

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ALGEBRAIC APPROACH TO RECURSIVE INFERENCE

by

Yannis E. loannidis and Eugene Wong

Memorandum No. UCB/ERL M85/93

5 December 1985

AN ALGEBRAIC APPROACH TO RECURSIVE INFERENCE

by

Yannis E. loannidis and Eugene Wong

Memorandum No. UCB/ERL M85/93

5 December 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

-1-

AN ALGEBRAIC APPROACH TO RECURSIVE INFERENCE

Yannis E. loannidis

Eugene Wong

Department of Electrical Engineering and Computer Science
Computer Science Division

University of California
Berkeley, CA 94720

Abstract

Recursion in the database context has traditionally been studied under the formalism of 1-st order
logic. In particular, the bulk of the research effort in the last few years has been devoted to
recursive Horn clauses. In this paper we reformulate the recursion problem in operator form. The
relational operators are embedded in a partially ordered semiring with identity. This algebraic
structure so obtained enables us to get more information about the mechanics of recursion. One
result of this is that we have been able to obtain a significant decomposition theorem for recursive
queries.

This research was supported by the National Science Foundation under Grant ECS-8300463

-2-

1. INTRODUCTION

Consider a function-free, constant-free Horn clause [Gall78]

Pdi0)) A «.(£<") A ••• A «*(£.<") - Pk+i(ik+1)) (1)
where for each t, a?}'* is a subset of some fixed set ofvariables (xltz2,...,xn). We say the formula is

recursive ifPk+1 —P0 = P (but x_*0) f^ zf*+1^). For the purposes ofthis paper we further assume

that Qi = P for no other i. In this case we say that the formula is linear recursive. A familiar

example is the following:

ancestor(X,Z) A father(Z,Y) -*• ancestor(X,Y)

where all variables are assumed universally quantified.

A recursive Horn clause can be interpreted in terms of relations as follows: Let P, {Qi} be

relations and f(P, {Q{}) a function with values that are relations over the same columns as P.

Then, (1) with P0 = Pfc+1 = P takes on the form

f{P,{Qi})QP

or equivalently

P\Jf(p>{Q<)) = p (2)
The problem of recursive inference can now be stated in relational form as follows:

Given relations R,Qlf...,Qk and function /, find P such that

(a) P|J/WW) = P

(b) PCP

(c) P is minimal with respect to (a) and (b), i.e. P' satisfying (a) and (b) implies P C P'.

It is clear that a solution to (a) and (b) exists, since the cartesian product of the domains of

P is such a solution, and that the intersection of all relations satisfying (a) and (b) is the unique

minimal solution P satisfying (a), (b) and (c). It is well known that P can be found by iteration. If

the initial value R is a finite relation, then the iteration always terminates. In |Ioan85] it is shown

that for some recursions the number of iterations is bounded by an integer independent of R and

-3-

{Qi}. Such recursions are said to be uniformly bounded, and [Ioan85] gives a graph

characterization of all such uniformly bounded recursions.

In this paper we reformulate the recursion problem in operator form. Aside from some

notational advantages, the algebraic structure of the operators (a partially ordered semiring with

identity) can be exploited to yield results that may prove important in processing recursions.

Although our study is only preliminary, a significant decomposition theorem has already been

obtained.

This paper is organized as follows: In Section 2 we define the set of relational operators as a

semiring and describe the recursion problem in operator form. Section 3 discusses the class of

bounded recursions from the algebraic viewpoint. In Section 4 we introduce the transitive closure

of an algebraic operator as a combination of a multiplicative and additive inverse. Section 5

contains the description of a graph model for recursion and presents some initial results in

recursion decomposition using algebraic manipulation. Finally, in Section 6 we summarize our

results and describe some possible directions of our future work.

2. SEMIRING OF RELATIONAL OPERATORS

For fixed relations {Qi}, the function f(P,{Qi}) is an operator on P and can be written

more clearly as AP, where A is an operator mapping relations over a fixed set of domains into

ones over the same domains. Multiplication of operators is defined by

(A * B)P = A{BP)

and addition by

{A+B)P = AP \J BP

For notational convenience we omit the operator *. So, whenever we write ABP, with A, B

operators and P a relation, we actually mean (A * B)P. Identity (IP = P) and null (OP = 0)

are defined in obvious ways.

-4-

Further, we can define the n-th power of an operator A as:

An = A *A * ••• * A

*— n times —•

For n=0 we have A0 = 1, where 1 is the identity operator.

We note that multiplication is associative, addition is symmetric, but neither has an inverse.

Further, multiplication is distributive over addition. Thus, relational operators form a Semiring

(but not a ring because there is no additive inverse).

A partial order can be defined on relational operators using set inclusion, i.e.,

A < B <=#> V P, AP CBP

With respect to multiplication and addition the partial order enjoys the following properties:

(a) A =A + A, A < A +B

(b) A < B «=> A + B = B
(3)

(c) A <B =$> A + C <B + C

(d) A < B , C < D andA, B are monotone =^ A C < B D

The proofs of these properties are straightforward and will be omitted. For (d), note that all

relational operators under consideration are monotone, i.e. for any operator A and any two

relations P, Q it is P C Q => AP C AQ.

The problem of recursion can now be restated as follows: Given operator A, find B

satisfying:

(a) (l+A)B=B

(b) £>1 (4)

(c) B is minimal with respect to (a) and (b), i.e. for all other C satisfying (a) and (b), it is

B < C.

The solution can again be obtained by iteration:

-5-

Po=l

Bn+1 = {l+A)Bn = (l+A)»+l

From (3a) we have Ak + Ak = A* for every A:, so it is

(1+A)« = £a*
fc=0

For every finite relation R, there exists n0 (depending on P) such that

(l+A)nP = (l+A)ft°P, V n > n0

Hence, lim Bn is well defined as a pointwise limit, and is equal to
n—«oo

A' = JTU* (5)
Jb=0

which is a complete solution to the recursion problem. The operator A will be called the

transitive closure of A.

What remains for us to prove is that A* is indeed the minimal solution (least fixpoint) of

(1+A)B = B with B > 1. That is, we will prove that for all operators B that satisfy (4a) and

oo

(4b) it is B > A*. We will do it by induction on the number of terms in A = £}Ak.
k=0

0

Basis: For n=0 it is JjAk —1 and we have from (4b) that B > 1.
k=0

n

Induction Step: Assume that B > }jAk for some n > 0. From this we have

n n

B > JjAk =$> {l-rA)B >{l+A) £Ak, since A is monotone
=) *=o

n+l

=> (l-b4)£ > JO*, from (3)
fc=0

n+l

=s^ 5 > IjAk, from (4)

n

So, for all n > 0 we have that B > %jAk. Since the sequence (of the partial sums) is

upwards bounded by B and it is monotone, we can conclude that its limit A is also bounded by

B. Hence, for any B satisfying B = (l+A)B and B > 1 it is B > A*. This implies that A* is

-o-

the least such operator, i.e. it is the least fixpoint of (4).

3. BOUNDED RECURSION

Consider the problem of recursion in the relational form (2) and define the iterative solutions

by

Pn+l-P.\Jf{Pu.{Qi))
The corresponding recursion is said to be bounded by N if

Pn+i — Pn

whence it follows that PN4* = PN for all k > 0. This bound N depends on P0 and {Qt} in

general.

In the context of operators all relations in {Qf} are fixed. Hence, this bound varies with P0

only. In the case that the recursion bound is independent of P0 the underlying operator A is such

that

(1+A)N+* = (l+A)N for all k > 0,

in which case the closure is given by

A' = (l+A)N = £Ak (6)

An operator A satisfying (6) is said to be N-reducible.

Proposition 3.1: The following conditions are equivalent:

(i) A is N-reducible.

(ii) AN+1 < {1+A)N.

(iii) {l-rA)N(l+A)N = {1+A)N , i.e. (1+A)N is idempotent.

Proof:

(ii)<$=>(i):

Clearly, AT-reducibility is equivalent to (l+A)N+l = (1+A)N. From that we have:

-7-

{l+A)N+1 = {1+A)N «^=> [l+A)N + AN+l = (l+A)N, using (3a)

<=#• AN+l < {1+A)N, using (3b)

(i)=>(iii):

Again, the starting point is {1+A)N+1 = {1+A)N.

(1+A)N+1 = {l+A)N =£> (l+A)N+2={l+A)N+l

=£• (l+A)N+2 = {1+A)N, by the N-reducibility of A

Iterating, we get (1-K4)2" = {1+A)N(1+A)N = (U-A)".

(iii)=>(ii):

2N

We know that (1+A)2N = 2>lfc. Hence, (iii) implies that
k=C

2N N

EAk=£Ak => AN+X < (l+A)N, using (3b)

From our previous discussion we have that the last formula implies the iV-reducibility of A.
D

Proposition 3.2: Any one of the following conditions is sufficient for N-reducibility (for

some finite N):

(i) For some m, Am > AmAm

(ii) For some m, Am < 1

(iii) For some m and for any initial relation P, AmR = 0 or AmR = CONST, where CONST

some constant relation (i.e. AmR is in some sense independent of R).

Proof:

(i) Assuming the given condition we can derive the following:

2m 2m—1

Am>AmAm => J]Ak = £Ak, using (3b)

=> (l+A)(l+v4)2m-1 = (l+A)2m-1

-8-

AT-reducibility is a direct consequence of this last formula.

(ii) If we multiply both sides of Am < 1 by Am we get A2m < Am, which is the condition of (i)

above. Applying that we conclude that A is TV-reducible.

(iii) If AmR = 0 then Am{AmR) = 0 also. If AmR = CONST then Am(AmR) can be equal

to either CONST or 0 but in all cases it is true that Am(AmR) < AmR for all R. This

implies Am > Am(Am) by definition. Hence we can apply condition (i) above and get N-

reducibility. D

Example: As an example, consider the following Horn clause

salute(X,Y) A captain{Y) A major(Z) -*• salute(X,Z),

i.e. "He who salutes a captain also salutes a major". The operator in this case can be expres

sed as

A S = n^S xi C)X M

where S=salute, C=captain, M=major, Tr^project on the first column, c<=join,

X=cartesian product. We note that since the second column of AS is M, we have

\AS if MDC^0
A2S = • *±

0 otherwise

Hence, A2 < A which implies A* = 1+A, and A is 1-reducible for this example. D

4. TRANSITIVE CLOSURE AS A PSEUDO-INVERSE

The lack of additive and multiplicative inverse impairs our ability to manipulate algebraic

expressions of relational operators. In this regard, the transitive closure A of a relational

operator A plays a useful role. We begin by noting that

A9 = fjAk = l+Z!Ak = \+AA*
k=0 fc=l

If we blindly solved for A*, as if it was real number addition and multiplication in the equation,

-9-

we would get

(1-A)A' = 1, X' = M)-1 (7)

However neither 1—B nor B~l is well defined for any relational operator B. Nonetheless, for any

algebraic expression that can be simplified using (l—A)~1, we can use A in its place. For

example, if we apply the above on the equation

C = AC + B

then we can get

C=A*B

as a solution. For a more interesting example, consider the equation

A + CDA =B + CA+DA

Blindly solving for A, we get

[l-C -D +CD)A =B

which can then be transformed by the appropriate factorization to

(l-C){l-D)A =B

Multiplying both sides with the multiplicative inverses of (1 —C) and (1 - D) and applying (7)

whenever possible yields

A = D*C*B

The fact that the above constitutes a solution to the original equation can be easily verified by a

simple substitution of D*C*B for A in the equation. This solution for A is hardly expected from

the original equation.

The algebraic manipulation capability so afforded gives rise to the following important

result.

Theorem 4.1: Let A be such that its transitive closure satisfies the equation

A* = B + CDA*

Then,

^• = 11 + C{DC)*D\B

-10-

Proof: We multiply both sides of the equation by D.This yields

DA* = DB + DC{DA*)

If we now solve for DA we get

DA9 = (DC)'DB

Some additional manipulation allows the elimination of the front D for the final solution:

A' = B+ C(DC)*DB D

Corollary 4.1: {CD)' = 1 + C{DC)'D

Query processing may be strongly affected by the result of Corollary 4.1, because the latter

allows us to change the operator used in the iteration. In other words, if we can write some

operator A as a product of two terms, like A = CD, we can take the transitive closure of the

symmetric operator D C instead of A*. Identifying cases where D C is faster than A will enable

us to achieve faster processing time for the given query. For example, if D produces a relation

with fewer columns than C then there is a good chance that (DC) is faster than the original

(CD)*. Taking into account specific statistics about the database state at the given point of time,

this swapping capability has the potential of being very useful to the query optimizer.

Corollary 4.2: Am = CD for some m => A9 = |1 + C(DC)*D\(1 + A)™'1

There seems to be a significant similarity between the results mentioned in this section and

some results in regular expression equations. The relevant theorem, as mentioned and proved in

(Denn78) (also mentioned in [Chan8l]) says that the unique solution to the equation

A = B [J CA, with B and C regular expressions and B not containing X(the empty string), is

A = C*B. This is exactly what Theorem 4.1 says for the same equation if we appropriately map

union to addition, concatenation to multiplication and Kleene star to transitive closure. Whether

a deeper relationship between relational operators and regular expressions exists or not remains to

be seen.

-11-

As mentioned before, the result of Theorem 4.1 is particularly important for those cases

where D is a projection operator. In such cases DC involves fewer variables than A itself, and a

decomposition is achieved. To identify such cases we now proceed to use a graph representation

for recursive Horn clauses introduced in [Ioan85] .

5. GRAPH REPRESENTATION AND DECOMPOSITION

Consider a recursive Horn clause:

P(^) A e.(2L(,)) A • •• A 9k(2L(k)) - P{iK+1))
where each xj^ is a subset of {zi,z2,...,£it}. A graph representation (very similar to the one

described in [Ioan85]) can be constructed as follows:

(a) The nodes are in one-to-one correspondence with the variables xl,x2,—,xn.

(b) A directed arc exists from each xj0* to x$K+l\

(c) An undirected arc exists from each z^ toxjf\ for all 1 < k < K.

The arcs of the graph are weighted according to the following function:

weight(arc) = 0 if the arc is undirected

weight(arc) =1 if the arc is directed and it is traversed in its direction

weight(arc) = -1 if the arc is directed and it is traversed in the opposite direction

For example, the Horn Clause

P(x,y) A Q(y,z) A P{x,z) - P(y,z)

yields the graph of figure 1.

The weight of a path (cycle) in the graph is defined as the algebraic sum of the weights of

the arcs along the path (cycle). Further, a cycle is said to be weighted if its weight is nonzero.

For the remainder of this paper we make the assumption that

(A) "The directed arcs form a forest"

-12-

Fig. 1 : Example graph

Under this assumption, it was shown in [Ioan85] that the corresponding recursion is

uniformly bounded if and only if the graph contains no weighted cycle.

We observe that the graph of a Horn clause can be transformed in the following ways

without changing the underlying semantics.

(a) Eliminate node - Any node not involved in any directed arc can be eliminated. Regarding

the logic formula, this is equivalent to performing a join or a semijoin and replacing the

relations involved with the outcome after eliminating the join column. Notice that the join

column is the one where the variable corresponding to the eliminated node appears. For

example, Q\(xtz) A Qz(z,y) will be replaced with Qi2(z,y) (see figure 2).

Qi Q* Q12

x z y x y

Fig. 2 : Eliminate node

(b) Split node - Any node can be replaced by two nodes connected by an undirected arc. This is

equivalent to adding an "EQUAL" predicate in the Horn clause for the two variables

corresponding to the two introduced nodes (see figure 3).

Fig. 3 : Split node

-13-

(c) Combine directed arcs - Two directed arcs can be combined into one as shown in figure 4.

i, Q *2 12

V\ R V2 3/12

Fig. 4 : Combine directed arcs

Any undirected arcs that may connect the heads or the tails of the combined directed arcs get

eliminated. This is equivalent to denoting xl2=(x1,x2) and 2/12—(2/112/2)-

We further note that (a) and (b) preserve all weighted cycles, whereas transformation (c)

does not preserve weighted cycles in general.

Under assumption (A) a graph can be transformed while preserving weighted cycles into the

following canonical form:

*n Vn
Qn-1 ,

xn—1 If Q»~22/n-l
Qi

*i 2/1

v% f

.-•'"' ••••'

./
w

Fig. 5 : Canonical form of a graph

where the dotted lines indicate that additional undirected arcs may exist between any pair of

nodes. However, for a graph corresponding to uniformly bounded recursion no such additional arc

can exist since each one of them would imply a weighted cycle. We can write the Horn clause

corresponding to a graph in canonical form as follows:

P(xltx2,...,xn) A Qi{xi,y2) A • • • A Qn-i(zn-i,yn) A

R(xi,x2,...,xn,ylt...,yn) -* P{yi,y2,...,yn)

For the uniformly bounded recursion case, R takes the form R = Q0(2/1) A Qn(xn) (see figure 6).

„ Qn-i r
Vn zn-l

-¥
i/fl-l

•*

Qi

Fig. 6 : Canonical form of a graph for a bounded statement

3/1

-14-

Consider two special cases illustrated below:

(i)

Fig. 7 : General form of decomposable graph with last column cycle-free

(ii)

Fig. 8 : General form of decomposable graph with first column cycle-free

For case (i) xn does not appear as an argument in R and the operator A is of the form

A = nnQ IX ff„_i

where Q is a combination of Q\,Q2>~,Qn-\ aQd R, tx is a left semijoin and tt,- denotes projection

of the first t columns. We can now apply Theorem 4.1 to find

A' = 1 + 7Tft Q x (jr„_17rnQ tx)Vn_!

Projections 7rn_! and irn appear the one right after the other. This will give the same result as the

last projection (that is, 7rn_i) alone. Therefore, we can write the above as

A*= 1 + nn Q tx {*n-\Q tx)*xn-i

Since {nn-\Q x) is a recursion involving (n—1) variables, we have achieved a decomposition.

For case (ii), R has the form

i?'(*i,...,*n.l/2»-.»») A S(Vi)

After one application of A the first column of P will forever remain 5. In fact, after the first

application of A, P will be the cartesian product of S with some other relation. Hence, A2can be

-15-

expressed as

A2 = C jr*"-l>

where jr(n_1) denotes projection on the last (n-1) columns and C uses relation S directly instead

of manipulating the first column of P. Applying Corollary 4.2 we can write

A' = [1 + C (^n"1> C)9 jr*"-1* | (1 + A)
Once again, we have reduced an n-variable recursion to an (n—Invariable recursion (tt*11-1) C) .

In fact, further simplification is possible in this case. The operator C does include some cartesian

product with 5 to produce an n-column relation. But this in completely useless in the inner loop

C, since immediately afterwards the first column gets projected out. Hence, C can be replaced by

an even simpler (n—l)-column operator D to finally produce for A the formula

A' = [l + C D9*ln-»\(1 + A)

Notice that the two cases above are only special cases of the more general decomposition

mentioned above as a direct consequence of Corollary 4.1. Consider an arbitrary operator A.

Assume that A can be written as A = CnD, where C and D are some relational operators and

it is some projection producing fewer columns than A. From Corollary 4.1 we have that

A9 = (CnD)9 = 1+ C{nDC)9itD

The result is that we have to take the transitive closure of an operator that produces relations

with fewer columns than the original, making the whole operation potentially faster. In cases (i)

and (ii) above, the acyclicity of some part of the corresponding graphs gave this projection. By

breaking A there, we produced more efficient transitive closure operators. Since any operator can

be equivalently written in multiple ways using the basic operators (like join, project etc.), it is an

interesting optimization problem to identify the best of these, in the sense of containing some

projection on as few columns as possible. Of course, this cannot be the only consideration of the

optimizer, since fewer columns doesn't necessarily mean faster execution. Nevertheless, it is a

good indication of potentially fast access paths and we believe that it should be incorporated into

a recursive query optimizer.

-15-

Finally, we shall obtain an explicit formula for A9 when A is n-reducible. We note that in

such a case the canonical Horn Clause for A is given by

P(*l,*2 *n) A QoW A Ql(*l.!/2) A ' *' A Qn-l(*«-l»2/n) A Qn{*n) - P(V\M*>",Vn)
Now, define the following operators:

nk = projection on first k columns

9k = *AQk xQfc+i tx • • • X<3„)

Ck = Q0xQxx • • • xQk

Rq = right semijoin with Q, i.e. RqP =* QxP

Lq = left semijoin with Q, i.e. LqP = Q \xP

Then we can write

^ = LCn.^n-\Pqn »

so that

X* = 1+ ^CB_>n-l^^CnJ*Tn-l^B
However, itn^ RqJLc^ can be written as

This equality holds for all indices from 2 to n, i.e.

fffc-i Pg^c^ = LCk__aJrk^zRqk_l, \/l < k <n (8)

Hence, if we define

Ak — Lc^k-lRq,,

then we have A = An and by applying (8) continuously we get

= 1 + Ic.^n-l *n-lPqn =

= 1 + LCn_,(l + ^C^n^^n^^J^n-l^

-17-

= 1+ L^JXn^RJ + Lc„_lLC|(J^n_2P^_1)(7rn_1Pj +

+

+ ^CB.,^CB^ ' ' • LCl{*iRq) ' ' ' (*n-2PqnJ(*n-lPqn)

The above is an explicit expression of A9 for any n-reducible operator A. Although the

expression is complicated in the general case, it shows that a query involving bounded recursion

can always be transformed into one that is recursion-free.

6. CONCLUSION

In general, recursion can be expected to represent a major source of processing inefficiency.

Query optimization for recursion is ever more important than it is for non-recursive relational

queries. In that connection two ideas are important: (a) precomputation and (b) decomposition.

The idea of precomputation is to augment the database with additional relations derived

from the database so that some recursive queries on the original database are no longer recursive

on the augmented one. The question is: for a given augmentation what is the set of such queries?

And conversely, for a given class of recursive queries what must the augmentation be? Our results

on this are fragmentary.

Decomposition is related to precomputation. The problem here is to reduce the complexity

of recursion. For example, if A can be expressed in terms of B and C both of which being simpler

operators, when can A be expressed in terms of B and C ?

Results pertaining to both precomputation and decomposition appear to be limited by the

fact that relational operators form a semiring, rather than a ring. Perhaps, we need to embed the

operators in a larger algebraic structure. In terms of processing, this may mean that more

information will need to be kept at each stage of iteration (that is, assuming that recursive queries

are answered by some kind of an iterative program), but the additional information requirements

is compensated by greater applicability of precomputation and decomposition.

-18-

As a final comment we would like to emphasize the usefulness of the algebraic view taken

here concerning recursive query optimization. We have already seen decomposition examples

where simple algebraic manipulation produced equivalent, potentially more efficient operators.

We believe that algebraic manipulation of the query will be a significant part of the query

optimizer. This, along with the particular semantics of the individual query and statistics about

the database at the given point of time will be used to produce the plan for the query execution.

This is opposite from the case of the regular, non-recursive queries where, as experience has

shown, algebraic manipulation of the query is of no help to the optimizer.

7. REFERENCES

[Chan8l|
Chang, C. L., "On Evaluation of Queries Containing Derived Relations in a Relational Data
Base", in Advances in Data Base Theory Vol. 1, edited by H. Galaire, J. Minker and J. M.
Nicolas, Plenum Press, New York, N.Y., 1981, pages 235-260.

|Denn78]
Denning, P., J. Dennis, and J. Qualitz, Machines, Languages and Computation, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1978.

|Gall78]
Gallaire, H. and J. Minker, Logic and Data Bases, Plenum Press, New York, N.Y., 1978.

[Ioan85]
loannidis, Y. E., "A Time Bound on the Materialization of Some Recursively Defined
Views", Proc. 11th International VLDB Conference, Stockholm, Sweden, August 1985.

	Copyright noticE 1985
	ERL-85-93

