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Abstract

This paper presents an algebraic theory for the design of a
decoupling compensator for linear time-invariant mu]tivariabTe systems.
The design method uses a two-input one-output compmensator, which gives

a convenient parametrization of all diagonal I/0 maps and all disturbance-

to-output (D/0) maps achievable by a stabilizing compensator for a given
plant. It is shown that this method has two degrees of freedom: any
achievable diagonal I/0 map and any- achievable 0/0 map can be realized
simultaneously by a choice of an appropriate compensator. The di%ference

between all achievable diagonal and nondiagonal I/0 maps and the "cost"

of decoupling is discussed for some particular algebraic settings.
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I. Introduction -

In the design theory of linear time-invariant multi-input multi-
output systems, the characterization of all designs which can be achieved
by a stabilizing controller for a given plant is a subject of great
interest because it shows the limitations on achievable performance
imposed by the plant model and the constraints of linearity and stability.
The first results were obtained by Youla, et al. [You. 1] for the lumped
continuous and discrete-time cases. Later, an algebraic formulation was
given by Desoer, et al. [Des. 1] to include the Tumped and distributed,
the continuous-time and discrete-time cases. Using algebraic tools,
Zames [Zam. 1] considered stable plants, characterized all stabilizing
compensators and established bounds or c]osed-]ooé system performance.
His methods were used for design in [Des. 2]. Further results in para-
metrized form were given in [Per. 1], [Che. 1], [Sae. 1] and [Vid. 1],
until finally a general algebraic design procedure, which enables design
with non-square plants and controllers and extends the parametrizations
of [You. 1] and [Per. 1], was obtained in [Des. 3].

This paper presents a general algebraic design method for all
diagonal input-output (I/0) maps which can be achieved by a stabilizing
two-input one-output controller for a given plant. Such controllers
were used for example in [Ast. 1], [Per. 1] and [Des. 3]. It is of
great engineering interest to have an input-output map which is decoupled
and to be able to design the disturbance-to-output (D/0) map independently
of the 1/0 map. The system I(P,K) shown in Fig. 1 represents a very
general case in that Yoo the output-of-interest, is not necessarily the
same as z, the measured output, i.e., the input to the compensator;

furthermore the disturbance d is applied directly to the pseudo-state



of the plant rather than being an additive input as, for example, in
[Des. 3].

Decoupling of linear time-invariant multivariable systems over
unique factorization domains is considered in [Dat. 1]; necessary and
sufficient conditions are established for the existence of a decoupling
dynamic or static state feedback in the case that the system is inter-
nally stable and reachable. .Furthermore, the stability preserving stable
compensator is required to be invertible over the unique factorization
domain. In the present paper, the plant is not assumed to be stable,
dynamic output-feedback is used, the compensator is not required to be
stable, and if stable, it is not required to be invertible over the
principal ring. Our plant has an output-of-interest Yo and a measured
output z. .

The paper is organized as follows: .

Section II defines the problem and states the stabilizibility con-
ditions. Section III builds the necessary structures for decoupling
the I/0 map. Section IV presents the main results: the achievable
diagonal I/0 maps and the achievable D/0 maps. - Section V considers
some examples and contains the conclusions.

The following is a list of the commonly used symbols:

a := means a denotes b. en is the n-vector of zeros. W.l.o.g.
means without loss of generality. If gz is a ring, then 2?(57) denotes
the set of matrices having all entries in 57. 7Q2< denotes the proper
rational functions analyticin the region 2¢ < €, a symmetric subset of
€ which contains C, and ¢ = ¢, U {=}. R(s) denotes the scalar rational
functions in s with real coefficients, and R[s] denotes the scalar poly-

nomials in s with real coefficients. -



Throughout the paper, the properties of groups and of commutative
rings are used; these and other standard algebraic terms can be found
for example in [Bou. 1], [Coh. 1], [Jac. 1], [Lang 1], [Mac. 1], [Sig.
1]. The algebraic structure used here is similar to that of [Des. 3].

Algebraic Structure: [Bou. 1, p. 55], [Coh. 1, p. 395], [Jac. 1,
p. 393], [Lang 1, p. 69].

‘A : A principal ring (principal ideal domain), i.e., an entire
commutative ring in which every ideal is principal (e.g.,7QqJL ).

g~ : The field of fractions over A (e.g. R(s)).

I : A multiplicative subset of ‘M, equivalently, 7 < %, 0¢ 71,
1e¢ T and x,y € 7 implies that xy ¢ 1 (e.g., f e I if f ¢ 7Q44 and
feo) = 1).

g :={n/d:neNW,d e 11}, asubring of é (e.g. lRp(s), the ring
of proper scalar rational functions).

U(AH) := {m e W ) ¢ %}, the group of units in'& (e.q.,
fe UCH) if feRgy and f(s) # 0 for all s €9y).

II. Problem Description

We consider the multi-input multi-output linear, time-invariant
system £(P,K) (IZ(P,K)) shown in Fig. 1 (Fig. 2). Given a plant P, we
wish to design a controller K with two inputs and one output such that
the resulting feedback system is stable, K is proper, and the I/0 map

Ve Y, is nonsingular and decoupled, i.e., diagonal. We make the follow-

ing assumptions on Z(P,K):

Assumptions on the System I(P,K):

(P) P e g?ann has a right-coprime factorization (r.c.f.)



Pri 1 P . 0 m nxn
&m Dpr = };ﬁ with Dpr, Npr, Npr ¢N det N . £0and
pr_
detDpre I.

(K) K € ganXZn has a left-coprime factorization (1.c.f.)

nxn
N_os Neg e~ , det D, € T, and det(D_ D

-1
D [ Nfz] with D c2lor

cL
. pr) € 1.

ce’

Under assumptions (P) and (K) the system Z(P,K) in Fig. 1 is com-

pletely described by

~ -\
' ' 1 N v
] ! ' l
oo Do ¥ 0, 0 ;-1 ! 0 uy o
I O [ L NI A 2.1
! ' 1 ' m
Dcz; Nszgr Ep an ! Nfz ; 0 ) Nszpr ua
Ld
~ ! ~ - o ! i T ol
I ' 0 i y y 0.0.:0"' 0 v
na 1 1 | : ' u
—=miTeesT = M B iy 1 (2.2)
o, N z 0.0 0. N1 d
- : pr L .J . ! ! ' PrJ L J
Let u: -(vT,uT,u;,dT)T, g:= (yT ET)T, y:=(y ,y;,zT)T Then
equations (2.1) and (2.2) are of the form
DE = Nlu (2.3)
NE =Y +Eu (2.4)

where the matrices D, Nz’ Nr, E, defined in an obvious manner from (2.1)
and (2.2), have their elements in‘%.
For any Doy e K ™" and any Neg € TN define



- . nxn -
Dy += Deglpp * NmN';r ¢ A XN (2.5)

Note that det D = det Dh‘= det(D_,D

cL pr+Nf2N

gr) € I by assumption (K).
Definition 2.1 (#J-stability): The system £(P,K) is called % -stable

if and only if Hyu: u = (vT,u{,u;,dT)T'* y = (y{,y;,zT)T satisfies

3nx4n
Hyu . )

Let assumptions (P) and (K) hold. MNote that assumption (K)

requires that det D ¢ I, hence from equations (2.3) and (2.4) we

obtain

S |
Hyy = NDTONp + E € Q(g). (2.6)

Thus det D ¢ T is a sufficient condition for the we11-posedness of
Z(P,K).

From (2.}) and (2.5) it is easily seen that (P,K) is A/-stable
if and only if det Dy, € U(#) [Des. 1, Corollary 3.1]. Hence w.l.0.g.
Z(P,K) is ‘% -stable if and only if we can take D, = 1 [vid. 1].

Proposition 2.2 (Stabilizibility of P): Let P satisfy assumption (P),
m nxn
and Tet P" ¢ gs R whereg

s = Jacobson Radical of 52 [Jac. 1].

Then P is stabilizable (equivalently, there is a compensator K which

satisfies assumption (K) such that £(P,K) is“A&t-stable) if and only if

m~=-1. m
Nperr is a r.c.f. of P".
Proof
(&) The pair (Ngr’Dpr) is right-coprime (r.c.), which implies
that there exist Um s Vm € 19"*“ such that
pr pr
U N +vmp =, (2.7)

pr pr prpr n



Choose a compensator K = D;l[NﬁlszQ] with Dc2:= Vgr, N, := Ugr‘
Clearly Dcz’ Nfz e‘ﬁ;"x". Then (2.5) and (2.7) imply that Dh = [. Hence,
from (2.1), (2.2), (2.5) and (2.6) it follows that, for any N_, ¢ ™",
the system £(P,K) is &/-stable.

)

have a greatest common right factor R such

(=>) For a proof by contradiction, suppose that the pair (Ngr’opr
. m ‘
is not r.c. Then Npr and Dpr

Am A

m o _ qm = N : ; .
or Ner, Dpr Der, (Npr’Dpr) is a r.c. pair and det R ¢ U(#);

equivalently, (det R)'] £ % or R'1 £ WX Now, defining ﬁh in an

that N

obvious manner,

m A o

) = det[(D D) #e N7 R] = det D det R.

h
(2.8)
Since det R ¢ U(#) and det B, ¢ %/, we have that det D¢ U(#)."
Thus (2.8) shows that for all Dcz’ and Nfz’ the system Z(P,K) is not

det Dh=det(D D__+N. N

m
cLpr fLpr pr

“4#-stable, i.e., P is not stabilizable. a

III. The Construction of AL and AR:

We now construct a diagonal matrix AL and a diagonal matrix Ap using

N .
pr ~ -
c—n,—>
) pl
Let N°  =: . where, for k =1, ..., n,
pr :
_ &~ npn—> i

"pk € 1J1xn denotes the k-th row of Ngr' Since # is a principal ring,

we can define, for k =1, ..., n, ALk to be a greatest common divisor

+To see this, suppose that det Dh € U(Z). Then from (2.8), det 6h
= det Dh(det R)"1 implies that (det R)"1 = (det Dh)’1 det Bh € # since

(det D) €W ; this contradicts det R ¢ U(H).



(g.c.d.) over %} of the elements of npk [Lang 1, p. 71]. Then for a

; ~ 1xn ~
t - =
suitable (row-vector) npk (S TN npk Bk npk and

F.ALI <:) 7 F<&—-ﬁ -—4>q

pr - : . : ALNO
. ) pr

ol

L J L o .

r € 1ynxn are not unique, since each ALk is only defined

=
)
U]

(3.1)

where AL, p

within a factor in U(A). (In the case that "N = 12qu, Ak "bookkeéps"

the plant zerOS‘n144 that are common to all elements of row k of Npr)
Datta and Hautus [Dat. 1] used a similar factorization.
The matrix N e # ™M s not necessarily invertible over ?+nxn,

pr
but by assumption (P), and since det N €, ( ) "l has elements in

the field of fractions [%}][74\0]' of the entwe ring ¥ [Lang 1, p. 69].

From (3.1), det N = det det N° where A is nonsingular by construc-
pr AL pr L

tion. Let 3 5 denote the ij-th element of (ﬁgr)'1 and for i,j =1, ...,

n, define

~

_1 m, .
( = [a; ] [d—n%], '“ij’dij € Af- (3.2)

For g =1, ..., n, let Aﬁj be a least common multiple (1.c.m.) of

(d13)1 -1’ i.e., ARJ is a l.c.m. of d1 dZJ s dnj of the elements

of the j-th column of ( [Lanq 1, p. 72]. Note that each ARj is

Pr)
only defined within a factor in U(‘#). Define

o= dd nxn
AR «= d1ag (AR].’ ARZ’ es ey ARTI) Gﬂ (3°3)

An extraction of a diagonal factor as g analogous to the present one



js found in [Des. 2].

Fact 3.1: Let N°_ and Ap be defined by (3.1) and (3.3). Then

pr
~0 -1 nxn
(Npr/ 'AR 6 H‘ .
Proof
. . : n .

Since ARj is a 1.c.m. of the (dij)i=1’ for i =1, ..., n we have
aij € & such that

Bps = 433945 dijdi5 € B (3.4)
Then for i,j =1, ..., n, the ij-th element of (ngr)‘laQ is

TR -

q ARj émijdfj € % - . (3.5)

by (3.2) and (3.4).

IV. Achievable Performance of Z(P,K).

The 1/0 Map Hyzv and the D/0 Map Hy2d

For any I(P,K) satisfying assumptions (P) and (K) (hence for which
det Dh € 1), the I/0 map Hy2v PV Y, and the D/0 map Hyzd :d--r-y2 are

given by
Ho =N pln (4.1)
yzv pr-h w2 )
= N9 rropn-l ma+ _ .0 -1

Now, Z(P,K) is Zl-stable if and only if det Dh € U(*4); consequently, if
£(P,K) is ¢/-stable we may take D, = I [vid. 1]. Using this, (2.5) and
(3.1), we obtain



s A NO

Hyzv = NprNﬂl = ALNpanl - (4.3)
= N0 1. ma+ _ \0

Hyzd Npr[I Nszpr] NprDcszr (4.4)

Definition 4.1 (Achievable Maps): Let P be given and satisfy assumption

(P); let K satisfy assumption (K) and let K be such that the system

z(P,K) is W -stable. .
Roughly speaking, let H

YoV

diagonal I/0 maps of Z(P,K); more precisely,

(P) denote the set of all achievable

H (P) :={H : for the given P, there exists a compensator K
YoV YoV

satisfying assumption (K) such that z(P,K) is %#-stable with Hy v
2
diagonal and nonsingular}.
Let Hy d(P) denote the set of all achievable D/0 maps of I(P,K);

2
more precisely,

H d(P) := {H : for the given P, there exists a compensator K
7 yzd .
satisfying assumption (K) such that I(P,K) is ‘& - stable with Hy v
2
diagonal and nonsingular}.

Achievable I/0 Map and D/0 Map:

The following theorem characterizes all the achievable diagonal

~1/0 maps and the achievable D/0 maps for Z(P,K).

Theorem 4.2 (Achievable Diagonal I/0 Maps and Achievable D/0 Maps):

Consider the system £(P,K) of Fig. 1: let P and K satisfy assump-

. -1.m  _ m nxn
tions (P) and (K). Let Dpszz = Pm, where Dpz’ sze‘ﬂg , det Dpz e I,
m m -1 m
be a 1.c.f. of P, and let Nperr be a r.c.f. of p . Let AL and AR be

defined by (3.1) and (3.3) above. Then,
i) the map HV 6‘14nx" is an achievable, diagonal, nonsingular I/0
map of the ‘W-stable system £(P,K) if and only if Hv € Hyzv(P)’ where

-10-



H (P) = {ALA Q,:Q ¢y XN Qq is diagbna] and nonsingular}.
YoV R*d * *d (4.5)
ii) the map Hd € 7g”X" is an achievable D/0 map of the A -stable

system £(P,K) if and only if H, € Hyzd(P), where

. nxn
yz 4(P)= {N [1( RD g )N = Npr pr RNm LR e st

m 4.6
det(Vpr RNM) € 1} (4.6)

m .
and Vpr Upr’ Ngr’ Dpr are as in (2.7).

Comments:

1) If decoupling were not required, the set of achievable I/0 maps

of £(P,K) would be given by

- ] nxn

Hyz"() {N QALN Q:Q €&} (4.5a)
and the set of échievab]e D/0 maps would still be given by (4.6) [Des. 3].
Requiring the I/0 map to be decoupled adds a number of constraints:

i) Q4 € AWM nust be diagonal; ii) we must have A Ap as a left factor

S0

of Hy2 instead of just Npr LNpr' th
interpret the cost of decoupling as follows: The 9 -zeros of P° tey Yo

In the case that “& = 4Q§k, we can

will be the zeros of Hy v the closed-loop system I/0 map, whether it is
2
decoupled or not. However, with decoupling, the multiplicity of these

9 -zeros may be greater than that of p°, This is due to AR: indeed,
from (4.5) and (4.5a) we see that Ny is a left-factor of any achievable
I/0 map with or without decoupling. On the other hand 8 is required to
guarantee that N, = (Ngr)'lARQd € &(#), and therefore may have a
oreater multiplicity of the same % -zeros than Ngr has.

2) If det Ngr € U(#), equivalently if (ﬁ:r)'l €4 ™" then bp = I

and the diagonal I/0 maps are of the form ALQd’

-11-



3) The diagonalization of the I/0 map Hy’v is achieved by choosing
2

an; this choice is independent of that of Dcz and Nfz'
Thus the I/0 map and the D/0 map of the

Similarly, Nﬂg

does not affect the D/0 map.

%/-stable £(P,K) can be specified independently: it is a two-degrees-of -

freedom design [Hor. 1].
4) It is important to note the constraints imposed on Hyzd by the

T -zeros and the 4(-poles of the plant when # = Rg,. If £(P,K) is

. _ on-l )
4} -stable and if PF : PDcle is full normal rank in g then

a) if z is a 9 -zero of Npr (equivalently, 3 a # 6 such that

Jeny O =
a Npr(zo) en, then

(z.) =60 ‘ (4.7)

= *
)(z) aHyzd 0 0

%*,.0
& Npr(I Nfz pr

b) if Ngr has full normal rank and if z, is a @ -zero of Ngr (equi-

valently, 38 f:e such that Npr(zm)6=en) then

0 m

o (I-Ng NTL) (2,08 = N0 (208 = H, d(z )8. (4.8)

c) if Py is a 9/-pole of P (equivalently,3y # 8, such that
Dpr(po)Y= en) then

Np,, c2Ppr(Po)Y = yzd(po)v =0, (4.9)

Thus, whenever either Ngr or N?r has a‘ﬁz-zero or when P has a

g -pole, the D/0 map is constrained by a vector-equality such as (4.7),

(4.8) or (4.9) respectively.

Proof of Theorem 4.2
(=») We are given P and K such that the % -stable system Z(P,K)

achieves the diagonal I/0 map H e:gLnxn and the D/0 map Hd e,%}nxn

-12-



We have to show that Hv is the form ALARQd and Hd is of the form

Ngr[l'(ugr+RDpz)Ngr] for some R ¢ %¥nxn and some diagonal Qd ¢ % MXN,
Since Z(P,K) 15*1J-stab1¢, w.l.0.9. we take Dh = I. From (4.3),

the diagonal matrix AL is obviously a left-factor of HV; it remains to

show that Hv has ALAR as a left-factor. For a proof by contradiction,

suppose that HV is of the form

H, = ALARQd (4.10)

where BR is a proper factor of Ap and Qd € zy"x”, nonsingular, diagonal;

for example suppose that

~

Ap = diag(ARl""’ARj-l’ARj’ARj+1”“’ARn) (4.11)

where, for a non-unit prime element sj inl, [Lang 1, p. 72],

ARj = 6jARj (4.12)
Since Hv is the I/0 map of z(P,K), from (4.3) and (4.10)

= NC = A
Hy, ALNprNﬂz ALARQd (4.13)

Since ﬂ&lis a principal ring, we may cancel the nonsingular left-factor

8 and invert Ngr in (4.13) to obtain

_ Y0 -1~
From (3.2)
LTI .
NTTQ, = [Fj]d]ag(ARl,ooo,ARj_lgARj,ARj.‘-l,ooo,ARn)'Qd (4-15)

-13-



Consider the j-th column of Nﬂg and recall that qu is by defini-

tion a T.c.m. of (d, Then si = 8.An:, W.1.0.0.
( en since ARJ GJARJ, w.l.0.9

13)1 =1

~

ij = 854450 4y € H (4.16)

where dij is a factor of ARj’ i.e., there exists a Eij € 7@3 possibly a

unit, such that

-~ ~

= d;

RJ i3S (4.17)

Hence, with qj € & denoting the j-th diagonal entry of some general
diagonal Qq ¢ #™", from (4.15), (4.16) and (4.17) we obtain the ij-th
entry of an as

M3 E o, = ol

Since Gj ¢ u(e) and in general Gj is not a factor of a the right-hand

side of (4.18) is not in“kt. Therefore, except when the prime aj is a

factor of 95 Nn£ ¢ ™M thus with N, as in (4.14), there is a diagonal
Qd e‘ﬁL"xn such that £(P.K) is not ‘#-stable. Therefore H, must be of

the form A A Q, and H € H _(P) must be given by (4.5).
L"R™d YoV
Now consider H,. Recalling proposition 2.2, since Z(P,K) is “%/-

stable, the pair (N ) is r.c. and hence satisfies (2.7). We can

pr’ Pr
take Dh = I; equivalently, from (2.5)

m =
NfQNpr + DCQDpr = I (4.19)

Viewing (4.19) as a linear matrix equation in 7unxn, we solve for (Nfz’

. 1 nxn,
Dcz) subject to det DC € I so that Dcz P 57 : from (2.7) we have

-14-



m m _
Uperr + VperP =1 (4.20)
and since N™ p -1, D"1 = P we have
pr pr PQ PQ
m m - '
DyNpr = N0y = O (4.21)

The pair (ugr vpr) in (4.20) is a particular solution to (Ng,,D_,) in

(4.19) and the pair (Dpl,-Nﬁg) is a particular solution to the homogene-

ous equation (4.21). Hence, any general solution of (4.19) is given by

. (m
Nf2 = Upr + RDpl (4.22a)

= m -
D, vpr ‘RNgz (4.22b)

where R € #™". Now, from assumption (K), we see that K ¢ anXZH if

and only if det Dcx € T. So we must require that the arbitrary

R ¢ ¥ ™" satisfies
m oM
dEt(Vpr_RNpl) € I. (4.23)

.(Note that if P ¢ Q?ann where 423 := Jacobson radical of é} then NI

pr
and sz € gnxn and (4.23) is automatically satisfied ¥R ¢ Z mxn [Des. 3,

proof of Theorem 3.1]). So, by (4.4)

= N9 oM m
Hy Npr[I (Upr+RDp£)Npr] (4.24)

and by (4.19) and (4.20)

Hy = N [V D

propr P2 Pr] ( R, )0

or RNy (4.25)

pr

Therefore Hy given by (4.24) and (4.25) is an element of H
by (4.6)

yzd(P) given

-15-



(&) By assumption, for some diagonal nonsingular Qd e‘1¥nx", we

are given Hv = ALARQd and for some R ¢ 1}"X" we are given
= Y - m m

Npr[I (Ugr+RD )N ] pr( or" sz)Dpr’ We have to show that there
exists some compengator K such that the I/0 map Hv and the D/0 map Hd
are achieved by an % -stable Z(P,K).

. | .
Choose the controller K as K := Dcz[N Py fz] with Nfz and D g @ in

(4.22a-b) and choose Nﬂg as

Y IR !
an T (Npr)

8oy (4.26)

nxn
where, by Fact 3.1, an Sy TR

= m _ m m
D D gDyt N -(Vpr-Rsz)Dpr+(Ur3r+RD

m
h cLpr pr pz)Npr

and by (4.19) and (4.20), Dh = [. Consequently det Dh € U(A) and
Z(P,K), specified by Nwz’ Nfz’ Dc2 ih equations (4.26) and (4.22a-b), is
4 -stable.

By using (4.3) and (4.26) we calculate the I1/0 map of this Z(P,K)
as

o §O

ALNpr‘ e L pr pr) ARQd ALARQd = H

and by using (4.4) and (4.23) we calculate the D/0 map of this Z(P,K) as

0 m, _ 40 m mq
Hy = Nor(I-Neghpy) = Mo L1- (U5 R0 NG, T = Hg

or

N p D =N (v -RN" D

Hyzd pr-cL pr pr pr pz

pr = Hd. n}

V. Examples and Conclusions

In the following examples we focus our attention on the diagonal

-16-



I/0 map of Z(P,K). Since the design has two degrees of freedom, only
an is calculated: indeed, the compensator parameters used to design
the D/0 map are not needed for the I/0 map.

Example 1: In this example, ﬁy w=1Q(s,e'Ts) is the principaT ring
where 1Q(s,e'TS) denotes the rational functions which are proper in s,

“TS7. (R[e""®] is the ring

analytic in €, and have coefficients in R[e
~oF nolynomials in e ™ with real coefficients.) Consider the p° given
by (5.1) below: it is strictly proper but ndt‘ﬂg-stable and it has a

. +
simple zero' at s = 3.

eS|
s-1 ! s-2
P(s,e™™) = | cocmiemen ¢ 3 2¥2 (5.1)
e &
| s+, 5-T |
e | s-1
0 .. 0_,0 p-l1 S L (s+1)2
Ar.c.f. of P° is given by P" =N D =| cecocmmcmmcticmes
propr -2s | s
(s-1)e v (s-2)e
s+l)(s+2) ! 2
- -1 -5
caso [s=1 (s-1)(s-2) 0 _ , N0 _ 4: 1 e
d1ag[s+2 S . Then N0 = 4 W0 = diag |y , £ ]

(s+1) -
..................... . Here N and N, are not unique; &
(s-1)e”S : s-1 '

s¥2° ' s+l

extracts a zero at infinity from the rational part of each row of Ngr'

%By "the zeros of P°"

0
det Npr'

we mean the zeros of the rational function
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s-2)(s+l) | =(s-1)(s+2) ]
~0 .- (s-3)e™> ' (s-3)e”®
Now (Ngr) L ittt 4 z;zxz, from which we
S(s-1)(s+1) 1 (s+1)?
(s-3)(s+2) ! (s-3) ]

-3 -S -
obtain 4, = diag j§-3)e2 , (s-3)e2 and N_ = (N° )'IA
(s+1) (s+1)

$=2 ! =(s-1)(s+2) ]
i S (s)? |
D Qq- Note that each diagonal entry of 4,
-(s-1)e * . oS
S+2 !

is equal to det Ngr’ In fact, it can be shown that in the 2x2 case,

0
pr
modulo a unit in U{eA),

each diagonal entry of b is always equal to det N° modulo a unit factor

in U(#). Consequently, det Ap = (det Ngr)z

and the number of m+-zeros of the diagonal closed-loop I/0 map is

(s-3)e'AS , (s-‘3)e'zs
(s+2)(s#1)? ~ (s+1)°

increased. In the example, Hy2v=ALARQd=d1ag[

-Qd, where Qq € 1}2x2 is diagonal and nonsingular. Here, Hy v has a
2
zero of multiplicity two at s=3 and it may have other ¢+-zeros due to

0
pr
decoupling is the increased number of C_-zeros (due to AR) and the restric-

Qd' Comparing this to the C_-zeros of det N - we see that the cost of
tion that Qd be diagonal.

Example 2: In this example, Tet Z} =7Rg, where Y = C,. PO is
given by (5.2): it is proper but not %+-stable; P has a zero of multi-

plicity two at s=1, a zero at s = 2 and two zeros at infinity.
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[ s-1 | 10 (s-1)(s=2) ]
(s-3)(s¥2) |, s+2 v (s+1)(s+2)
- s+1 ! : s=2 3x3
Y=l 1w #H
' 1 : §=~2
O ' Ts-1)(s+1) | T(s+1)(s+2)

A r.c.f. of PO is given by

Then, Npr

0
AL and Np

.f
row o Np

N0 y=1 _
(Npp) ™ =

W

(5.2)

[ s-1 : s-1 v (s-1)(s-2) ]
(s+1)(s+2) | (s+1)(s+2) | (s+1)(s+2)
S
pr = 1 T % d‘ag[
0 I 1 ' 5-2 .
] : (s+1)2 v (s+1)(s+2) J
[ 1 0 1 4 (s=2) ]
(s+1) | (s+l) ' (s+1
CA R0 sdiag [S5L o1 L1, i fsel) ' (s2)
B Ny = diag Ls+2° L, s+1] L) ' (s+2)
0o L (s-2)
I v (s+l) « (s+2) |
are not unique and AL extracts a zero at s =1 from the first
" and a zero at infinity from the third row of Npr No
B ' : 2_ay
s-2)(s+1) '+ _1 , -(s"-3)
s-1 ' 5- s-1
- s+1)2 L s+l : (s+122 ¢'$¢3X3
s-1 . S- ' s-1
(s+1)(s+2) 1 -(s+2) b -2(s+2)
s-1)(s-2 ! (s-1)(s-2) .+ (s-1)(s-2)
L
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and AR = diaa E];M:ﬁ)_ s-1){s-2 gS*lHS-Z!

(s+#1)%(s+2) ~ SHIS*2) 7 (5412 (s42)

(The first and the third diagonal entries of A are equal to det ﬁgr.)
- : ' . , T
(-2)2 1 s 1 -(s%-3)(s-2)
stL)(s+2) 1 (s*(s*2) | (541)2(s42)
B R S
Then NTTQ, = —(?472-} : T : 350 Qd and
1 = -2
L s+l ) s+l . (S+1)2 ]

: C oo L (se1)P(s-2)  (s-1)(s-2)  (s=1)(s-2)
g T Rl T 4 [ (s+1)%(s+2)* 7 SFIRY 7 (41)3(s4g) | T4

where Qd € 1$3X3 is diagonal and nonsingular. The closed-loop diagonal
C
I/C map Hyzv |
plicity three at s = 2 and three zeros at infinity. Hy y may have other
2
C, -zeros due to Qd' The cost of decoupling is the increased number of

has a zero of multiplicity four at s = 1, a zero of multici-

¢, -zeros (due to AR) and the restriction that Qd be diagonal.

Example 3: In this example we design a decoupling compensator for
the P° given by (5.3), which is the model of a "boiler subsystem" in
[Joh. 1]. Johansson and Koivo apply the Inverse Nyquist Array method
of Rosenbrock in the design of a multivariable controller. Let A%: vQQQ

vihere U= <,
~ -
-2s
0 _ | -e -1 2x2
P(s) = | T0s7T  TosoT | € % (5.3)
-10s
e
0 60s+1
— —




.. . 1
A r.c.f. of P° is given by Dpr =1, Ngr = P°. Then o = diag 754 °
i 2s 125 ]
1 ~0 -1 _ | -(10s+l)e (60s+1)e .
0571 and (Npr) = (7s+1) (405 +1) . From this we
0 (60s+1)e!%s
(40s+1)

. s -2s -12s _ /v0 -1
obtain Ap = diag[e “,e ] and N“Q = (Npr) ARQd

-(10s+1) (60s+1)
(7s+1) (40s+1) 2%2
= Qq» where Q, ¢ * is diagonal and

0 §605+1}e'2S
40s+1

. . . e'2$ e-lZs
nonsingular. Finally, Hyzv = ALARQd = diag -Qd. Here,

7s+1 * 40s+1

the closed-loop I/0 map is diagonal and the time-constants are reduced

from 10 sec. and 60 sec. to 7 sec. and 40 sec. respectively. We com-

plete our design by giving a choice of DCQ and Nfz as

. o-10s ]
B0s+1
- ym oM - _ npO
Deg = Vor = RND, 12 RP
e
| s0s7T ]
0 -1
Neg = Upe * RO = | 07105 100,15 | orw
60s+1

2x2 . m
where R ¢ 79 is such that Vpr - RNEQ € I.

Conclusions

Without decoupling, the set of all achievable I/0 maps of I(P,K) is
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given by (4.5a). The compensator parameter an, which is used in design-

ing the I/0 map, is made %}-stable by an appropriate choice of a diagonal

A/-stable matrix Ap defined by (3.3). Finally, the set of all achiev-

able diagonal nonsingular I/0 maps is given by (4.5), where A appears

as a left-factor of both diagonal and non-diagonal achievable I/0 maps.
The examples of this section clearly illustrate the cost involved

in decoupling the I/0 map while requiring that it be #t-stable; this

cost is reflected by Ap and Qd: AR must be chosen so thét N1T2 is &/ -

stable; Qd e AL™" must be diagonal. In the case that ¥ = 7?§q (or

Kt = 7Q(s,e'Ts) as in example 1) the presence of Ag in the diagonal I/0

map results in increasing the number of %{-zeros. If Ngr € 1%2X2,

)

or (for a proof see

det AR has exactly twice as many %I;zeros as det N
the Appendix.)

This design method has two degrees of freedom: decoupling the I/0
map has no effect on the D/O map. the D/0 map is designed using the
parameters Dcz and Nfl of the compensator. The only compensator para-
meter used in the I/0 map is Nwz.

The results developed in this paper are valid for many classes of

systems, some of which are listed in [Des. 3, Table I].
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Appendi x

Let &/ :=Rq and et n=2. Let N0, A

or? AL and Ap be defined by (3.1)

and (3.3). Under these conditions, det Ap = (det Ngr)2~u where u ¢ U(H).
-0 "1 M2 242 .
Proof. Let Npr = - € A" where, by the construction of '

f1 22
("11’"12) is a coprime pair and (n21,n22) is a coprime pair. With

0
P

(-nlz/é,nlllé), resp. Now, any irreducible common factor that cancels

e ~ . N0 -1 gs .
§ :=det N P the first and second columns of (Npr) are (n22/6, n21/6),

in n22/6, will not be a common factor in -n21/6, since (n22,-n21) are
coprime. Thus the least common denominator for the first column is §.

The same holds -for the second column, hence B = diag(s,8) and

det 4y = (det &°r)2

or) modulo factors in U(#).
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Figure Captions

Fig. 1. Tﬁe System Z(P,K).
Fig. 2. The System 1Z(P,K).



Yy
u ) 2
+ + +
D“1 — D-l
rt cl -yl ez pr
N z
£ N
+
Fig. 1
J
u
Vv 2 yz
—_— e —
~~ 1 y + 0o --
z > ! <:— P
- f = m
——=t " K ' P T -
- Uy
+

Fig. 2



	Copyright noticE 1985
	ERL-85-9

