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ABSTRACT

We present schemes for discrete time adaptive control of a linear time

invariant systems, which is partially known, along with an analysis of

their convergence properties.
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1 Problem Statement

A great deal of effort has been devoted to establishing conditions for the robust sta

bility of adaptive control algorithms. There are two sets of approaches to this issue: In the

first approach, an internal signal in the adaptive loop is made persistently exciting to

guarantee exponential stability of the scheme. Robustness of the scheme follows as a

consequence of the robustness of exponential stability. In the second approach, the adap

tive algorithm is modified, using for instance, a deadzone or forgetting factor in the adap

tation law to prevent the algorithm from responding to spurious signals such as those aris

ing from noise and unmodeled dynamics. Both approaches model the plant to be controlled

as being completely unknown. In this paper, we discuss the control of system which are

partially known (in a sense that is made explicit shortly). It seems intuitively that the

control algorithm could be robust if this prior information could be incorporated into the

adaptive controller [2.3.4]. With this as motivation, we present two adaptive control algo

rithms for "partially known *systems.

The system to be controlled is a single input-single output time-invariant system of

the form

/

2- !? (i.i)
U •*

j=i

where a, , j8; *s are unknown constants, nt . dj 's are known polynomials in z"1 (discrete
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time) or s (continuous time). The model (1.1) is general enough for several kinds of 'par

tially known* systems -we give three examples:

(1) Network functions of RLC circuits with some elements unknown. Consider the circuit

of Fig.l with the resistor R unknown (drawn as a two port to exhibit the unknown resis

tance).

V.(s)

Fig. I

If the short circuit admittance matrix of the two port in Fig.l is

y2i(*)y22(*)
v (1.2)

A simple calculation yields the admittance function

lis) yn+^(yiiy22-yi2y2i)
vTTT i+*y22

which is of the form (l.l). Circuits with more than one unknown element can be drawn as

multiports to show that the admittance function is of the form (l.l)

(2) Interconnection of several systems with unknown interconnection gains. Consider the

simple discrete time configuration of Fig.2 with the polynomials n and d known.
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nte"1) y

-
d(z-)

K

Fig. 2

The closed loop transfer function is of the form (l.l)

n» E.oiC*1)
d. 1*ZMz")

Actuator Plant

Fig. 3

The overall transfer function is written as

n

d+kn

(3) Systems with some known poles and zeros. Consider the system of Fig.3, with unk

nown plant but known actuator and sensor dynamics

Sensor

which is of the form (1.1) since nansz"1, dadsz~j known.

In this paper we will focus attention on discrete time systems. Our methods are an

extension of those proposed by Goodwin et al in [6] and the method of proof is identical to
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that in [6]. The novelty of our paper is the set up in which the methods are applied. The

layout of our paper is as follows: In section 2. we discuss parameter identification for sys

tems of the form (1.1). Section 3 contains the new adaptive control laws with the conver

gence analysis and section 4 a simple simulation example comparing our law with that of

[6] which does not use prior information.

2 Parameter Identification

Parameter identification is the first step in controlling an unknown plant. Consider a

discrete time system of the form (l.l). that is

«

n0U_1)+2 a, nf-(z _1)
y(0= /=i ^n(z-1)

;=i

(2.1)

where at, jfy 's are unknown parameters, dj, nt are known nth and mth order polynomi

als in the unit delay operator z ~l.

dj(z^)=dj 1z-1+...+rfjln z'tt j =0.1 k (2.2)

ni(z-1)=nilz-1+...+nimz-m i=0.1....i (2.3)

The identification problem is to identify (ij, a; from input^output measurements of

the system.

Definition 2.1 A system of the form (2.1) with unknown parameters a,.fij is said to be

identifiable if and only if there exists at least one input u(t) such that the unknown

parameters can be uniquely determined based on input-output measurements.

The following result is from Bai and Sastry [2]:

Theorem 2.1 Assume that n(z~l) and diz'1) in equation (2.1) are coprime. Then, the

necessary and sufficient condition for the system (2.1) to be identifiable is that the follow

ing matrix D is full column rank.

d\\ dki o

D =
<*1ti dkn 0 0

0 0 nu nn

0 0 n l/n nln
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We summarize the methods of [2]. Rearranging equation (2.1), we get

{\+d0{z-ly)y(t)-nQ(z-l)u(t )

=t(*j^ iz'l)y (r )+t«inl(z-1)u{t ) (2.5)
l l

Define the following signal vectors

z0(t)=a+d0(z-l))yU)-n0(z-l)u(t) (2.6)

zT{t-\)={dx(z-l)y{t) dk(z-1)y(t)si1(z-1)u(t)....jil<iz-1)u(t)) (2.7)

9ir=(—d01 —d0n .^oi» • • »n0m) (2.8)

0or=(fi1,...,fik jalf..., a,) (2.9)

<^(r-l)=(y(r-l).....y(f-n).u(r-l) u(r-m)) (2.10)

Then it follows that

z0(t)=eorz(t-l)=e0rDr<t>U) (2.11)

Let 9(t) denote the parameter estimate at time t. Then since z0(t) and z(t—1) are

obtainable from the input and output , we may construct the equation error

e(t)=9(t-l)z(t-l)-z0(t) (2.12)

with 9 (t )=0 (t )—9 o denoting the parameter error, we see that

e(t)=9T(t-l)z(t-l) (2.13)

Equation (2.13) is linear in the parametererror, so that any one of a number of stan

dard techniques for parameter update (see [7]) may be used. Two of them which we are

going to use in the next section are:

The Projection Type Algorithm

The update law

§(0=ea-iH r*('7w, ^(^(o-ea-iMf-o) (2.14)
l+zi U—l)zU—1)

is referred to as projection type law. It is well known [1.7] that this algorithm has follow

ing properties.
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I\9(t)-90\ Kl 10 Cr —1)—© oIKl I&CO)—0 oII foronyr >\ (2.15)

Hmer( 1)( 1)2 q
r-»l+zv(r-l)z(f-l)

The Least Squares Type Algorithm (with Covariance Resetting)

The least squares type algorithm with covariance resetting is given by

9Q)=9(t-l)+ , T?U7?2?{t7?\ ,J*o(0-zr(r-l)§fr-l)) (2.17a)
l+zr(r-l)i>(r-2)z(r-l)

P(t-1) =

\p(t _*>>>- P<* "2>* (* -Q*rfr -Wit -2)
rV ; l+z7(f-l)JPa-2)z(r-l) ifr^^j/a....
**/ if r=0^1^2—

(2.17b)

where (Xfcmin^fc, ^max^0^ 1° (2.17b). covariance resetting occursat { QXi£2 )•

It is not difficult to show that both algorithms have* exponential convergence rates

when z(t) is persistently exciting, i.e. there is some N .a^ ,a2 > 0 such that

<*i/ 2Z2(t)zr(t)>x2I
k+l

3 Adaptive Control of 'Partially Known' Systems

Consider the system of the form (2.1). An adaptive control law is to be designed to

stabilize this system and to cause the output y(t) to track a given reference sequence y*it)

i.e. we require y(t) and u(t) to be bounded and

lim(y(r)-y'(*))=(>
t—os>

The following assumptions will be made about the system (2.1)

(1) n01+ainn+...+atinny*0

This implies that the pure delay in the transfer function (2.1) is known and equal to

1. This is for simplicity alone in our analysis, the extension to the case where pure

delay is greater than 1 (but known) follows readily.

(2) n(z _1)has all zeros strictly inside the closed unit disk i.e. the system is inverse

stable.
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(3) y*{t ) is known a priori and bounded.

Control Algorithm Using Projection Type Identification Law

From equation (2.5).(2.8) and (2.11), we have

y(t+\)=9lr<t>U)+90Tz{t)

=91T<f>U)+90TDT4>(t) (3.1)

We choose the projection type estimation law (2.14) and a control law specified implicitly

by

/ (t +1)=0 xT<j>{t )+§ it )TDT<j>U ) (3.2)

(A minor modification is necessary to ensure that the coefficient of u(t) in (3.2) is nonzero.

This can be achieved in the same way as in [6] and does not affect the current analysis.)

Then, we have

Theorem 3.1 (Convergence Theorem)

Subject to assumptions 1). 2) and 3). consider the control law (3.2). together with the

projection type estimation law (2.14). applied to the system (2.1). Then. y(t) and u(t) are

bounded and

lim(y(r)-y'(r))=0 (3.3)
t -«co

Proof: Define the output error by

ey(t)=y(t)-y'(t) (3.4)

It follows from (3.1) and (3.2) that

ey(0=-§r(f-l)z(r-l) (3.5)

Now using equation (2.16). we have

e2U)
l»m . , r, ^ , r^=0 (3.6)

Note that

'-°° l+z7(r-l)z(r-l)

e2y{t) ^ e2y(t)
1+z' (r-l)zU-l) 'l+a^DD'tyQ-lWi-l)
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By assumptions 2) and 3), we have as in [6] that

max

iWt-Dll^i+cjj^.^ Iey(r)l (3.8)

for some 0<c1<oot 0<c2<°ct The conclusion now follows from equation (3.7) and (3.8)

using the key technical lemma in [6] and by noting that boundedness of I I<f>(t) I I ensures

boundedness of y(t) and u(t).

Control Algorithm Using Least Squares Type Identification Law (with Covariance

Resetting)

If the least squares type estimation law (2.17) is used . then we get the same result.

Theorem 3.2 Subject to assumptions 1). 2) and 3), consider the control law (3.2), together

with the least squares type estimation law (2.17). applied to the system (2.1). Then y(t)

and u(t) are bounded and

lim(y(r)-y*U))=0

Proof: The proof proceeds by an argument similar to that in [5]. Define

ey(t)=y(t)-y'(t)

Then from [5], we have

Um_ f/(g) =0 (3.10)
r-ool+*maxz'(*-l)za-l)

The remainder of the proof is same as that of theorem 3.1.

We have shown the global stability of two adaptive control algorithms. Note that

nothing has been said about the convergence rate of the output and the parameter conver

gence. However, if n(z~l) and rf(z_1) in (2.1) are coprime and the D matrix in (2.4) has

full column rank, then the persistency of excitation of z(t) follows from the sufficient

richness of input u(t) (i.e. u(t) has sufficient spectral content, see [l]). This implies that

the control algorithm, with either projection type or least squares type with covariance

resetting parameter update, has exponential convergence rate both for the output error and

parameter error.
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4 Simulation

To illustrate the methods of last section, consider the following example

U *

* "N
0.5 Z*4 y

r- 1*0.5 z"-z*2

K

Fig. 4

where k is unknown. The closed loop transfer function is

0.5Z"1.

(l+0.5z-l-z-^+k0.5z-1

Fig.5 shows the plant output under the adaptive control algorithm of (3.2) with projection

type update law and the plant output under the adaptive control algorithm without using

prior information respectively, (for the simulation, k =1, and y'(t )=l). The algorithm

using prior information has faster convergence rate and better transient performance.
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! without using
• prior information

! i

\

Fig.5

5 Concluding Remarks

In this paper we have presented two algorithms for discrete time adaptive control

which utilize prior information about the plant, including some known poles and zeros. If

the plant is completely unknown, the algorithms are identical to those proposed by

Goodwin et al in [6]. However the algorithm presented here have better transient perfor

mance and faster convergence rate when the system is partially known. In future work we

will show the added robustness margins obtainable from our scheme.
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