatly reduced cost. The arithmetic of adding together

the effective execution rate of the two options and comparing the purchase cost is

straightforward, the implementation of algorithms to realize the potential execution

rate of a multiprocessor database machine is not. Many proposed machines are limited

by "Amdahl's argument" : the number of nodes that can usefully be put to work con

currently on a given problem is limited by the reciprocal of the fraction of the compu

tation that must be done sequentially [Seit85aj. As an extreme example, if an algo

rithm requires that individual tuples be processed in a fixed order, the addition of

more processors will not increase performance since each processor will wait until one

of its tuples is ready to be processed, and only one tuple at a time will ever be ready.

The common counterargument that in a multiprogramming environment with a well



balanced load of independent problems, the overall throughput of a multiprocessor is

higher does not apply directly since most of the proposed database machines do not

support multi-threaded execution. The performance gain for these machines results

from decreased response time of individual queries, allowing a greater number of

queries to be processed sequentially in a given period of time and hence allowing

greater throughput.

1.4.2.1. Parallel Multiprocessor Database Machines

Parallel multiprocessor machines attempt to increase performance by splitting a

problem into smaller, identical problems that can be solved in parallel on identical

processors. The earliest parallel database machines utilized a processor per disk track to

search for tuples as they were being read from secondary storage to memory [Bray79a],

More recent proposals attempt to incorporate more complex functions, such as sort and

join, and support for concurrent, secure, crash resilient execution [G6od80a].

1.4.2.1.1. Associative Search Processors

Associative memory allows access of any data element in one access without prior

knowledge of its location. This is accomplished by associating a processor with every

word of data stored in the machine and performing key comparisons in parallel.

STARAN is an example of an associative search processor.

STARAN

The earliest commercial associative processor was the STARAN machine

[Rudo82a]. Although originally designed to process image data. STARAN was modified

to execute database management functions by rewriting the software [Bray79a]. The

primary difficulty was the need for high speed transfer of data into the processor from

disks via the host and output of results from the processor back again to the host. In

[Berr79a] various interfaces and buffering techniques are evaluated for bit-slice
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associative processors of the STARAN type. It is claimed that these techniques will

overcome both the problems of staging data into the processor rapidly enough and of

building a processor large enough to handle realistic problems.

1.4.2.1.2. Logic per Track Devices

Logic per track devices are based on the same principle as filters: increase perfor

mance by reducing the amount of data read from the disks into memory for further

processing. Conventional rotating memory devices have a collection of storage areas

(tracks) and one or more read/write heads which transfer data to and from the device.

Associating a processor with every track allows data to be processed as it is read from

the device, permits multiple heads to be more effectively utilized and allows data to be

addressed by content instead of by address [Su79a].

A major difficulty with this approach is providing disk error detection and

recovery. Common techniques based on cyclic redundancy codes group the data stored

on the disk into blocks. In order to read a single record, the entire block must be

fetched from the disk and processed to verify that it is error free. Typically a disk

controller is located between the processor memory bus and the disk hardware. Logic

per track devices assume a much simpler interface and it is not clear how they map

into this more realistic model of disk activity.

CASSM

The CASSM database machine [Su79a] is a logic per track device which utilizes

one processor per fixed-head disk track to provide efficient parallel access to an

hierarchically organized database. Multi-threaded execution of queries is not sup

ported.
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1.4.2.1.3. Join Processors

The machines described above were designed to search through data rapidly. In

relational database management systems the join operation tends to be a greater source

of overhead, as explained above. This section describes database machines designed to

optimize join performance. The generic multiprocessor architecture contains a collec

tion of disks (possibly augmented with filters), a memory buffer area and a collection

of query processors. Various interconnections between processors, disks and memory

have been proposed. In addition, there are many techniques for allocating processors to

queries and executing joins using multiprocessors. Six examples of join processors fol

low.

RAP

The RAP [Schu78a] machine organizes processors into cells containing a processor

and a private memory. A single bus links the host processor and the cells and data is

staged from secondary storage into the memory for processing. Joins are implemented

using a "cross-mark" operation: one relation is scanned and all qualifying tuples are

marked. Then, for every tuple marked in the first relation, all tuples in the second

relation with a matching join field are marked [Bray79a]. In order to permit parallel

operation, the relations are partitioned among the cells. Each cell executes a "cross-

mark" operation on its partition of the data, then the data is redistributed among cells

and the process repeated. If N processors participate in the join. N processing steps are

required. Note that multi-threaded execution is not supported by RAP.

JOH

The Join Operations Hardware (JOH) proposal [Meno83a] connects processors

with private memories in a ring network. The connections to secondary storage are not

described, although the discussion of expected performance in the papers would indi-
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cate that there is a direct connection. Joins are processed by first distributing the

source relation evenly among the processors. Each processor stores its allocation of

tuples in a hash structure and places the join attributes in a private associative

memory. Tuples from the target relation are routed among all the processors in broad

cast sequence (i.e. around the ring). When a target tuple arrives at a processor, the

associative memory is checked and if a match is found the tuple is retrieved from the

hash structure to form a result tuple. The target tuple is then sent to the next proces

sor in the ring.

The proposal contains a detailed analysis of the sizes of memories needed to store

intermediate results and queue tuples propagating around the network without

overflow. The architecture is compared with other machines on the basis of the join

repertoire supported (e.g. natural, implicit, inequality and m-way joins), the time com

plexity of the join and whether processing may overlap data staging. JOH compares

very favorably.

DIRECT and SABRE

In both the DIRECT [DeWi78a. DeWi82a] and SABRE [Vald82a] machines the

processors are connected to the memory units via a cross-point switch. This allows

data to be staged into the machine once, then accessed by any processor without reloca

tion. [Bora81a] investigated the performance of various processor allocation strategies

for Direct/Sabre and concluded that MIMD or data-flow techniques 2 lead to maximum

performance. [Bitt83a] evaluated various join processing algorithms (excluding those

which utilize indices) and concluded that the merge join algorithm is superior to the

nested loops algorithm for relations of approximately equal size and the converse is

The DIRECT architecture is sufficiently general to support either parallel or pipelined execution. The
data-flow strategy proposed is a generalization of a pipelined strategy. The MIMD strategies allow multi
threaded parallel execution of queries.
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true when one relation is much larger than the other.

Two multiprocessor join algorithms based on semi-join techniques for a

DIRECT-like architecture augmented with data filters on the disks have been proposed

by [Vald82a]. The bit-array semi-join uses a technique similar to that described in

[Babb79a]. Each bit of the array is associated with a single hash value. The array is

set by sorting one relation 3, hashing the tuples and setting the corresponding bit for

each tuple. The join is computed by hashing each tuple of the second relation, checking

if the appropriate bit is set in the bit-array and. if the bit is set. checking if the first

relation contains any qualifying tuples. A method for performing these computations

in parallel on a variable number of processors is described.

The second semi-join algorithm, selection semi-join, creates a projection of the

join attribute from the first relation, then uses this projection to drive the data filters

to select out those tuples of the second relation which qualify. Performance comparis

ons indicate that for a machine containing eight processors and eight data filters, the

nested loops semi-join algorithms will outperform nested loops algorithms in all cases

except when the join selectivity approaches that of the cartesian product of the two

relations.

GRACE

The GRACE database machine [Kits83a] performs joins by hashing relations into

buckets (memory buffers), then sorting each bucket and performing merge joins

between corresponding pairs of buckets. A hardware sorter is associated with each

bucket and a hash bit-array (similar to that proposed in [Babb79a] ) is associated with

each disk module. Data is staged into the buffers in parallel. Since sorting cannot be

3 Sorting is used to detect duplicate join attribute values, although it is not clear that removing these
values is more efficient than "resetting" the bit vector when the duplicates are encountered.
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initiated before the last data element has arrived, a two phase execution strategy is

required. It is demonstrated that the computational complexity of the join operation is

reduced from 0(n2) to O(n). however the coefficients and low order terms are not

given so it is not clear what the expected performance will be for non-asymptotic

problems.

DBC/1012

The DBC/1012 is a new product recently announced by Teradata [84a], A collec

tion of processors are associated with disk storage units and connected by a tree struc

tured network. Data is distributed among processors by using a randomizing hash

function which partitions the data evenly. The network has broadcast capability in

addition to the direct tree connection. This permits very efficient sorting (using a

Tournement Sort algorithm) and allows commit acknowledgements to be merged and

processed in a straightforward manner by using numeric codes for commit and abort

such that one is strictly less than the other. Joins are processed using the merge join

algorithm. Performance studies [Nech84a] indicate that this architecture will provide a

lower cost machine with the same response time as other architectures with different

interconnections, memory technologies and expected number of concurrent users.

MBDS

The MBDS database machine [Demu85a, Demu84a] associates processors with

private disks over an ethernet-like broadcast network. One processor acts as the con

troller and all other processors execute identical software in parallel. The database is

evenly distributed across the processors using a so called cluster-based data placement

algorithm. Benchmark studies performed using a simulation built on a VAX-11/780

(VMS-OS) and two PDP-ll/44s validate the claims that if the database size remains

constant, the response time is inversely proportional to the number of backends: and if
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the number of backends grows as the database size increases, the response time will

remain invariant. The benchmark does not contain join queries and their implementa

tion is not described, however the architecture is similar to a join processor as

described above and could execute many of the algorithms presented in this section.

1.4.2.1.4. Distributed Architectures

Distributed architectures resemble conventional distributed systems. A collection

of processors with private memory and secondarystorage are connected by a commun

ications medium. The processors are capable both of executing independently and of

co-operating with each other on a single query. Many "database machines" of this

type could also properly be called "distributed database management systems."

MUFFIN

The Muffin database machine [Ston78a. Ston79a] is a distributed database machine

fundamentally oriented towards multiprocessing of database commands. The basic

design goals are high transaction rates through specialization of function, resiliency to

failure and support for a wide range of database sizes and transaction complexity. The

hardware is conventional, however the operating system is minimal and only provides

those functions required for database management. Distributed join algorithms (e.g.

the fragment-and-replicate algorithm [Epst78a] ) are proposed for this architecture.

JASMIN

The JASMIN database machine [Fish84a. Lai84a] is a functionally distributed

database machine designed to support large databases and high transaction rates. It is

implemented on conventional hardware using a multiprocessing operating system

which permits implementation of replicated software modules. Performance may be

tuned by redistributing modules among processors. Concurrency control, crash

recovery and version consistency are directly addressed by the proposal. Join
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processing is not described.

1.4.2.2. Pipelined Multiprocessor Database Machines

Pipelined multiprocessor machines attempt to increase performance by splitting

the problem into a sequence of smaller problems and pipelining them through a series

of specialized processors. Peak performance is determined by the longest segment of

the pipeline, however in many applications dependencies between different segments of

a computation reduce the average performance to below that of the peak rate.

DBC

The DBC database machine [Bane78a] has two pipelined processing loops, the

structure loop and the data loop, and seven major processing elements. The data base

command and control processor provides an interface between the two loops and a

host computer. The data loop contains a mass memory unit and a security filter pro

cessor. The structure loop contains an index translation unit, a keyword transforma

tion unit, a structure memory (used for performing set intersections) and a structure

memory information processor. A performance analysis comparing DBC with a rela

tional system supported on a conventional computer [Bane78b] concluded that while

the DBC requires a factor of one-to-two more storage space, query execution times are

likely to be at least an order of magnitude better. Benchmark studies on prototype

hardware have not yet been published.

iDBP

The iDBP Database Machine is an Intel product and is one of the few commercial

database machines currently on the market [Inte82a]. The iDPB functions between a

host computer and up to four disk spindles [84a]. Two 8086 processors are divided

functionally between four subsystems: operating system and database management

system software: memory subsystem: communication protocol processing: and mass
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storage subsystem. Execution is multi-threaded and multiple iDBPs may be used in

complex systems, e.g. to manage so called "disk farms."

This concludes our discussion of database machines.

1.5. Overview of Thesis

This thesis will examine a variety of uniprocessor and multiprocessor join pro

cessing techniques and evaluate the performance improvements resulting from various

architectural enhancements. In the following two chapters we shall present a series of

models representing uniprocessor join processing and multiprocessor join processing.

For each model, a collection of experiments are run to evaluate both the techniques and

the potential for performance improvement through architectural enhancement. The

thesis concludes with a summary of the major conclusions and outlines areas for

future research.

Basic techniques for processing a single join in a uniprocessor environment are

presented in chapter two. These techniques include a collection of fast access struc

tures, several join processing algorithms and a method of query optimization. Query

optimization is the process of generating alternate execution plans for a given query

and selecting the best (i.e. minimum cost) one for execution. The method used in this

dissertation generates an exhaustive collection of plans and provides a detailed descrip

tion of both the total estimated cost and the number of elementary operations per

formed. The join processing model accepts as input a collection of parameters describ

ing the query workload characteristics and the relative costs of the elementary opera

tions and produces as output the average execution cost per query and the number of

times each operation was executed. The chapter concludes by describing a collection of

experiments evaluating various architectural enhancements. Some specific questions

addressed are: Which combinations of join algorithms generate the best (i.e. minimum

cost) execution plans during query optimization? What are the effects of enhancing the
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performance of various basic operations (e.g. page sort and page search)? How would

the performance of a machine built around a linear time sorting device and the merge

join algorithm compare with a database system built around a collection of storage

structures and join processing algorithms?

In chapter three, the join processing techniques are extended to a multiprocessor

environment. Multiprocessors are abstracted by a collection of execution nodes with

private storage connected by a communication medium. A wide variety of algorithms

based on semi-joins have been proposed for this environment [Yu84a], however they

are all based on the assumption that the network transmission costs dominate and nei

ther cpu nor disk access costs need be considered in selecting an execution plan. This

assumption is not valid for tightly coupled multiprocessors nor loosely coupled mul

tiprocessors linked by a local network. We examine six multiprocessor join algorithms

in detail, including semi-join algorithms, and consider all processing costs: processing,

input/output and data transmission. One of these algorithms, the bloom-join, is a new

algorithm which tends to require fewer data transmissions than an equivalent semi-

join and less total processing than any of the other algorithms. The join model

presented in this chapter is a direct extension of the uniprocessor join model described

in chapter two. We assume that the two relations and the join result are located on

distinct nodes. Some specific questions addressed by the experiments are: Do algo

rithms which minimize data transmissions ever win if total processing costs are taken

into account? Do distributed join strategies which minimize data transmissions per

form well compared with those which minimize response time? How significant are

accurate selectivity estimates for effective query optimization? What are the effects of

assuming that join attributes contain no duplicate values?

The final chapter, chapter four, contains the conclusions and suggestions for

future research.



CHAPTER 2

UNIPROCESSOR JOIN MODEL

This chapter introduces uniprocessor join optimization and presents a perfor

mance evaluation of a variety of database machine architectures. The evaluation is

based on an extension of the cost functions used in query optimization which more

precisely estimates the resource requirements as the cost of executing the basic opera

tions varies. The chapter begins with a definition of the join optimization problem.

Various fast access structures and algorithms used for query processing are then

described and form the basis for the performance model. This model is described in

detail and the results of a series of experiments are presented.

2.1. Join Optimization

In the relational model, all data appears to the user as relations, as defined in the

previous chapter. Relations provide a simple conceptual view of the data for the user.

When relations are implemented, the data is broken into fixed size blocks or pages

(which may or may not correspond to the data as seen by the user) and stored on

secondary storage devices, referred to generically as disks. One of the primary func

tions of a database management system is to automate the mapping between the logical

relations and the physical data files. The user queries the database by logically

describing the data he wishes to have retrieved using a high level query language. The

system translates these high level queries into a series of operations on the underlying

data files. Typically a complex query is broken into a sequence of simple relational

operations (e.g. select, join), which are then translated into the actual file accesses.

19
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2.1.1. Strategies and Cost Functions

For any given relational query there are a number of different sequences of opera

tions, or strategies, that will yield the correct result. The optimization problem is to

generate a set of strategies and select the one with the minimum cost. For the simplest

queries, an exhaustive collection of strategies can be generated (within the range of

options supported by the database management system). As the number of operations

in the query increases, however, the number of strategies increases rapidly and the

problem becomes one of generating the smallest subset that will contain at least one

"good" strategy. In this chapter we will discuss optimization of a single join operation

and optimization will be performed by generating an exhaustive collection of strategies.

We describe these strategies in detail below. Briefly, each strategy consists of a possi

ble modification to the storage structure of each relation followed by calculation of the

join result using one of the available algorithms.

The cost associated with a strategy is usually a rough measure of the computing

resources required for the sequence of operations. A typical metric is the number of

disk accesses [Ceri84a]. Although [Kooi80a] describes a regression analysis of bench

mark traces indicating that the number of disk accesses is a good predictor for the total

processing required by a query, this metric is based on an implicit assumption that the

amount of data referenced is sufficiently large that the fixed overhead associated with

executing the query is negligible (i.e. that the query is "data intensive"

[Hawt79b. Hawt79a] ). The cost model described below includes a detailed accounting

of both CPU and I/O processing.

2.1.2. Data Buffering

Data buffering strategies allow multiple pages to reside in main memory during

query processing. If a query requests access to a page that is in the buffer pool (i.e. in

memory), that page is not read in from disk. If the page is not in the buffer pool, it
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must be read in from secondary storage, possibly displacing another page already in

the buffer pool. The number of page accesses requested by the query (the number of

logical page accesses) and the actual number of accesses to secondary storage (the

number of physical page accesses) must be carefully distinguished. Query optimization

cost formulas are typically in terms of the number of logical page accesses and do not

consider buffering explicitly.

Regardless of the buffering strategy, every data page accessed by the query must

be read from secondary storage at least once. If the page is processed in multiple steps

(e.g. if tuples are processed sequentially with additional processing interleaved) the

page may be overwritten before all of the tuples have been processed. When this hap

pens, an additional transfer from secondary storage will be required, tending to make

the number of physical page accesses greater than the number of logical page accesses.

If. on the other hand, the buffer pool is large and pages are logically accessed multiple

times, there is a possibility that a page will already be in the buffer pool when it is

logically accessed. This will tend to make the number of physical page accesses less

than the number of logical page accesses.

This thesis assumes that the buffer pool is small to moderate sized and that the

effects of premature overwriting of data pages are balanced by random re-references to

pages already in the pool. In this case, the number of logical accesses is equal to the

number of physical accesses. Many techniques exist for decreasing the relative number

of physical page accesses. For example, increasing the size of the buffer pool [Sacc81a],

using a "predictive" page replacement algorithm to reduce the number of times a page

is reread [Smit76a], and modifying the query processing algorithms to take advantage

of buffering by creating small temporaries which can fit into the buffer pool in their

entirety [Kris84a]. Although these techniques are important in their own right, they

are not considered further here.
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2.1.3. Fast Access Structures

Relations consist of some number of tuples which are stored on data pages. These

tuples and pages may be organized into a storage structure for more efficient access

either by the placement of tuples on data pages or by auxiliary indexing structures.

Fivestructures are considered here: heap, ordered heap, hash, key sequential index and

secondary hash index. Each structure is assumed to be built on the join attribute. The

first four are primary structures, that is they contain the entire tuple. The fifth is a

secondary structure which contains join attribute values and pointers to the tuples,

which are themselves stored in some primary structure on an another (non-join) attri

bute.

HEAP

A heap l is an unordered structure with tuples placed randomly on data pages. A

relation stored in a primary structure on an attribute other than the join attribute will

have a heap structure with respect to the join attribute. In order to retrieve all tuples

with a given value in the join attribute, the entire relation must be searched.

ORDERED HEAP

An ordered heap structure stores the tuples on data pages in join attribute value

order. Both the tuples on pages and the pages themselves are ordered. All tuples with

a given value for the join attribute may be retrieved by a binary search of the relation:

the middle page is examined to determine whether the tuples are in the upper or lower

half of the relation, then the middle page of the appropriate half relation is examined

and so on until the required page has been located. This page is in turn searched using

a binary search to locate the required tuples.

1 Relational database terminology uses the term "heap" to refer to an unstructured file which is unrelat
ed to the "heap data structure" defined in [Knut73a]
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HASH

A hash structure stores tuples by applying a hash function to the attribute value

to obtain a "bucket" address where the tuple is stored. Tuples within a bucket are

unordered. A bucket may be as small as a tuple address within a page or as large as

several pages. Collisions occur when multiple attribute values hash to the same bucket

and overflows occur when the number of collisions to some bucket is greater than the

bucket size. The simplest technique to handle overflow is to chain an additional hash

bucket to the first and treat both as one large (unordered) bucket. Subsequent

overflows are handled analogously, with the size of the resulting bucket increasing at

each step. If no overflows are present, then a bucket size of one tuple address requires

the minimum access time. However, if overflows are present, the chains tend to

become unduly long and the access time increases as larger buckets are searched for

matches. A bucket size of one page and no overflows are assumed. In order to retrieve

all tuples with a given attribute value, one page is read and searched (the page address

is calculated from the attribute value). This overhead is independent of the relation

cardinality.

KEY SEQUENTIAL INDEX

A key sequential index is a primary storage structure which stores the tuples in

an ordered heap and builds an auxiliary index structure for fast access on join attri

bute value. Both ISAM (Indexed Sequential Access Method) [IBMa] and B-tree indices

[Baye70a. Come79a. Held78a] are key sequential. The index is a tree structure, where

each node contains attribute and address pairs. The attribute value is the ma-rimnm

(or minimum) value stored on the page pointed to by the associated address. The leaf

nodes of the tree point to the data pages. In order to retrieve all tuples with a given

join attribute value, the index is traversed by reading the root, performing a binary

search to locate the address of the next page and continuing down the tree until the
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data page is located and searched.

SECONDARY INDEX

Secondary indices are hashed. A structure analogous to a primary hash structure

is built containing join attribute values and tuple addresses. Since the relation is

stored in another primary structure both the page address and location within the page

are known. There is one index entry for every tuple of the relation. Tuples with a

given attribute value are located by searching the index page to determine the tuple

address then, for each address, reading the data pageand directly accessing the tuple.

2.1.4. Storage Modification Algorithms

In this dissertation, we assume that query processing proceeds in two stages:

structure modification followed by join processing. Three basic operations are required

to modify any storage structure to any other: sort a relation, hash a relation, and

build a key sequential index. For example, to create a key sequential index structure

from a hash structure, the relation must be sorted and the key sequential index built.

The remaining modifications are straightforward. This section discusses various imple

mentations of these functions. We consider two sorting algorithms, one software and

one hardware. Since fast hashing may be critical to the performance of several of the

join algorithms, we include a simple hash algorithm (slow hash) and a more complex,

but somewhat faster algorithm (fast hash).

SORT

Binary merge sort [Knut73a] is used to sort relations. The individual data pages

are first sorted, then merged pairwise in increasing length runs until the entire relation

is sorted.
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LINEAR SORT

Sorting with one processor requires 0(n log n) page operations, where n is the

number of pages in the relation. Many proposals for parallel sorting devices have

appeared in the literature. The fastest of these devices accept p unordered numbers and

produce a sorted output after 0(log2/>) comparator delays using 0(p log2/)) compara

tors [Batc68a]. The amount of data that may be sorted is limited by the amount of

hardware in the device. These devices are modeled by a linear sort algorithm which

requires time proportional to the number of pages the relation is stored on. The linear

sort algorithm reads the data pages, sorts them, then writes the result back to disk.

SLOW HASH

The slow hash algorithm reads the relation then iterates through the tuples on

each data page writing them one by one to the proper hash bucket. Secondary index

creation uses the same algorithm.

FAST HASH

The fast hash algorithm attempts to minimize the number of random disk

accesses by using sequential access whenever possible. The algorithm has three phases.

During the first phase, the data is read, the bucket address calculated for each tuple

join attribute and the augmented relation written back to disk. During the second

phase the relation is sorted by bucket address and during the third phase the relation

is written to the hash buckets (in hash bucket order). Secondary indices are created by

hashing using either algorithm in an analogous manner.

BUILD KEY SEQUENTIAL INDEX

A key sequential index is built from the bottom up by reading each data page, in

join attribute order, to find the minimum (maximum) attribute value stored on the

page and adding the attribute value and page address to the index page under
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construction. When all of the data pages have been read, the process is repeated for

the first level of index pages and so on until a single index page, the index root, is

created.

2.1.5. Join Processing Algorithms

The join algorithm is similar to other computationally intensive tasks in that the

choice of a good algorithm is critical to high performance. The problem is further com

plicated by the wide range of parameter values that may occur in practice, making the

choice of any single algorithm which is near optimal over most of the expected situa

tions a difficult if not impossible task. Three of the most promising algorithms are

considered here.

TUPLE SUBSTITUTE JOIN

The tuple substitute join algorithm distinguishes the two relations as the inner

and outer relations. For each tuple of the outer relation, all tuples with matching join

attribute value are retrieved from the inner relation. The cost to retrieve these tuples

will depend on the storage structure of the inner relation, as described above. As

matches are encountered, they are written to the result relation.

MERGE JOIN

The merge join algorithm first sorts the two relations, if they are not already

ordered, then performs the join by iterating over both relations in parallel looking for

matching join attribute values. Matches are written as they are encountered.

HASH JOIN

The hash join algorithm first hashes the two relations, if they are not already

hashed. Next, individual hash buckets are sorted. Since buckets are a single page, the

sort merge phase is not required. Finally, the tuples in corresponding buckets are com-
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pared and matches are written as they are encountered.

2.2. Model Description

This section presents the query workload and cost estimation models. Individual

queries are described by a collection of parameters. A set of queries (workload) is

described by a set of parameter values and relative frequencies. Performance is

estimated for a workload by calculating the average minimum cost per query. Query

costs are calculated by estimating the cost of each execution strategy to determine

which is minimum. The costs themselves are calculated by estimating the number of

basic operations required, based on knowledge of the behavior of the different storage

structures and algorithms.

2.2.1. Parameters and Performance Metrics

Eight parameters, listed in Table 1, are used to describe queries. Theselectivity is

defined as the fraction of the smaller relation which appears in the join result. The

selectivity is assumed known. The selectivity parameter describes the join operation.

The remaining parameters describe the two relations. Indices are storage structures

used for fast access by join key value, as described above. The index key fanout is the

number of page addresses appearing in one index page. Since the only relevant index

for join processing is on the join key itself, the index key fanout must be identical for

Symbol Parameter
p Selectivity
K Index Key Fanout
Cl Block Cardinality of Relation 1 (pages)
C2 Block Cardinality of Relation 2 (pages)
Tl Tuples per Page in Relation 1
T2 Tuples per Page in Relation 2
SI Storage Structure of Relation 1
S2 Storage Structure of Relation 2

Table 1. Query Parameters
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the two relations and it appears as a single parameter. The block cardinality is the

number of data pages in the relation. The number of tuples per page is assumed con

stant for all pages in a given relation and the storage structure is one of heap, ordered

heap. hash, key sequential index or secondary index, as described above.

A single join query is described by a set of values for the eight parameters

described above. A workload is a set of queries described by a collection of parameter

values. Associated with each parameter value is a relative frequency which describes

the number of times that the parameter value is repeated in the workload relative to

all other values of that parameter. The set of queries in the workload is generated by

selecting the eight parameter values according to their relative frequencies (the parame

ters are assumed to be independent of each other). For example, if the values and rela

tive frequencies of a workload are:

Parameter Value Relative Frequency
Selectivity .05 1
Index Key Fanout 20 1
Block Cardinality 10 1

100 2
Tuples per Page 1 1
Storage Structure heap 1

there will be ninequeries in the workload with parameter values:

CI Tl SI C2 T2 S2
.05 20 10 1 heap 10 I heap
.05 20 10 1 heap 100 1 heap
.05 20 10 1 heap 100 ] heap
.05 20 100 1 heap 10 1 heap
.05 20 100 1 heap 10 1L heap
.05 20 100 1 heap 100 ] heap
.05 20 100 1 heap 100 1L heap
.05 20 100 1 heap 100 1 heap
.05 20 100 1 heap 100 1 heap
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2.2.2. Basic Operations and Cost Functions

Six basic operations, lasted in Table 2, are used to estimate data access costs. The

read operation transfers one page of data from secondary storage to memory for

further processing and the write operation transfers one page from memory back to

secondary storage. The read and write operations are assumed to take the same

amount of time and any effects due to data buffer caching or sequentiality are ignored.

The search operation examines all of the tuples on a page to determine if any have a

matching attribute value. The sort operation orders the tuples on a page by ascending

(or descending) attribute value. Since the number of tuples on a page is typically

small, the page sort operation is assumed to operate in a fixed time independent of the

number of tuples on a page. The last two operations include a number of less fre

quently occurring operations and are distinguished by the expected amount of over

head. The look operation examines a small number of tuples on a page and requires a

small amount of overhead. Examination of index pages, binary search of data pages

and direct address access into data pages are operations classified as looks. The scan

operation examines most of the tuples on a page and requires a large amount of over

head. Page operations classified as scans include merge of sorted data pages and itera

tive examination of every tuple on a page during query processing. If searching and

sorting were not of particular interest, they would be considered scan operations since

Operation Definition
Read Read a page of data from disk
Write Write a page of data to disk
Search Linearly search a page for tuples

with a given attribute value
Sort Sort the tuples on one page
Look Process a few tuples on a page
Scan Process most of the tuples on a page

Table 2. Basic Page Operations
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they examine all tuples on the page.

Given an execution strategy, the total cost to execute a query is estimated by

tabulating the number of page operations and summing their associated costs. The cost

functions for the various storage structures and algorithms are described below. If

several alternate strategies can be used to process a given query, the cost for each is

estimated and the minimum cost strategy selected. The performance of a workload is

estimated by determining the minimum cost execution strategy for each query in the

workload. In addition to the estimated minimum cost, the number of page operations

required and the algorithm used are tabulated. Various performance metrics can be

calculated directly from these statistics (e.g. the average cost per query or the average

number of disk operations per query).

STORAGE STRUCTURE COST FUNCTIONS

This section presents the cost functions to retrieve all tuples with a given join

attribute value from a relation stored in each of the five storage structures.

A relation stored in a heap structure must be searched in its entirety to retrieve

all tuples with a given join attribute value. If the number of tuples were known a

priori the search could be terminated after the last tuple was found, however this

information is typically not available. If the relation has block cardinality C. the

search requires C page reads and C page searches.

Binary search is used to retrieve the tuples from an ordered heap as described

above. If the relation has block cardinality C. then log2 C pages are read 2. During the

relation binary search, the first and possibly the last tuple on each page read are exam

ined. When the final data page has been located, a binary search is required to locate

any qualifying tuples. Since both of these operations examine a small number of

2log* denotes log to the base k
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tuples on each page, a total of log2 C page look operations are required.

All tuples may be retrieved from a hash structure by reading and searching one

page. This is independent of the relation cardinality.

Key sequential index structures require a root-leaf traversal to locate the data

pages containing the qualifying tuples. If there are C pages in the relation and the

index page fanout is K. this search will require (log* C) + 1 page reads. A binary

search will be performed on each index page and the one data page will be searched for

a total of (log* C) page looks and one page search.

Tuples are located using a secondary index by searching the index hash bucket to

determine the data page addresses then, for each address, reading the data page and

directly accessing the tuple. The overhead per tuple is two pages read, one page

searched and one page directly accessed (a look operation).

STORAGE MODIFICATION COST FUNCTIONS

This section presents the costs to execute the storage modification algorithms

described above.

The software sort algorithm described above has two phases: first the individual

pages are sorted, then the sorted pages are merged pairwise. The first phase requires

that all C data pages of the relation be read, sorted and written. The merging phase

requires log2 C pairwise merges of the entire relation, for a total of C log2 C page reads,

writes and scans.

The linear sort algorithm assumes a device which can sort a relation in time pro

portional to its cardinality. The device is modeled by another basic page operation,

rsort, although in this case the intuitive meaning is not as clear since pages are not

operated on in isolation as they are in the other page operations. The overhead to sort

a relation with C data pages is C page reads, writes and rsorts.
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The slow hash algorithm writes tuples to buckets one by one. If there are T

tuples per data page and C pages in the relation, slow hashing requires C page reads. C

page scans and T * C page writes. Secondary index creation requires the same number

of reads, writes and scans.

The fast hash algorithm has three phases as described above. There are T tuples

per data page. C pages in the relation and K value-address pairs per index page. We

assume that twice as many addresses as key plus address pairs can be placed on a page.

Under this assumption, the hash bucket addresses added to each tuple during the first

phase will require T*C/(2*K) additional pages and the relation size will increase by

this amount. Define C as the number of pages in the augmented relation. C =C +T *

C/(2*K), and pmerge(C') as the number of page accesses to pairwise merge the C

pages, where pmerge(C') = C * log2 C The overhead for phase one is then C reads. C

scans and C writes: the overhead for phase two is C + pmerge(C) reads. C +

pmerge(C') writes and C* sorts; and the overhead for phase three. C reads and C

writes. This yields a total overhead of: C + 2 * C + pmerge(C) reads. 3 * C +

pmerge(C') writes. C+pmerge(C') page scans and C page sorts. The equations can be

modified in astraightforward way if a linear time sorting device is being modeled.

If a secondary index is being built using the fast hash algorithm, the equations

will be identical except for the term C\ which will be replaced by aterm I equal to the

block cardinality of the projection consisting of the hash keys (attribute values) and

addresses. This projection contains the same number of tuples as the original relation.

C* T. and there are K tuples per page by definition so I. the block cardinality, equals

T*C/K.

Key sequential index creation begins with the sorted data pages (which are the

leaves of the final structure) and reads these pages to build the first level of index

pages, which are then themselves read to build the next level of index. The process
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JOIN ALGORITHM COST FUNCTIONS

This section presents the costs to execute the three join algorithms. In addition to

the join processing cost, there is a small cost associated with writing the result relation

which is the same for all algorithms and equal to the product of the selectivity and the

cardinality of the smaller relation page writes.

The tuple substitute join algorithm designates one relation as the inner relation

and the other as the outer. Assume the outer relation has block cardinality Cl and

tuples per page Tl. During join processing, every tuple in the outer relation is exam

ined once at a cost of Cl reads and scans. The cost to access the inner relation depends

on the storage structure. For all primary structures, the cost is equal to the product of

the number of tuples in the outer relation. Cl * Tl. and the cost to retrieve all tuples

with a given attribute value from the inner relation. Note that this cost is independent

of whether or not any qualifying tuples exist since the lack of a qualifying tuple will

not become known until the data pages have been examined.

In the case of a secondary index, the data pages are only accessed if in fact they

contain tuples with the given join key value. For each tuple in the outer relation, the

secondary hash index is read and searched and for each tuple in the result, the

corresponding data page is read and directly accessed. The number of data pages

accessed depends on both the selectivity of the join and the number of duplicate
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attribute values. The model assumes a worse case of no duplicate values, hence the

number of data pages accessed is equal to the product of the selectivity and the cardi

nality of the smaller relation.

The merge join algorithm first sorts the two relations, if they are not already

ordered, then performs the join by iterating over the two relations in parallel looking

for matching join attribute values. If the two relations have block cardinalities Cl and

C2. the merge requires Cl + C2 page reads and scans.

The hash join algorithm first hashes each relation, if it is not already hashed, then

sorts the hash buckets and compares the tuples in corresponding buckets. The sort and

comparison phase requires Cl + C2 pagesorts. 2 * (Cl + C2) page reads, Cl + C2 page

writes and Cl + C2 page scans.

23. Experiments

Four experiments were performed to evaluate various architectural alternatives

for database applications. The first experiment varied the algorithms used for query

processing. The second and third experiments varied the architecture by modifying the

cost of the page sort and page search operation respectively. This modification could

reflect either a faster software implementation or a hardware implemented "assist."

The fourth experiment evaluated the performance of a database machine architecture

designed around a linear timesorting device and the merge join algorithm.

23.1. Workload Parameters and Output Statistics

The workload parameters for a "standard" query workload and an "p-standard"

workload are given in Table 3. The parameters for the standard workload were chosen

as typical of applications using small relations. All parameter values are assumed

equally likely to occur. In many applications, however, the queries to be run against

the data base are known a priori. This permits the physical storage structures to be
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chosen so that a fast access path will always exist for a query. The p-standard work

load models this situation by excluding the heap data structure from all queries in the

workload.

In order to assign values to the basic page operations, the cost of one disk read or

write was assumed equal to one. The costs of the other basic operations were assigned

relative to this cost. Table 4 lists the page operation costs used in the experiments. The

page scan cost was assumed equal to the disk read/write cost and the page look cost to

one-tenth the disk read/write cost. Page search was assumed to equal the disk cost

and page sort to equal three times the disk cost. All numeric costs given below will be

in terms of a disk read/write cost equal to one.

23.2. Algorithm Choice

This section describes the results of a series of experiments to evaluate different

software architectures. A typical architecture includes the fast hash algorithm and

Parameter Values Relative Frequency
1.1

1.1

1.1

1.1

1.1.1.1,1

0.1.1.1.1

Table 3. Standard and P-standard Workloads

Page Operation Cost

Selectivity 5.25
Keys per Index Page 20.100
Block Cardinality 10.1000
Tuples per Page 1,20
Storage Structure

Standard heap, oheap, hash.
key seq. sindex

P-standard heap, oheap. hash.
key seq, sindex

Read 1

Write 1

Search 1

Sort 3

Scan 1

Look .1

Table 4. Typical Cost Values
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both the tuple substitute and merge join algorithms. The average query cost for a

standard workload is 5,559 3 and for an p-standard workload 3,577 This cost is the

average minimum cost over all queries in the workload. Since all possible execution

plans are considered for each query and the minimum cost one chosen, these average

costs are the best possible.

The first alternative considered is to use the simpler hash algorithm. This

modification results in an increase of the average cost for a standard workload to 5,625

and for the p-standard workload to 3,583. as listed in Table 5. This indicates that the

hash function (used to create both hash primary structures and hash secondary

indexes) is not critical and the time spent to implement a complex algorithm would

not be well spent.

The remaining alternatives considered various combinations of join algorithms.

The results are listed in Table 6. An architecture which only included the merge join

algorithm would clearly not perform well compared with any of the other alterna

tives, although the addition of merge join to an architecture which already included

tuple substitute join would provide a significant cost reduction. This is a result of the

Alternative Standard P-standard

•Fast Hash 5,559 3.577
Simple Hash 5,625 3.583

Table 5. Simple Hash vs. Complex Hash

Alternative Standard P-standard
Tuple Substitute Only 7.248 5.401
Merge Join Only 24.170 20,653
Merge and Tuple Substitute Joins 5.559 3.577
Tuple Substitute. Merge 5.494 3.474

Join and Hash Join
Table 6. Join Alternatives

The units of all costs are disk access equivalents. Theabsolute time is equal to the product of the cost
and the disk access time.
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merge join requiring that both of the relations be sorted. Since the workload is evenly

distributed among heap, ordered heap, hashed, key sequential and secondary index

structures, the merge join algorithm will be effectively operating on heaps three fifths

of the time, whereas the tuple substitute algorithm can take advantage of unordered

storage structures. This effect is enhanced as the relation cardinality is increased, since

sorting is an G(n log n) function of the block cardinality, although the cost of per

forming a merge join on two large ordered relations tends to be less than that of tuple

substitute join.

Addition of the hash join algorithm would appear to have little effect on overall

performance, despite the existence of queries in the workload for which it is the

optimal choice. This is an indication that there are few queries in the workload for

which the hash join algorithm is optimal and furthermore for those for which it is. the

difference between the cost of the hash join strategy and the next best strategy is

small.

To summarize, the particular hashing algorithm implemented is probably

irrelevant. Of the various combinations of join algorithm, a system consisting of tuple

substitute join and merge join would probably give the best performance for the least

implementation effort.

23.3. Fast Sort

Page Sort Cost Standard P-standard

0 5.426 3.477
5 5.683 3.628
10 5.934 3.711
15 6.146 3.791
20 6,356 3.871

Table 7. Average Query Cost as a Function of Sort Cost
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There have been many proposals in the literature for fast sorters designed to

operate on a (small) fixed number of elements. This experiment evaluates such devices

for inclusion in a database management system by running a model containing tuple

substitute join and merge join over a range of values for the page sort cost. The result

ing average query cost for the standard and p-standard workloads are given in Table 7.

A page sort cost of zero corresponds to the limiting value of the performance metric as

sort cost is decreased. As the page sort cost increases from zero to 20, only a 11-17%

increase in average query execution cost is observed. This indicates that the page sort

function is not critical for the system and workload under consideration: that is. if the

cost is low it is not heavily used and if the cost is high alternate strategies which do

not require sorting will be used. This can be more clearly seen from the additional

statistics for the standard workload listed in Table 8. The number of sorts (#Sorts) is

the number of page sort operations required by the workload. The number of merge

joins (#Mjoin) is the number of optimal strategies in the workload which use the

merge join algorithm. The final three columns list the number of storage transforma

tions: building a secondary hash index (#Build Sindx) and building an ordered heap

(#Build Oheap). At each incremental increase of sort cost, the number of page sorts

decreases. This decrease results from using the tuple substitute algorithm instead of

the merge join algorithm or from avoiding building either ordered heaps or secondary

index structures. To conclude, a fast page sort function would probably not lead to a

significant improvement in performance. This result was verified under various addi

tional workloads.

23.4. Fast Search

Another popular function for hardware implementation is the page search func

tion. For example, the "daubase accelerator" in the Britton Lee IDM-500 is built

around a fast search engine [Epst80a]. This function was evaluated in an analogous



Sort Cost #Sorts #Mjoin #Build #Build

Sindex Oheap
0 106.884 250 198 20
5 90.404 206 198 20
10 68.044 206 182 —

15 67.484 206 166 —

20 67.008 192 164 —

Table 8. Other Statistics as a Function of Sort Cost

Page Search Cost Standard P-standard
0 4,416 2,821
.5 5.026 3.207
1 5.559 3.577
1.5 5.909 3.805
2 6,188 4.001
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Table 9. Average Query Cost as a Function of Search Cost

manner, with results summarized in Table 9. In this case, as the search cost is

increased from zero to two. a 40-42% increase in average query cost is observed. Simi

lar results were obtained for a variety of different workloads. This indicates that the

page search operation is a critical function which would be a good candidate for faster

implementation. Additional statistics are listed in Table 10, where the number of

searches (^Searches) is the number of page search operations required by the workload,

the number of tuple substitutions (#Tsubs) is the number of times the tuple substitu

tion algorithm was selected and the number of merge joins (#M joins) the number of

times the merge join algorithm was selected. These additional statistics also indicate

that the page search operation is critical: if the search cost is low, a large number of

searches will be performed: if the search cost is high, alternate strategies which do not

require searching will be used, however the absolute number of page searches in the

optimal strategies is still sufficiently great that their cost is significant.

23.5. Linear Relation Sort and Merge Join

Several recent database machine proposals describe architectures built around

parallel hardware sorting devices [Dohi82a, Acce85a]. This experiment estimates the



Search Cost ^Searches #Tsubs #Mjoins
0 1.976.960 1410 190
.5 1.933.160 1394 206
1 1.205.880 1358 242

1.5 1.087.800 1348 252
2 835.800 1336 264

Table 10. Additional statistics for-Standard Workload.

performance of a similar architecture which uses a sorting device as an assist to a more

traditional database management system utilizing the merge join algorithm exclusively.

The standard workload described above contains a large number of small relations. In

order to test this architecture under the most favorable conditions, an additional "large

relation" workload was run. The parameters for this workload are listed in Table 11.

Since merge join is the assumed processing strategy, all unordered relations must be

sorted, including ones that have hashed and secondary index structures. Hence none of

these structures accelerate processing and as a result we modified the standard work

load to include only heaps and ordered heaps in equal quantities.

Table 12 contains the experimental results. The numbers in parenthesis on the

first line of the table are the baseline costs for this workload on a traditional architec

ture, as described above. The remainder of the table indicates workload cost for vari

ous values of Rsort. When Rsort is equal to one, the cpu cost to sort the relation is

equal to the disk access cost to read it from disk and simulates a very high speed

sorter. Other rows in Table 11 estimate the performance of slower sorters as well as

the limiting case of zero sort cost.

Parameter Values Relative Frequency
Selectivity 5.25
Keys per Index Page 50.100
Block Cardinality 500,1000
Tuples per Page 10.15
Storage Structures heap.oheap

Table 11. "Large Relation" Workload Parameters

40



Standard Large
Baseline Cost 5.559 19.990

Rsort per Data Page
20 14.178 21.093
15 11.653 17.343
10 9.128 13.593
5 6,603 13,843
3 5.593 11.343
1 4,583 9843
0 4,078 6093
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Table 12. Average cost as a function of rsort cost.

These results indicate that an architecture composed of linear time relation sort

ing and the merge join algorithm will only outperform a traditional architecture if

Rsort is less than three for the standard benchmark or less than twenty for the large

benchmark. This is a consequence of using both the tuple substitute and the merge

join algorithm in the traditional architecture rather than the merge join algorithm

only. There are many cases when tuple substitution outperformsmerge join regardless

of the cost to sort a relation. For example, if the tuple substitute algorithm is being

used with a small outer relation and a large inner relation, it will tend to examine a

small fraction of the inner relation and be less costly than merge join processing. To

conclude, in order to provide a net speed up in average execution cost on this architec

ture, the linear time sorting element must either be capable of handling very large rela

tions (i.e. roughly 1000 or more disk pages in length) without performance degrada

tion, or of operating at disk access speed (i.e. rsort roughly equals one).

2.4. Summary

This chapter has described uniprocessor join optimization and presented a model

of query workload resource requirements. This model allows design architectures to

be compared in an implementation independent manner. It provides a vehicle for test

ing new or alternative algorithms for inclusion in a database management system and

for evaluating the effect of various performance enhancements. By varying the
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workload descriptions, the queries can be made as specific to a given application as

desired. This allows both well defined and poorly defined applications to be described

in the same manner and used for performance evaluation.

This chapter also presented the results of several experiments evaluating various

architectures. Conclusions are that the choice of a good query processing algorithm is

of more importance than the use of "assists" to speed up execution. Given that

efficient processing algorithms have been chosen, the page search operation is shown to

be a good candidate for enhancement but the page sort operation is not. It is unlikely

that an architecture built solely around hardware assisted sorting of relations in linear

time and the merge join algorithm would outperform a more traditional database

management system which has multiple software supported processing tactics. These

results are. of course, somewhat workload dependent. Similar results to those

presented in the text were obtained for other workloads.



CHAPTER 3

MULTIPROCESSOR JOIN MODEL

A variety of join algorithms for multiprocessors are presented and analyzed in

this chapter. These algorithms allow for parallelism both between and within queries

(i.e. both inter- and intra-query parallelism). The analysis is based on an extension of

the cost functions and model presented in the previous chapter. Some specific ques

tions addressed are: Over which sets of queries do each of the algorithms offer optimal

performance? Are algorithms based on minimizing data transmissions ever optimal in a

local network environment where data transmissions are inexpensive compared with

disk accesses? How effective is increasing the number of processors in increasing per

formance?

3.1. Multiprocessor Join Processing

A multiprocessor consists of a collection of processors, associated secondary

storage and a communication medium. All processors are equivalent in processing

capability. The communication medium is referred to generically as a network,

although it could be implemented in many ways (e.g. by an ethernet network, shared

disks, shared memory, etc.). We assume that the communication medium allows one

page of data to be sent between any pair of processors at a fixed cost that is indepen

dent of the particular processors chosen. Initially, we assume that no more than one

page of data may be transmitted simultaneously and that no more than two processors

may communicate simultaneously (i.e. there is no broadcast facility). Secondary

storage devices are assumed to be associated with individual processors and memory is

not shared. This implies that all data to be accessed by more than one processor must

be duplicated or explicitly transmitted over the communication medium.

43



44

Within this framework a number of different kinds of specialized hardware are

possible. Among the alternatives considered are high speed implementations of basic

operations and variations of the structure of the communication medium (e.g. adding a

ring or broadcast transmission capability). In a processing environment with large

relations and buffered paging of data from disk, shared memory is of limited utility

beyond providing a fast communication pathway between processors. Random access

to data in shared memory requires synchronized execution and coordinated paging of

data from secondary storage and is not considered further here.

As in the case of uniprocessor query optimization, efficient utilization of storage

structures is critical to high performance. Data on individual sites is stored in one of

the five structures described in the previous chapter: heap, ordered heap. hash, key

sequential index or secondary index. When data is transmitted over the network it

may lose its structure, depending on how files are implemented, addressed and

transmitted. If a structure is built using physical page addresses and pages within a file

are physically contiguous, transmission which retains contiguity will allow ordered

relations to be transmitted intact. All other structures which rely on the physical

addresses will effectively become heaps, however the addresses may be patched in a

straightforward manner. If physical contiguity is not maintained, all structures will

effectively become heaps. If logical page addresses are used, all of the structures can be

transmitted intact. The model presented in this thesis assumes that files have sequen

tial logical addresses, as in the UNIX operating system [Ritca], and can be transmitted

intact along with any auxiliary indices.

Several of the multiprocessor algorithms calculate a single join using a sequence

of simpler operations, including projections and joins over intermediate results. In

general, the result of any join operation has a heap structure (i.e. is unstructured),

however in certain special cases it may retain some structure. Both the result of a
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merge join and the result of a tuple substitute join with an ordered outer relation are

ordered.

When joins are executed on a uniprocessor, the individual steps in a strategy are

executed sequentially. Multiprocessors allow several modes of parallel execution.

Intra-query parallelism (parallelism within a single query) results from pipelining the

individual steps in a strategy through a sequence of processors, executing the steps in

parallel on a set of processors, or overlapping data transmission with on-site processing.

In all cases, the nodes need only support single-threaded execution, that is queries are

executed serially in their entirety and only one query is being processed at any one

time. This is the mode of execution supported by many of the database machines

which implement specific algorithms in hardware. Multi-threaded execution allows

multiple queries to be in progress at the same time. The simplest way to achieve

inter-query parallelism is to partition the nodes among distinct queries. The nodes

need not be multi-threaded. More complex modes of inter-query parallelism require

that the nodes support multi-threaded execution with interleaved requests from dis

tinct queries.

3.1.1. Performance Considerations

One of the motivations behind multiprocessor architectures is the claim that a

collection of slow, inexpensive processors can utilize parallelism to attain the same per

formance as a single fast, expensive processor at a lower overall price. Multiprocessor

architectures can be roughly broken into three categories [Patt85b]: throughput

oriented, availability oriented and response oriented. Throughput oriented multipro

cessors are general purpose systems which attempt to increase performance by running

multiple independent jobs in parallel on a balanced system. Performance is increased

by decreasing the amount of resources required by each job. Availability oriented

multiprocessors provide fail-safe or fail-proof operation and attempt to maximize the
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number of independent tasks done in parallel. The goal is to provide reliable execution

rather than high performance and we do not consider this category further in this

thesis. Response oriented multiprocessors tend to be specific to a particular application

and attempt to maximize the number of cooperating processes done in parallel. Perfor

mance is increased by decreasing the response time of individual queries by splitting

them into subqueries which are executed in parallel on multiple processors.

Performance is typically measured in terms of either throughput or response

time. The throughput is the number of queries per unit time that are executed by the

system. In an open system, this is the same as the rate at which queries leave the sys

tem. In a closed system, this is the rate at which queries "start over" and begin

another cycle of processing. The response time is the amount of time an individual

query spends in an open system or the time for one complete cycle in a closed system.

The response time has two components: the time spent receiving service and the time

spent waiting at servers for other queries to complete their service.

[Wolf82a. Heym82a]

Our model minimizes either total time (by considering all processing costs) or

response time (by considering the amount of processing on the critical path from query

initiation to query termination). All estimates are for an unloaded system and we do

not consider device contention as a processing cost. A typical model will calculate the

costs for several thousand distinct queries. We considered several queueing models for

the multiprocessor organizations, however the problem of assigning branching proba

bilities on the basis of the workload characteristics led to models that were sufficiently

complex that analytic solution was not feasible. We also concluded that a simulation

model with more than a thousand distinct query classes would beunlikely to converge

in a reasonable amount of time. The metrics we use are averages over all queries in a

workload, as described below.
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3.1.2. Distributed Join Algorithms

This section describes six distributed join algorithms. The first three algorithms

are throughput oriented and attempt to minimize the total amount of resources

required. The distributed join algorithm uses the most obvious technique of transmit

ting the two relations to a single site and performing a uniprocessor join. The next

two algorithms, semi-join and bloom-join, attempt to decrease the number of data

transmissions generated during query processing by transmitting encoded information

about the join attribute rather than the entire relation. The semi-join algorithm has

been extensively explored in the distributed database management literature (see

[Ceri84a] for a partial bibliography) and the bloom-join algorithm is our extension to a

popular database machine algorithm [Vald82a]. The remaining three algorithms (frag

ment & replicate, fragment & rotate and distributed hash join) appear in the database

machine literature. They aire response oriented and attempt to minimize the response

time by dividing the work as evenly as possible among the processors.

We explain each algorithm in detail and describe the actual sequence of steps that

are required to execute the join example of the previous chapter. All six algorithms are

designed to operate on distributed data. We assume that each algorithm begins with

an identical problem: both relations on distinct sites in their entirity and the join

result required on a third site.

3.1.2.1. D-Join Algorithm

The d-join algorithm proceeds in the most obvious way by either transmitting

one relation to the site of the other to perform the join or transmitting both relations

to the result site and performing the join there. In more concrete terms:

(1) Select one or both relations for transmission.
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(2) If one relation is selected, transmit it to the site of the other, otherwise

transmit both relations to the final site.

(3) Perform the join.

(4) If the join is not on the final site, transmit it there.

Referring to the example presented in section 2.1. assume that the PILOTS rela

tion is stored on site A. the PLANES relation on site B and that the result of JOIN

PILOTS ON LICENSE WITH PLANES ON TYPE is required on site C. The algorithm

could proceed by the following steps:

(1) Select the PILOTS relation on site A for transmission.

(2) Transmit PILOTS to site B.

(3) JOIN PILOTS ON LICENSE WITH PLANES ON TYPE on site B.

(4) Transmit the join result to site C.

The total processing includes the time to transmit one or both relations, the

uniprocessor join processing time and possibly the time to transmit the join results.

For simplicity, we assume that data which is transmitted cannot be accessed until the

entire transmission is complete and that join processing must be complete before the

result may be accessed. Under these assumptions, there is no parallelism possible and

the minimum response time1 is equal to the total processing time.

Since storage structures are preserved during transmission, the query optimization

problem is almost identical to that of the previous chapter: the number of strategies

will increase by a factor of three when transmissions are taken into account and the

cost to execute every query will increase, however the join processing itself will not be

modified. Optimization will select an identical uniprocessor join processing strategy

The minimum response time is the single-threaded response time, i.e. the response time when there is
no contention for resources with other concurrently running queries.
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for each of the three transmission options, then select the transmission option with the

minimum cost. i.e. the one that requires transmission of the minimum number of

pages.

3.1.2.2. Semi-join Algorithm

The semi-join algorithm was first proposed for the SDD-1 distributed database

management system [Good79a. Bern81a]. The base hardware for this system is a col

lection of processors linked by the ARPA network [Hear82a]. The ARPA network is a

"long-haul network" designed to connect geographically remote machines. The proto

col is involved and imposes a significant overhead to transmit data from one site to

another. In this environment, assuming that the only significant source of overhead is

data transmission may be reasonable, although it has recently been questioned

[Seli80a]. Many authors however, e.g. [Vald82a], propose using this algorithm in a

local network environment where messages are inexpensive compared with cpu pro

cessing and I/O costs. Later in this chapter we will examine the performance of semi-

joins in this environment more carefully.

Semi-join reduction uses a semi-join to remove tuples from a relation which do

not appear in the join result. If two relations are being joined, either one or both rela

tions may be semi-join reduced. If one relation is being reduced, the algorithm

proceeds by the following steps:

(1) Select one of the two relations for semi-join reduction

(2) Project the join attribute from the other relation and transmit this projection

to the site of the relation to be semi-join reduced.

(3) Join the projection with the relation to be reduced (the semi-join ) and

transmit the result to the final site. Note that the semi-join result is

guaranteed to contain only tuples which appear at least once in the result to
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the original join query.

(4) Transmit the (entire) relation that was projected to the final site.

(5) Join the semi-join reduced relation with the relation that was projected to cal

culate the final join result.

In terms of our example above and assuming again that the PILOTS relation is on

site A. the PLANES relation B and the result is required on site C. the join will be

solved by reduced the PLANES relation in the following sequence of steps:

(1) Select the PLANES relation on site B for reduction.

(2) Project the License attribute from PILOTS, call the projection LICENSE and

transmit LICENSE to site B.

(3) JOIN LICENSE WITH PLANES ON TYPE, call the result SJR-PLANES. and

transmit it to site C.

(4) Transmit PILOTS to site C.

(5) JOIN SJR-PLANES ON TYPE WITH PILOTS ON LICENSE.

If one relation is semi-join reduced, the total processing includes calculation of

one projection, two uniprocessor joins, and transmissions of a projection, a semi-join

reduced relation, and an un-reduced relation. Semi-join reduction of both relations

(i.e., both of the two relations are reduced by a semi-join before transmission) is

straightforward. The final join is between the two semi-join reduced relations, which

are each guaranteed to contain only tuples which appear at least once in the result.

Note that the final join is still required to obuin the result to the original query. If

both relations are reduced, the total processing includes calculation of two projections,

three joins and transmission of two projections and two semi-join reduced relations.

Although the algorithm is basically sequential, there are a number of ways paral

lelism can be utilized to decrease the response time. For simplicity, we assume that
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on-site processing (all processing except transmissions, e.g. projection processing) must

be completed before transmission can begin and, likewise, transmission must be com

pleted before on-site processing can begin. Under these assumptions, the only way to

achieve parallel execution when one relation is being reduced is to transmit the relation

that is not semi-join reduced during the the time that it is being projected or during

the semi-join processing itself, whichever is longer. If both relations are being reduced,

the projection processing on each site can be done in parallel and the semi-joins can

overlap with transmission of one projection and one semi-join result.

Traditional semi-join optimization [Good79a. Bern81a] is based on minimizing the

estimated number of bytes transmitted. On site processing (e.g. projection or join cal

culation) is assumed to have negligible cost. Reductions in data transmission are rela

tive to that required to transmit both relations in their entirety to the result site for

join processing.

The query optimization technique we assume is exhaustive and considers all pro

cessing costs. It first chooses which relation to semi-join reduce, then produces a

detailed sequence of operations to perform the projection, transmissions, semi-join and

final join. The subproblems of optimizing the semi-join and final join are identical to

the optimization problem presented in the previous chapter.

In order to estimate the processing costs, the cardinality of the projection and

semi-join results must be estimated. The projections eliminate all attributes except the

join attribute. In the limiting case of a relation which has a single attribute, the join

attribute, projection will have no effect. If there are multiple attributes then the join

attribute may contain duplicate values. When the non-join attributes are eliminated

by the projection, all duplicate join attribute values are also removed. This will

decrease the number of tuples in the projection and hence decrease its cardinality. In

addition, when attributes are eliminated, tuples become smaller and the number of
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tuples per page will increase. This will also tend to decrease the cardinality of the

projection. The cost functions described below quantify both of these tendencies.

Join selectivity is used to estimate the cardinalities of the overall join and any

semi-joins which may be used during processing. The join selectivity definition given

in the previous chapter implicitly assumed that there were no duplicate attribute

values. Under this assumption, the maximum number of tuples in the result is equal

to the number of tuples in the smaller of the two relations being joined. The only way

the number of tuples in the result can be any larger than this is to have duplicate

values in one or both of the relations. The limiting case is when only a single join

attribute value appears in both relations: the number of tuples in the result will then

equal the product of the numbers of tuples in each relation. One of the major goals

motivating semi-join techniques is avoiding transmission of join results whenever pos

sible because of the potential for large increases in size. Clearly a model which does

not allow for this expansion is inappropriate. In this chapter we extend the join selec

tivity definition to allow each value appearing in the join attribute to be duplicated a

constant number of times.

In addition to having associated cardinalities, the intermediate result relations

may be stored in fast access structures. When an attribute is projected from a relation,

duplicate values are removed. If the relation is initially ordered, the duplicate values

may be removed as the projection is being generated. If the relation is not ordered, the

subrelation of attribute values must be sorted to locate and remove duplicates. In

either case, the projection itself is ordered. When the semi-join is performed, the

result will be ordered if: the merge join algorithm is used: the projection is the outer

relation of a tuple substitute join: or the projection is the inner relation of a tuple sub

stitute join and the outer relation is ordered. In all other cases (i.e. when the projec

tion is the inner relation of a tuple substitute join and the outer relation is stored in a
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heap, hash or secondary index structure), the result will be a heap.

3.1.23. Bloom-Join Algorithm

The bloom-join algorithm is a new algorithm which is similar to the semi-join

algorithm except in the way join attribute data is encoded for transmission. Rather

than transmitting a projection of attribute values, a bloom filter is created and

transmitted. When a relation is hashed, the hash function provides a map between

attribute values and hash bucket numbers. A hash vector associates one bit with every

hash bucket number. If at least one tuple is present in the bucket, the bit is set to one.

The size of a hash vector tends to be smaller than that of an attribute projection, how

ever less information is transmitted since many attribute values may hash to the same

bucket. Bloom-filters [Knut73a] provide a means of encoding more information into the

same bit-vector. The technique assumes k independent hash functions. For each attri

bute value, k bits are set in the vector corresponding to the results of the k hash func

tions. If there are N records in the file (each of which has a unique key) and M hash

buckets, the probability that the filter will incorrectly indicate that a value is present

I "*? ]k
will be approximately |l—e ~Tr J . If k = 1. the bloom filter is a standard hash vec

tor. Although all of the references cited below assume k = 1, we will refer to this

algorithm as the "bloom-join algorithm" to prevent confusion with the distributed

hash join algorithm described below.

The notion of a bloom-join appeared early in the database machine literature

[Schu78a. Bray79a. Babb79a], however it has only recently been proposed and

evaluated as a distributed processing technique [Vald82a]. In both environments,

bloom filters will encode the most information when the hash functions partition

attribute values across as many buckets as possible.
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As with semi-joins. one or both relations may be reduced. If one relation is being

reduced, the algorithm proceeds by the following steps:

(1) Select one of the two relations for bloom-join reduction

(2) Create a bloom filter for the join attribute of the other relation. The bloom filter

contains one bit for every hash bucket as described above. Each tuple is

hashed on its join attribute value and the bit(s) corresponding to its bucket

address is set to one. If the number of hash functions is k. k bits will be set

for each join attribute value.

(3) Transmit the bloom filter to the site of the relation to be reduced and calculate

the reduction by hashing each tuple and checking if the corresponding bit(s) in

the bloom filter are set. Note that the reduction may contain tuples that are

not part of the final join result.

(4) Transmit the bloom-join reduced relation to the final site.

(5) Transmit the relation that was not bloom-join reduced to the final site and

join with the reduced relation to produce the final result.

Referring back to our example, assume again that the PILOTS relation is stored on

site A. the PLANES relation on site B and the result is required on site C.

(1) Select the PLANES relation on site B for bloom-join reduction.

(2) Create a bloom filter on the License attribute of the PILOTS relation and call

the vector H-LICENSE.

(3) Transmit H-LICENSE to site B and calculate the bloom-join reduction of

PLANES and call it HJR-PLANES. Note that HJR-PLANES will be a subset of

PLANES, however it may contain tuples that are not part of the final join

result.
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(4) Transmit HJR-PLANES to site C.

(5) Transmit PILOTS to site C and JOIN PILOTS ON LICENSE WITH HJR-

PLANES ON TYPE.

The total processing for a single reduction includes: calculation of the bloom

filter, the bloom-join reduction, and the final join; and transmission of the bloom filter,

the bloom-join reduced relation and the entire relation that is not reduced. If both

relations are reduced, the total processing will include calculation of both bloom

filters, both bloom-join reductions and the final join: and transmission of the two

bloom filters and the two bloom-join reduced relations. Under the assumptions made

above for the semi-join, the only way to achieve parallel execution for a single bloom-

join is to transmit the relation that is not reduced either during calculation of the

bloom filter or during calculation of the reduction, whichever is longer. If both rela

tions are reduced, parallelism analogous to that described above for semi-join reduction

can be achieved.

The only step which allows more than one processing strategy is the last step

where the final join is calculated. This optimization problem is identical to the join

optimization problem described in the previous chapter, however the possible storage

structures are constrained by the earlier processing steps. The relation which is not

reduced will have whatever structure it initially had. The relation which is reduced

will be ordered if the original relation was ordered, otherwise it will have a heap

structure. The result relation will depend on the final join strategy.

3.1.2.4. Fragment & Replicate Algorithm

The fragment and replicate algorithm was proposed for the Distributed Ingres

Database Management System [Epst78a] and Muffin database machine [Ston79a]. The

algorithm minimizes both response time and communications traffic costs and solutions

can be obtained for both site-to-site and broadcast network models. It was designed to
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process data which may be partitioned among sites either randomly or by using distri

bution criteria to establish a unique site for each data element based on the values of

one or more attributes. Clearly there are an unlimited number of ways that data

could be fragmented among sites. We assume that initially the data is not fragmented,

the two relations are stored on distinct sites and the result is required on a third site,

as in the examples above.

The algorithm proceeds by the following steps:

(1) Select one of the two relations for fragmentation among N sites.

(2) Perform the fragmentation by dividing the relation into N equal pieces and

transmitting each piece to a distinct site.

(3) Replicate the other relation on all sites by transmitting it to each site2.

(4) Perform a join on each site in parallel then transmit all results to the final site.

In terms of the PILOTS/PLANES example:

(1) Select the PLANES relation on site B for fragmentation among N sites.

(2) Divide PLANES into N equal pieces and transmit each piece to a distinct site,

call the pieces PLANES-I.1=1 ,N.

(3) Transmit a copy of the entire PILOTS relation to each of the N sites.

(4) JOIN PILOTS ON LICENSE WITH PLANES-I ON TYPE. 1=1.N and transmit

the join results to site C.

2 If thedata is suitably partitioned by value, only part of thedata needs to be replicated at each site. In
a broadcast environment, the replicated relation is only transmitted once during replication. If each site re
quires a distinct subset of the "replicated" relation, multiple transmissions are required. In a non-broadcast
environment, replication requires one transmission for every site. In this case, replicating a portion of the
data on each site will reduce the amount of data transmitted, however the partitioning costs cannot be
neglected. The distributed hash join algorithm, described below, presents one way of partitioning the data by
value and for that algorithm the partitioning costs dominate.
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The total processing includes fragmenting the PLANES relation, replicating the

PILOTS relation, performing N joins and transmitting the results to the final site.

Since the joins are performed in parallel, the minimum response time is equal to the

sum of the time to process a single join and the transmission times of the fragments,

the replicated relations, and the results. Clearly the transmission time for replication

will tend to dominate unless a broadcast facility is available.

Query optimization must first decide which relation to fragment and then

whether storage structures should be created for either the fragmented or replicated

relations. The structures may be created in parallel after transmission3. Other than

the relative ordering of transmissions and storage structure creation, the join optimiza

tion problem at each site is identical to the uniprocessor problem and all sites will have

the same optimal strategy. The result structure will likewise depend on the particular

strategy chosen.

3.1.2.5. Fragment & Rotate Algorithm

The fragment and rotate algorithm was proposed recently in conjunction with a

hardware realization that is particularly well suited to LSI and VLSI implementation

[Meno83a]. A model based on queueing analysis is used to determine the design con

straints between processing speed and memory size. If the cost is fixed, the analysis

yields optimal chip designs, where the design decisions include the number of proces

sors to place on a chip and the sizes of the associated memories. The analysis presented

here maps the algorithm onto the general multiprocessor model described above for

purposes of comparison.

3 A further optimization would be to create the structure for the replicated relation prior to transmis
sion. This will not affect the response time, but will reduce the total time. We leave this as a future exten
sion.
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The algorithm proceeds by the following steps:

(1) Select one of the two relations for fragmentation among N sites.

(2) Perform the fragmentation by dividing the relation into equal pieces and

transmitting each piece to a distinct site.

(3) Pipe individual pages of tuples 4 from the other relation to each site in turn

(i.e. rotate around to each site), performing a retrieval on the join attribute

values at every site visited.

(4) When all pages of tuples have visited all sites, transmit the result tuples to the

final site.

Continuing with our PILOTS/PLANES example:

(1) Select the PLANES relation on site B for fragmentation.

(2) Divide PLANES into N equal pieces and transmit each piece to a distinct site,

call the pieces PLANES-I. 1=1 ,N.

(3) Pipe pages of tuples from the PILOTS relation to sites 1-N: at each site I.

retrieve all tuples with matching join attribute values from PLANES-I.

(4) Transmit the results at sites 1 to I to site C.

The total processing includes one retrieval against every fragment for each tuple

that is rotated from site to site and the transmissions of fragments, rotating pages and

results. The rotating pages effectively form a pipeline: if there are N processors, the

first N pages prime the pipe by sequentially activating each processor in sequence: exe

cution continues on all processors in parallel until the first processor finishes execution

of the last page: the pipe then empties over the next N execution periods as each of the

The original algorithm piped individual tuples from site to site on a dedicated local network. The
overhead for this mode of transmission in our more general framework would be excessive, hence we have
modified the algorithm slightly to provide better performance.
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processors becomes inactive. If there are C pages in the relation that is being rotated

and each page requires processing at each of the N processors, there will be a total of C

*Nprocessing steps. While the pipe is full. Nsteps will be processed in parallel. Dur

ing the N periods over which the pipe is filling. N2 / 2 pages will be processed and

likewise for the N periods over which the pipe is emptying. The overall execution time

will thus be equal to (C * N- N2)/N + 2 *N= C + N. The minimum response time is

the sum of the time to transmit the fragments, the time to process C + Npages by exe

cuting a retrieve for every tuple on each page, and the time to transmit the results.

The only decision remaining for query optimization is to decide which relation to

fragment. Since each tuple will generate a retrieve request to each fragment, fast access

to fragments is critical. Since the hash structure provides the fastest access, it is the

only structure considered. The JOH proposal [Meno83a] hashes the fragments and uses

an associative memory to verify that at least one matching tuple exists before accessing

the data itself. The result tuples are unstructured.

3.1.2.6. Distributed Hash Join Algorithm

The distributed hash join is another example of a technique to partition the pro

cessing as evenly as possible among a collection of processors. The Grace database

machine [Kits83a] uses this algorithm exclusively for join processing. The two rela

tions are first hashed on the join attribute using identical hash functions into two sets

of hash buckets. Since hashing partitions by value, all tuples with matching join attri

bute values will be in corresponding buckets. The buckets are then distributed among

processors so that corresponding buckets are located on the same processor. Individual

hash buckets are then sorted and corresponding buckets merged to produce the query

result. This step of the processing is done in parallel. Specialized hardware is used to

speed bucket sorting. Hash vectors are associated with each relation and are used to

restrict the number of buckets processed by eliminating pairs of corresponding buckets
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with at least one empty member before distributing them to processors.

The DBC/1012 also stores data in a distributed hash structure (i.e. the data is

hashed and the buckets partitioned among the sites) [84a, Nech84a], however these

papers indicate that joins are processed by coalescing the two relations using a distri

buted sort followed by the (uniprocessor) merge-join algorithm.

The distributed hash join algorithm proceeds by the following steps:

(1) Perform a distributed hash of each relation by hashing each relation then par

titioning the buckets among the sites and transmitting each bucket to its

assigned site.

(2) Sort individual buckets in parallel on all sites.

(3) Merge individual buckets in parallel on all sites.

(4) Transmit the results on each site to the final site.

In terms of the PILOTS/PLANES example

(1) Hash PILOTS and PLANES, partition thebuckets evenly among the N sites and

transmit each bucket to its proper destination.

(2) Sort the PILOTS and PLANES hash buckets in parallel.

(3) Merge the sorted PILOTS and PLANES hash buckets in parallel.

(4) Transmit the results on sites 1 to N to site C.

The total processing includes hashing both relations, sorting and merging

corresponding buckets and transmitting the hash buckets and results. Under the

assumptions above, the results of the first hash may be transmitted while the second

hash is being processed. Once the data has been completely distributed, individual

buckets may be sorted and merged in parallel. The minimum response time is thus

equal to the sum of: the time to hash the first relation: the maximum of the times to

hash the second relation and transmit the first relation: the time to transmit the second
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relation: the time for one site to son and merge its allocation of buckets: and the time

to transmit the results to the final site.

Query optimization requires at least two strategies from which to select an

optimal plan. This algorithm fixes the processing steps into a single strategy and hence

no optimization can be performed. The only relevant storage structure for the two

relations is hash and the result relation will be a heap.

3.2. Multiprocessor Join Model Description

In this section we describe our model of multiprocessor joins. This model is an

extension of the uniprocessor join model presented in Chapter 2 and includes that

model as a special case. It incorporates all six algorithms described in the previous sec

tion, although any subset may be used in a particular experiment. The most significant

difference between multiprocessor and uniprocessor joins is the addition of multiple

processing sites and the possibility of parallel execution. In this environment, the total

execution time (across all processors) may differ greatly from the overall duration of

the query, or response time. We begin this section with a discussion of distributed

performance metrics. These metrics are used as optimization criteria (e.g. the minimum

response time strategy or the minimum total time strategy can be selected by the

optimization strategy) and as metrics describing the performance of the workload

(both the average response time per query and the average total time per query are

tabulated, regardless of the optimization criteria). The section continues with a

detailed examination of join selectivity in the presence of duplicate attribute values.

We derive a more precise definition which allows more accurate estimates of distri

buted query resource requirements. An additional basic operation is added to model

data transmissions and the eight query parameters defined in the previous chapter are

augmented by three additional parameters representing the number of processors and

the number of unique values appearing in each join attribute. The section concludes
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with cost functions for the distributed join algorithms.

3.2.1. Multiprocessor Performance Metrics

The minimum response time of a query in a uniprocessor environment is equal to

the total processing time. In a multiprocessor environment, intra-query parallelism

may be used to decrease the minimum response time by overlapping data transmission

with on-site processing or by executing subqueries simultaneously on multiple proces

sors.

The potential for overlap is limited by dependencies between various steps in the

processing, that is, by requirements that processing on an individual step of a strategy

be completed before processing can begin on the next sequential step. For example, an

intermediate result cannot be transmitted before the subquery which generates it has

begun. Although in some special cases transmission of the result can begin before the

subquery has completed, for simplicity we assume that this is never done. Under this

assumption, the distributed join algorithm carmot support any intra-query parallelism

and the semi-join and bloom-join algorithms allow for limited overlap between on-site

processing and data transmission.

The remaining three algorithms, fragment & replicate, fragment & rotate and

hash join, allow for parallel execution of identical subqueries. In the first two algo

rithms, the degree of parallelism is limited by the cardinality of the relation being

fragmented. In the third algorithm, the degree of parallelism is limited by the

minimum number of values in either of the two relations (i.e. by the maximum

number of hash buckets). The query parameters defined in the previous chapter are

augmented by an additional parameter, the number of processors in the multiprocessor,

N, to allow evaluation of the response time of these three algorithms. Table 1 contains

the complete list of distributed parameters (VI and V2 are used for selectivity estima

tion, as described in the following section).
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Symbol Parameter
p Selectivity
K Index Key Fanout
Cl Block Cardinality of Relation 1 (pages)
C2 Block Cardinality of Relation 2 (pages)
Tl Tuples per page in Relation 1
T2 Tuples per page in Relation 2
VI Number of Unique Join Attribute

Values in Relation 1
V2 Number of Unique Join Attribute

Values in Relation 2
Si Storage Structure of Relation 1
S2 Storage Structure of Relation 2
N Number of Processors

Table 1. Distributed Query Parameters

If the system is multi-threaded, the response time of individual queries will tend

to increase with increased throughput as contention for resources among different

queries increases, however the minimum response time will remain unchanged. The

minimum response time is estimated by determining the number of basic operations on

the critical path from query initiation to termination. In the absence of bottlenecks

within the multiprocessor, the overall throughput will depend on the total resource

requirements of individual queries. If the query resource requirements increase, the

throughput will decrease. In building our model, we have included cost functions both

for total time and minimum response time. Optimization can either minimize the total

time, roughly corresponding to maximum multi-threaded throughput, or minimize

response time, corresponding to maximum single-threaded throughput.

3.2.2. Selectivity Definition and Estimation

The selectivity of a relational operation is the fraction of data remaining after the

operation is performed. Although the selectivities of select and project operations are

well defined, see for example [Seli79a], a plethora of definitions exist for join and

semi-join selectivity: the fraction of the product of the cardinalities of the two rela

tions [Jark84a], the fraction of the domain of the join attribute [Yu84a], the fraction of
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the sum of the cardinalities of the two relations [Pram85a], the fraction of the larger

relation [Seli80a], the fraction of either relation [Aper83a] and so on. In this paper we

present an in depth analysis of the join operation and derive a new definition of join

selectivity which allows accurate estimates of intermediate results generated during

join processing in both a uniprocessor and a distributed environment. The definition is

consistent: the cardinality of Relation A join Relation B is the same as the cardinality

of Relation B join Relation A. The effects of duplicate join attribute values are expli

citly considered and semi-join selectivity is treated as a special case of join selectivity.

The join selectivity is not a critical parameter for estimating the resource require

ments of a uniprocessor join: except for a small difference in the number of secondary

index accesses and the cost to write the result relation to disk, the amount of process

ing is independent of the cardinality of the result relation. Estimating the resource

requirements of a distributed join, on the other hand, requires accurate selectivity esti

mates not only for the join itself, but for the intermediate results generated during

query processing (e.g. semi-join result cardinalities). In this section we extend the

selectivity definition used in Chapter 2 to more accurately estimate the cardinalities of

various intermediate results by explicitly considering the number of distinct values

appearing in the join attributes of each relation. Using our definition of selectivity, the

estimated result cardinality does not depend on the order in which the operations are

performed. Some models, e.g. [Yu84a], have the property that the estimated result car

dinality depends on the order in which the operations are performed. Clearly, for any

specific query and any correct sequence of operations to calculate the result, the result

cardinality cannot vary. In addition, using our definition of selectivity (presented

below) one or both relations may realize a net decrease in cardinality after reduction.

Simpler models, e.g. [Sacc82a], based on more restrictive assumptions have the

mathematical property that only the larger of the two relations may be reduced by a

semi-join.
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The definition of join selectivity used in Chapter 2 was based on an implicit

assumption that there were no duplicate values in either of the two join attributes5. If

this is the case, the maximum number of tuples in the result is equal to the number of

tuples in the smaller relation (i.e. the number of values in the smaller relation) and

defining the selectivity as the fraction of tuples from the smaller relation appearing in

the result leads to consistent estimates for all of the quantities needed to estimate

uniprocessor join resource requirements.

In the more general case, each attribute value may be duplicated some number of

times. If a duplicated attribute appears in the join result, each of the corresponding

tuples appears once with every matching tuple from the other relation. For example, if

there are 4 tuples with identical attribute values from one relation and 6 tuples with

the same (matching) attribute value from the other relation, there will be 24 tuples in

the result with that .attribute value. In order to model this more typical scenario, we

add two new query parameters to represent the number of distinct join attribute

values appearing in each relation. VI and V2. and clearly distinguish the number of

tuples in a relation from the number of values in an attribute. In general. VI and V2

will be chosen from the same domain of values. For example, the TYPE attribute of

the PLANES relation and the LICENSE attribute of the PILOTS relation have values

which come from the same domain, in this case, integers corresponding to airplane

types. For the join to be semantically meaningful, the join attributes must come from

the same domain. Our definition of selectivity does not make this assumption,

although the statistical model used for estimating the selectivity will require it.

In order to estimate the number of tuples in the join result, we assume that all

values in a relation are duplicated a constant and equal number of times. This implies

5 Note that unless the number of duplicates is very large, the amount of resources required during
uniprocessor join processing is independent of the number of times eachattribute value is duplicated.
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that the number of times each value is duplicated in relation 1. Dl, is equal to:

CI* Tl

VI

where Cl.Tl and VI are the cardinality, number of tuples per page and number of

unique values, respectively, and C1*T1 is the number of tuples in the relation. The

number of duplicates in relation 2 is defined in an analogous manner. Since the result

tuples are composed of one tuple from each relation, the result can contain no more

distinct values than are present in either of the two relations initially. This is true

independent of the number of duplicate values. In terms of our query parameters, the

maximum number of matching values is equal to the minimum of VI and V2. call it

VMIN. and the selectivity, p, is defined as the fraction of the minimum number of

values appearing in the result 6. The number of values in the result is thus equal to p *

VMIN. Since each value is duplicated Dl times in relation 1 and D2 times in relation

2. the number of tuples in the result is equal to:

p * VMIN * Dl * D2

Since each tuple in the result is composed of one tuple from each relation, the number

of tuples per page will decrease to7:

T1*T2

Tl +72

and the number of pages in the result, R. will be equal to:

6Note that no assumption is made about the domains of VI and V2. If VI and V2 are selected from
disjoint domains, p will be zero for all queries. If VI and V2 are selected from the same domain, for every
particular selection of values, p will have a value between 0 and 1 inclusive.

7Each tuple from relation 1 is 1/T1 pages long, each tuple from relation 2. 1/T2 pages long and the
result tuples are 1/T1 + 1/T2 pages long, hence thereare 1/U/T1 + 1/T2) tuples per page in the result.
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Which can be simplified to

CI* Tl

VI

C2* T2

V2

Tl + T2

Tl * T2

p * VMIN *
Tl +T2

VI * V2
* CI * C2
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Semi-join reduction removes all tuples from a relation that do not appear in the

final result at least once. The number of tuples in a semi-join reduced relation is thus

equal to the number of tuples from that relation that appear in the final result. Since

the number of values in the result is equal to p * VMIN. the number of values from

relation 1. say, that appear in the result is also equal to p * VMIN: the number of

tuples from relation 1 is equal to p * VMIN * Dl: and the number of pages. Rl. is

equal to

p * VMIN *
CI* Tl

VI

Tl

_ p * VMIN * C 1

An analogous equation can be derived for R2. the number of pages from relation 2 that

appear in the result.

During semi-join processing, the join attribute is projected out from one of the

two relations being joined, say relation 1. Since projections are relations they contain

no duplicates and the number of tuples in the result is equal to the number of values

in the result: VI. Each tuple in the result will contain a single join attribute value.

Assuming twice as many attribute values as attribute value-address pairs can be placed

on a page, the number of tuples per page will increase to 2 * K and the number of

pages in the projection will be equal to
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2 * K
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The above discussion assumed that the selectivity parameter was known. This is

rarely the case in practice and the selectivity itself must be estimated. Let the domain

of the join attribute contain M values. The relations contain VI and V2 values ran

domly selected from M without replacement and the join result contains those values

appearing in both relations. The number of values in the join result has expected value

EiNo.vahtes in result) =
M

In the discussion above we noted that the number of values in the result is equal to p *

VMIN. hence

~/ ^ = E(No,values in result) _ VI * V2
P VMIN M * VMIN

This statistical model agrees with that presented in [Yu84a] although their definition

of the term "selectivity" is somewhat different.

Note also that since this formula calculates the expected value the result has a

variance associated with it. Whenever the selectivity is replaced by its expected value

in a calculation, the results will also be expected values and will themselves have asso

ciated variances. The effect of using expected values becomes apparent when costs are

estimated for a specific query using the expected cost formulas and compared with the

actual (measured) costs: unless the variance is very small it is unlikely that the two

results will agree. If a large number of queries are compared in a like manner, how

ever, the average measured cost should be very close to the expected cost. In the limit,

as the number of queries becomes infinite, the two should agreeexactly [Hoel71a].

Query optimization compares the costs of various execution plans. If expected

costs are used, as they are in many optimization strategies, e.g. [Ceri84a. Yu84a], the
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expected costs are ranked and the minimum one chosen. Unfortunately, the fact that

one expected value is less than another expected value does not necessary imply that

the actual values for a specific query are likewise ranked. Query optimization tech

niques based on expected cost functions will tend to choose good execution strategies in

the long run. however they may choose incorrectly for many specific queries. In order

to avoid this problem, many optimization strategies assume a worst case selectivity

that is equal to one [Seli80a, Bern81a]. Our cost functions include the selectivity as an

explicit parameter and calculate the exact cost (within the modeling assumptions)

rather than the expected cost. This allows us to set the selectivity equal to either its

expected value or its worst case value, or any other value that may be appropriate to a

particular query.

3.2.3. Cost Functions

Appendix A contains a complete list of the cost functions in terms of the parame

ters defined,above. An additional basic operation, page transmission cost, is added to

the six basic operations defined in Chapter 2. Table 2 contains the complete list of

basic operations.

Operation Definition

Read Read a page of data from disk
Write Write a pageof data to disk
Search Linearly search a page for tuples

with a given attribute value
Sort Sort the tuples on one page
Look Process a few tuples on a page
Scan Process most of the tuples on a page
Xmit Transmit a page of data

Table 2. Basic Page Operations
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3.3. Experimental Results

In this section we compare the performance of the six multiprocessor algorithms

both analytically and using a simulation model. The simulation model is an extension

of the model presented in the previous chapter and includes that model as a special

case. The first three algorithms were designed to minimize the total time by minimiz

ing transmission costs. We analytically compare the expected number of page

transmissions and discuss the total processing required using both example queries and

simulation experiments. The last three algorithms were designed to minimize response

time and rely on special hardware to provide high performance of key functions. We

demonstrate that the expected amount of data transmitted is almost identical, however

the amount of processing varies greatly for the three algorithms. We use the simula

tion model to evaluate the effectiveness of the special hardware and to estimate the

performance as a function of the number of processors. Although the two sets of algo

rithms were designed under very different assumptions, our model allows us to com

pare them on the basis of both total execution time and response time. We compare

the performance of each algorithm executing in isolation on a variable number of pro

cessors and include statistics for the best uniprocessor solution for comparison.

3.3.1. Total Time Minimization

In this subsection we compare the three algorithms that attempt to minimize the

total execution time by minimizing the amount of data transmitted: distributed join,

semi-join and bloom-join. We begin with an analytic comparison of the transmission

costs for the three algorithms, continue with a discussion of total processing costs

using an extended example and conclude with the results of a series of simulation

experiments.
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3.3.1.1. Estimating Transmission Costs

Estimates for the amount of data transmitted based on the query parameters

defined above are straightforward. In this section we discuss the derivations for each

of the algorithms in turn.

DISTRIBUTED JOIN ALGORITHM

The distributed join algorithm first determines which uniprocessor join strategy is

optimal by assuming both relations are located on a single site and performing

(uniprocessor) optimization. It then estimates the amount of data transmitted for each

of the three transmission strategies described above and selects the one with minimum

cost. Table 3 lists these costs in terms of the parameters defined above. R is the cardi

nality of the result relation:

JR = p * VMIN Tl + T2

VI * V2
CI * C2

)

Strategy #Page Xmit
Transmit relation 1 Cl + R
Transmit relation 2 C2 + R
Transmit both Cl + C2

Table 3. Distributed join transmissions.

SEMI-JOIN ALGORITHM

The semi-join algorithm reduces one or both relations, as described above. A

reduction is effective if it decreases the amount of data transmitted relative to that

required to transmit the entire (un-reduced) relation. This will be the case if the car

dinality of the semi-join result plus the cardinality of the projection is less than the

cardinality of the (un-reduced) relation. In terms of the query parameters defined

above:
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p * VMIN * Cl , V2 r
vi + ITT <C1

if semi-join reduction of relation 1 actually decreases the amount of data transmitted.

The greater the difference between the quantity on the left of the angle bracket and the

quantity on the right, the more the semi-join decreases network transmissions and the

more effective it becomes. Clearly, as the selectivity decreases, the semi-join will

become more effective.

Since the number of times each value is duplicated, D. is equal to C * T / V. this

inequality can be rewritted as:

p * VMIN * D1 C2* T2
Tl D2* 2* K

Since the value of VMIN depends on that of VI and V2 (and hence also on that of Dl

and D2). the relationship between the effectiveness of semi-joins and the number of

duplicates is not straightforward except for two special cases. First, if VI is less than

V2 and all parameters except the number of duplicates in relation 2 are fixed, then

increasing the number of duplicates in relation 2 will increase the effectiveness of the

semi-join. Intuitively this is reasonable since if the cardinality and number of tuples

in a relation are fixed, increasing the number of duplicates will decrease the number of

values and hence decrease the cardinality of the projection. Second, if VI is greater

than V2 and all parameters are fixed except the number of duplicates in relation 1.

decreasing the number of duplicates in relation 1 will increase the effectiveness of the

semi-join. Again, this is intuitively reasonable since, if V2 < VI. VMIN is independent

of the number of duplicates in relation 1 and the number of values in the semi-join

result will be fixed by the values of the other parameters. Since the cardinality of the

semi-join result is equal to the product of the number of values and the number of

duplicates, decreasing the number of duplicates will decrease the cardinality.



73

When semi-join reduction is used as a distributed query processing tactic, three

possible strategies must be considered: reduce relation 1. reduce relation 2 and reduce

both relations. If neither relation is reduced, the strategy is properly a distributed join

strategy. Table 4 lists the amount of data transmitted for each of these three alterna

tives. Rl is the cardinality of the semi-join reduction of relation 1.

R1 = p * VMIN * C1
VI

and R2 the cardinality of the semi-join reduction of relation R2:

po _ p * VMIN * C2
R2 V2

Pi is the cardinality of the projection of the join attribute from relation 1. PI =

V1/2*K. and similarly for P2.

Strategy #page Xmit
Reduce Relation 1 P2 + Rl + C2
Reduce Relation 2 PI + R2 + Cl
Reduce both P2 + Rl + PI + R2

Table 4. Semi-join transmission costs

BLOOM-FELTER JOIN ALGORITHM

The bloom-join algorithm is almost identical to the semi-join algorithm except in

the way the join attribute information is encoded for transmission. Semi-join reduction

is guaranteed to eliminate all tuples which do not appear in the result. If a single hash

function is used to generate a bloom filter (i.e. k = 1). it is likely that the bloom-join

reduced relation will contain tuples which do not appear in the result relation and will

be larger than the corresponding semi-join reduced relation. However, as described in

section 1.1.2.3, if the number of hash functions, k. is chosen sufficiently large, the

number of superfluous tuples will approach zero and bloom-join reduction will have
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the same effect as semi-join reduction. Table 5 lists the estimated transmission costs.

BF1 and BF2 are the number of pages in the bloom filters for relations 1 and 2 respec

tively.

Strategy # page xmit
Reduce Relation 1 BF2 + Rl + C2
Reduce Relation 2 BF1 + R2 + Cl

Reduce both BF1 + BF2 + Rl + R2

Table 5. Bloom-filter join transmission costs

3.3.1.2. Discussion of Transmission Costs

From Tables 3 and 4. it is clear that semi-join reduction may or may not decrease

data transmissions. For example, if every tuple in both relations appears in the result,

semi-join reduction will not decrease the cardinality of either relation and the total

transmission time (including transmission of the projection) will be greater than that

of the distributed join strategy which transmits both relations to the final site for join

ing. In most cases, however, the semi-join will successfully decrease the cardinality of

one or both relations and the data transmission will be less than that of any of the

distributed join algorithms. Semi-join reduction and bloom-join reduction have the

same effect on relations, as described above. On examining Tables 4 and 5. it is clear

that any difference in transmission costs is a result of differences in the cardinalities of

the projections and the bloom filters themselves. Since the projection contains the

actual join attribute value (either as a numeric quantity or as a byte string) it will

tend to be larger than the corresponding bloom filter, which contains a minimum of

one bit per value. This indicates that bloom-joins will tend to generate less data

transmissions than semi-joins.
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33.13. Estimating Total Costs

Table 6 lists the total processing required for each of the algorithms, excluding

transmission costs. We call this processing "on-site." The distributed join algorithm

requires the least number of on-site joins, although it tends to generate the maximum

number of data transmissions as explained in the previous section. Since we assume

that storage structures are preserved during transmission, on-site join processing may

take advantage of any such structures. Calculating the join using a single semi-join

(i.e. only one of the two relations is reduced before transmission) requires two joins

and a single projection and calculating the join using two semi-joins (e.g. both relations

are reduced before transmission) requires three joins and two projections. In addition,

these joins involve intermediate results that have either a heap or an ordered heap

structure. The bloom-join algorithm will require a single on-site join, calculation of

one or two bloom-filters and either one or two "hash-joins", as described above. The

on-site join will again involve intermediate results with either a heap or an ordered

heap structure.

Algorithm On-site Processing
Distributed join 1 Join
1 Semi-join 1 Projection. 2 Joins
2 Semi-joins 2 Projections. 3 Joins
1 Bloom-join Calc 1 BF. 1 Hash-join. 1 Join
2 Bloom-joins Calc 2 BF. 2 Hash-joins. 1 Join

Table 6. On-site Processing Required

In order to introduce our simulation model and gain a clearer intuition about the

relative amount of processing required for these three algorithms we present a numeric

example at this point. Table 7 contains the values of the query parameters. For the

three algorithms of this section, the number of processors is irrelevant so long as it is

at least three (one for each relation and one for the result) and we omit it. The

amount of processing depends intimately on the storage structure of the two relations.
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as will become clear after examining the numeric calculations below. We examine

three of the 25 possible combinations of storage structures for the two relations: heap

joined to heap, ordered heap joined to ordered heap and hash joined to hash. Rather

than considering all possible (uniprocessor) join algorithms, we only consider the

optimal algorithm for each of the three storage structures: create a secondary index

and use tuple substitution for the heap structures, use the merge join algorithm for the

ordered heaps and use tuple substitution with the hash structures8. For purposes of

comparison we include the "nested loops" algorithm. This algorithm produces stra

tegies which use the tuple substitute algorithm exclusively and do not perform any

storage modifications. Each of the optimal cost calculations was verified using the

simulation model. The result cardinality, R. and the cardinalities of the reduced rela

tions. Rl and R2 are defined above. The values given in the table are calculated from

the other parameters.

8 Note that the optimal join algorithm depends on the relative values of the parameters and, although
these algorithms are optimal for this particular query, the association of a single join algorithm with each
storage structure is not valid in general.
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Parameter Symbol Value

Block Cardinality of Relation 1 Cl 1000

Number of Unique Join Attribute VI 5000

Values in Relation 1
Tuples per Page in Relation 1 Tl 10

Block Cardinality of Relation 2 C2 10.000
Number of Unique Join Attribute V2 50.000

Values in Relation 2

Tuples per Page in Relation 2 T2 25

Index Key Fanout K 100

Selectivity P 0.25

Storage Structure of Relation 1 SI heap, ordered heap, hash
Storage Structure of Relation 2 S2 heat), ordered heap, hash

Result Block Cardinality R 1750

Block Cardinality of Relation Rl 250

1 After Reduction

Block Cardinality of Relation R2 250

2 After Reduction

Table 7. Example query parameters

The detailed calculations for the total cost to process a distributed join using each

of the algorithms on each of the three storage structures are given in Appendix B. The

leftmost column describes the processing step being performed and the next two

columns the number of basic operations required. The final two columns contain the

numeric cost using the parameter values as named and reversed, corresponding to an

exchange of relation 1 for relation 2 in the calculations. The totals are arithmetic

sums, corresponding to an assumption that all basic operations cost the same amount.

i.e. havethe same duration. The three totals correspond to the three strategies listed in

Tables 3. 4 and 5 above and are repeated in Table S.



Heap Nested Loops
D-join 2.00e8 2.00e8 2.00e8
S-join 1.05eS 1.05e8 2.01e8
B-ioin 5.03e6 1.25e8 1.30e6

Heap CreateSindx
D-join 178.000 169.000 177.250
S-join 179.000 423.125 445,275
B-ioin 55.334 174,766 73.250p-ioin

Oheap Merge Join
D-ioinD-join 26.500 35.500 . 34.750
S-join 27,850 55.750 48.850
B-ioin 27.766 54.766 47.782
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Hash Tsubs

D-join 26.500 44.500 34.750
S-join 29.400 183.525 206.925
B-join 38,266 39.766 73.282

Table 8. Summary of Total Processing Costs for Example Query

The processing times for the various strategies differ by several orders of magni

tude, even when the same algorithm is being used on relations stored in the same

storage structures. This clearly illustrates the importance of effective query optimiza

tion. If the two relations are stored as heaps and the nested loops algorithm is being

used, the bloom-join algorithm performs best, with an estimated cost two orders of

magnitude better than the best semi-join and distributed join strategies. There are

several reasons for this variation. First, the amount of processing required for the

nested loops algorithm is proportional to the product of the number of tuples in one

relation and the number of pages in the other relation. Any strategy which decreases

the cardinalities of either or both relations will realize a large decrease in total process

ing, hence both semi-joins and bloom-joins perform better than distributed joins.

Second, although semi-joins decrease the amount of data successfully, reduction still

requires a join between the projection and the relation being reduced. Bloom-filter

joins eliminate this join and allow the reduction to be calculated with a single scan

over the relation at a cost much less than the equivalent nested loops join. Note that

data transmissions make up an insignificant part of the total processing required (i.e.

less than .01%) and in this case decreased transmission activity per se is not the reason
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for higher performance of the algorithms which use reduction.

If a secondary index is created, the amount of processing decreases greatly for all

three algorithms. Although the bloom join is still the optimal choice, the distributed

join now is less costly than the best semi-join strategy. For this particular query, the

reduction in transmissions obtained with a semi-join strategy does not compensate for

the increase in on-site processing.

If two ordered heaps are being joined, the variation between the three algorithms

is again much less. In this case the distributed join strategy is the optimal choice. The

merge join algorithm requires much less on-site processing and. for this query, the

reduction in network traffic does not compensate for the increase in on-site processing

for either the semi-join or the bloom-join algorithm, although the difference is small.

If the two relations are stored in hash structures, the best overall strategy is

again the distributed join. In this case the best semi-join strategy is somewhat better

than the best bloom-join strategy. Intuitively this is reasonable since the bloom-join

algorithm always performs reduction by scanning the entire relation while the semi-

join reduction will only examine one hash bucket per join key value.

33.1.4. Simulation Results

In this section we present the results of a series of simulation experiments. The

first experiment varied the cost to transmit a page of data, the second varied the join

selectivity and the third the number of duplicate values in each relation. The three

algorithms were simulated individually and as a group using query optimization to

calculate the minimum cost strategy.

In order to run the simulation model, the standard and p-standard workloads

described in section 2.3.1 were modified slightly to reflect the additional parameters

used to model distributed queries. For an individual relation, say Rl. the number of
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duplicates. Dl, is equal to:

Cl* Tl
2)1 =

VI

(See section 3.2.2.) The workload contains a wide range of relation cardinalities. If

the number of values were held constant over all relation cardinalities, for some

queries the number of duplicates would be sufficiently large that the assumptions made

in deriving the uniprocessor cost functions would be violated. For example, if the

number of values is fixed at 100 and the number of tuples per page at 20, the number

of duplicates in a relation of block cardinality 10 would be 2 (20*10/100) and number

of duplicates in a relation of block cardinality 1000 would be 200 (20*1000/100). The

number of duplicates in the latter query clearly violates the assumption that there are

a small number of duplicates per attribute value. In order to define a workload with

independent parameters, the two parameters representing the number of values, VI

and V2. are replaced by two parameters representing the number of duplicates per

value. Dl and D2. For the standard workload, all queries have the same number of

duplicates, which requires that the number of values vary as the block cardinality and

number of tuples per page. Table 9 contains the complete distributed workload

parameters used in this chapter. The page operation costs are the same as those given

in Table 3 of Chapter 2.
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Parameter Symbol Values Relative Frequency
Selectivity P 10.25 1.1
Keys per Index Page K 10.100 1.1
Block Cardinality C1.C2 10.1000 1.1
Tuples per Page 10.20 T1.T2 1.1
Duplicates per Value D1.D2 3 1

Storage Structure S1.S2

Standard heap,oheap,hash
key seq, sindx

1.1.1.1.1

P-standard heap,oheap,hash,
key seq. sindx

0.1,1.1.1

Table 9. Distributed Standard and P-standard Workloads

3.3.1.4.1. Network Speed

Figures 1 contains a graph of the total execution cost as a function of the network

speed for each of the three algorithms simulated individually. In all cases the execu

tion cost increases as the network speed decreases, with the effect more pronounced for

the P-standard workload. The P-standard workload is identical to the standard work

load except for the absence of heap structures. Overall, the amount of on-site process

ing for queries which do not involve heap structures tends to be less than that for

queries which do involve heaps. The amount of data transmitted is the same in both

cases and tends to be more significant for those queries with less on-site processing. i.e.

for queries in the P-standard workload.

At all network speeds the bloom-join algorithm requires fewer resources than the

semi-join algorithm, which itself requires fewer resources than the distributed join

algorithm. While we demonstrated above that specific queries exist for which each of

the three algorithms is optimal, if the costs for all queries in the workload are aver

aged, the three algorithms have a definite rank. A system built using the bloom-join

exclusively will probably have higher performance than one build using semi-join or

distributed join exclusively.
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33.1.4.2. Selectivity

Our model includes the selectivity as a distinct parameter rather than making any

assumptions about its expected value and the resulting estimates of query execution

cost are exact, within the assumptions made in formulating the equations. In order to

evaluate the effect of selectivity on the performance of the three algorithms, we ran

the simulation with the selectivity fixed at a single value for all queries in the work

load. The page transmission cost was set equal to one disk read, corresponding to a

local network environment. The results are graphed in Figure 2.

In all cases increasing the selectivity increased the average cost per query, with

the effect on bloom-joins being by far the most significant. In fact, if the selectivity is

assumed to be 1 in all cases, the semi-join strategy will tend to have estimated costs

less than those of the bloom-join strategy. If the actual selectivity is near .1 for all

queries, however, the semi-joins will require more than twice as much processing as

the equivalent bloom-joins.
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3.3.1.4.3. Number of Duplicates

In order to evaluate the effect of duplicates on the performance of the three algo

rithms, we fixed the number of duplicates at a single value for both relations and

varied the remaining parameters over their workload values. The page transmission

cost was again set equal to one disk access. The average total cost as a function of the

number of duplicates is graphed in Figure 3.

The net effect of increasing the number of duplicates is to decrease the average

cost for semi-join processing by 25-41% and increase the average cost for bloom-joins

and distributed joins by 8-9% and 5-6% respectively. This indicates that the effect of

reducing the size of the projections generated during semi-join reduction is more

significant than that of increasing the join result cardinalities. In addition, it suggests

that the common assumption that there are no duplicate values in the join attribute

severly overestimates the amount of processing required for semi-join strategies.

If both the selectivity and the number of times each value is duplicated are

assumed to be one. the average costs for the three algorithms are:

Distributed join. Standard Workload 11.166
Semi-join. Standard Workload 15.296
Bloom-join. Standard Workload 10,332
Distributed join, P-standard Workload 8019
Semi-join. P-standard Workload 11.274
Bloom-join. P-standard Workload 9113

Under these assumptions, the distributed join algorithm appears to perform much

better than it does when the actual selectivity is small or when each value is dupli

cated a small number of times.'
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3.3.1.4.4. Algorithm Choice

The final experiment of this section evaluated various multiprocessor software

architectures. Each of the three algorithms was evaluated individually and all three

algorithms were evaluated together by expanding the strategy space to include every

possible strategy using each of the three algorithms and selecting the overall minimum

during query optimization. We varied the network speed, number of duplicates and

selectivity as above. In all cases the average optimal cost is less than the cost for any

one algorithm alone, although the difference between the cost for bloom-join and that

for the optimal strategy is not as great as that between bloom-join and distributed

join. A system built around all three algorithms will probably perform somewhat

better than one built around any one algorithm alone.

Variations in the value of the selectivity are much more significant for the

optimal average query cost. This is reasonable: since the average total cost is less,

small changes in the intermediate result cardinality become more significant. Note

again that assuming selectivity equal to 1 in all cases will overestimate the total cost

by nearly a factor of three for queries with (actual) selectivities near 0.1.

The net effect of variations in the number of duplicates is much less when optim

ization is used. Again, this is reasonable: since the cost of semi-join strategies tends to

decrease as the number of duplicates increases and the cost of bloom-joins and distri

buted joins to increase, combining the three strategies should tend to damp out any

effects. This is observed in the simulation results.

33.2. Response Time Minimization

This section examines the three algorithms which attempt to increase performance

by executing a portion of their total processing in parallel on Nprocessors. Each pro

cessor executes an identical collection of operations. The minimum response time is

estimated by estimating the number of basic operations on the critical path from query



initiation to query termination. The section begins with an explanation of the response

time cost estimates, continues with a discussion of response time using the numeric

example introduced above and concludes with the results of a series of simulation

experiments.

33.2.1. Estimating Response Time Costs

The minimum response time of a query is the time between query initiation and

query termination. In this section we present equations for the response time as a

function of N, the number of processors. All of the equations are derived from the

complete cost functions listed in Appendix A.

FRAGMENT & REPLICATE JOIN ALGORITHM

The fragment and replicate algorithm fragments one relation and replicates the

other relation on all of the sites containing at least one fragment. It performs best in

an environment which supports simultaneous broadcast to all sites over the network.

If a broadcast facility is not available, the data transmission costs increase by nearly a

factor of N and become dominant, as can be seen in Table 10. (The equations in this

table and in the following two tables are derived from the cost equations in Appendix

A by substituting the uniprocessor join cost equations into the multiprocessor equa

tions.) In order to generate estimates for the numbers of other basic operations, we

assumed that both relations were initially heap structured, that the tuple substitute

uniprocessor join algorithm would be used on every site and that a secondary index

structure would be created for the replicated relation. This is the optimal strategy for

these particular parameter values.



Basic Operation Estimated Number (R.T.)
Read Cl/N + I + pmerge(I) + C2/N + 2*C2*T2/N
Write 3*1 + pmerge(I) + R/N
Scan Cl/N + pmerge(I) + C2*T2/N
Search C2*T2/N
Sort I

Xmit Cl + N * C2 + R (no broadcast)
Cl + C2 + R (broadcast)
I = Tl * Cl / (K * N)
pmerge(I) = I log2 I

Table 10. Fragment & Replicate Response Time

FRAGMENT & ROTATE JOIN ALGORITHM

89

The fragment and rotate algorithm fragments one relation and then rotates pages

of the other relation from site to site in order to calculate the join result. The algo

rithm assumes that a ring network is available. If this is not the case, the transmission

costs will increase by a factor of N. as can be seen in Table 11. The processing strategy

is fixed by the algorithm and no storage structure other than hash is considered. The

JOH proposal [Meno83a] includes special purpose hardware to allow the data to be

searched very rapidly using an associative memory to determine whether a data value

is present and a hash structure for tuple storage. The effect of this hardware is to

reduce both the number of pages read and the number of pages searched.

Basic Operation Est. Number (R.T.) .
Read Cl/N + Q/N + pmerge(Q/N) + C2*T2 + N
Write 3*Q/N + pmerge(Q/N) + R/N + N
Scan Cl/N + pmerge(Q/N)
Search C2 * T2 + N
Sort Q/N
Xmit Cl + N * C2 + R (no ring network)

Cl + C2 + N + R (ring network)
Q = C + B * C/(2*K)

Table 11. Fragment & Rotate Response Time
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DISTRIBUTED HASH JOIN ALGORITHM

The distributed hash join algorithm hashes both of the relations, distributes the

hash buckets among the sites (i.e. fragments both relations by value), then uses a

merge join algorithm to join individual pairs of hash buckets. The algorithm does not

assume any particular network structure. The GRACE database machine [Kits83a]

implements the page sort operation in hardware, despite the relatively small number of

sort operations that are required.

Basic Operation Est. Number (R.T.)
Read Cl+Ql+pmerge(Ql)+2Cl/N+Q2+pmerge(Q2)+2C2/N
Write 3*Ql+pmerge(Ql)+Cl/N+3*Q2+pmerge(Q2)+C2/N+R/N
Scan Cl+pmerge(Ql )+Cl/N+C2+pmerge(Q2)+C2/N
Sort Q1+Q2+C1/N+C2/N
Xmit Cl + C2 + R

Table 12. Distributed Hash Join Response Time

33.2.2. Discussion of Response Time Costs

The transmission times for the three algorithms are nearly identical, assuming

any special network facilities are available. The response times for fragment & repli

cate and fragment & rotate are similar: the fragment & replicate algorithm will read

and write more, the fragment & route algorithm will search more. Overall, the distri

buted hash join algorithm will read, write and scan more pages than the other two,

however it will use a small number of page sorts rather than any page searches. In

practice, the fragment and replicate algorithm may perform much better than is indi

cated here since it can select from a range of uniprocessor join algorithms and storage

structures.

The numeric example presented in the previous section is again used to gain a

clearer intuition about the amount of processing required by the three algorithms. We

assume that both relations are initially stored as heaps and vary the number of proces-
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sors. N. from 1 to 20. Appendix B contains calculations for the total processing costs,

assuming again that all page operations have equal cost. The totals are summarized in

Table 13. Calculations are given for both fragmentation strategies (i.e. fragment rela

tion 1 or fragment relation 2). We assume that the fragment & replicate algorithm

uses a broadcast network and the fragment & rotate algorithm a ring network. In

addition, we investigate the effects of an associative store, as proposed in [Meno83a], by

reducing the number of read and search operations to just those required to actually

retrieve the result tuples for both the fragment & replicate and fragment & rotate

algorithms.

# Processors 1 5 10 20

Frep 1.039.100
179.000

217.900

41.500

115.295

26.375
64.008

19.188

Frot 556,404
583,254

529.610
129.370

515,895
77.715

514,213

53.587

Frot w/Hardware 61.404
575.754

24.610
121.870

20,895

70.215

19.213

46.087

DHjoin 660.150 614.750 609.075 606.237

Table 13. Summary of Response Time Costs for Example Query.

In these examples, the variation in processing time is not as great as in the previ

ous section. It should be noted, however, that the best strategy of the previous section

requires the same amount of processing as the best strategy of this section using spe

cialized hardware and 5 processors or using 10 standard processors, suggesting that

effective use of storage structures is as important as effective use of specialized

hardware and multiple processors. Overall, the fragment and replicate algorithm per

forms better than the fragment &rotate algorithm if specialized hardware is not being

used and the converse is true if specialized hardware is being used. The fragment &

rotate algorithm has a clearly distinguished "better" strategy: one of the two fragmen

tation strategies results in a dramatic decrease in processing as the number of proces

sors is increased and the other is virtually unaffected. The explanation for this
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behavior lies in the algorithm used to retrieve qualifying tuples: as the number of pro

cessors is increased, the number of fragments increases and the amount of processing

also increases since each fragment must be queried once by each tuple that is being

rotated.

If specialized hardware is used to decrease the number of data pages searched, the

algorithm performs somewhat better than the fragment & replicate algorithm. The

same strategy which performed worst without the hardware performs best with the

hardware. This is becausemost of the processing (i.e. 80-90%) is concentrated in read

ing and searching pages, however most of these searches are eliminated by the special

ized hardware resulting in better overall performance. With the hardware support,

both of the fragment & replicate strategies can make effective use of multiple proces

sors, as can be seen from the inverse relationship between the query cost and number

of processors.

The best distributed hash join algorithm performs worse than either of the other

algorithms on any number of processors. By far the bulk of the processing results

from hashing and distributing the two relations. The same hashing algorithm was

used to estimate costs for all three distributed join algorithms so any improvement in

hashing cost is likely to be reflected equally among the algorithms. Similar results for

uniprocessor joins in environments with a small number of data buffers are presented

in [DeWi84a] If a single processor is used, the sort operation represents less than 2%

of the total processing and the fraction decreases as the number of processors increases.

If 20 processors are being used, sorting is 0.1% of the total processing. It is unlikely

that hardware enhancement of the sort operation will result in any overall perfor

mance improvement.
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33.23. Simulation Results

The simulation experiments were run on the standard and p-standard workloads

described above. Note that the fragment & rotate algorithm does not distinguish

between the storage structures so the performance of the standard and p-standard

workloads is identical. Initially we assume that any special hardware used by the

algorithms is present in the system, i.e. a broadcast network facility for the fragment

& replicate algorithm and both a ring network and associative search hardware for the

fragment & rotate algorithm 9. The first experiment compares the algorithms on the

basis of total time and response time. The second experiment evaluated the perfor

mance without the associative search hardware and the third the performance with

neither the associative search hardware nor the special network facilities.

33.23.1. Total Time & Response Time

Figure 4 displays the total time and response time for each of the algorithms as a

function of the number of processors.

Both the fragment & replicate and the fragment & rotate algorithms exhibit a

linear increase in total execution time as the number of processors increases. This

results primarily from the additional network transmissions which occur in parallel on

the specialized networks. The total execution cost of the distributed hash join algo

rithm is independent of the number of processors. As the number of processors

increases, all three algorithms exhibit a decrease in the average response time, however

the rate at which the response time decreases becomes less as the number of processors

increases, so the difference between 9 and 10 processors is almost negligible. Note that

the decrease in response time is clearly not linear.

9The associative search hardware is not used for the fragment &replicate algorithm since the storage
structures of the replicated relations are variable.
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Ideally multiprocessors should exhibit a linear decrease in response time as the

number of processors increases. Although there is no generally accepted model of mul

tiprocessor performance, many authors have conjectured that a linear decrease is

overly optimistic. A recent article [Patt85b] contains a discussion of various conjec

tures about the performance of multiprocessor systems as the number of processors

becomes large. The consensus appears to be that the speedup should be somewhere

between N and log2N. Our results substantiate these conjectures.
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Figure 4. Response Time and Total Time vs. Number of Processors

(Algorithms evaluated individually)
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33.23.2. Associative Search Hardware

The associative search hardware proposed by [Meno83a] is used to reduce the

number of data pages read and searched by verifying that one or more tuples with the

given search key exist before accessing the data pages. If the number of search keys is

large and the selectivity is small, the hardware will significantly reduce the number of

data pages accessed, as can be seen from the equations in Appendix C. In order to

evaluate the overall effect of the associative search hardware, we ran the simulation

model with all three algorithms, as above, but used cost functions which assume that

the fragment & rotate algorithm alwaysaccesses the data pages.

As can be seen from comparing the the traces in Figures 5 and 6, including the

hardware produces a significant improvement in the optimal response time. This indi

cates that the addition of associative search hardware to a system which uses optimiza

tion over the three algorithms is likely to improve performance. When the trace for

the optimal solution without hardware is compared to the traces for the algorithms in

isolation, however, the optimal solution is almost equal to that of the fragment &

replicate algorithm alone. This indicates that if the associative hardware is not

included in the system, the additional complexity of using query optimization over the

three algorithms is not warranted and a simpler system built using the fragment &

replicate algorithm alone will perform as well.
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Figure 5. Response Time and Total Time vs. Number of Processors

(Algorithms evaluated together. Associative Hardware, Network Facilities)
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33.23.3. Broadcast and Ring Network Facilities

The effects of using a network which does not have broadcast or network facili

ties were evaluated by assuming that transmissions which would occur in parallel if

the network facilities were present are performed serially. The results are displayed

in Figure 5. The model did not include any special hardware and the average total

time is equal to that of the model with all three algorithms evaluated together (with

the network facilities) and any differences result from loss of parallelism. Note that

when the number of processors is increased from 8 to 9. the increase in total average

time to add an additional processor is greater than the reduction in response time

resulting from more parallelism and the response time increases. This occurs because

the increase in overhead to add one more processor is fixed and independent of the

number of processors, while the decrease in response time that results from adding one

more processor is dependent on the number of processors. For this workload, the

decrease in response time is very small when the number of processors is increased

from 8 to 9 and does riot compensate for the larger fixed overhead to add the proces

sor, hence the average response time increases. An analogous result for transaction

processors was reported in [Hell85a]. Since the average total cost for the distributed

hash join algorithm is independent of the number of processors, its response time can

not increase as processors are added.

33.3. Multiprocessor vs. Uniprocessor Optimization

To conclude the series of experiments, we compared the algorithms which minim

ize total time with those that minimize response time and with the best uniprocessor

solution. Although our model will generate response time estimates for the algorithms

which minimize total time, many assumptions were made and the results are very

close to the total time estimates in all cases and we omit them. Clearly the response

time can be no greater than the total time. Although the algorithms which minimize
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total time assume three processors, the equations are valid for less than three proces

sors if it is assumed that a message may be sent and received by the same processor. If

more than three processors are present, they will be ignored by the algorithms.

As can be seen from the graph in Figure 6, the two algorithms which effectively

minimize response time, fragment & replicate and fragment & rotate, require more

total resources than those which minimize total time and the difference widens as the

number of processors increases. If there are less than 3 processors, the response time is

least for the algorithms which minimize total time. If there are 4 processors, the frag

ment & replicate algorithm will have lower response time than the best total time

algorithm and if there are 7 processors the fragment & rotate algorithm will likewise

have lower response time. If there are more than 7 processors, the response time will

be lower for the algorithms which minimize response time, although by this point the

addition of more processors is no longer as effective as it was for smaller number of

processors and the difference between 9 and 10 processors is negligible.

The overall conclusion is that the bloom-join algorithm in conjunction with

effective physical database design (i.e. selecting storage structures for the two relations

to insure that most queries will have a fast access path available to them) will provide

the highest performance and the lowest implementation overhead using the least

amount of hardware, specialized or otherwise.
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3.4. Summary

In this chapter we have developed a model for multiprocessor join processing and

examined six distributed join algorithms in detail. The algorithms are designed to

either minimize the total execution time or to minimize the response time. We argue

that the former corresponds to maximum multi-threaded throughput and the latter to

maximum single-threaded throughput. In formulating our model, we developed a new

definition of join selectivity which is based on much less restrictive assumptions than

other definitions. Not only does our definition have great intuitive appeal, but it has

the mathematical properties that either or both relations may be reduced and the

estimated size of the various sub-results does not depend on the order in which they

are calculated.

The three algorithms which minimize total time (distributed join, semi-join and

bloom-join) were compared analytically and using a simulation model. We analyzed

the amount of data transmitted by the three algorithms and concluded that the

bloom-join algorithm would probably require less than the semi-join and both would

require less than the distributed-join algorithm. If total processing is taken into

account, we demonstrated that classes of queriesexist for which each of the three algo

rithms is optimal. We also demonstrated that reduction is not universally beneficial:

queries exist for which reducing one or the other relation produces substantial reduc

tion in processing cost, however reducing both relations produces a substantial increase

in processing cost.

The simulation experiments to evaluate the average total query cost as a function

of network speed demonstrated that at all speeds the average cost for bloom-joins is

less than that for semi-joins which is less than that for distributed joins. Using query

optimization results in performance that is somewhat better than using the bloom-join

alone. We demonstrated that, for this workload, assuming that the selectivity is
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always equal to one in the query optimization cost functions will more than double

the amount of processing performed. Duplicate values in the join attribute tend to

decrease the amount of processing required for semi-joins and increase the amount of

processing for the other two algorithms, although the effect is negligible if optimization

is being used.

The three algorithms which minimize response time (fragment & replicate, frag

ment & rotate and distributed hash join) were also compared analytically and with a

series of simulation experiments. The distributed hash join algorithm had the worst

overall performance and its response time decreased by a negligible amount as the

number of processors increased, although if the number of processors becomes very

large its performance may become comparable to that of the other two algorithms.

The fragment & replicate algorithm requires a broadcast network facility for accept

able performanceand the fragment & rotate algorithm a ring network facility. If these

facilities are not present, the amount of overhead required to include an additional

processor may be greater than the savings resulting from more parallelism and the

query response time may increase rather than decrease as processors are added to the

calculation. If associative search hardware is used, a system optimizing over the frag

ment & replicate and the fragment & rotate algorithm will probably have the best per

formance. If the hardware is not used, the fragment & replicate algorithm alone will

probably have the best performance.

If a multiprocessor database machine is implemented using a single algorithm, the

bloom-join in conjunction with effective physical database design should result in the

highest performance for the least implementation overhead and require the least

amount of hardware, specialized or otherwise.



CHAPTER 4

CONCLUSIONS AND FUTURE RESEARCH

4.1. Conclusions

In this thesis we have presented a technique for system performance evaluation

of uniprocessor and multiprocessor relational database machines. The analysis

includes both specialized hardware and software techniques involving data structures

and algorithms. The results are implementation independent. We also present a new

definition for join selectivity which is consistent: the estimated cardinality of A join B

is equal to that of B join A. In addition, the definition allows for various statistical

estimates based on a variety of assumptions which may be appropriate to a given

application. Semi-join selectivity is defined as aspecial case of join selectivity.

In a uniprocessor environment, a system built around the tuple substitution and

merge join algorithms using query optimization in conjunction with effective physical

database design is likely to yield the highest performance for small to moderate sized

queries. If a single algorithm is chosen for implementing a multiprocessor database

machine for the same workload, the bloom-join algorithm in conjunction with effective

physical database design will probably yield the highest performance for the lowest

implementation overhead using the least amount of hardware, specialized or otherwise.

In implementing our simulation model we developed a collection of detailed cost

functions which estimate the resources consumed during query execution. Some

results that follow immediately from the equations are:

(1) Reducing the amount of data does not universally increase performance: alarge
class of queries exist for which reducing the amount of data at intermediate

103
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stages during processing actually increases the total amount of processing

required.

(2) Adding additional processors does not necessarily increase performance: Algo

rithms which have total processing costs that increase as the number of proces

sors increases (e.g. if copies of data must be sent to every processor participat

ing in the query) may realize a net decrease in performance if the savings

resulting from using an additional processor do not compensate for the addi

tional total cost.

(3) Response oriented performance speedup for the algorithms and workload stu

died in this thesis is closer to log2Af than N: All three of the algorithms which

optimize response time have performance which not linear in the number of

processors. For the workload under consideration, no more than seven or eight

processors can be effectively utilized.

4.2. Future Research

The results we have presented in this thesis are valid for small to moderate sized

applications with low selectivities and a small number of duplicates. Other application

areas can be characterized in an analogous manner: large relation: very low selectivity,

selectivity equal to one (corresponding to functional and multivalued dependencies);

and. number of duplicates equal to 1 (corresponding to queries over relation keys). A

parallel set of evaluations for these other application areas would be a good comple

ment to this work. In addition, many assumptions were made in making our estimates

concrete. While all of these assumptions are valid for some processing environments,

other assumptions which are equally valid exist. For example, we assumed that

storage structures would be preserved during data transmission. Many environments,

i.e. [Seli80a], do not have this property. Repeating the evaluation with assumptions

corresponding to different processing environments would yield results which are
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comparable to our results. In both cases, the addition and evaluation of new hardware

features, data structures and algorithms is straightforward.

Our analysis and simulation experiments evaluated one join operation. Many of

the algorithms were designed to execute a sequence of join operations in an efficient

manner. Extending our technique and simulation models to this problem is straight

forward. The existing (single join) simulation programs execute quickly on a VAX

11/780 and this addition would not make simulation infeasible. Since the distributed

optimization problem is so difficult, many algorithms rely on heuristic techniques to

attempt to find a non-optimal execution strategy which is better than a randomly

chosen one. A multiple-join simulation model which calculates the true minimum

strategy would allow us to evaluate the effectiveness of these heuristic algorithms.

Along another vein, a multiprocessor implementation of a rudimentary distri

buted database machine which supports the data structures and algorithms described

above would allow validation of our model through benchmark studies. This would

be a valuable addition to our work.



APPENDIX A

Distributed Cost Functions

Distributed join cost functions:

Transmit one relation:

Calculation Operation Number

Transmit relation XMIT Cl

Final join * ioin(R.K.Cl.Tl.Vl,Sl.C2.T2.S2.V2)
Transmit result XMIT R

Transmit both relations:

Transmit relation XMIT Cl

Transmit relation XMIT C2

Final join * ioin(R.K.Cl.Tl.Vl.Sl.C2.T2.S2.V2)
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Reduce relation 1:
Calculation

Project
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Semi-join cost functions for total time:

Operation Number

project(K.C2.T2 .S2.V2)
Transmit projection XMIT V2/(2*K)
Semi-join
Transmit sjoin result

join(Rl,K.Cl.Tl,Sl.Vl,V2/2K,2K,OHEAP.V2)
1ransmit spin result XMIT Rl
Transmit relation XMIT C2
Final join ioin(R.K.Rl.Tl.p*VMIN.SSl.C2.T2.S2.V2)

Reduce both relations:
Project project(K,C2.T2,S2,V2)
Transmit projection XMIT V2/(2K)
Semi-join * join(Rl .K.C1,T1,S1.VI.V2/2K.2K.OHEAP.V2)
Transmit sjoin result XMIT Rl
Project * project(K.Cl,Tl.Sl,Vl)
Transmit projection XMIT VI/2K
Semi-join * join(R2,K,Vl/2K,2K,OHEAP.Vl.C2,T2,S2.V2)
Transmit sjoin result XMIT R2
Final join * ioin(R.K.Rl.Tl.SSl.p*VMIN.R2.T2.SS2.p*VMIN)

551 = Storage structure of relation 1 after semi-join reduction
552 = Storage structure of relation 2 after semi-join reduction



Reduce relation 1:

Calculation

Create vector

Transmit vector

Hash-join

Bloom-join cost functions for total time:

Operation Number
READ C2

SCAN C2

WRITE BF

XMIT

READ

SCAN

WRITE

BF

Cl

Cl

Rl
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Transmit result XMIT Rl

Transmit relation XMIT C2

Final ioin * ioin(R.K.Rl.Tl.Vl.SSl.C2.T2.S2.V2)

Reduce both relations: •

Create vector READ

SCAN

WRITE

C2

C2

BF

Transmit vector XMIT BF

Hash-join READ

SCAN
WRITE

Cl

Cl

Rl

Transmit result XMIT Rl

Create vector READ

SCAN

WRITE

Cl

Cl

BF

Transmit vector XMIT BF

Hash-join READ

SCAN

WRITE

C2

C2

Rl

Transmit result XMIT R2

Final ioin * ioin(R.K.Rl.Tl.p*VMIN.SSl.R2.T2.p*VMIN.SS2)

BF = cardinality of bloom vector
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Fragment & Replicate cost functions for total time and response time

Total Time:

Calculation Operation Number

Fragment relation 1 XMIT Cl

Replicate relation 2
(no broadcast)
(broadcast)

XMIT

XMIT
*

N*C2

C2

Join fragments join(R/N.K.Cl/N.Tl.Vl/N.HEAP.C2.T2.S2.V2) * N
Transmit results XMIT R

Response Time:

Fragment relation 1 XMIT Cl

Replicate relation 2
(no broadcast)
(broadcast)

XMIT

XMIT
N*C2
C2

Join fragments * join(R/N.K.Cl/N.Tl.Vl/N.HEAP,C2.T2.S2.V2)
Transmit results XMIT R



Fragment & Rotate cost functions for total time and response time

Total Time:

Calculation Operation Number

Fragment relation 1 XMIT Cl

Hash fragments * hash(Cl/N.K.Tl)
Rotate & join XMIT N*C2
(no hardware)

READ N * C2 * T2

SEARCH N * C2 * T2

WRITE R

(hardware)
READ N*B1

SEARCH N*B1
WRITE R

Transmit results XMIT R

Response Time:

Fragment relation 1 XMIT Cl

Hash fragments * hash(Cl/N.K.Tl)
Rotate & join XMIT C2 + N
(no hardware)

READ C2 * T2 + N

SEARCH C2*T2 + N

WRITE R/N + N
(hardware)

READ Bl + N

SEARCH Bl + N

WRITE R/N + N

Transmit results XMIT R

Bl = number of tuples from relation 1 in result = Rl * Tl
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Distributed Hash Join cost functions for total time and response time

Total Time:

Calculation Operation Number

Hash relation 1 * hash(Cl.K.Tl)
Distribute XMIT Cl

Hash relation 2 * hash(C2.K,T2)
Distribute .XMIT C2

Sort buckets READ

SORT

WRITE

Cl +C2

Cl +C2

C1 + C2

Merge buckets READ

SCAN

WRITE

CH-C2

C1+C2
R

Transmit results XMIT R

Response Time:
Hash relation 1 * hash(Cl,K,Tl)
Distribute XMIT Cl

Hash relation 2 * hash(C2.K.T2)
Distribute XMIT C2

Sort buckets READ

SORT

WRITE

Cl/N + C2/N
Cl/N + C2/N

Cl/N + C2/N

Merge buckets READ

SCAN

WRITE

Cl/N + C2/N

Cl/N + C2/N
R/N

Transmit results XMIT R

Ill



APPENDIX B

Total Time Calculations

Distributed Join, Heap joined to heap using nested loops.

Step Basic

Operation
Number As named Reversed

Transmit Cl 1000 10,000

Final Join Read

Scan

Search

Write

C1(1+T1*C2)
Cl

C1*T1*C2
R

1.00e8

1000

1.00e8

1750

1.00e8

10.000

1.00e8

1750

Transmit R 1750 1750

Total 2.00e8 2.00e8

Transmit C1+C2 11,000

Final Join Read

Scan

Search

Write

C1(1+T1*C2)
Cl

C1*T1*C2

R

1.00e8

1000

1.00e8

1750

Total 2.00e8
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Semi-Join. Heap joined to heap using nested loops.

Step Basic

Operation
Number As named Reversed

Project Read Cl + pmerge(Al) 1300 2.38e4

Write Al+pmerge(Al )+Pl 375 1.75e4

Scan Cl + pmerge(Al) 1.30e3 2.38e4

Sort Al 50 1250

Transmit PI 25 2500

Semi-join Read C2+V1*C2 5.00e7 5.00e7

Scan C2 1.00e4 1.00e3
Search V1*C2 5.00e7 5.00e7

Write R2 250 250

Transmit R2 250 250

Transmit Cl 1000 10.000

Final Join Read R2+R2*Tl*Cl 2.50e6 2.50e6
Scan R2 250 250

Search R2*T1*C1 2.50e6 2.50e6
Write R 1750 1750

Total 1.05e8 1.05e8

Project Read C2+pmerge(A2) 2.38e4
Write A2+pmerge(A2)+P2 1.75e4
Scan C2+pmerge(A2) 2.38e4
Sort A2 1250

Transmit P2 2500

Semi-join Read C1+V2*C1 5.00e7
Scan Cl 1.00e3
Search V2*C1 5.00e7
Write Rl 250

Transmit

Final Join Read

Scan

Search

Write

Rl

R2+R2*T1*R1
R2

R2*T1*R1

R

Total

250

6.25e5

250

6.25e5
1750

2.01e8

Note:

with duplicates
PI = VI / (2 * K) = cardinality of projection
pmerge(A) = A log2 A. log2 = log to the base 2

Al = (Cl * Tl)/(2 * K) = cardinality of "projection1'



Bloom-Join, Heap joined to heap using nested loops.

Step

BF-Calc

Basic

Operation
Number

Read Cl

Scan C2

Write BF

As named Reversed

1000

1000

. 4

10.000

10.000

4

Transmit BF 4 4

Bloom-join Read

Scan

Write

C2+BF
C2+BF

R2

10.004
10.004

250

1004

1004

250

Transmit R2 250 250

Transmit Cl 1000 10.000

Final Join Read

Scan

Search

Write

R2+R2*T1*C1
R2

R2*T1*C1

R

2.50e6

250

2.50e6

1750

6.25e7

250

6.25e7

1750

Total 5.03e6 1.25e8

BF-Calc Read

Scan

Write

C2

C2

BF

10.000

10.000
4

Transmit BF 4

Bloom-join Read

Scan

Write

Cl+BF

Cl+BF

Rl

1004

1004

250

Transmit Rl 250

Final Join Read

Scan

Search

Write

R2+R2*T1*R1

R2

R2*T1*R1

R

6.25e5

250

6.25e5

1750

Total 1.30e6

Note: BF= Cardinality of bloom-filter = 4
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Distributed Join. Heap joined to heap using Tuple substitution
and creating a secondary index

115

Step Basic Number
Operation

As named Reversed

Transmit C2 10.000 1000

Build sindx Read Cl + I + pmerge(I) 42.500 42,500
Write 3*1 + pmerge(I) 37.500 37.500
Scan C + pmerge(I) 40.000 40.000
Sort I 2500 2500

Final join Read C2 + 2*C2*T2 21.000 21.000
Scan C2 1000 1000
Search C2*T2 10,000 10.000
Look C2*T2 10.000 10.000
Write R 1750 1750

Transmit R 1750 1750

Total 178.000 169.000

Transmit C1 + C2

Total

11,000

Build sindx Read Cl + I + pmerge(I) 42.500
Write 3*1 + pmerge(I) 37.500
Scan C + pmerge(I) 40.000
Sort I 2500

Final join Read C2 + 2*C2*T2 21.000
Scan C2 1000
Search C2*T2 10,000
Look C2*T2 10,000
Write R 1750

177.000

Note: I = T*C/K = 2500



Semi-join Join, Heap joined to heap using Tuple substitution
and creating a secondary index
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Step Basic

Operation
Number As named Reversed

Project Read Cl+pmerge(Al) 1350 25.000
Write Al+pmerge( Al )+P1 375 15.025
Scan Cl+pmerge(Al) 1300 23.750
Sort Al 50 1250

Transmit PI 25 250

Build Sindx Read C2+I+pmerge(Il) 42,500 1800

Write 3*Il+pmerge(Il) 37.500 1000

Scan C2+pmerge(Il) 40.000 1700

Sort 11 2500 100

Read P1+2*V1

Scan PI

Search VI

Look VI

Write R2

Semi-join 10,025 100250
25 250

5000 50.000
5000 50.000

250 250

Transmit R2 250 250

Transmit Cl 1000 10.000

Build Sindx Read

Write

Scan

Sort

Cl+I2+pmerge(I2)
3*12 + pmerge(I2)
Cl+pmerge(I2)
12

1800

1000

1700

100

42.500
37.500
40,000

2500

Final Join Read R2+2*R2*T2 12.750 12.750
Scan R2 250 250

Search R2*T2 6250 2500

Look R2*T2 6250 2500

Write R 1750 1750

Total 179.000 423.125

Project Read

Write

Scan

Sort

25.000
15.025
23.750

1250

Transmit 250

Build Sindx Read Rl+I3+pmerge(I3) 400

Write 3*13 + pmerge(I3) 200

Scan Rl+pmerge(I3) 375

Sort I 25

Final Join Read R2+T2*R2*2 12.750
Scan R2 250

Search T2*R2 6250
Look T2*R2 6250

Write R 1750

11 = T2*C2/K
12 = T1*C1/K = 100
13 = T1*R1/K = 25

Toul 445.275



Bloom Join, Heap joined to heap using Tuple
and creating a secondary index
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substitution

Step Basic

Operation
Number As named Reversed

BF-Calc Read
Scan

Write

Cl

C2

BF

1000

1000

4

10.000

10.000
4

Transmit BF 4 4

Bloom-join Read

Scan

Write

C2+BF

C2+BF

R2

10.004
10.004

250

1004

1004

250

Transmit R2 250 250

Transmit Cl 1000 10,000

Build Sindx Read

Write
Scan

Sort

Cl+Il+pmerge(Il)
Cl+Il+pmerge(Il)
Cl+pmerge(Il)
11

1800

1000

1700

100

42.500
37.500
40.000

2500

inal Join Read R2+2*R2*T2 12.750 12.750
Scan R2 250 250

Search R2*T2 6250 2500

Look R2*T2 6250 2500

Write R 1750 1750

Total 55.334 174.766

BF-Calc Read

Scan

Write

C2

C2

BF

10.000

10.000
4

Transmit BF 4

Bloom-join Read

Scan

Write

Cl+BF

Cl+BF

Rl

1004

1004

250

Transmit BF 4

Build Sindx Read

Write

Scan

Sort

Rl+I2+pmerge(I2)
3*I2+pmerge(I2)
Rl+pmerge(I2)
I

400

200

375

25

Final Join Read R2+T2*R2*2 12.750
Scan R2 250

Search T2*R2 6250

Look T2*R2 6250

Write R 1750

11 = T1*C1/K = 100.2500
12 = T1*R1/K = 25

Total 73.250



Distributed Join, ordered heap joined to ordered heap using merge join

Step Basic

Operation
Number As named Reversed

Transmit Cl 1000 10,000

Final Join Read
Scan

Write

C1+C2
C1+C2

R

11.000

11.000

1750

11.000
11.000

1750

Transmit R 1750 1750

Total 26.500 35.500

Transmit C1+C2 11.000

Final Join Read

Scan

Write

C1+C2

C1+C2

R

11.000

11.000

1750

Total 34.750
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Semi-Join. Ordered heap joined to ordered heap using merge join

Step Basic
Operation

Number As named Reversed

Project Read

Scan

Write

Cl

Cl

PI

1000

1000

25

10,000
10,000

250

Transmit PI 25 250

Semi-join Read
Scan

Write

C2 + P1

C2 + P1

R2

10,025

10.025

250

1250

1250

250

Transmit R2 250 250

Transmit Cl 1000 10.000

Final Join Read
Scan

Write

R2+C1

R2+C1

R

1250

1250

1750

10.250

10.250

1750

Total 27.850 55.750

Project Read

Scan

Write

C2

C2

P2

10.000

10.000

40

Transmit P2 250

Semi-join Read

Scan

Write

C1 + P2

Cl +P2

Rl

1250

1250

250

Transmit Rl 250

Final Join Read

Scan

Write

Rl +R2

R1+R2

R2

500

500

1750

Toul 48.850

Note: PI = VI / (2 * K) = cardinality of projection
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Bloom-Join, Ordered heap join to ordered heap using merge join

Step Basic

Operation
Number As named Reversed

BF-Calc Read

Scan

Write

Cl

Cl

BF

1000

1000

4

10.000

10.000
4

Transmit BF 4 4

Bloom-join Read

Scan

Write

C2+BF

C2+BF

R2

10.004

10.004

250

1004

1004

250

Transmit R2 250 250

Transmit Cl 1000 10,000

Final Join Read

Scan

Write

R2 + C1

R2+C1

R

1250

1250

1750

10.250

10.250

1750

Total 27.766 54.766

BF-Calc Read
Scan

Write

C2

C2

BF

10.000

10.000

4

Transmit BF 4

Bloom-join Read

Scan

Write

Cl+BF

Cl+BF

Rl

1004

1004

250

Transmit Rl 250

Final Join Read
Scan

Write

R1+R2

Rl +R2

R

500

500

1750

Total 47.782

Note: BF= Cardinality of bloom-filter = 4
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Distributed Join, hash joined to hash using tuple substitution

Step Basic

Operation
Number As named Reversed

Transmit Cl 1000 10.000

Final Join Read

Scan

Search

Write

C1+C1*T1

Cl

C1*T1

R

11.000

1000

10.000

1750

11.000
10.000

10,000
1750

Transmit R 1750 1750

Total 26.500 44.500

Transmit C1+C2 11.000

Final Join Read

Scan

Search

Write

C1+C1*T1
Cl

C1*T1

R

11.000

1000

10,000

1750

Total 34.750
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Semi-Join, Hash joined to hash using tuple substitute algorithm

Step Basic

Operation
Number As named Reversed

Project Read Cl+pmerge(Al)+Al 1350 25,000
Write Al+pmerge(Al)+Pl 375 15.025
Scan Cl + pmerge(Al) 1300 23.750
Sort Al 50 1250

Transmit PI 25

5025

250

Semi-join Read PI + VI 50.250
Scan PI 25 250

Search VI 5000 50.000
Write R2 250 250

Transmit R2 250 250

Transmit Cl 1000 10.000

Final Join Read R2+R2*T2 6500 2750
Scan R2 250 250
Search R2*T2 6250 2500
Write R 1750 1750

Total 29.400 183.525

Project Read C2+pmerge(A2) 25.000
Write A2+pmerge(A2)+P2 15.025
Scan C2+pmerge(A2) 23.750

Transmit P2 250

Semi-join Read

Scan

Search

Write

P2 +V2

P2

V2

Rl

50.250
250

50.000
250

Transmit Rl 250

Build Sindx Read

Write
Scan

Sort

Read

Scan

Search

Look

Write

Rl+I+pmerge(I)
3*I+pmerge(I)
Rl+pmerge(I)
I

400

200

375 .
25

Final Join R2+T2*R2*2
R2

T2*R2

T2*R2

R

12.750
250

6250

6250

1750

Total 206.925

Note: Al « (Cl * Tl)/(2 * K) = cardinality of "projection1
with duplicates

PI = VI / (2 * K) = cardinality of projection
Sort(A) = A log2 A, log2 = log to the base 2



Bloom-Join. Hash joined to hash using tuple substitution

Step Basic

Operation
Number As named Reversed

BF-Calc Read

Scan

Write

Cl

C2

BF

1000

1000

4

10.000

10.000
4

Transmit BF 4 4

Bloom-jo in Read

Scan

Write

C2+BF

C2+BF

R2

10,004
10.004

250

1004

1004

250

Transmit R2 250 250

Transmit Cl 1000 10.000

Final Join Read
Scan

Search

Write

R2+R2*T2

R2

R2*T2

R

6500

250

6250

1750

2750

250

2500

1750

Total 38.266 39.766

BF-Calc Read

Scan

Write

C2

C2

BF

10,000
10.000

4

Transmit BF 4

Bloom-join Read

Scan

Write

Cl+BF

Cl+BF

Rl

1004

1004

250

Transmit Rl 250

Build Sindx Read

Write

Scan

Sort

Rl+l+pmerge(I)
3*I+pmerge(I)
Rl+pmerge(I)
I

400

200

375

25

Final Join Read R2+T2*R2*2 12,750
Scan R2 250

Search T2*R2 6250

Look T2*R2 6250

Write R 1750

Total 73,282

Note: BF= Cardinality of bloom-filter = 4
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APPENDIX C

Response Time Calculations

Fragment & Replicate Response Time Calculations

Basic

Operation 1 5 10 20

Read Cl/N+Il+pmerge(Il) 1800 320 150 70

C2/N+2*C2*T2/N 510.000 102.000 51.000 25.500
Write 3*Il+pmerge(Il) 1000 160 70 30

R/N 1750 350 175 88
Scan C/N+pmerge(Il) 1700 300 140 65

C2/N 10.000 2000 1000 500
Search C2*T2/N 250.000 50.000 25.000 12.500
Look C2*T2/N 250.000 50.000 25.000 12.500
Sort I 100 20 10 5
Xmit C1+C2+R 12.750 12.750 12.750 12.750

Total 1.039.100 217.900 115.295 64.008

Read 42.500 - 7000 3250 1500

21.000 42.000 21,000 1050
Write 37.500 6000 2750 1250

1750 350 175 88
Scan 40,000 6500 3000 1375

1000 200 100 50
Search 10.000 2000 1000 500
Sort 2500 500 250 125
Xmit 12.750 12.750 12.750 12.750

Total 179.000 41.500 26.375 19.188

I = cardinality of index = T * C / K
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Fragment & Rotate Response Time Calculations

Basic Number N
Operation 1 5 10 20

Read C1/N+Q1/N+
pmerge(Q/N)+C2*T2+N

263.601 252.095 250.950 250.434

Write 3*Q1/N+
pmerge(Q/N)+R/N+N

16.451 2665 1235 575

Scan Cl/N+pmerge(Q/N) 12,550 1880 835 362

Search C2*T2+N 250,001 250.005 250.010 250.020
Sort Q/N 1050 210 105 52

Xmit C1+C2+R+N 12.751 12.755 12.760 12.770

Total 556.404 519.610 515.895 514^13

Read 188.751 41,255 24.510 16.702
Write 193,001 34,105 15.935 7413

Scan 167.500 29.000 13.375 6120

Search 10,001 10.005 10.010 10,020

Sort 11.250 2250 1125 562

Xmit 12.751 12.755 12.760 12.770

Total 583.254 129.370 77.715 53,587

HW Search

Read Cl/N+Tl/N
+pmerge(Q/N)+Bl+N

16.101 4.595 3.450 2.934

Write 16.451 2.665 1.235 575

Scan 12.550 1.880 835 362

Search Bl+N 2.501 2.505 2.510 2.520

Sort 1.050 210 105 52

Xmit 12,751 12.755 12.760 12.770

Total 61.404 24.610 20.895 19.213

Read 185.001 37.505 20.760 12.952

Write 193.001 34.105 15.935 7.413

Scan 167.500 29.000 13.375 6.120
Search 6.251 6,255 6.260 6.270

Sort 11.250 2.250 1.125 562

Xmit 12.751 12.755 12.760 12.770

Total 575.754 121.870 70,215 46.087

Q = cardinality of augmented relation = C + B*C/(2*K)
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Distributed Hash Join Response Time Calculations

Basic Number N

Operation 1 5 10 20

Read Cl+Ql+pmerge(Ql)+2*Cl/N
+C2+Q2+pmerge(Q2)+2*C2/N

214.350 196.750 194.550 193,450

Write 3*Q1+pmerge(Ql )+Cl/N
+3*Q2+pmerge(Q2 )+C2/N

218.700 208.500 207.225 206.587

Scan Cl+pmerge(Q 1)+Cl/N
+C2+pmerge(Q2)+C2/N

191.050 182.250 181.150 180.600

Sort Q1+Q2+C1/N+C2/N 23.300 14.500 13.400 128.50
Xmit C1+C2+R 12.750 12.750 12.750 12.750

Total 660.150 614.750 609.075 606.237

Q = cardinality of agumented relation = C + B * C /(2*K)

pmerge(Q) = Q log2 Q
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