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ABSTRACT

In this paper, we present a systematic method of implementing a
VLSI parallel adder. First, we define a family of adders, based on a
modular design. Our design uses three types of component cells, which we
implement in static CMOS. We then formulate the adder design as a
dynamic programming problem, optimizing with respect to time. As a
result, we have found the fastest 32-bit CMOS adder in our design family.

1. Introduction

Addition is the heart of computer arithmetics, and the arithmetic unit is often the
work horse of a computational circuit. As a result, fast circuits for addition have been
studied extensively. Most authors study addition in the context of TTL design[De83a)
[Ku78a], for which gate count and delay are performance factors. These factors are not
sufficient to evaluate a design for possible implementation in VLSI. Accordingly, in this
paper, we optimize our adder circuit with respect to a refined model of VLSI delay and
area.

In 1982, Brent and Kung|Br82a] proposed a simple VLSI design for a fast adder. In
their model, fan-out is limited to 2. This proves too restrictive. Fan-out can be traded off
for shorter interconnects and a smaller area, which may in fact result in a faster circuit.

In this paper we present a realistic and systematic approach in constructing a fast
parallel adder. Our approach is based on Ladner and Fischer's ‘‘parallel prefix
computation”[La80a)], which is outlined in Section 2. In Section 3, we specify three basic
circuit blocks of a parallel adder. Three types of cells are designed and analyzed in
Section 4. From the timing analysis of Section 4, we optimize our adder design by solving
a dynamic programming problem in Section 5. An example of a 32-bit adder is presented.
In the last section, we summarize our approach to adder designs, and indicate how our
method could be extended.

t This work was supported in part by Nationsl Science Foundation grant 21412.



2. Mathematical Description

Binary addition can be transformed into a parailel computation by introducing an
associative operator o[La80a]. If we define the carry generate term, gIN;, and the carry
propagate term, pIN;, for each bit position ¢, then the carry ¢; for each bit obeys the
following recurrence relation:

gIN; = a;b;
PIN; = a; Db

¢ =Gy fori =12,..n

where
(9INy , pINY) if §=1
(G:, Pi) = (g1v; , pIN:)O(Gimy y Piey) il n29>1 (2.1)
and o is a concatenation operator defined as follows:
(9, m)o(g, , p.) = (91 + P19+, PiPY) (2.2)

Note that o is not commutative. Its left argument (g, , p;) is treated differently from its
right argument (g, , p,). After the carry bit ¢; is computed, the sum bit s; is :

8; = pIN; ®c;y for i=2,..,n

H=DN (2-3)

Given the fact that o is associative, we can choose a m such that i>m>1 and rewrite
(Giy , Pyy) as follows:

(Gs‘,l ’ Po',l) = (Gi.m ’ Pt'.m)o(Gm—l,l ’ Pm—l.l) (24)
where

(9INm , PINy,) if i=m

(9Ne , pIN)O(Girm » Picsm) if i>m (2.5)

(Gt,m ’ Pc',m) ==
We observe that (Gipm , Pim) 30d (Gi—m41,1 » Pim+1,1) have similar functional forms. Both
are functions of i—m+1 consecutive input bits and both require i~m applications of the
associative operator o. As a result, both can be computed by the same circuit.

3. Implementations

To implement the functions defined in Section 2, the three circuit blocks shown
in Figure 3.1 are required. The first is a combinational circuit, labeled the pre-condition
circuit, which gates in adder inputs a; and b; to generate the initial piv; and gin; for each
bit position i. The computed p and g terms are then fed into the fast carry generator
which performs the operations defined in Equations 2.1 and 2.2. It is this circuit which
allows accelerated carry computations and this is the focus of our study. The third block
is a sum circuit, consisting of a row of © gates, to combine the carry propagate bits (piN;)
from the first block with the carry bits (¢;) from the second block, according to Equation
2.3.
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Fig.3.1 Three Functional Blocks of an Adder

We use three basic types of cells to implement the parallel carry computation:
black cells, white cells, and driver cells. These are shown in Figure 3.2. Note that some
of the inputs to our black and white cells *“‘pass through” the cells. Specifically, the
(9, , p,) inputs of the black cell are available as outputs. This convention greatly simplifies
our wiring diagrams.

The black cell performs the associative concatenation defined in Equation 2.2.
Based on a static CMOS implementation, the black cell is of two categories, ba and bb.
The be cell shown in Figure 3.3a gates in positive-true signals and produces complemented
outputs. The bb cell, shown in Figure 3.3b, gates in complemented inputs and outputs
positive-true signals. Each bb or ba cell is further composed of p and g subcells. The p
subcell produces a pout signal and the g subcell produces a gout signal.

Definition The fan—out [ is the number of subcells that a signal drives.

For example, the fan-out for p; (or p;.bar) inside a black cell is 2, as it drives both p and ¢
terms. However, the fan-out for g;, g, , p, and their complements is 1 as they each drive
only one subcell.

In a static CMOS implementation, the function of a white cell is to invert the
incoming signals, providing the proper input polarity for subsequent black cell operations.
In the case of long wire interconnects or large fan-outs, a specially ratioed inverting
driver, either in single stage or cascaded stages, is needed to optimize circuit performance.
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Fig.3.2 Three Basic Types of Adder Cells

4. Circuit Models

To construct a fast adder, we must first evaluate the signal delay associated with
each type of cell. Given a static CMOS design, the circuit resistances and capacitances
can be estimated. The associated signal delay is computed. Drivers are modeled explicitly
and are an integral part of our circuit layout.

In implementing the black and white cells, we use minimum-length transistors for
the pull-down network of each subcell. PMOS pull-up transistors are ratioed so that the
maximum (over all possible input conditions) of pull-up and pull-down channel resistances
are equal. We define this resistance as R;. For simplicity, we also assume that the
capacitance C; and resistance R; of the horizontal interconnect between neighboring cells
are the same as the R and C values of the vertical interconnect. This condition depends
on the specific implementation, and is discussed further in Section 6.

In a static CMOS design, a pair of a PMOS pull-up and an NMOS pull-down
transistors constitutes a basic inverting unit. The input signal drives the gates of both the
pull-up and pull-down transistors. Let C, be the total gate capacitance of such an
inverting unit, then we can approximate the generation time of its output signal, oy, as a
function of its interconnect and channel resistances (R; and Ry, respectively), its load
capacitance, its fan-out f, and its input ready time, t;,:

tost = tin+(Re+R:if ) Ci+Cy)f
In the case when metal is used for interconnects and R;>R;/, then t,,, becomes:
towt = tin+Ri(Ci+Cp)f

Let  be a normalized time constant, defined as
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T == R.'(C.-“'C')

Then
tm = t‘“'f'ff » (4.1)

The fan-out f of a subcell is variable, depending on the type (p or g) of subcell,
and on the type and number of succeeding cells. This can be illustrated using the example
of a 5-bit adder shown in Figure 4.1, in which each cell position is identified by a pair of
depth and bit coordinates. For example, Cell (2,5) refers to the second cell which lies on
the vertical path of input bit number 5. Since the black cell (2,5) is followed by another
black cell (3,5) in a vertical connection, the output signals of Cell (2,5), pour 30d Gout,
become p; and g; of the following black cell. As a result, the fan-out for p,y is 2 as it
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Fig.4.1 A 5-bit Adder Example

drives both the p and g subcells of Cell (3,5), and the fan-out is 1 for g,y as it drives only
the g term of Cell (3,5). For a vertical white-cell to black-cell connection, for example
Cell (2,4) to Cell (3,4), the fan-outs are the same: fpout =2, fpou = 1. On the other
hand, 3 poy (OF goue) signal at a white or black cell may drive many p, (or g,) inputs. For
example, gou; (OF Pour) Of the driver cell (2,2) has a fan-out of 4, since it drives one subcell
in each of (3,2), (3,3), (3,4), and (3,5).

Signal propagation time through a cascaded driver, d, is a function of the
driver’s fan-out f,, the ratio r between successive stages, and the number s of cascaded
stages]Me80a). The minimum delay can be obtained if the driver has the ratio of

1

r=f4 *#, This is shown in Figure 4.2. The corresponding minimum propagation delay,
delay(s,/4), of the cascaded driver is:

2
delay(s,fq) = (s +1)(fa **' )r (4.2)

Thus, for an s-stage driver of fan-out f,,
tat = tam+delay(e,fq) ‘ (4.3)

Note that when #=0 and no driver is used, Equation 4.3 is the same as Equation 4.1.

Given the above analysis, we can evaluate the gemeration tune for each circuit
" signal as the sum of its input ready time and delay factor. Define ¢y, as the time when
signal g, is ready, ty a8 tye of the cell producing g; , and t,, as ¢y, of the cell producing
g,. Similar definitions apply to ty and t,,. We can then formulate the input ready time
for the g subcircuit of a black cell, ¢y, as:

t'{“ = max{t,, y t,‘ s td'}



Fig.4.2 Multi-staged Driver

And t,, for the p subcircuit of a black cell becomes:

tp‘-,. = ma.x{t,‘ , t"}

If we define /, (resp. f,) be the fan-out of the subcell under analysis, then

toout = tgin + delay(s,fg) (4.4)
A similar formulation can written for signal p,y:

toost = Lpin + delay(s,f,) (4.5)

5. Fast Adder Architecture

Ladner and Fischer defined a family of circuits, P,(n), for solving the parallel
prefix problem on n inputs. Assuming n is a power of 2, the recursive construction of
P.(n) for k>1 is shown in Figure 5.1. The basis of the recursion, the Py(n) circuit, is
shown in Figure 5.2. In these figures, black boxes represent the concatenation operation,
and are either ba or bb cells as appropriate.

In this paper, we limit the design space to a family of circuits, R(n), which is
shown in Figure 5.3. Note that R(n) is a superset of Py(r), because our construction
composes blocks of arbitrary sizes. Our circuit R(n) has a large fan-out from the most
significant bit of the right block, that is, bit m, broadcasting it to all bit positions of the
left block.

Note that, in general, the depth of R(n—m) may be larger than the depth of

R(m). This allows us to place a multi-staged driver on the output of the most significant
bit of R(m). See Figure 5.4.



\\\
/

Fig.5.2 Py(n) Adder Circuit

We observe that there are two possible critical paths in R(r). One is the
propagation through the leftmost vertical path. The other is the delay through the
leftmost bit of R(m), which drives large fan-out and interconnect capacitances. Since the
critical paths converge at the leftmost top cell, we focus our analysis on this cell. We can
thus compare the adders in R(n) by comparing the times at which their leftmost (p , ¢)
outputs are produced. This *‘principle of optimality” validates a dynamic programming



Fig.5.4 Drivers used in building an R(n) Adder

approach to choosing the best place m at which to decompose an n-bit adder into
subcircuits R(n—m) and R(m). Our design problem, then, is to evaluate ty,(n,1) in the

following recurrence:

toin(1,J) = js‘“"‘tn<‘.{maz [Einli M ALFIT, Lpinli m+1)+27, tga(m )] (§m A1}
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tyinli o) = ; o {maz[tyiali m+1)+27, tyin(m )+ 1 (Eima )1} (5.1)
where
tgin(3,7) is the input ready time for the g term of the most significant bit of
an adder block of size i —j+1;
tpa(i,j)  is the input ready time for the p term of the most significant bit of an
adder block of size i—j+1;
f(i,m,j) is the load function of the block of size m—j+1 driving that of size
t—m.
The load function f(i,m,;) is defined as:
f(i,m,j) = min  {delay(s,i—m+1 5.2
(i,m.Jj) o { ) (5.2)
and v = ¢ mod 2
where

» = max{0,depth(i,m+1)—depth(m,j)}

In equation 5.2, ¢ is chosen to minimize the signal delay through the driver. The depth of
this s-stage driver is limited to u, which is the depth difference between two component
adder blocks, R(i—m) and R(m—j+1). Furthermore, the output polarity of the driver
must match that of the left adder block, R(i—=m). Thus the parity of s must be the same
as that of u.

Note that in Equation 5.1 the m minimizing t,,(7,7) may not be the same as the
m minimizing ty,(i,j). We will address this problem in Lemma 2, below.

Assume that the input signals to the adder, a; and b;, are available at time 0.
Further, assume that the signals emerging out of the fast carry generator have unit fan-
out, then the basis for the dynamic programming is:

toin(7:d) = tpmld d) =7 (5.3)
Lemmal: The optimal circuit for adding bits j+r through ; is identical to the optimal
circuit for adding bits r+1 through 1. Thus, toin(J+7,7) = tpin(r+1,1) and
t,;,,(j-{-r,j) = t,,-,,(r+1,1)

Proof sketch: Equations 5.1, 5.2, and 5.3 are not sensitive to the absolute
magnitude of i and j. Only the difference i—; is important. {l

Lemma2: tyn(i,5) = tpin(i,J) for i 2 J _
Proof: We prove the lemma by induction on i. From Equation 5.3, the basis
j =i is trivially true. If i > j, and t,(i,7) = tpin(i,J), then from Lemma 1:

t,,,,(i+1,m+l) = t,,-,,(t',m)
tpin(i +1,m+1) = o (i,m)
and by inductive hyphothesis,

toim(i,m) = tyn(i,m) for jSm<i
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tgfn(myj) = tﬂtn(m;.]) for JS"‘S‘
From Equation 5.1, ,

t,,-,,(i+1,j) = J-Sr:'mg‘-_*_l{maz[t,,-,,(i+1,m+1)+lr , tm-,,(i+1,m+l)+2r ,

tgin(m,J)+ S (i +1,m )}
Since  is a RC time constant, it must be nonnegative. Thus

toin(i+1,7) = js::uzi+l{m“ [tyin(i+1,m+1)+27 , tyin(m,j)+S (i+1,m, )}

Substituting ¢y (m,j) for tya(m,j), we have

tunli+1,3) = j < <i41{mezltpmli+1m+1)+27, tyin(m,J)+S (1+1,m )}

hence the lemma. : tl

Using dynamic programming, we have calculated the optimal adder
configurations for n from 1 to 32. See Table 1. Using this table to construct an optimal
n-bit adder, the left adder block should be n—m bits wide and the right adder block
should be m bits wide. The column labelled driver stages indicates the number of stages
in the driver connected to the output of the most significant bit of the right adder block.
The depth entries indicate the number of layers in the optimal n-bit adder. The
generation time of the most significant bit for the n-bit adder is shown in the column
labelled tinigin). Figure 5.5 illustrates the optimal 32-bit adder.
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n n-m m t pin(gin) depth(n 1) driver stages
1 0 1 1.00 0 0
2 1 1 2.00 1 0
3 1 2 4.00 R 0
4 2 2 5.00 2 0
5 3 2 6.00 3 1
8 4 2 7.00 3 1
7 5 2 8.00 4 2
8 5 3 8.90 4 1
9 8 3 0.20 4 1

10 7 3 10.00 5 2

11 8 3 10.90 5 2

12 8 4 11.24 § 2

13 0 4 11.48 5 2

14 10 4 12.00 ] 1

15 10 5 12.87 ] 2

18 11 L] 12.80 68 2

17 12 5 13.24 8 2

18 13 5 13.48 [} 2

10 14 5 14.00 7 1

20 15 5 14.67 7 3

21 16 5 14.90 7 3

22 18 L 15.12 7 3

23 17 L 15.24 7 3

24 18 8 15.48 7 3

25 19 8 16.00 8 2

28 19 7 16.48 8 3

27 20 7 16.67 8 3

28 21 7 16.90 8 3

29 2 7 17.12 8 3

30 23 7 17.24 8 3

31 24 7 17.46 8 3

32 24 8 17.84 8 3

Table 1: Optimal n-bit Adders, 1<n<32.

8. Discussion And Conclusions

To design a fast adder for a given VLSI technology, one should first implement
black cells and decide on the particular layer(s) to be used for interconnects. Then, one
can determine the RC values for the cells and interconnects, as well as the corresponding
timing delay. Or for more accuracy, one could use a circuit simulator to obtain the exact
timing data for the p and g subcells under various loads. These values determine the
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Fig.5.5 The Optimal 32-bit R(n) Adder

delay factors in the dynamic programming, which may be different from those given in
Equation 5.1. Next, one should implement multi-stage drivers and tabulate their delays
under various capacitive loads. The result should be substituted for Equation 5.2. Using
this customized and more accurate model, Table 1 may then be recalculated using
dynamic programming. The resulting optima will, in general, be different from the ones
we calculated.

Our dynamic programming formulation does not explicitly optimize circuit area.
A modification to our program would calculate the fastest R(n) adder for a given depth.

In this paper, we have discussed static CMOS circuits. We are presently trying
to extend our analysis to alternative circuit design styles, such as dynamic circuits.

In conclusion, we have found the optimal circuit in the R(n) family of parallel
adders. It is an open question to find similar optima in other classes of adder
configurations. This topic is under current research.
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