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Abstract

This paper presents an algebraic theory for the design of a

decoupling compensator for linear time-invariant multivariable systems.

The design method uses a two-input one-output compensator, which gives

a convenient parametrization of all diagonal I/O maps and aJN[ disturbance-

to-output (D/0) maps achievable by a stabilizing compensator for a given

plant. It is shown that this method has two degrees of freedom: any

achievable diagonal I/O map and any- achievable D/0 map can be realized

simultaneously by a choice of an appropriate compensator. The difference

between a]J_ achievable diagonal and nondiagonal I/O maps and the "cost"

of decoupling is discussed for some particular algebraic settings.

Research sponsored by National Science Foundation Grant ECS-8119763.



I. Introduction

In the design theory of linear time-invariant multi-input multi-

output systems, the characterization of all designs which can be achieved

by a stabilizing controller for a given plant is a subject of great

interest because it shows the limitations on achievable performance

imposed by the plant model and the constraints of linearity and stability.

The first results were obtained by Youla, et al. [You. 1] for the lumped

continuous and discrete-time cases. Later, an algebraic formulation was

given by Desoer, et al. [Des. 1] to include the lumped and distributed,

the continuous-time and discrete-time cases. Using algebraic tools,

Zames [Zam. 1] considered stable plants, characterized all stabilizing

compensators and established bounds or closed-loop system performance.

His methods were used for design in [Des. 2]. Further results in para

metrized form were given in [Per. 1], [Che. 1], [Sae. 1] and [Vid. 1],

until finally a general algebraic design procedure, which enables design

with non-square plants and controllers and extends the parametrizations

of [You. 1] and [Per. 1], was obtained in [Des. 3].

This paper presents a general algebraic design method for all

diagonal input-output (I/O) maps which can be achieved by a stabilizing

two-input one-output controller for a given plant. Such controllers

were used for example in [Ast. 1], [Per. 1] and [Des. 3]. It is of

great engineering interest to have an input-output map which is decoupled

and to be able to design the disturbance-to-output (D/0) map independently

of the I/O map. The system Z(P,K) shown in Fig. 1 represents a very

general case in that y2* the output-of-interest, is not necessarily the

same as z, the measured output, i.e., the input to the compensator;

furthermore the disturbance d is applied directly to the pseudo-state
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of the plant rather than being an additive input as, for example, in

[Des. 3].

Decoupling of linear time-invariant multivariable systems over

unique factorization domains is considered in [Dat. 1]; necessary and

sufficient conditions are established for the existence of a decoupling

dynamic or static state feedback in the case that the system is inter

nally stable and reachable. Furthermore, the stability preserving stable

compensator is required to be invertible over the unique factorization

domain. In the present paper, the plant is not assumed to be stable,

dynamic output-feedback is used, the compensator is not required to be

stable, and if stable, it is not required to be invertible over the

principal ring. Our plant has an output-of-interest y« and a measured

output z.

The paper is organized as follows:

Section II defines the problem and states the stabilizibility con

ditions. Section III builds the necessary structures for decoupling

the I/O map. Section IV presents the main results: the achievable

diagonal I/O maps and the achievable D/0 maps. Section V considers

some examples and contains the conclusions.

The following is a list of the commonly used symbols:

a := means a denotes b. 8 is the n-vector of zeros. W.l.o.g.
n J

means without loss of generality. If Of is a ring, then £{g) denotes

the set of matrices having all entries in Cj. ^^ denotes the proper

rational functions analytic in the region *U c C, a symmetric subset of

(E which contains C+ and u = C+ U {»}. R(s) denotes the scalar rational

functions in s with real coefficients, and lR[s] denotes the scalar poly

nomials in s with real coefficients. -
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Throughout the paper, the properties of groups and of commutative

rings are used; these and other standard algebraic terms can be found

for example in [Bou. 1], [Coh. 1], [Jac. 1], [Lang 1], [Mac. 1], [Sig.

1]. The algebraic structure used here is similar to that of [Des. 3].

Algebraic Structure: [Bou. 1, p. 55], [Coh. 1, p. 395], [Jac. 1,

p. 393], [Lang 1, p. 69].

%/• : A principal ring (principal ideal domain), i.e., an entire

commutative ring in which every ideal is principal (e.g.,"^ ).

Q : The field of fractions over ~W- (e.g. IR(s)).

I : A multiplicative subset of 7^, equivalently, I c ~tt, 0 i j,

1 6 I and x,y € j implies that W t I (e.g., ft I if f 6 H* and

f(-) = 1).

<2 := {n/d : n €TV ,d 6 I }, a subring of 0\ (e.g. 1R (s), the ring

of proper scalar rational functions).

U(7/) := {m €^ :m'] <E%0, the group of units in^ (e.g.,

f € U(~V) if f €^^ and f(s) f 0 for all s €<&).

II. Problem Description

We consider the multi-input multi-output linear, time-invariant

system £(P,K) (^(P.K)) shown in Fig. 1 (Fig. 2). Given a plant P, we

wish to design a controller K with two inputs and one output such that

the resulting feedback system is stable, K is proper, and the I/O map

v h- y« is nonsingular and decoupled, i.e., diagonal. We make the follow

ing assumptions on E(P,K):

Assumptions on the System Z(P,K):

(P) P $3 " has a right-coprime factorization (r.c.f.)
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rN°- "nO "
pr -i P

-__ D = — — —

Nm pr pm

L Pr. .

with Dpr, Njr, N^ €<Wnxn; det N°r $0and

detDpr€ I.
nx2n(K) K € a"**" has a left-coprime factorization (l.c.f.)

DcI[Nir£:Nf£] With D"" N— N'« €^ nX"' det D- € l *and det(D-DcV ttV fi cl cl pr
,m

+Nf/pr> € ' •
Under assumptions (P) and (K) the system E(P,K) in Fig. 1 is com

pletely described by

-D
pr

-I

a Nfrpr tt£ lU "fJTpr
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— -<
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— -
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o : N°
; pr

o; o o: -N°pr
0 I Nm

pr
o: o

•

o: -Npv

Let u:= (vT,u[,u^,dT)T, ?:= (y{,cJ)T, y:= (y{,y£,zT)T. Then
equations (2.1) and (2.2) are of the form

DC = l\u

NrC = y + Eu

(2.1)

(2.2)

(2.3)

(2.4)

where the matrices D, N-, Nr, E, defined in an obvious manner from (2.1)

and (2.2), have their elements in^/.

nxnFor any D €"V and any Nf£ 6^nxn, define
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Dh := DciDpr +Wr ** • (2-5)"

mNote that det D=det Dh'= d^(DcAr^fXr) € l by assumPtion W-

Definition 2.1 (^-stability): The system I(P,K) is called jj -stable

nly ii

3nx4n

if and only if Hyu :u=(vT,uJ,U2,dT)T h- y=(yj.y^z1)1" satisfies

Let assumptions (P) and (K) hold. Note that assumption (K)

requires that det D € 1, hence from equations (2.3) and (2.4) we

obtain

Hyu - NrD"\ +E€£<^). (2.6)

Thus det D € I is a sufficient condition for the well-posedness of

£(P,K).

From (2.1) and (2.5) it is easily seen that l(P,K) is ^-stable

if and only if det D. € UCfo) [Des. 1, Corollary 3.1]. Hence w.l.o.g.

Z(P,K) is %/-stable if and only if we can take Dh = I [Vid. 1].

Proposition 2.2 (Stabilizibility of P): Let P satisfy assumption (P),

and let Pm €^"xn, where rt% := Jacobson Radical of Q [Jac. 1],
Then P is stabilizable (equivalently, there is a compensator K which

satisfies assumption (K) such that Z(P,K) is ^-stable) if and only if

NprDpr 1s a r'c'f' of pm-

Proof

•m(4=) The pair (N ,D ) is right-coprime (r.c), which implies

that there exist u™ , V™ € ^nxn such that

pr pr pr pr n
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,-1 ,m ,m

Choose a compensator K=Dc^NTrJi:Nf^ v/ith Dcil:= Vpr' Hfi := Upr*
Clearly D , Hf 6%tnxn. Then (2.5) and (2.7) imply that Dh =I. Hence,
from (2.1), (2.2), (2.5) and (2.6) it follows that, for arrv_ N^ €~Wnxn,
the system Z(P,K) is%/-stable.

,m
(=a) For a proof by contradiction, suppose that the pair (N ,D )

is not r.c. Then Nm and D have a Greatest common right factor R such
pr pr

that Njr = NmrR, Dpr =DprR, (N^r,Dpp) is ar.c. pair and det Rf uf»);
-1 ,-1 ,nxnequivalently, (det R) i *iJ or R £ wfy"*"# now> defining D. in an

obvious manner,

det Dh =det(DCJlDpr+Nf^r) - det[(DCJlB tN^JR] =det D, det R
(2.8)

Since det Rt U{p) and det Dh €#, we have that det Dh i U^)/
Thus (2.8) shows that for all Dc£, and Nf^, the system Z(P,K) is not

^-stable, i.e., P is not stabilizable.

III. The Construction of A. and A„:

We now construct a diagonal matrix A, and a diagonal matrix AR using

•pr'

Let N
pr

'pi"
where, for k = 1, ..., n,

pn

n . € ^ denotes the k-th row of N° . Since ^is a principal ring,

we can define, for k = 1, ..., n, A,, to be a greatest common divisor

To see this, suppose that det Dh € U(#). Then from (2.8), det D.
=det Dh(det R)"1 implies that (det R)"1 =(det D^"1 det Dh €̂ since
(det Dh)" €*# ; this contradicts det R* U(#).
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(g.c.d.) over7^ of the elements of n . [Lang 1, p. 71]. Then for a

suitable (row-vector) n.e^lxn, n. =A.. nn. and
Pk pk "Lk "pk

pr

11

0

o

In

'pl

pn

=: A,
mO

L pr (3.1)

where A, , N e^ nxn are not unique, since each A., is only defined

within a factor in U(^). (In the case that "^4 =-R^, Ai_k "bookkeeps"

the plant zeros in^l that are common to all elements of row k of N ).

Datta and Hautus [Dat. 1] used a similar factorization.

The matrix N° €^nxn is not necessarily invertible over ^nxn;
pr

but by assumption (P), and since det N° <S ""tt , (Npr) has elements in
the field of fractions W][%J\0]-1 of the entire ring *# [Lang 1, p. 69]
From (3.1), det N° =det A, det HP where AL is nonsingular by construc
tion. Let a., denote the ij-th element of (N° )" and for i,j =1, ...,

n, define

'7,0 x-1 mii
'id

(N^r)- =[a^.] =C^-], m^d.^*/.

For j = 1, ..., n, let AD. be a least common multiple (l.c.m.) of
Kj

(3.2)

(d. -)?=1; i,e*' ARi is a1-c-m- of dij' d2j' "••'' dnj of the elements
of the j-th column of (N^)"1 [Lang 1, p. 72]. Note that each Anj is
only defined within a factor in U(**/-). Define

AD := diag (AD1, AD9, ..., ADn) €**/ nxn
lRl» "R2 Rn

(3.3)

An extraction of a diagonal factor as AR analogous to the present one
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is found in [Des. 2].

Fact 3.1: Let N° and AR be defined by (3.1) and (3.3). Then

Proof

Since AD_. is a l.c.m. of the (d..)J ,, for i = 1, ..., nwe have
Kj 1J 1 ~i

d.^ € ~ft such that
ij

^Rj-Vlj' dij'5Tje^ <3"4)

Then for i,j =1, ..., n, the ij-th element of (N° ) A0 is
pr K

m..

h5J'*w =mUdiJ €* (3'5)
by (3.2) and (3.4).

IV. Achievable Performance of Z(P,K).

The I/O Map H and the D/0 Map H d
^2 ^2

For any Z(P,K) satisfying assumptions (P) and (K) (hence for which

det D^ € I ), the I/O map H : v h- y2 and the D/0 map Ht . : d h- y« are
2 ^2

given by

Hy2d "C^^Wp'r1 =N°prDhlDcAr <4-2>
Now, Z(P,K) is ^-stable if and only if det Dh € U(^); consequently, if

S(P,K) is ^/-stable we may take Dh = I [Vid. 1]. Using this, (2.5) and

(3.1), we obtain
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V • N°PA* =VipA* - (4.3)

Hy2d " Npr^-NfA] "NprDaV <4-4>

Definition 4.1 (Achievable Maps): Let P be given and satisfy assumption

(P); let K satisfy assumption (K) and let K be such that the system

Z(P,K) is ^-stable.

Roughly speaking, let W (P) denote the set of all achievable
y£v

diagonal I/O maps of Z(P,K); more precisely,

wv v^ := *Hv v:for the 9lven P' tnere exists a compensator K

satisfying assumption (K) such that Z(P,K) is ^-stable with H
y2

diagonal and nonsingular}.

Let H d(P) denote the set of all achievable D/0 maps of Z(P,K);

more precisely,

H d(P) := {H ,: for the given P, there exists a compensator K

C/\ ctirh that T(P \C\ i<; «^- stable with K

y2y
satisfying assumption (K) such that Z(P,K) is •#- stable with Hv y

diagonal and nonsingular}.

Achievable I/O Map and D/0 Map:

The following theorem characterizes all the achievable diagonal

I/O maps and the achievable D/0 maps for Z(P,K).

Theorem 4.2 (Achievable Diagonal I/O Maps and Achievable D/0 Maps):

Consider the system Z(P,K) of Fig. 1: let P and K satisfy assump

tions (P) and (K). Let D*1^ =Pm, where Dpr N^€^nxn, det Dp^ € I,
be al.c.f. of Pm, and let NprDpJ; be ar.c.f. of pm. Let AL and AR be
defined by (3.1) and (3.3) above. Then,

i) the map Hy €*^nxn is an achievable, diagonal, nonsingular I/O

map of the ^/-stable system Z(P,K) if and only if Hy € Hy V(P), where
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nxnHy v^ =*\ARQd :% €^ »Qd is diag°na1 a-nd nonsingular}.
2 (4.5)

ii) the map Hd €%lnxn is an achievable D/0 map of the "^-stable
system Z(P,K.) if and only if Hd € H d(P), where

Ky2d(P) ={N°pr[I-(u;r+RDp,)N;r] =N°pr(V;r-RNmpJl)Dpr: R€^"Xn S.t.

det(vJp-RkJ£) € 1} (4.6)

and Vjr, U*r> l$r, Dpr are as in (2.7).

Comments:

1) If decoupling were not required, the set of achievable I/O maps

of Z(P,K) would be given by

Hy2v(P) ={NprQ=ALSprQ :Q€̂ "^ W-5a)

and the set of achievable D/0 maps would still be given by (4.6) [Des. 3].

Requiring the I/O map to be decoupled adds a number of constraints:

i) Qrf €^ must be diagonal; ii) we must have A.AR as a left factor
of Hy v instead of just N°r =ALNpr< In the case that ^ =̂ , we can
interpret the cost of decoupling as follows: The <&.-zeros of P° : e? h- y

will be the zeros of H , the closed-loop system I/O map, whether it is
y2

decoupled or not. However, with decoupling, the multiplicity of these

<2f-zeros may be greater than that of P°. This is due to A„ : indeed,

from (4.5) and (4.5a) we see that Aj_ is a left-factor of any achievable
I/O map with or without decoupling. On the other hand AR is required to

guarantee that N^ =(Npr)"\Qd €£(%0, and therefore may have a
greater multiplicity of the same^"-zeros than N° has.

pr

2) If det N°r € UfXf), equivalents if (N^)"1 ziJ nxn, then AR =I
and the diagonal I/O maps are of the form A,Qd.
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3) The diagonalization of the I/O map H - is achieved by choosing

N a; this choice is independent of that of Dc£ and Nfr Similarly, N^

does not affect the D/0 map. Thus the I/O map and the D/0 map of the

^-stable Z(P,K) can be specified independently: it is a two-degrees-of-

freedom design [Hor. 1].

4) It is important to note the constraints imposed on Hy d by the

^T-zeros and the <^-poles of the plant when H =*£.&. If Z(P,K) is

^-stable and if PF := PD^N^ is full normal rank in ^,then
a) if z is a^/"-zero of N° (equivalently, 3 a t 6n such that

a*Npr(zo} =V then

^pr^f/pr^V "a\d(zo) "V (4-7)

b) if Mpr has full normal rank and if zm is a1^-zero of N^r (equi
valently, 3S?*8 such that NprUm)6=en) then

pr m pr

prN w n

,m

Sr»"W(l»)f! =V(zm>6 "Hy2d(^)6- (4"8)
c) if p is a^/-pole of P (equivalently, 1y f 6p such that

Dpr(Po)Y= 8n} then

N D D (p )y = H .(p )y = 6 (4.9)pr cjrprVHo'T y2dVHo/Y nn

,o ... »,mThus, whenever either N° or Nr\ has a ^(.-zero or when P has a
pr pr

^-pole, the D/0 map is constrained by a vector-equality such as (4.7),

(4.8) or (4.9) respectively.

Proof of Theorem 4.2

(=30 We are given P and K such that the %f-stable system Z(P,K)

achieves the diagonal I/O map H €73lnxn and the D/0 map Hd 6^nxn.
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We have to show that H is the form A,ARQd and Hd is of the form

Npr[I-(Upr+RD )N^r] for some R€^nxn and some diagonal Qd €^nxn.

Since Z(P,K) is ^-stable, w.l.o.g. we take D. = I. From (4.3),

the diagonal matrix A, is obviously a left-factor of H ; it remains to

show that Hy has A,AR as a left-factor. For a proof by contradiction,

suppose that H is of the form

Hv - ALARQd (4.10)

where AR is aproper factor of AR and Qd €%'nxn, nonsingular, diagonal;
for example suppose that

AR =dTag(AR1>...,ARj.1,ARj.,ARj+1,...,ARn) (4.11)

where, for a non-unit prime element 6. in%£, [Lang 1, p. 72],

ARj " Vrj <4-12>

Since Hy is the I/O map of E(P,K), from (4.3) and (4.10)

Since %/is a principal ring, we may cancel the nonsingular left-factor

Aj_ and'invert N° in (4.13) to obtain

\l " («?r)"Vd' <4-14>
From (3.2)

m,,

\l =C3n]d1a^ARl'---V-l^'AM+l---ARn)-Qd (4'15)
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Consider the j-th column of N^ and recall that AR, is by defini

tion a l.c.m. of (d^.)"^. Then since Anj =^A-., w.l.o.g.

d1J " 6J31J- ~dij€^ (4-16)

where d.. is a factor of AR., i.e., there exists a c.. €^, possibly a

unit, such that

ARj - Vij- <4"17>

Hence, with q. € *%/ denoting the j-th diagonal entry of some general
j

diagonal Qd <= ^nxn, from (4.15), (4.16) and (4.17) we obtain the ij-th
entry of N . as

m.. m..

dJ-VrfVj' (4-18)

Since 6. i U(^) and in general 6. is not a factor of q., the right-hand
j j j

side of (4.18) is not in"!/. Therefore, except when the prime 5. is a
j

factor of q., N £1^nxn; thus with N^ as in (4.14), there is a diagonal
Qd e#nxn such that Z(P,K) is not ^-stable. Therefore Hy must be of
the form A,ARQd and Wy € H (P) must be given by (4.5).

Now consider Hd- Recalling proposition 2.2, since Z(P,K) is "Te

stable, the pair (n"J ,D ) is r.c. and hence satisfies (2.7). We can
take D. = I; equivalently, from (2.5)

N*„Nm + D „D =1 (4.19)
f il pr cl pr

Viewing (4.19) as a linear matrix equation in^nxn, we solve for (NfA»
DQS) subject to det DQl € I so that D^Nf£ €#nxn: from (2.7) we have
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UprNpr +VprDpr =l ^

and since l^DjJ =D^ =̂ we have

D „Nm - Nm0D = 0. (4.21)pi pr p£ pr v '

The pair (Upr,v"jr) in (4.20) is a particular solution to (NfrDCJl) in
(4.19) and the pair (D „,-nJJ is a particular solution to the homogene
ous equation (4.21). Hence, any general solution of (4.19) is given by

Nf£ - lijr +RDp, (4.22a)

Da =V£r -RNm, (4.22b)

where R€^/nxn. Now, from assumption (K), we see that K€ #nx2n if

and only if det D^ € I. So we must require that the arbitrary

R €7J nxn satisfies

det(vJr-R^IJ£) € I. (4.23)

(Note that if P€(j2"™ where Q% := Jacobson radical of G, then Npr
and N™ €̂ "xn and (4.23) is automatically satisfied VR €̂ /nxn [Des. 3,
proof of Theorem 3.1]). So, by (4.4)

Hd •̂ r^^V'C-1 (4'24)

and by (4.19) and (4.20)

Hd =̂ r^V^V] =N°pr(Vpr-RNpVDpr <4-25>

Therefore Hd given by (4.24) and (4.25) is an element of H A?) given

by (4.6)
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(4=) By assumption, for some diagonal nonsingular CL €^nxn, we

are given Hy =A,_ARQd and for some R€t/nxn we are given

Hd =Npr[I-(U^r+RDP£)Npr] =Npr(Vpr"RNp£)Dpr- We have to show that there
exists some compensator Ksuch that the I/O map Hy and the D/0 map Hd

are achieved by an ^-stable Z(P,K).

Choose the controller Kas K:= D^J[N &:Nf£] with Nf£ and D as in
(4.22a-b) and choose N „ as

Trie

N^ := Kr]'\% <4-26>
where, by Fact 3.1, N . €-#.nxn.

and by (4.19) and (4.20), Dh = I. Consequently det Dh s U(#) and

Z(P,K), specified by N^, Nf&, DQi in equations (4.26) and (4.22a-b), is

^-stable.

By using (4.3) and (4.26) we calculate the I/O map of this Z(P,K)

as

V - V?A* - ^pV^pV'Vd" Wd =V
and by using (4.4) and (4.23) we calculate the D/0 map of this Z(P,K) as

Hy2d =NpV(I-Nf*Npr) =̂ HU^RD^)^] =Hd
or

Vd - N°prDc£Dpr " N°pr(Vpr-RNp^Dpr " Hd-
r

V. Examples and Conclusions

In the following examples we focus our attention on the diagonal
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I/O map of Z(P,K). Since the design has two degrees of freedom, only

N ^ is calculated: indeed, the compensator parameters used to design

the D/0 map are not needed for the I/O map.

Example 1: In this example, "£/:=/?. (s,e~TS) is the principal ring

where ^(s,e~ ) denotes the rational functions which are proper ins,

analytic in I+ and have coefficients inIR[e"TS]. (lR[e"TS] is the ring

of polynomials in e"TS with real coefficients.) Consider the P° given

by (5.1) below: it is strictly proper but not ^-stable and it has a

simple zero at s = 3.

-tsPu(s,e-L*) =

e"s
s-1

i

s-2

e"2s e~s
s-1 _L s+i

iV
1*1

Ar.c.f. of P° is given by P° =N° D"1
3 J pr pr

e"s
s+2

s-1

(s+1)2

(s-l)e"2s
(s+l)(s+2)

(s-2)e's

(s+1)2

dl'a9[^ •il^f\ _1- The"N°pr =* =d^[A'
-S n

S+1

e"s (s-1) (s+2)

(s+1)2

(s-l)e"s s-1
s+2 s+1

. Here AL and N°r are not unique; A,

(5.1)

extracts a zero at infinity from the rational part of each row of N° .

By "the zeros of P°" we mean the zeros of the rational function
det N

pr'
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Now (N° J"1
v pry

(s-2)(s+l) ; -(s-l)(s+2)
-s(s-3)e's

-l)(s+l
-3)(s+2

-(s-

(s-3)e

(s+1)2

-s -i

2x2
f ^ > from which we

o btain AR = diag
-s(s-3)e 3 (s-3)e

L (s+D2 (s+1)'
and N = (N° )~lkD§A

•ni v pr' Rxd

1^2 ; -(s-l)(s+2)
s+1 ' (s+1)2

-(s-l)e"s 1
s+2 •

-s

Qd. Note that each diagonal entry of AR

is equal to det
mO

pr
In fact, it can be shown that in the 2x2 case,

r.oeach diagonal entry of AR is always equal to det N modulo a unit factor

in u"0#). Consequently, det AD = (det N° ) modulo a unit in Uft^),
k pr

and the number of I+-zeros of the diagonal closed-loop I/O map is

increased. In the example, H =A.A Qd =diag
-s(s-3)e

2 »

-2s(s-3)e

_ (s+2)(s+1)" (s+1)
2x2 _.•Qd, where Qd €^ is diagonal and nonsingular. Here, H has a

^2
zero of multiplicity two at s =3 and it may have other C+-zeros due to

Qd. Comparing this to the (D+-zeros of det N° we see that the cost of
decoupling is the increased number of (D+-zeros (due to AR) and the restric

tion that Qd be diagonal.

Example 2: In this example, let%t =*/?j£ where °U. =(D+. P° is
given by (5.2): it is proper but not %^-stable; P° has a zero of multi

plicity two at s = l, a zero at s = 2 and two zeros at infinity.

-18-



P°(s) =

s-1 1

s+2
(s-lHs-2)

(s-3)(s+2) (s+1)(s+2)

s+1

s-3
1

s-2
s+2

O
1 s-2

(s-l)(s+l) (s+1) (s+2)

A r.c.f. of P is given by

t%l 3x3 (5.2)

P° = N° D"1
pr pr

s-1 ! s-1 I (s-lHs-2)
(s+1)(s+2) ; (s+l)(s+2) ; (s+l)(s+2)

i : s-i : s-2
i s+1 s+2

n I i : s-2
; (s+i)2 .' (s+i) (s+2)

Ai*n rs-3 s-i ,r1

^n, N°pr =ALN°pr =diag [f^.l,^]-

r i ; i
Ml(s+i) ; (s+i)

i ; is=4
. (s+1) (s+2)

o : l
CMCM11+«/»to

L ° • (s+i)

AL and N are not unique and AL extracts a zero at s =1 from the first

row of N° and a zero at infinity from the third row of N° . Nowpr pp

(N° V1
v or'

(s-2)(s+l) • J^
s-1 ' s-1

-(s+1)'
s-1

s+1

s-1

(s+lUs+2) i -(s+2)
(s-lj(s-2) • (s-l)(s-2)

-19-

-(s2-3)
s-1

2
(s+1)

s-1

-2(s+2)
(s-l)(s-2)

3x3
i-U



and AR = diag (s-l)Cs-2)

(s+l)2(s+2)
s-l)<s-2) (s-l)(s-2)
vfitsZl ' (s+1)2(s+2)

(The first and the third diagonal entries of AR are equal to det N° .)

Then N
tt&

(s-2)2 s-2 ' -(s2-3)(s-2)
(s+1) (s+2) (s+l)(s+2) (s+l)2(s+2)

1

toto
roro s-2

s+2

s-2
5+2

1 -1

s+1

-2

S+1 (s+1)2

Qd and

V = ALARQd • dia9
(s-ir(s-2)

(s+l)2(s+2)2
(s-lHs-2) (s-l)(s-2)
Ti+Tlti+TT.' (s+1)3(s+2)

3x3where Qd €"14- is diagonal and nonsingular. The closed-loop diagonal

I/O map H. ., has a zero of multiplicity four at s = 1, a zero of multici-
y2v

piicity three at s = 2 and three zeros at infinity. H may have othery2v

C+-zeros due to Qd. The cost of decoupling is the increased number of

C+-zeros (due to AR) and the restriction that Q. be diagonal.

Example 3: In this example we design a decoupling compensator for

the P° given by (5.3), which is the model of a "boiler subsystem" in

[Joh. 1]. Johansson and Koivo apply the Inverse Nyquist Array method

of Rosenbrock in the design of a multivariable controller. Let }^-: ^

where & = c.
v.

P°(s) = -e
-2s

10s+1
-1

10s+1

-10s
e
60s+l

«#•
2x2 (5.3)

-20-



A r.c.f. of P° is given by D_ = I, N° = P°. Then A, = diag
3 J pr pr L 3 7s+l '

1

40s+l
and (N° )'1

v pry
-(10s+l)e2s (60s+l)e12s

(7s+l) (40s+l)
From this we

10s(60s+l)e
(40s+l)

obtain AR =diag[e"2s,e'12s] and N^ =(0~\Qd

-(lOs+l) (60s+l
7s+l) (40s+l

-2s(60s+l)e
(40s+1)

2x2Qd, where Qd € # is diagonal and

nonsingular. Finally, Hv v = ALARQd = diag
0"2s o-12se e
7s+l ' 40s+l

•Qd. Here

the closed-loop I/O map is diagonal and the time-constants are reduced

from 10 sec. and 60 sec. to 7 sec. and 40 sec. respectively. We com

plete our design by giving a choice of D and Nf as

-10s

60s+l
D = Vm
ci pr

m

n
- RPV

!f£ =<?r +RDp*

e"12s
60s+l

0

e"1Qs(10s+l)
60s+l

-1

where R€#2x2 is such that v" - RNm0 € I .
pr pi

Conclusions

+ RI

Without decoupling, the set of all achievable 1/0 maps of Z(P,K) is
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given by (4.5a). The compensator parameter N ,which is used in design

ing the I/O map, is made ^-stable by an appropriate choice of a diagonal

^-stable matrix AR defined by (3.3). Finally, the set of all achiev

able diagonal nonsingular I/O maps is given by (4.5), where A, appears

as a left-factor of both diagonal and non-diagonal achievable I/O maps.

The examples of this section clearly illustrate the cost involved

in decoupling the I/O map while requiring that it be "^-stable; this

cost is reflected by AR and Qd: AR must be chosen so that N is ^/-

stable; Qd e^1™" must be diagonal. In the case that */ =7f^ (or

~M =$(s,e~TS) as in example 1) the presence of AR in the diagonal I/O
map results in increasing the number of 2/-zeros. If N° €*# ,

det AR has exactly twice as many ^-zeros as det N° (for aproof see

the Appendix.)

This design method has two degrees of freedom: decoupling the I/O

map has no effect on the D/0 map. the D/0 map is designed using the

parameters D . and Nf- of the compensator. The only compensator para

meter used in the I/O map is N ..

The results developed in this paper are valid for many classes of

systems, some of which are listed in [Des. 3, Table I].

-22-



Appendi x

Let ~& := Hty and let n=2. Let N° , AL and ar be defined by (3.1)
mOand (3.3). Under these conditions, det AR = (det N ) -u where u € U(/(/)

Proof. Let N
pr

nll n12

'21 "22

2x26 7^ where, by the construction of A, ,

(nll,n12^ is a C0Pnme Pair anc* (n2i»n22^ 1S a c°Pnme Pair- With
5 := det 5 . the first and second columns of (HP )" are (n00/<5,-n0-,/<$)

pr x pr Zl di

(-n^/fijn,,/^), resp. Now, any irreducible common factor that cancels

in n^o/^s will not be a common factor in -noi/6, since (n??*"11?]) are

coprime. Thus the least common denominator for the first column is 5.

The same holds for the second column, hence AR = diag(6,5) and

det AR =(det N°)2, modulo factors in U(%<).
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Figure Captions

Fig. 1. The System Z(P,K).

Fig. 2. The System XZ(P,K)
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