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A particle-ion, fluid-electron computer simulation code is used in the study
of the Alfven ion-cyclotron (AIC) instability, a parallel-propagating electromag
netic instability driven by temperature anisotropy in the ion velocity distribution
function. A numerical odd-even mode is suppressed by means of a two-timestep
averaging method. Excellent energy conservation is obtained by using a method
similar to the Boris particle mover to advance the transverse fields. Linear growth
rates obtained from the code differ substantially from those predicted by uniform
Vlasov theory, here derived using a multifluid model. Short wavelengths in partic
ular show substantial growth rates when damping is predicted, and additionally
show strong linear mode coupling. Positive growth rates are even observed in
the case of a Maxwellian ion distribution. Disagreement is also generally found
among short-wavelength mode frequencies. These inconsistencies are resolved by
taking into consideration general grid and discrete-particle effects of the simula
tion model. A theoretical study reveals a real, physical process by which an ion
distribution may collisionlessly relax via short-wavelength AIC instabilities acting
resonantly on small portions of the distribution function. This process is combined
with a linear mode coupling theory and other characteristics of the AIC instability
to explain all observed differences. Nonlinear short-wavelength saturation levels
are also obtained and their relevance to other field-aligned, electromagnetic sim
ulations is discussed.
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I. INTRODUCTION

The Alfven ion-cyclotron (AIC) instability is a plasma instability driven by free energy
associated with an anisotropy in the ion velocity distribution function. Specifically, the
instability requires the ion temperature perpendicular to a background magnetic field Bo
to be greater than the ion parallel temperature (T{± > Ti\\). The Alfven ion-cyclotron
instability is so called because it appears typically on that part of the dispersion curve which
is intermediate between the shear Alfven wave and the parallel-propagating ion-cyclotron
wave. The AIC wave is thus typically thought of as traveling along Bo and indeed is usually
the most unstable when propagating in that direction. Being on the Alfven-ion-cyclotron
branch, the AIC instability is electromagnetic in nature, and for propagation along the field
in a uniform plasma, is purely electromagnetic, with both electric and magnetic wave field
vectors always pointing normal to Bo.

Its existence was demonstrated recently in the tandem mirror experiment TMX at
Livermore [1], and the possibility of its occurrence in other experimental fusion plasmas
such as the theta-pinch [2] has been theorized. In the Livermore experiment, the anisotropy
for the instability was produced by perpendicular heating of the end-plug ions induced by
neutral beam injection oriented at an angle of 90 degrees relative to the local magnetic
field. The observed fluctuations had frequency below that of the beta-depressed cyclotron
frequency, had relatively low azimuthal mode structure, and had elliptically polarized wave
magnetic field components—all characteristics expected of the AIC instability, and incon
sistent with the drift-cyclotron loss cone (DCLC) mode which had been seen in earlier
mirror experiments. The instability has also been predicted to appear in certain axicell
designs of the next-generation mirror experiment, MFTF-B [3].

Data from both ground-based and space-based detectors have suggested that the AIC
instability may also occur in the Earth's magnetosphere. Recently, Mauk and McPherron
[4] presented evidence collected from the geostationary satellite ATS-6 suggesting the in
stability may be operative on the daytime side on or near the Earth's geomagnetic equator.
As argued by Cornwall et al. [5], the instability may also occur on the nighttime side during
periods of particle injection into the ring current region from the magnetotail.

The AIC instability is similar in many respects to its electron analog, the whistler
instability. The latter typically occurs at frequencies somewhat below the electron cyclotron
frequency and is driven by the analogous anisotropy in the electron velocity distribution
function. In a uniform plasma, individual modes of the AIC instability propagating along
Bo rotate about Bo in the same sense that the ions gyrate; similarly, the wave field vectors
associated with the whistler instability rotate in the electron gyrorotation direction.

Theoretical studies of the AIC instability have been conducted by many researchers.
The first study of the instability appears to be due to Rosenbluth [6], and has since been
analyzed by Sagdeev and Shafranov [7], Scharer et al. [8-10], Hasegawa [11], and others.
Linear theory has been developed for the instability for ion velocity distributions occurring
in mirror machines by G. R. Smith [12] and earlier by Cordey and Hastie [13] and Hanson
and Ott [14]. The behavior of the instability in inhomogeneous plasmas has been examined
by Rognlien [15], Watson et al. [16,17], Tajima and Mima [18], and G. R. Smith et al. [3].
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Characteristics oftheAIC instability inthequasilinear regime have been studied bySagdeev
and Galeev [19] and Davidson and Ogden [2]. A theory presented by Ossakow, Ott, and
Haber on the quasilinear saturation ofthewhistler instability [20] is also applicable to the
AIC instability. References to further linear studies on theAIC instability in fusion plasmas
and general plasmas appear in Ref. [12]; studies on the behavior of the instability in the
space environment may be found in Refs. 4 and 21.

The AIC instability has also been the subject of a number of simulation studies. An
early simulation study was carried out by Hasegawa and Birdsall [22] for Ti± ^ 0 and
T*».| = 0 in which rapid parallel heating of the ions was observed in the initial stages of
the simulation and growth rates of the wave compared favorably with theory. Simulations
involving both Ti± ^ 0 and T^ ^ 0 have been conducted for the AIC instability by
Cuperman et al. [23], Tajima and Dawson [24], and Ambrosiano and Brecht [25], and for
the whistler instability by Ossakow et al. [20]. Allthese simulations displayed initially rapid
relaxation of the temperature anisotropy in the active species (ions for the AIC instability,
electrons for the whistler instability) followed by a period of slower relaxation. A numerical,
quasilinear study performed by Davidson and Ogden [2] also exhibited similar behavior.
Mode coupling was observed in some of these simulations to transfer energy to the low
wavenumber modes during the slow relaxation phase.

Although simulation techniques have been generally quite reliable in the study of the
AIC instability, especially in the study of its nonlinear behavior, difficulties have been en
countered. Systems initialized with zero-current equilibria (i.e., quiet-start simulations,)
often exhibit linear growth rates substantially higher than those predicted by theory. This
is especially trueofthe high wavenumber modes. Positive growth rates are even observed in
the simulation of a Maxwellian ion distribution which of course is theoretically stable. The
linear simulations of Byers et al. [26,27] demonstrate that carefully chosen methods can cir
cumvent the problem; nevertheless, investigation of the underlying causes of these growth
rates is still useful, since it exposes much of the natureof simulations of this type. The sat
uration levels of these modes is also of concern. If the levels are higher than the amplitudes
of the physical effects being studied, results of the simulation becomemeaningless.

These difficulties and related simulation characteristics are the subject of this study.
The results obtained here apply not only to the simulation of the AIC instability, but
to simulations involving parallel-propagating electromagnetic waves in the ion-cyclotron
frequency range in general. Some of the results also apply to higher frequency regimes,
including the electron cyclotron frequency regime. The general simulation characteristics
described do not depend on the specific algorithm used; any simulation using ion particles
and a spatial grid incorporating the same general physics should display similar character
istics.

The results presented here also serve as a case study for particle simulations in gen
eral, and electromagnetic particle simulations of parallel wave propagation in particular.
The usual discrete-particle and nonphysical grid-aliasing effects assume new guises in these
systems producing different andinteresting newbehavior. This behavior is of potential im
portance to many kinds of simulations, since the possibility always exists that these effects
will interfere with the evolution of the physicaleffects under study. Additionally, one of the
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mechanisms described, the "one-beam" AIC instability, is itself a physical effect of some
interest, as it provides another pathway for free energy in a particle velocity distribution
to collisionlessly relax apart from the bump-on-tail instability.

II. THE AIC LINEAR DISPERSION RELATION

The linear dispersion relation appropriate to the AlfVSn ion-cyclotron (AIC) instabil
ity is well-known for propagation of the wave along the background magnetic field BqZ
in a uniform plasma [2,10, etc.]. Here we again derive the AIC dispersion relation but
use a "multifluid" model instead of the usual Vlasov equation as the basis for the calcu
lation. The advantage of this approach lies in its conceptual simplicity—one observes the
direct connection between features of the wave responsible for producing the various linear
currents and terms in the dispersion relation.

By considering the ion phase space fluid in the Vlasov description to be composed of an
uncountably infinite number of cold fluids, each with its owncharacteristic set of zero-order
quantities vZi vj_, and gyrophase 0 at time t, we may write the perturbed transverse ion
current in, say, the y-direction as

(Ji)y\(z,t) =e / dvzv±dv±f°(vZiv±) I d0[novyi(v2,*,<) +n1(vJB,v_L,0,2,t)vy], W

where the ion velocity distribution function, f°(vZiv±), is normalized according to

d6 dvzv± dv±f°(vzi v±) = 1, (2)/
no is the unperturbed ion density, vy = vj.cos0, and d9dvzv±_dv±f0ni(vz,v±^O^z,i) and
Vyi(v*,<M) are respectively the perturbation density and perturbation y-velocity of the
cold fluid element with zero-order quantities vZi v±, 0, and z at time t. The perturbation
density n\ in Eq. (1) may be expressed as:

ni(vz,v±,0,z,t) - -no—zi{vzyv±,e,z,i). (3)

Assume the perturbation wave field takes the form of a single, purely transverse,
circularly polarized, sinusoidal wave of wavenumber k and frequency w propagating in the
direction of the uniform magnetic field Bo&. The required components of the perturbed
ion motion in these fields are easily found to be (real part implied):

»»iW =fgi "-*"*> expfrfc^ft) _iut), (4)
* kmc w — kvzo —(I

and

*W=- efl/m* (vxo(t) - ivyo(t)) exp(ifc*0(0 - i"t). (5)
{(jj — ICVgQ — 11)*

where fl = Ud = eBo/mcy m is the ion mass, and the 0-subscripted quantities represent
the unperturbed magnetized ion motion. The electrons may be assumed to be a cold fluid,
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drifting in response to the perturbation transverse electric field with the E X B velocity:

/ r x en0c(E! XB0)y (R,
Wejyl ^2 • W

Substituting Eqs. (3), (4), and (5) into Eq. (1) and applying Ampere's Law,

0=^VxB- (Je)yl - (Ji)yU (7)
then yields the AIC dispersion relation:

„ fcM "> [ J J ,o, J u-kvM , |fc2»l \
(8)

where v& = Bo/(4irmno)1/2 is the Alfven velocity.
The first term is the free-space term and the second term is the electron ExB contribu

tion. From the infinite fluid derivation, we know the third term comes from the novyi term
in Eq. (1) and thus results from the perturbedtransverse ion motion, while the fourth term
arises from the transverse ion current generated by the inhomogeneous first-order displace
ments of ions along Bo, which we deduce by considering the effect of the spatial derivative
in Eq. (3) on the form of Eq. (5). The current appears because the different fluids, with dif
ferent zero-order transverse velocities, experience different differential displacements, and
therefore contribute with differing densities to the transverse current density at a given
location z. It is this last term which is responsible for the AIC instability.

III. THE SIMULATION ALGORITHM

The main code used for the simulations presented in this study, TRACY (Transverse
AIC Simulation), is a one-dimensional, spatially periodic code using a spatial grid along
the direction of a static, uniform, unperturbed magnetic field Bo&. TRACY follows the
one spatial coordinate z and all three velocity components of particle ions moving self-
consistently in the transverse electric and magnetic fields. Electrons are treated as a linear
ExB fluid.

The algorithm begins each timestep by updating ion velocities using a standard Boris
mover scheme [28]:

j

v? =v? +i £ £(*, - jj)v? x BJ, (10)

v? =vf +£ 8{Mt -4tf x1+a°L,,, (")
v"-'/* =v? +*!>(*,-*?)E}. (12)
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Here i is the particle index, j is the grid index, t is the timestep index, and S is the particle-
in-cell shape factor [29]. Computer variables withnormalizations v —• v/v.a, z -> z/(vA&t),
E -»• eEAt/mvAl B -• eBAt/mc, Jion -*• (iV/JVg)(Jton/enoVA), and A -> eAAt/mcAz
are used in the algorithm, where JV^ is the number of grid points in the system, N is
the number of particles in the system, and At and Az are the timestep and grid spacing
respectively. The ion positions are next advanced one-half timestep:

*ri/2=a+\{vz)?i*\ (is)
Next, ion currents are collected at the grid points:

(j^)r/2 =E5(*;-z'+,/2)v!+1/J. (")
*

and 3\^2 and the vector potential A* are transformed to Fourier space. Here A is defined
so that dA/dt = -cE and V x A = Bj. as At, Az —• 0. Since electrons are being treated
as a linear ExB fluid and since displacement current is being neglected, Ampere's law
takes the form

^^ x* fc>A(M) --J~»(M). (15)
c at d* c

The similarity of this equation to

dv e _ v x B ,,-x
— = -E + e , (16)
at m mc

suggests we again make use of the Boris scheme:

AJ =A< +Iv^^^(Jion)i+1/2 xe, (17)

where

A6fc =At + \k% x bfc, (18)

hk_
l + 0.25|bfc|2'

At+1 =AJ +Iw—^Vi-n)?1'2 xi, (20)

bfc =-z^At. (21)
Note that in this one-dimensional transverse system, only transverse components of A
need be computed. This scheme has the natural advantage of conserving the magnitude
of A in the absence of Jton, a desirable feature in view of Eq. (15). With both field and
particle equations being advanced by Boris-like movers, we expect above-average energy
conservation properties, and indeed, the quantity

AS= AJ + Abk x . , ^ ,., (19)

E^+/ ^assidz (22)
8ir
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kAz

FIG. 1. Numerical dispersion relations for Eq. (27) for the cases (a) vAAt/Az £
1 and (b) vAAt/Az > 1.

is typically conserved to better than 3 parts in 104 in simulations presented in this study.
The new magnetic field is obtained next from

(BJ)t+1 = kAz(Ack)t+1 X z, (23)

(BJ)t+1 = -*A*(AJ)t+1xz, (24)

where the superscripts s and c stand for the sine and cosine components respectively. After
inverse-Fourier transforming Bt+1 and At+1, the new electric field is obtained from

E*+1 + E*. Az
(A**1 "A}).

2 vAAt

Finally, particle positions are advanced another half timestep:

^=*r/2+1("«),,+,/3.

(25)

(26)

completing the timestep loop.

Following the method presented in, for example, Ref. 30, a dispersion relation has been
found for this algorithm for the case of a cold, uniform ion distribution:

tan^L 8m<^tan^l+tan*^l
o = —jA±

(jj: w< iAt
+

uAt I\ A j
tan —-— I 1 -f tan

2 7

(*¥)'
uAt UciAt

tan——- q= —-—
2 2

(27)

Qualitative features of the roots are shown in Fig. 1. In addition to the expected electron-
cyclotron and ion-cyclotron branches, a third branch appears at very high frequency (uAt re
7r). We see this odd-even mode is stable for vAAt/Az appreciably less than 1 (the Courant
limit) but is nevertheless a nuisance. For vAAt/Az > 1, the algorithm becomes unstable
as the odd-even mode interacts with the electron-cyclotron branch.
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FIG. 2. Electric field histories (x-component) for the first 40 timesteps for (a) a
run not using two-timestep averaging, and (b) a run using two-timestep averaging
of timesteps 8 and 9.

A reasonable cure for the stable odd-even mode has been found in the form of "two-
timestep averaging" of the electric field and vector potential. This is implemented by
solving for A and E as follows:

Af = i(A}+, +A}), (28)

•pavg __ Az

vAAt
(AJ--A}), (29)

and now we take these averaged quantities to be the field quantities at timestep t +1. Since
the odd-even mode frequency is such that a;^At re ir whilethe physical phenomena we wish
to recover have uAt « ir, two-timestep averaging kills the odd-even mode while having
minimal effect on the physics. The effect of this procedure is illustrated in Fig. 2. The
two runs shown in Fig. 2 are identical except that two-timestep averaging was performed
once in the run illustrated in Fig. 2(b). The odd-even mode has never been observed to
reappear following the averaging, demonstrating its effectiveness. In the standard version
of the code, two-timestep averaging takes place once only using the first two timesteps.

IV. THE ONE-BEAM AIC INSTABILITY

Many of the simulation features observed in the linear regime are most easily studied
by using as the initial ion distribution a non-physical "multibeam" distribution function of
the form

/°(v,*) =
NbNiV±

Nb-1 Ni

6=0 t=l
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where v±t, and vzb are the perpendicular and parallelvelocities associated with a given beam
6, and zn, and 0n» i = 1,..., Ni define the spatial and gyrophase coordinates represented by
particles in that beam. The use of such a distribution function has two advantages: (1) the
linear behavior of this distribution in simulation is more accessible to theoretical analysis
than is, say, the bimaxwellian distribution, and (2) this distribution has comparatively few
distinct values of v± and V||, allowing each {v±,v\\) pair to be initially loaded uniformly
along the spatial grid of the system. The latter allows for cleaner simulation diagnostics,
and of course is a factor in simplifying the analysis.

Consider then the linear growth rates and frequencies that would be expected of the
multibeam distribution. First assume each (vj_,V||) pair, i.e., each beam 6 is loaded uni
formly in both physical space and gyrophase space. Then

/°(v) =̂ 1^ £ S(v± - v±b)S(vz - vzb), (31)
6=0

where Nf, is the number of beams. FVom the general form of the AIC dispersion relation
given by Eq. (8), we easily obtain the relevant dispersion relation:

n+ n* +jv6 £-; \oj-kvzb-a* (u-kvzb-n)*)' l '
6=0

Equation (32) has been numerically solved for u. A typical spectrum of solutions for the
multibeam distribution is shown in Fig. 3. The beam parallel velocities were calculated to
represent a Maxwellian distribution. A similar spectrum for a bimaxwellian ion distribution
having the same values of T»j. and Tt-[| is also plotted for comparison.

The agreement between the two spectra is good at long wavelengths (k <• 0(il/vA)).
However, in the high-fc portion of the spectrum, decidedly different behavior is exhibited
by the multibeam distribution. We can explain this behavior in terms of "one-beam"
AIC instabilities. That is, for high enough fc, it is possible for the ion response to be
dominated by a single beam in the ion distribution function. The resonant beam has
infinite temperature anisotropy (Ti±/Ti\\ = oo) whenever its perpendicular velocity v±b is
non-zero, and is therefore capable of driving the instability.

Assume the mode frequency associated with the resonant beam, say, the beam 6 = 0
in Eq. (31), is expressible as

wd =Wd0 +^ +T(r+O(A:-3) ^ *"* °°> (33)
where w<£ = w —kvzo —17 is the deviation of the mode frequency from the Doppler-shifted
ion-cyclotron frequency, and u><io, cjji, and Wd2 are independent of k. We find that Eq. (32)
may be expanded consistently with Eq. (33) to yield

<^= m (n]w. (35)
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FIG. 3. (a) Linear frequencies and (b) linear growth rates vs. wavenumber for
bimaxwellian and 8-beam multibeam ion distribution functions having 0i± = 2
and Ti±/Ti\\ = 16.

Ud2 Ot;j.o /n\2f 1 / v±o
2y/2NivA\kvA) \y/Ni\y/2vA

>/2r^\
v±o )

JV6-1

(36)

For large enough k, the u>do term dominates in Eq. (33) and we recover as the imaginary
part of the frequency just the infinite-anisotropy AIC growth rate for that beam (Eq. (34)).
Numerical evaluation of the roots of Eq. (32) verifies this; as k —• oo, the calculated linear
growth rates are observed to approach the values predicted by Eq. (34) (Fig. 4). The
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FIG. 4. Theoretical and simulated maximum growth rates vs. mode number for
multibeam ion distribution functions composed of (a) 8 beams, (b) 16 beams,
(c) 32 beams, (d) 64 beams, and (e) 128 beams with 0i± = 2 and Ti±/Ti\\ = 4.
The theoretical asymptotic (k —*• oo) growth rates Wdo/vd is also indicated (heavy
horizontal bars). Each of the beams is composed of 47 groups of particles each
containing four particles initially arranged n/2 apart in gyrophase space. The
simulations retained modes —25 to 25 with kvA/uci = 0.199 x (Mode no.).



-12-

expression for u>do is pure imaginary, implying that the real part of the mode frequency is
the Doppler-shifted ion cyclotron frequency, il + kvz0i to zero order. These are just the
characteristics expected of the AIC instability of a single, infinitely-anisotropic distribution
having the density and parallel velocity of the (6 = 0)-beam.

V. LINEAR MODE COUPLING

Simulations using the multibeam distribution function with various numbers of beams
show excellent agreement with both the frequencies and growth rates obtained at long
wavelengths from the numerical solution of Eq. (32), as shown in Figs. 4 and 5(a). The
observed short-wavelength growth rates and frequencies also generally agree, but there are
notable exceptions. The shortest wavelengths followed by the simulations often exhibit
growth rates substantially larger than those predicted by theory (modes 22-25 in Figs. 4(a)

(0)
35

3° 201-

.Bimoiwellion

ion-cyclotron branch

5 10 15

Mode No.

20 25

<!>/0Jcj

FIG. 5. (a) Principal linear frequencies vs. mode number for a 64-beam multi-
beam simulation with fii± = 8, Ti±/T^\ = 4, and kvA/uc{ = 0.199 x (Mode no.).
Selected theoretical linear dispersion curves are also plotted for comparison, (b)
A typical frequency spectrum from the linear phase of the simulation.
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through 4(c)). Additional peaks ("ghost peaks") sometimes appear in the growth spectrum
(Figs. 4(d) and 4(e)). Finally, a strong whistler frequency component often accompanies
the one-beam AIC mode(s) at short wavelengths (Fig. 5). The whistler component growsas
rapidly as the fastest growing one-beam mode, even though Eq. (32) predicts the whistler
to be stable.

All of these discrepancies may be explained by considering the combined effects of grid
aliasing and linear mode coupling in the simulations. Mode coupling, or the transfer of
energy from a wave at one wavelength to other wavelengths, can only occur in the linear
regime when spatial non-uniformities are present in the equilibrium. In the present case,
the non-uniformities are found in the spatial ion distribution as a consequence of our use
of particle ions and enter the equations through the linearized source terms. In the case of
our AIC simulations, the relevant source term is the linearized transverse ion current. The
essence of the linear coupling is thus easily understood. The linear current response of ions
to a transverse wave at a given wavelength will not be entirely at that wavelength because
the constituent linear particle currents are not uniformly distributed in space. The coupling
mechanism may also be described as wave-particle scattering or, in the case of regularly
spaced particles (as is the case in our multibeam simulations), "particle-grid'' aliasing.

The equations required for describing these effects are derived by substituting linear
expressions for 6vta and 6zia into components of the linearized expression for the transverse
current,

i a a

+̂ XB0, (37)
where i indexes particle "groups," 8 labels the particles in each such group, N is the total
number of particles, «?(*) = zf+vjjt, v?a(t) =xv?± sin(0?a +tit) +yv?±cos(0g, +tit) are
the perpendicular zero-order trajectories, S(z) is the shape factor of each particle, and z3- is
the 2-position of grid-point j. Here 6via(t) and 6zia(t) are the linear perturbed quantities
for particle s in group i, and Aj is the perturbed vector potential at grid j. A particle
"group" here refers to a group of particles all having the same initial, zero-order values
of V||, vj., and z. In our simulations particles were loaded in groups of four at intervals
of 7r/2 in gyrophase space, with the first gyrophase angle chosen at random. This "four-
spokes" gyrophase distribution maintains a constant perpendicular velocity second moment
in the absence of wave fields while minimizing the number of particles required to represent
realistic ion distribution functions. Also, quiet starts are possible with the four-spokes
distribution, since there is no associated transverse current. Again, ions are represented as
particles while electrons enter only through the electron E X B0 current. In this calculation
we ignore the finite timestep size At.

Expressions for 6via(t) and Szi8(t) in the ion terms in Eq. (37) may be calculated from
the linearized ion equation of motion :
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Isvi. +nxtvu =̂ £ sl*> -4.) (*Ey +̂ ?i)
=—VNgSkp fduftu- kv%)Ak(u) +kz(via -Ak(u))]f

mc *-^ J "
k,p

xexp[-i(w-*pti?p)t], (38)
where the Fourier transform of S is decomposed in its grid aliases (indexed by p) as

S« =£ £ Se+Pk/(t'+"°t)', (»)
k' p

and

Ai(t) =E / ^ A*(w)cifc*'-*tft. (40)

In the sums, fc, and A:' take on the values 2irl/L for integers / between —Ng/2+1 and JVff/2,
where L is the length of the system, while the alias index p runs from —oo to +oo. We have
also defined kp = k + pkg to be the p-th alias wavenumber associated with wavenumber k,
kg being the grid wavenumber 2irNg/L = 2ir/Az.

Using the integrating factor e*nt, Eq. (38) yields

x exp[-t(w - fcpv?||)t], (41)

where A+ = Ax+ iAy and 6u+ = 6vx + t'6t>y. In similar fashion, we obtain

*- •£*<«>*.«=-^ £*A/*^|^4M^
xexp[-t(w-*p»?||)«]» (42)

by assuming
N.

«=1

k z°

which holds when each group t is composed of at least three particles uniformly loaded
in gyrophase space. (The four-spokes distributions used in our simulations have four uni
formly loaded particles per group.) Here x~ = (x+)* = x + ty is the basis vector dual to
x+ = x —ty. Terms involving the constants of integration have been discarded in these
expressions, since AlC-unstable time-Fourier components in the integral will eventually
dominate. Substituting Eqs. (41) and (42) into the (+)-component of the linear current in
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Eq. (37), Fourier transforming the remaining terms, applying Ampere's Law, and equating
Fourier coefficients, we find the desired dispersion relation

Do(fc>')A+(W') =-^££'l>,(*,fc',P,p',v?,o,')>llf(«'Oei(':'-i')s?. («)
i,p k',?

where

D0(k,u) =-jp- +s +-jy 2-JV^„_^„j. _n +(W-v?,i-n)V' ( }
is just the continuous-distribution dispersion function, including grid aliasing effects (cf.
Ref. 31),

ZMM'.P.P'.V^) ,*J*^(^L_+JW,), (45)
Wiscy +(*p-^)»?,|, (46)

and k'p = fc' +p'kg. The sum over fc' and p' in Eq. (43) is meant to exclude those terms for
which both fc' = fc and p' = p.

The coupling process may be diagnosed by assuming the coupling and aliasing effects
are weak and formally expanding Eq. (43) in orders of [N/Na)~l. (The actual expansion
parameter is not in general (N/Na)"1 but depends on the statistics of how the particles
were loaded. For example, if the particles were randomly loaded, the expansion parameter
may beexpected to be ofthe form a constant times {N/N9)~1/2. The constant will usually
be appreciably greater than one, since typically the resonant particles dominate the sum
over t in Eq. (43) and thus effectively prevent the larger number of non-resonant particles
from contributing to the statistics.)

The effects are most clearly illustrated by considering the coupling from a single
"pump" wave with designated wavenumber and frequency fco said wo- The only equation
that survives to zero-order in (N/Na)-1 is the fco component of Eq. (43):

Do(ko,uo)Aio(uo) = 09 (47)
which simply indicates the pump wave must satisfy the uniform, grid-aliased, linear disper
sion relation to zero-order. The k' ^ k and/or p1i=-p equations (coupling equations) first
appear at first order:

A+W=_^^i(fc°^|P;P>^"o)A4(b,o)exp{<p0+pfcg) _p+p>k,)]z?}. (48)
There is one equation and therefore one scattered wave for each combination of k' -^ fco,
p' ^ p, and particle group t. Since here Wj=u;o> the frequency of the wave scattered off
particle group t to wavenumber k' through grid aliases p and p' is just

u'= u0- [(fc0 +pkg) - (fc' +p%))v^. (49)
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Additional characteristics of linear scattering are revealed by considering under what
circumstances scattering as described by Eq. (48) is most efficient. Scattering will generally
be strongest when the effective coupling coefficient, Di/Do, is largest. Peaks in the mag
nitude of Di/D0 typically occur when two conditions are satisfied: (1) the particle group
i off which scattering is to occur sees the Doppler-shifted pump wave frequency as the
ion-cyclotron frequency, and (2) the daughter wave is (or is close to) an eigenmode of the
system. The first condition derives from the resonant denominators in the expression for
D\ in Eq. (45) and demonstrates the requirement that thereexist some particle group(s) i
with parallel velocity

o wo - ft ,.„*
W?'| * k^W,' (50)

for someinteger p for a wavewith frequency uq andwavenumber fco to be linearly scattered.
The second condition expresses the reasonable contention that the scattered wave satisfy

A>(w',fc') wO. (51)

The relationship between the pump wave and the daughter wave may be displayed
geometrically. If the parallel velocity of the scattering particle group given by Eq. (50) is
used in Eq. (49), we obtain the proportionality

w' - w0 . ft - wo ,_..
(52J

(fco + pfcff) - (fc' + p'kg) fco + pkg'
illustrated in Fig. 6. Points representing the frequency and alias wavenumber of the two
waves lie on (or near) a fine having slope the parallel velocity vjj. passing through the point
(ft, 0). As indicated by Eqs. (47) and (51), the frequency of each wave will satisfy the
zero-order dispersion relation at the unaliased wavenumber; thus each will reside on (or
near) one of its branches.

Linear scatteringis also governed by the statistics of the particle distribution through
the complexexponentialappearing in Eq. (48). If particle groups arerandomly loaded, the
exponential introduces a random direction in complex space, so that the sum of scattered
waves may be loosely thought of as a series of random walks in complex space with step
size the scattering coefficient. Thus we expect the amplitudes of scattered waves to scale
as (JV/JV,)"1/2, as suggested earlier. If, on the other hand, the particles have been loaded
in an organized manner; specifically, if particles are loaded uniformly in space for each
(v_l, v*)-pair appearing in the ion distribution, then the characteristics of linear scattering
are changed, and may then be described as aliasing off the spatial "grid" of particles.

Equations (47), (49), (50), and (51) along with the particle statistics introduced in
Eq. (48) form in brief a set of laws applicable to the weak linear scattering process in
simulations of parallel-propagating transverse waves in the ion-cyclotron frequency range.
The discrepancies with uniform theory touched upon earlier now serve as examples of these
laws.

In Figs. 4(a) through 4(c), we observe disproportionately high growthrates for the four
highest modes kept by the simulation, modes 22 through 25. This behavior is easily shown



W

Pump wave
Do(a)o,K)«0

-17-

Slope vj

M"Pkg
Grid alias wavenumber

Daughter wave
Dotw'.kO^O

k'+p'k,

FIG. 6. Geometric relationship between the pump wave and the daughter wave
in the linear scattering process in AIC simulations.

to be the particle aliasing effect. Since the scattering coefficient is the same for all particle
groups in each beam, the complex exponential in Eq. (48) will causethe net scattering from
each beam to sum to zero provided (1) the difference betweenthe pump waveand daughter
wave mode numbers is less than the number of particle groups, JV*6, comprising each beam,
and (2) the spatial distribution of particles in the beams is uniform. When the difference
in mode numbers is a multiple of JV&, which, in this case is 47, the scattered wavescombine
constructively, and substantial mode coupling can result. Runs with different values of Nb
verified that particle aliasing was indeed the operative agent. When Nb = 44, modes 19
through 25 showed enhanced growth. When Nb = 51, no enhanced growth was observed.
The enhanced growth rate itself is explained by the strength of the coupling which, for
these short-wavelength modes, tends to be strong. Thus the weak coupling approximation
is not strictly correct, and the growth rates are determined by the fully-coupled equations.
The enhanced growth rate is not observed in Figs. 4(d) and (e), where the larger number
of beams presumably weakens the coupling.

In contrast, the whistler frequencies observed at short wavelengths modes (Fig. 5(a))
may be understood as a grid-aliasing effect. As shown in Fig. 7, one-beam modes whose
resonant parallel velocities havethe correct slopes may couple to alias whistlermodes in the
next Brillouin zone, producing the added peak in the frequency spectrum in the whistler
frequency range seen in the typical spectrum displayed in Fig. 5(b). Similar coupling to
one-beam modes, indicated by the dotted line in Fig. 7, is technically possible, but is not
usually observed. The variation of the dispersion function Do, dDo/dw, in the vicinity
of roots corresponding to the one-beam modes, is quite large (~ (l/Cl)(kvA/il)2(vA/v±))
compared to the whistler mode (~ (1/ft)). The one-beam modes are thus "hard to find"
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and grid-induced scattering couples predominantly to the whistler.
A third example of linear mode coupling involves both wave-particle scattering and

grid aliasing. The presence of "ghost peaks" in Figs. 4(d) and (e) may be explained by the
coupling scheme shown in Fig. 8. Coupling may only occur to the specified points along
the line of scattering. The separation of the points is 2ir(47)/L, since there are 47 particle
groups in each beam. Most of these points do not participate in the coupling because
either they are far from the normal modes of the system (point labeled "A") or they fall
at high wavenumbers not followed by the simulation (points labeled "B"). However, when
the pump wave is mode 4, the point marked "C" corresponds to mode 239 which, modulo
256 is mode (-17), a simulated mode of the system. Point "C" lies near the alias of the
whistler branch, so we expect to see coupling of mode 4 to this mode. Since mode 4 is the
fastest growing uncoupled mode of the system, mode (—17) should be the fastest growing
of the waves linearlycoupled in this fashion. This explains the ghost peak centered at mode
17 in Figs. 4(d) and (e) which we observe has the same height as the principal peak. We
note also that no such peak is observed at mode 25 which corresponds to the alias of point
"A" in Fig. 8. We can verify that ghost peaks occur by the mechanism described—when 46
particle groups are used per beam, ghost peaks occur at modes 22 and 24; when 45 groups

a^

Alioses of
one-beam
modes

Daughter wave
(<u',k0+kg)

Alias of the
Whistler branch

FIG. 7. Schematic of linear scattering of a one-beam AIC mode to a grid alias
of the whistler mode. (Not drawn to scale.)
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Modes kept by
the simulation

Alias modes

FIG. 8. Schematic of the coupling process responsible for the appearance of
"ghost peaks" in the growth rate spectrum. Linear scattering couples the fastest
growing waves in the principal Brillouin zone to whistler mode aliases. (Not drawn
to scale.)

are used, a peak occurs at mode 18—all as predicted by the theory.

The general characteristics of the linear behavior of multibeam distribution functions
in simulation may be extended to the simulation of more realistic distributions such as the
bimaxwellian distribution. The complicating feature here is that the number of values of
(vj_,V||) required to reasonably represent the bimaxwellian distribution is far too great to
load in the form of beams. Instead, we represent each value of (v±,t>||) with one particle
group, and then scramble the positions of the groups in space using a base-3 variant of
the usual bit-reversing algorithm. In essence, we are loading one particle group per beam.
Equation (43) is therefore still valid in this sense, but there are no longer any selection
rules; every mode is eligible to couple with every other.

The growth rates observed in a bimaxwellian simulation employing 16,384 particles is
shown in Fig. 9(a). Most of the modes show growth rates substantially larger than the
largest theoretical AIC growth rate, suggesting strong linear coupling as discussed earlier.
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FIG. 9. Linear growth rates vs. mode number obtained theoretically assuming
a spatially-uniform, bimaxwellian ion distribution function, and obtained from
simulations using (a) 16,384 ions and (b) 65,536 ions. In both the theory and
the simulations, ftj. = 8 and Ti±/Ti\\ = 4. Simulation parameters were At =
0.038a;"1, Ng = 256, and Az - 0.124t>>t/wc«.

When the number of particles is increased to 65,536 (Fig. 9(b)), the mode-coupled growth
rates decrease and the characteristic peak of the AIC growth rate spectrum emerges. Char
acteristics of the mode coupling for this case may be determined from the mode histories
shown in Fig. 10. These characteristics have been found to hold in general for all our
AIC simulations. Modes composing the peak of the AIC growth spectrum, when present,
always show clean exponential growth with growth rates very close to those predicted by
theory (Fig. 10(a)). Modes to the long-wavelength side of the peak exhibit amplitudes
well below the those of the fastest growing modes, often grow exponentially at the low
AIC growth rates predicted by theory, and generally appear to be only weakly coupled to
other modes. In contrast, modes to the short-wavelength side of the peak tend to grow
erratically, but taken as a group, grow at the same rate as the fastest growing mode in the
system. The amplitudes of all the short-wavelength modes stay within a narrow range of
each other throughout the linear stage, implying that the coupling among these modes is
very tight. The mode amplitudes as a group also stay within an order of magnitude of the
fastest growing modes of the system, and as illustrated in Fig. 10(b), are often within a
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factor of two. This suggests that there is strong coupling of the fastest growing modes to
short-wavelength modes as well.

The linear scattering scheme illustrated in Fig. 11 serves to explain this behavior. Each
of the fan lines emanating from (n, 0) represents by its slope one of the parallel velocities
present in the distribution. As explained previously, mode coupling mediated by linear
scattering is directed along these fan lines. We observe that the long-wavelength modes fall
outside the thick of the fan and thus can participate at best weakly in the mode coupling
process. Modes composing the peak of the AIC growth spectrum generally have the largest
amplitude and therefore function primarily as pump waves. Since Im(o;) is significant and
positive for these modes, there will be significant coupling to available modes situated in
some spread about the fan line on which the pump wave lies. Each effective pump wave
may be thought of as a transmitter in (Re(u;), fc)-space broadcasting with frequency Re(u;)
in (u/, fc)-land with some radiation pattern whose details are determined by Eq. (45) and
whose spread about the principal radiation directions is determined by the magnitude of
Im(u;). The radiation patterns are shown schematically in Fig. 11.

The best "receivers" (i.e., candidates for daughter waves) clearly lie to the short-
wavelength side of each pump wave as illustrated in Fig. 11. Here the receivers are more

IB,
B,

Time (w\\) Time (gu"cj )

FIG. 10. Simulation wave magnetic field mode histories for a run employing a
bimaxwellian distribution with fii± = 8, Ti±/Tjn = 4, 65,536 particles, Ng = 256,
At = 0.038c*;"-1, and Az = 0.124vA/u>ct-: (a) modes 1-5, (b) modes 6-25 with
modes 1-5 shown for reference.
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FIG. 11. Schematic of short-wavelength mode coupling. AlC-unstable modes
on the Alfven ion-cyclotron branch tend to linearly couple to other modes along
fan lines determined by particle velocities present in the ion distribution function.
Coupling is also significant along some spread of directions about the fan lines
determined by the magnitude of Im(u), as indicated by the radiation patterns.
Note that coupling by this mechanism involves primarily the short-wavelength
modes.

in line with the pump waves in the peak of the AIC growth spectrum. Also, the slope of
the short-wavelength portion of the AIC dispersion curve is close to the slopes of fan lines
in its vicinity, implying the mode-coupling among the short-wavelength modes will tend to
be tight. This effect tends to be augmented by the presence of the factor kk'p in the last
term in Eq. (45).

One worrisome consequence of strong mode coupling in the linear regime is observed
in the case of a normal, Maxwellian distribution (Ti±/Ti\\ = 1). From the appearance
of Fig. 9, it is perhaps not surprising that substantial and roughly comparable growth
rates are observed for all the modes followed by the simulation, even for this theoretically
stable case. We speculate that short-wavelength modes are being driven one-beam AIC-
unstable by beamlike structures in the fine structure of the initial distribution. Mode
coupling then distributes the energy among the other longer wavelength modes, with the
longest wavelengthsshowingonly weak coupling,as evidenced by their comparatively small
amplitudes. Figure 12 shows evidence of the coupling process. The four diagrams compare
four of the modes of the Ti±/Ti\\ = 1 simulation illustrated in Fig. 9 to four simulations,
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each of which kept only a single mode. All the growth rates of the multiwave simulation
are comparable, while the single-wave simulations, which of course are not susceptable to
mode coupling processes, show distinctly different growth rates for the different modes.
Note also that the most unstable single-wave run was the one which followed the shortest
wavelength, supporting the hypothesis that the one-beam AIC instability is the operative
process.

The presence of these one-beam AIC instabilities may also cause problems in simu
lations of the nonlinear regime. The difficulties do not arise in most of our simulations,
because the saturation levels of these short-wavelength instabilities typically lie one order
of magnitude below the saturation levels of the principal AlC-unstable modes (for ~ 10,000
particles). This is confirmed by comparingsimulationswhich either kept or artificially killed
the short-wavelength modes. Histories of the longer wavelengths are not identically repro
duced in the nonlinear regime when the short-wavelength modes are absent, but neither
are any significant qualitative differences observed. These difficulties are, however, poten
tially serious when the theoretically-stable Maxwellian distribution is used. Researchers
engaged in simulations involving such ion distributions may well be interested in physical
effects having mode amplitudes smaller than those generated by these fine-structure AIC
instabilities. Such effects would then be masked, rendering the simulation useless.

The details of the saturation levels of these short-wavelength modes are described in
a separate report [32]. It is concluded that the noise generated by these instabilities are
of particular concern for two reasons. First, the noise levels are quite substantial, and are
not particularly diminished when no anisotropy is present. Very little dependence of the
magnetic field noise levels on fii\\ isobserved insimulations while thedependence on fii± and
on the number ofsimulation particles N (\Bk\ ~ JV"1/2) is found to besignificant. Secondly,
these noise levels should be present in a fairly wide classof simulations. The levels observed
in the simulations were found to match those predicted by the test-particle theorem for a
Maxwellian distribution, which applies in this instance to any system admitting parallel-
propagating transverse waves in the ion-cyclotron frequency range. These levels are the
levels that would be present at thermodynamic equilibrium, and thus will generally tend
to occur by any available mechanism. The suspected mechanismin our case, the one-beam
AIC instability, similarly requires little for its existence. It will occur in the same systems
for which the noise-level theory is valid, provided additionally that beamlike structures
are present in the particle representation of the ion velocity distribution function. This
last requirement is apparently easily satisfied, since the instability occurs in the presence
of our representation of a Maxwellian distribution, which was constructed with no special
provisions using standard simulation techniques.

Finally, it is worth mentioning that two of the processes described here, linear scat
tering and the relaxation of fine structure free energy in the ion distribution function via
one-beam AIC instabilities, are physical processes which should occur in real systems, and
are only simulation artifacts here in the sense that relatively small numbers of particles
are being used. Thus, in particular, one-beam AIC instabilities are another collisionless
relaxation mechanism for free energy in a velocity distribution function in addition to the
familiar bump-on-tail instability.
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FIG. 12. Four simulations in which a single mode is kept are compared to a
single simulation following the 25 lowest modes. Wave magnetic field histories
are plotted for single-mode runs keeping (a) mode 1, (b) mode 5, (c) mode 10,
and (d) mode 25, along with the corresponding mode histories from the multi-
mode run. In all the simulations, a Maxwellian distribution function was used
PWTin = 1) with fii± =8, 16,384 particles, At =0.038u£\ Az= 0.124vA/w«,
and Ng = 256.
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VII. CONCLUSIONS

A 1 2/2-d magnetoinductive hybrid simulation code has been used to simulate, and
study simulation properties of, the Alfven ion-cyclotron instability. We have found that
a predictor-corrector type algorithm is not needed in this type of code if a two-timestep
averaging procedure is performed at the beginning of the simulation, and that good energy
conservation properties can be achieved by using a Boris-mover-like algorithm in advancing
both the particles and the fields. The code has been used to model a non-physical multibeam
ion distribution function, and the results were compared to a uniform, analytic theory. The
principal AIC growth spectrum and linear growth rates associated with "one-beam" AIC
instabilities appeared clearly in both theory and simulation; however discrepancies were also
noted. It was shown subsequently that all the discrepancies could be explained by refining
the linear dispersion theory to include discrete particle and finite grid effects. Behavior of
more realistic bimaxwellian ion distributions in simulation could also be explained by the
refined theory. In particular, positive linear growth observed in simulations of a normal
Maxwellian found explanation in the theory. The mechanism involved, collisionless relax
ation of the distribution by growth of one-beam AIC instabilities, is a physical one, and
should appear in real, magnetized plasmas. Finally, saturation levels of the troublesome
short-wavelength modes are observed to agree with expected theoretical fluctuation levels.
The observed levels do not interfere with the AIC simulations conducted for this study,
but may be important to other electromagnetic simulations admitting parallel-propagating
waves.

ACKNOWLEDGMENTS

The author wishes to thank Prof. C. K. Birdsall for his several ideas and numerous

discussions concerning simulation of the AIC instability. We also wish to acknowledge
helpful suggestions from Dr. J. A. Byers, Dr. B. I. Cohen, Dr. W. M. Nevins, and Dr. G.
R. Smith on this subject. Computational facilities were provided by the National Magnetic
Fusion Energy Computer Center. This work was supported by U. S. Department of Energy
Contract No. DE-AT03-76ET53064.

REFERENCES

*T. A. Casper and G. R. Smith, Phys. Rev. Lett. 48, 1015 (1982).
2R. C. Davidson and J. M. Ogden, Phys. Fluids 18, 1045 (1975).
3G. R. Smith, W. M. Nevins, and W. M. Sharp, Phys. Fluids 27, 2120 (1984).

4B. H. Mauk and R. L. McPherron, Phys. Fluids. 23, 2111 (1980).
5J. M. Cornwall, F. V. Coroniti, and R. M. Thome, J. Geophys. Res. 75, 4699 (1970).
6M. N. Rosenbluth, Bull. Am. Phys. Soc, Ser. H, 4, 197 (1959).
7R. Z. Sagdeev and V. D. Shafranov, Zh. Eksp. Teor. Fiz. 39,181 (1960) [Sov. Phys. JETP

12, 130 (1961)].
8J. E. Scharer and A. W. Trivelpiece, Phys. Fluids 10, 591 (1967).



-26-

9J. E. Scharer, Phys. Fluids 10, 652 (1967).
10J. Scharer, Plasma. Phys. 11, 1 (1969).
11 A. Hasegawa Physics and Chemistry in Space 8, 79-83 (Springer, New York, 1975).
12G. R. Smith, Phys. Fluids 27, 1499 (1984).
13J. G. Cordey and R. J. Hastie, Phys. Fluids 15, 2291 (1972).
14J. D. Hanson and E. Ott, Phys. Fluids 27, 150 (1984).
15T. D. Rognlien and D. C. Watson, Phys. Fluids 22, 1958 (1979).
16D. C. Watson, Phys. Fluids 23, 2485 (1980).
17D. C. Watson, R. J. Fateman, and D. E. Baldwin, Phys. Fluids 21, 1657 (1978).
18T. Tajima and K. Mima, Phys. Fluids 23, 577 (1980).
19R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma Theory, edited by T. M. O'Neil and

D. L. Book, (W. A. Benjamin, New York, 1969).
20S. L. Ossakow, E. Ott, and I. Haber, Phys. Fluids 15, 2314 (1972).
21R. M. Thorne, Rev. Geophys. Space Phys. 13, 291 (1975).
22A. Hasegawa and C. K. Birdsall, Phys. Fluids 7, 1590 (1964).
23S. Cuperman, A. Sternlieb, and D. J. Williams, J. Plas. Phys. 16, 57 (1976).
24T. Tajima and J. M. Dawson, Nucl. Fusion 20, 1129 (1980).
25J. Ambrosiano and S. H. Brecht, submitted to Phys. Fluids.
26J. A. Byers, Phys. Rev. Lett. 39, 1476 (1977).
27J. A. Byers, B. I. Cohen, W. C. Condit, and J. D. Hanson, J. Comput. Phys. 27, 363

(1978).
28J. P. Boris, in Proceedings of the Fourth Conference on Numerical Simulation of Plas

mas, edited by J. P. Boris and R. Shanny, p. 3 (U. S. Government Printing Office,
Washington, D. C, 1970).

29C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, 20-21
(McGraw-Hill, New York, 1985).

30B. I. Cohen, T. A. Brengle, D. B. Conley, and R. P. IVeis, J. Comp. Phys. 38, 45 (1980).
31Ref. 29, Ch. 8.
32N. F. Otani, submitted to Phys. Fluids.


	Copyright noticE 1985
	ERL-85-91

