Partitioning Polyhedral Objects
into Non-Intersecting Parts

Mark Segal

Report No. UCB/CSD 86/284
February 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Partitioning Polyhedral Objects
into Non-Intersecting Parts

Mark Segal

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, CA 94720

ABSTRACT

An algorithm for partitioning intersecting polygons embedded in three-space
into disjoint parts is described. Polygons, or faces, need not be convex and may
contain multiple holes. Pairwise intersections between faces are removed by slic-
ing faces apart along their regions of intersection. To belp reduce the number of
face pairs examined, bounding boxes are found for objects consisting of groups of
faces, and these boxes are checked for overlap.

The intersection algorithm has also been expanded to implement set-
theoretic operations on polyhedra. Information gathered during face cutting is
used to determine which portions of the original boundaries may be present in the
result of an intersection, union, or difference of solids.

Tolerances are calculated for computed vertices, edges and faces and are
used to locate regions in which pumerical inaccuracy may lead to erroneous
results. Various heuristics overcome most such situations, but some require
further information from the user.

This work was supported in part by the Semiconductor Research Corporation
and Tektroniz, Inc.

1. INTRODUCTION

Polyhedra in three dimensions are often represented by specifying their boundaries as a set
of polygonal faces. Each face, in turn, is defined by a set of bounding edges whose endpoints are
specified by vertices. We sometimes allow more general groups of polygons that do not neces-
sarily form polyhedron boundaries. In any case, a specification may allow faces to intersect one

another.

We wish to determine and remove these intersections for two reasons. First, many render-
ing algorithms that exploit object coherence for efficiency cannot tolerate intersecting faces in the
geometric descriptions on which they operate.!:2 Renderers that do accept intersecting faces do so

at added computational expense.3

Second, solids modeling systems usually allow the specification of complex solids as the inter-
section, union, or difference of simpler objects. While some renderers (notably ray-tracers) are
capable of displaying suchk combinations directly %5 those that cannot require a simple list of
faces. Further, if one wishes to compute physical properties of an object (center of mass,
moments of inertia, etc.), it is simplest to work with an explicit description of the object’s boun-
dary.®7 Finally, we may wish to determine a topological (coordinate-free) property of an object.
A ray-tracer, while capable of displaying a complex boolean operation result, does not reveal the

topological structure of the displayed object.

The algorithm we present partitions arbitrary polygons embedded in three-space into non-
intersecting parts. If the polygons represent boundaries of solids, the algorithm produces the
results of set-theoretic operations on those solids as a byproduct of its operation. The approach is
simple and general, operating on faces directly without first breaking them into simpler pieces.8
The method includes provisions for detecting and possibly overcoming the effects of numerical

error on the resulting faces and boundaries.

1.1. Overview of the Algorithm

The algorithm operates by looking for and, if found, removing intersections from pairs of
candidate objects. An object is either a single face or a collection of other objects. Intersections
are removed from a collection by removing pairwise intersections between the component objects.
Bounding boxes are used to determine when a pair of collections within an object interfere.® If
they do interfere, each collection is expanded into a list of the objects comprising it. The items in
the lists are individually checked and processed for intersections, if necessary. Then, each object
from one list is checked against each object from the other, removing any pairwise intersections.
This recursive process is applied to the object representing the total input to the algorithm, even-

tually removing all intersections.

The lowest level of the recursion is to detect and remove intersections from a particular pair
of faces. The intersection of a pair of faces may consist of either a set of line segments (for

transversal faces) or a set of planar regions (for faces that are coplanar), or be empty.

A face pair is first passed to a procedure that determines if at least one edge of each face
crosses the other’s plane. If this occurs, all intersection points of each face's edges with the
other’s plane are found and then sorted into order along the intersection line. This allows deter-
mination of the intersection segments along which each face is topologically partitioned.!® Sorting
the intersection points also allows finding vertices that are near enough to one another that they

should be considered a single vertex.

If all of one face's edges lie in the other’s plane, the faces are coplanar,!! requiring, for gen-
erality, the use of a procedure to partition overlapping regions in the plane. However, our algo-
rithm takes advantage of connectedness among a solid’s boundary faces. Partitioning of coplanar

faces, when both faces belong to solid boundaries, is achieved with no extra work.

If the intersection removal is being done to compute the boundary of a set-theoretic opera-
tion on two or more solids, membership information is gathered during face partitioning. After all
intersections have been removed, this information is used to determine which face portions belong

in the desired result and which do not. The appropriate portions are simply thrown away, and

the result output. The results of several distinct boolean operations can thus be output simultane-

ously .12

An important feature of the algorithm is its immunity to moderate numerical inaccuracies in
the input description. Methods are employed to overcome difficulties arising from ““warped’ faces
and grazing intersections. These measures, in the presence of some restrictions on the solids’
interactions, insure that the result of a boolean operation applied to the boundary representations

of two or more solids is the boundary representation of another solid.

2. GEOMETRIC ITEMS AND DATA STRUCTURES

2.1. Geometric Items

There are four basic geometric items with which the algorithm is concerned: vertices, edges,
contours and faces. A vertez includes a point in space specified by three coordinates. An edge
joins a pair of vertices defining its endpoints; each edge has a starting vertez and an ending ver-
tez. A contour represents a single, closed polygonal curve. Self-intersecting contours are not
allowed. A contour may assume one of two orientations; a component edge may be used in either

direction.

A face specifies a set of finite two-dimensional patches in the same plane; contours specify
non-intersecting boundaries of the planar patches. The face also specifies a normal and a distance
from the origin defining the plane in which the patches lie. Each contour divides the face’s plane
into two areas: a finite area “inside” the contour and an infinite area ‘“outside” the contour.!?® The
contour is said to enclose one of these areas. If the ordering of edges in a contour defines a clock-
wise traversal with the face normal pointing up, then the contour encloses its inside; otherwise, it

encloses its outside. A contour enclosing its outside is called a hole.

Each contour must bound an open planar set so that local topological determinations are
possible.14 This restriction insures that a contour may not contain zero-width “spikes’ (although

zero-width “‘notches’ are allowed).

Finally, the algorithm may consider a fifth type of object: a solid. A flag may be attached
to any face collection indicating that it forms the boundary of a solid in R3. Set-theoretic opera-
tions may be specified on such collections. The normals to the boundary faces point away from
the solid’s interior, inducing a boundary orientation. The orientation (face normal) is used to dis-

tinguish inside from outside for solid modeling operations.

No checks are made to insure that faces in the collection do not intersect and are connected
in such a way as to define an oriented polyhedral boundary.! It is up to the calling procedure to

make sure that any face collection so used is correctly defined.

2.2. Data structures
The data structures that the algorithm builds from an ASCII description of vertices, con-
tours, and faces have been described in detail elsewhere.! Briefly, the essential structures are the

following:

2.2.1. Vertices

A vertex’s main feature is the triple of floating point numbers describing its coordinates. A
tolerance indicates the accuracy of the coordinates. In addition, there is a pointer to a list of

edges to which the vertex is connected, and a pointer to the vertex’s ASCII name.

2.2.2. Edges

Each edge has two pointers to the vertices that define it. In addition, there is a pointer to a
list that indicates in which faces the edge is used and the location within a particular contour of

that use.l®

2.2.3. Contours

Each contour is a list of pointers to edges. Each list item also contains a flag showing
whether the edge is used in the defined direction or reversed direction. The list elements are cir-
cularly linked, facilitating the splitting and merging of contours. There is also a field for flags
that are used to assign contours as “inside’’ or ‘‘outside”” one or more solids. These flags are set
during cutting and are used to determine which contours should be present in the boundary of the

result of a solid modeling operation.

2.2.4. Faces

A face consists of a list of contours and four real numbers describing its plane equation. As
with a vertex’s coordinates, a tolerance indicates the accuracy of the plane equation’s coefficients.
If appropriate, each face also points to the solid to which it belongs. For a face assigned an ASCII

name, there is a non-null pointer to the name string.

2.2.6. Solids

A solid is a list of faces defining its boundary and a bounding box.

3. TOLERANCES

We associate tolerances with the positions of vertices and the equations of planes to control
the eflects of limited precision in the input description and the algorithm's calculations. For
example, in a face with more than three edges, numerical inaccuracies in the edges’ construction
and positioning may cause them to deviate from the plane in which they should lie. Since a face's
edges define its plane, we must assume that faces may not be precisely specified; the plane equa-

tion is subject to some error which we record as a face tolerance.l!

Further, during its operation, the algorithm must decide whether certain face pairs are
transversal or coplanar. Because of the face tolerances, as well as possible roundoff errors in posi-

tioning two distinct objects relative to each other, exact equality of plane normals is an

-6-

inappropriate test for coplanar faces. Similarly, some vertices may be close enough to be con-

sidered copositional.

These difficulties arise when a vertex, edge, or face from one object lies close to a vertex,
edge, or face in another object. Without some provision to overcome them, running the algorithm
on a pair of faces could produce spikes or other illegal contour comstructs. A solid modeling

operation might produce output that was not the boundary of a solid in RS,

To resolve any ambiguities in determining what constitutes close, we introduce a tolerance
model. If the input objects adhere to this model, and we make some assumptions about the way
distinct objects interact, we can be sure that the algorithm’s output will adhere to the model as
well. Further, the algorithm can determine as it operates if the assumptions are invalid, halting
its operation or notifying the user when it recognizes a region in which it may not produce correct

output.

The model is vertex based. Each input vertex has or is assigned a tolerance, ¢,, that
specifies how much in error the least accurate coordinate may be. Thus, a vertex’s tolerance is a
half-width that defines a small cube, or tolerance region in which the actual vertex is known to
lie. Each of the input object’s edges must be much longer than any vertex tolerance, so that

every edge's direction is well-defined.

Each face’s tolerance is constructed from its vertices’' coordinates and tolerances. A face
tolerance, ¢;, also defines a region around the plane specified by the face’s plane equation. When
intersection removal begins, the tolerance must be large enough so that a face's tolerance region

contains the tolerance regions of all vertices that lie in the face.

As the algorithm proceeds, new vertices appear at intersections of edges with a face. A new
vertex's tolerance is the maximum of three quantities: the tolerances of the edge’s two defining
vertices, and half the face’s tolerance divided by the sine of the angle made by the edge with the

face’s plane.* This last number measures the half-length of the edge’s intersection with the face’s

*Since we assume vertex separation large, we assume the end tolerances define the edge tolerance region. The
creation of an edge whose length is comparable to the tolerances of its defining vertices is considered an error.

-7

tolerance region. Because the face's plane equation is specified with a tolerance, the computed

vertex can lie anywhere along the transversal edge inside the face’s tolerance region.

After the edge intersection points for a pair of faces have been sorted along the intersection
line, vertices are merged if their respective tolerance regions overlap. A tolerance is created for
the vertex resulting from the merge by adding together the tolerances of the component vertices
and subtracting any overlap. One assumption is that the tolerance of any vertex, after computa-
tion and possible merging, does not exceed a supplied maximum vertex tolerance, €y. If this
assumption proves false, the algorithm cannot continue as it cannot insure that resulting face
tolerance regions will contain their component vertex tolerance regions. We term such an
occurrence a tolerance error. In case of a tolerance error, the algorithm must consult a set of
default rules or ask the user for advice on how to proceed. Once such an error occurs, the algo-
rithm cannot insure the validity of its output. If there is no source of further information about
the numerically ambiguous situation, the algorithm may produce topologically viable results if run

again with revised tolerance values.

During intersection processing, decisions must be made as to whether a vertex lies within a
face’s tolerance region. The face tolerance may grow as new vertices are added, so a maximum
value must be known so that consistent decisions are possible. As for vertices, a maximum face
tolerance, ¢r, must be specified. This value must be at least as large as the largest face tolerance
before intersection processing plus €y. This insures that each face’s tolerance can be made large
enough to include any vertices created as part of the face. ¢y is used in determining when a ver-
tex from one object lies in a face of another object, while ¢, is used in computing new vertex

tolerances.

This arrangement implies that a vertex in one object be considered to lie in a face of a
second object if the tolerance region specified by ¢, about the vertex lies completely within the
tolerance region around the face defined by ¢p (Figure 1). Thus, even if the vertex’s tolerance
were to grow to €y, the associated tolerance region would still lie acceptably close to the face's

plane. A vertex is considered not to lie in a face if the largest possible tolerance region about the

I{ Face
ﬁ_ _ _ ¢ Tolerance
ertex (¢7)
Tolerance

(€v)

Figure 1. A vertex whose tolerance region lies within a face’s
tolerance region.

vertex lies entirely outside the face’s largest possible tolerance region.

Unfortunately, some vertices may not fall into either category; their maximum tolerance
regions partially overlap the maximum face tolerance region. The detection of such a vertex pro-

duces a tolerance error, indicating that the algorithm has insufficient information to proceed.

If all of one face’s vertices lie in another face, the two are considered coplanar. Such face
pairs are recorded, and are merged after transversal intersection processing is complete. A new
plane equation is found using Newell's algorithm!? applied to all contours of the original faces. A
single face created from the merging of two faces may have a tolerance larger than either of the
two single face tolerances; such a face must be re-checked for intersection against all the other
faces in the input. Since coplanar faces rarely occur, the required extra work is small. Further, a

merged face cannot engulf too many coplanar faces, for eventually ex will be exceeded.

Finally, two faces that intersect only grazingly may make it impossible to accurately com-
pute an intersection line. This may occur in spite of some vertices from each face lying far
enough from the other’s tolerance region so that the faces are not considered coplanar. Such a
face pair would introduce vertices with tolerances well above any reasonable ¢y, once again pro-
ducing a tolerance error.

The tolerance model we have adopted is a simple one. However, despite its drawbacks, we

have found our simple model adequate; ambiguous cases arise only rarely. When they do arise,

re-running the algorithm with slightly larger tolerances nearly always produces the desired result.

4. INTERSECTION CLASSIFICATION

The first step in removing intersections from a pair of faces is to determine a plane equation
for each face. Each face fed to the algorithm normally has a plane equation attached, but if the
equation is missing, one is computed using Newell’s algorithm. To save computation, only the

first face contour is used.

Next, every vertex belonging to a particular face has it coordinates substituted into that
face’s plane equation. The magnitude of the largest deviation from zero added to the largest ver-
tex tolerance is recorded as the face’s tolerance.ll Vertex tolerances, if not supplied in the input,
are assigned an arbitrary small value. For a vertex not belonging to a particular face, the sign of
the oriented distance from the vertex to the face's plane determines on which side of the plane the
vertex lies. This determination is valid only if the vertex lies entirely out-ide the face’s tolerance
region.

Once plane equations and tolerances have been found for a pair of faces, a determination is
made as to whether the faces might cross, do not cross, or are coplanar. The edges in each con-
tour of one face are traversed and the oriented distance of each vertex from the other face is
found. Traversal continues until either: (1) two vertices produce different signs (that is, they are
on opposite sides of the other face), or, (2) all edges of all contours in the first face have been

traversed.

If (1) occurs, the first face has vertices on both sides of the second face’s plane, and the pro-
cess is repeated with the faces’ roles interchanged. If, during the second traversal, vertices of the
second face are found on opposite sides of the first, the faces may intersect and transversal inter-
section processing proceeds. The point at which the first sign change is detected is saved so that

later traversal skips the portions of each face that do not cross the other’s plane.

On the other hand, if (2) occurs during the first or second traversal, the faces either do not
intersect or are coplanar. The faces are deemed coplanar if all the vertices of one face lie within
2¢y, of the second face's tolerance region. If the faces are coplanar, they are processed by the

coplanar intersection removal routine. If not, the faces do not intersect and are returned

-10-

untouched.

8. INTERSECTING TRANSVERSAL FACE PAIRS

First, we introduce some definitions to permit easy description of the regions where faces
intersect. If they do so at all, two transversal face planes meet in an sntersection line. We call
the intervals that a face patch (as defined by contours) has in common with the intersection line
intersection segments. Each segment is defined by its two endpoints. The regions formed by the
intersection of segments from a pair of faces are called cutting sntervals. These intervals are the
portions of the intersection line in which a pair of faces intersect each other; they are therefore
the regions along which face patches must be partitioned. Partitioning intervals are found by

determining their endpoints.

At first, each face is treated separately. By determining the points of intersection of each
contour with the intersection line, intersection segments for each face patch are determined.
Next, segment information from both faces (kept as a set of endpoints) is sorted to find the cut-

ting intervals.

Cutting operations are then applied to the regions of interaction. There are four cases (Fig-
ures 2-5). Figure 2 shows the case if Face 1's intersection segment is a proper subset of Face 2’s
intersection segment. In this case, Face 1 is cut apart along the line, while a slit (2 hole of zero
width) is inserted into Face 2. The other case arises when neither face's segment contains the
other's. Figure 3 shows how both faces are notched to accommodate the intersection. The two
other cases arise if segment endpoints from the two faces coincide. In Figure 4, one face must be
cut and the other notched. In Figure 5, both faces must be cut. These diagrams illustrate simple

cases; typically, these operations must be applied to a face more than once.

-11-

VIS

Figure 2. A cut with a slst. Figure 3. Two notches.

\ \\/
=

Figure 4. A cut with a notch. Figure 5. Two cuts.

A \

5.1. Intersection Line Calculation
Since the face planes are not parallel, we can compute the intersection line. The calculation
involves finding a direction vector, u, and a point on the line, v, from the two normalized plane
equations:
a,z + by +e6z=4d
8,7 + boy + ¢z = d;,
Recall that the vector (a;,b;,c;) is a normal to the appropriate face.

A direction vector u is found by computing the cross-product of the two plane normal vec-
tors, and normalizing the result. To obtain a point on the line, we introduce a third arbitrary

plane equation, constructed to have normal u and to pass through some vertex in one of the faces,

-12-

yielding
a; b of [z d
az by cof ly| = |do],
ag by csf 17 ds

Ax =d

or,

This system is nearly orthogonal, since each of the rows r; of A is a unit vector, and ryry and
rgrs are both zero by construction. We need only alter ry so that it is orthogonal to r;. We

apply the elementary row operation
R, < R,—(r;13)R;

and renormalize

with R; = (a;,b;,c;,d;). P, is a three-vector whose components are the first three components of
i 0l 1

R, after the first row operation. The resulting system is orthogonal, and we obtain
v = ATd

where the primed quantities represent the results of the orthogonalizing row operations.

5.2. Endpoint Determination

Endpoints are the points of intersection of contours with the intersection line. To find these
points, each edge of each contour is examined. If the endpoints of an edge belonging to one face
lie on opposite sides of the transversal face's plane, then the edge penetrates the transversal face.

The point of intersection is a segment endpoint, and so must be calculated.
If the vertices of the edge are given by v, and vs, we set b = va—v,. The edge is then

parameterized by v,+&b, with 0<¢<1. The plane equation of the transversal face is n'x = d,

where x represents any point in the plane. We solve these two equations for s:

-13-

d —nv,

< The desired point is then p = v;+sb.

n(vy + sb) + d = 0 gives s = —

Actually, since the algorithm substitutes vertex coordinates into the transversal face’s plane
equation to determine the side on which a vertex lies, the distances from the plane are already
known. That is, d,=n'v,+d and d;=n-vg+d have already been found. Since n'b = d;—d,, it

d
saves work to set & = 7 ld (this quantity is always positive since d, and d, have opposite
182

signs).
Intersection points are provisionally added to the data structure as new vertices. They are
not permanently entered because they may not represent cutting interval endpoints. Later, sort-

ing will determine which new vertices should become incorporated into the full data structure.

Current
Contour
Current
Edge
X
Transversal
Face Endpoint
Figure 8. An endpoint occurring in the middle of an edge.

Vertices created during this step are assigned a tolerance. The tolerance value is found

using the tolerances of the two end vertices and that of the intersecting plane (see section 3).

Not all segment endpoints occur inside an edge. To determine whether an already present
vertex represents an endpoint, the two edges adjacent to it are checked to see if they lie in the
transversal face. The check is made by computing the distance of each of the edges extreme ver-
tices from the transversal face’s plane. For each vertex, a distance of zero indicates the associated

edge lies in the transversal face’s plane and therefore on the intersection line.

-14 -

One possibility is that both edges lie in the transversal face. If the two edges have the same
direction (as used in the particular contour), then the central vertex does not define an endpoint.
If they have opposite directions (as results from an occurrence of a notch or a slit), there is a sin-

gle intersection segment incident on the central vertex (Figure 7a & b).

> » > 4¢ i
| |
! !
|)
Current
(Vertex
Current vb va,vb
va Vertex
Figure 7a. The vertex at X does not Figure 7b. The marked vertex deter-
represent an endpoint. mines an endpoint.

Another possibility is that only one of the edges connected to the central vertex lies in the
transversal face. In this case, the central vertex defines an intersection point if the angle made by
the contour there is greater than 180 degrees. To determine if the angle is less than or greater
than 180 degrees, the cross product of the directions indicated by the two incident edges is com-
pared to the face normal of the contour under consideration. If the cross product points in the
direction opposite to the face normal, the angle is greater than 180 degrees, and the central vertex

defines a single endpoint (Figures 8a & b).

A third possibility is that neither edge lies in the transversal face's plane. If the vertices lie
on opposite sides of the intersection line, the central vertex defines a single endpoint. If both ver-
tices lie on the same side of the intersection line, the central vertex either defines two endpoints or
none. As in the case of a single extreme vertex on the intersection line, the cross product of the
edge directions is compared to the face normal to determine if the angle formed by the contour is
greater than 180 degrees. If so, a double endpoint is indicated; otherwise, the central vertex is not

an endpoint (Figures 9a & 9b).

-15-

«— vb

2t

Current Current
Vertex Vertex /
vb
Figure 8a. One adjacent vertex in the Figure 8b. The marked vertex defines an
transversal plane. The marked vertex endpoint.

does not define an endpoint.

va vb

| I

b |

' '

/

Current Current
Vertex Vertex
Figure 9a. Neither adjacent vertex lies in Figure 8b. Two endpoints are indicated
the transversal face. No endpoint is in- at the marked vertex.
dicated.

Even if a vertex lying in the transversal face is not an endpoint, it is placed in the endpoint
list anyway. Sorting will determine if it lies within €y of a vertex in the transversal face, requiring
a merge. These special vertices are essentially ignored during intersection line processing. How-
ever, each face has a (possibly empty) list of vertices that impinge on it but do not lie on any of
its contours. If such a vertex is found inside the transversal face, that face’s list is updated. The
list can be thought of as giving the locations of “‘pinholes’ in the face.

Whenever an endpoint is found, its relative position on the intersection line is determined for

sorting. The line is parameterized by v + tu; though the endpoint should already be on the line,

the form of the equation makes projection onto the line a simple means of finding ¢t. If p

- 16 -

represents the endpoint, then t = u7(p—v).

Each endpoint is classified as an entry or an ezit. The decision depends on the orientation
of the contour at the endpoint. If u points from the endpoint into the indicated face patch, then
the endpoint represents an entry. If u points away from the indicated patch, the endpoint is

classified as an exit. Two endpoints at the same vertex produce one entry and one exit.

To make the classification, let e, represent the edge incident on the current vertex and e;
represent the edge emanating from it. If both e,xu and uxey are zero (both edges lie on the inter-
section line, Figure 7), the endpoint is an entry if e,ou is positive, and an exit if this quantity is
negative. Otherwise (Figure 6 or 8), let x be a cross-product result which is non-zero (either e;xu

or uxez), and let n be the normal to the current face. Then the endpoint is an entry if nex > 0.

For a pair of endpoints at tue same vertex (Figure 9b), one must be an entry and the other
an exit. The first endpoint's classification is found as for a single endpoint, using the first incident

edge in the cross product. The dot product result cannot be zero in this case.

Endpoints are also linked on circular lists, mimicking the structure of the contours from
which they arose. This linking allows retention of the original endpoint ordering along each con-
tour after sorting is completed. The original structure is required in some cases during cutting to

determine the resultant contour topology.

5.3. Edge Induced Endpoints

Unlike a simple set of faces, a solid's boundary is connected from contour to contour along
edges. Therefore, an edge (which must lie between two contours in a solid) that lands entirely

within a face must induce a partition in that face (Figure 10).

Determining endpoints as described so far would not create the desired partition in such a
case. To remedy this situation, we must allow an edge lying entirely in the transversal face to
determine an intersection segment in that face. When such an edge is encountered, both the
current and next vertices on the contour under traversal lie in the transversal face. This arrange-

ment may produce no endpoint at either the current or next vertices. But the edge is recognized

-17 -

and two phantom endpoints entered into the endpoint list. These special endpoints may induce a
cut in the transversal face. But their phantom status is noted during intersection line traversal,

and no cut is made across the indicated face (where there is an edge already).

Trangversal

Currentx
Vertex

Figure 10. An edge lying entirely in the transversal face.
Such an edge must induce a cut in that face.

The edge giving rise to the phantom endpoints is marked, and a list of such edges is kept
through the endpoint determination in one face. If the edge is encountered again in the traversal
of the current face (two contours may share the edge), the mark prevents the addition of more
phantom vertices. When the traversal of the current face is complete, the edge list is examined
and indicated edges unmarked. The list structure used to keep track of the edges is then deallo-

cated.

If two contours in different faces share a common edge, each will contribute a pair of phan-

tom endpoints, with no net effect after partitioning.

5.4. Sorting the Endpoints

Sorting orders the calculated endpoints along the intersection line and allows grouping them
so that cutting intervals can be determined. Sorting is done first on the value of ¢t associated with
each endpoint. A single endpoint may be repeated up to two times per face. Therefore, secon-
dary sorting is performed, based firstly on the face in which the endpoint was found, and secondly

on whether the endpoint is an entry or an exit (exiting endpoints place first).

-18 -

Intersection
Line

_— — — = e Y e - - - — — 4

Exit Entry
Endpoint Endpoint

Figure 11. The use of entry and exit attributes to disambigu-
ate endpoints during sorting.

For convenience, UNIX’s gsort quicksort routine is used for the sorting. The number of end-
points for a pair of faces is typically less than twenty; a pair of convex faces will create 4

enpoints.

Once the endpoints are sorted, a check is made for vertices or provisional vertices whose
tolerance regions overlap, requiring a merge. Each vertex is checked against its neighbor. If a
merge is indicated, the pair of vertices is replaced by a single vertex with a new tolerance. The
merging process may eventually engulf several vertices. Such coalescing poses no problems unless
the maximum vertex tolerance is exceeded in the process. A single vertex with a larger than

acceptable tolerance also produces an error.

Vertex merging may require the elimination of edges. If an edge appears between two
merged vertices, that edge no longer has any meaning, and so is removed. Further, two edges
emanating from each original vertex may possess a common endpoint. If both edges belong to the
same contour which encloses an angle of less than 180 degrees at the endpoint, then the edges
must be eliminated from that contour. Otherwise, after the merge, the edges would define a con-
tour portion enclosing zero-area (a spike), which is disallowed by the regularity condition on face

patch boundaries.

-19 -

5.5. Traversing the Intersection Line

The cutting intervals are found by traversing the sorted list of coalesced endpoints in the
direction of increasing t. Two flags indicate whether the current position of the traversal lies
inside or outside each face. Each endpoint, encountered in turn, flips the state of the flag
corresponding to the face that spawned the endpoint. When both flags indicate “inside” the

affected faces are appropriately modified, partitioning them along the region of intersection.

There may be as many as two entry endpoints at the start of a cutting interval: one from
each face is possible. Sorting insures that if there are two such endpoints, they are adjacent in the
endpoint list. Two adjacent entry endpoints indicate two starting points: one for each face. Simi-
larly, a single exit endpoint indicates the end of a segment for only one face; two exit endpoints

indicate segment termination for both faces. In either case, the cutting interval ends.

The cutting interval starting and ending point multiplicities are used with face membership
information to determine how each of the two faces must be altered to partition them along the
detected portion of their intersection. For each face there are three basic possibilities: a cut, a

notch, or a slit.

5.5.1. Cuts

A face is cut if both endpoints of the cutting interval lie on contours of the same face.
There are two possible contour arrangements that can require a cut: the cut may split a single
contour into two or merge a pair of contours into one. In either case the patch between the two

endpoints is partitioned at the intersection line.

The cutting process begins by examining the two supplied endpoints. Either endpoint may
represent a newly created vertex. If so, the affected edge(s) must be split in two (Figure 12). All

uses of the same edge (possibly in other faces) are split at once.

Next, a new edge is created (if it is not already present) between the two vertices represent-
ing the endpoints. The contours indicated by the endpoints are relinked to include the new edge

twice, once in each direction. (Figure 13).

-20-

Figure 12. Subdividing edges at segment endpoints.

Figure 13. Reforming the contour(s) in- Figure 14. The two forms of a cut.
cident on the endpoints to induce a cut.

If the two incident contours are instances of the same one, that contour is split to represent
two disjoint regions. If the contours are different, the cut merges the two contours into one (Fig-

ure 14).

In either case, these changes must be reflected in the list of the face's contours. Portions of
the affected contours may yet lie ahead in the list of sorted endpoints. The circularly linked list of
endpoints is used to propagate the new contour information to indicated unencountered endpoints.
The list(s) are first relinked to correspond to the edge relinking. The resulting pair of lists (or sin-
gle list, if the two contours were different) are traversed, and the new contour information is

updated for any endpoints lying on the modified contour(s).

A final check is required to determine if the exit endpoint is simultaneusly an entry endpoint
(Figure 15). If so, the cut just completed may have altered the edge incident on the exit
endpoint's entry double. Since this second endpoint has not yet been encountered, its incident

edge field must be appropriately modified.

-21-

¢ ' Previous & New

Previous . v g — g\;;t:ent
Incident

&
<

>
>

New / A Entry, Exit

Incident Endpoints

Edge

Figure 15a. The situation at a double Figure 15b. The incident edge remains
endpoint after a cut. The incident edge correct.

must be updated.

The new incident edge is determined by the direction of the contour’s edges at the double
endpoint. If the circular links among endpoints are arranged as in Figure 15a, with the exit
endpoint’s link pointing to its entry double, then the .ontour orientation is such that the com-
pleted cut has replaced the edge incident on the exit endpoint with a new edge. Thus, the
incident edge must be changed to the edge created by the cut. Figure 15b shows the other possible

arrangement, where the incident edge does not change.

If the cut splits a contour, a flag is set indicating on which side of the transversal face each
new contour lies. For each contour, a vector is constructed normal to the intersection line and
pointing into the patch enclosed by the contour. The dot product of this vector with the
transversal face’s normal is formed. If the result is positive, the corresponding contour lies outside

the transversal boundary; if negative, it lies inside.

5.56.2. Notches and Slits

A notch (Figure 16) is created in a face if one of the cutting interval endpoints arose from a
contour of that face and the other arose from from a contour of the transversal face. As with a
cut, the edge in which the notch is made may have to be reformed into two edges. Then the

notch's edge is created and inserted twice (once in each direction) into the contour.

A slit (Figure 17) is placed in a face if both defining endpoints arose from a contour or con-

tours of the transversal face. No edges need be split for a slit; the new edge is created and

-020.

included once in each direction in a new contour.

A 4

[N
L

-

7 3

Figure 18. A potch. Figure 17. A slit.

Notch and slit creation are simpler operations than cutting because they do not require con-
tour splitting or merging. However, either operation may create a new endpoint that will have to
be considered later if partitioning is not yet complete. A slit creates two new endpoints, one at
each end of the slit. Only the one with the largest implied value of t need be considered, because
only the portion of the inter'section line corresponding to larger ¢ has not yet been processed.
Similarly, a notch starting at an edge and ending on an isolated vertex creates an entry endpoint

that may enter into further partitioning.

For a pair of faces, only one such isolated endpoint can occur as the result of a single notch
or slit operation. Therefore, instead of inserting a new endpoint into the sorted list (which would
require shuffling the list to accomodate the insertion), one of the endpoints giving rise to the notch
or slit is re-used and filled with the new information. A flag is set indicating that such an end-
point has been created. During the next partitioning step (if any), the entry endpoint may coin-
cide with this immediately preceeding slit or notch induced endpoint. If so, a second entry end-

point, corresponding to the previously isolated one, is added before partitioning proceeds.

-23-

8. COPLANAR FACES

If one face’s vertices all lie within another face’s tolerance region, the two faces are con-
sidered coplanar. In this case the partitioning procedure must be quite different from that for
transversal faces. Overlapping face regions must be partitioned into disjoint regions bounded by

pon-intersecting contours in the faces’ plane.

One way to achieve this partition is to employ a modified hidden surface removal algorithm
that returns visible and invisible face portions in object space.? One face is shifted along the
other’s normal, and the pair is then “viewed” along the normal. A new face is constructed using
the resulting visible and invisible contours. A selection among duplicated contours (those occur-

ring as both visible and invisible) is usually made depending on the application.

For fully general face partitioning, a coplanar partitioner must be available; however, if all
considered faces belong to boundaries of one or more solids, we need not implement a separate
procedure. The algorithm simply records coplanar face pairs on a list for later merging and possi-

ble use during contour classification.

The use of edge induced endpoints (section 5.3) automatically partitions any coplanar face
pairs. A face in a solid’s boundary must be connected on each edge (perhaps indirectly) to
another face not coplanar with it. The edges joining the coplanar portion to transversal faces will

induce the required cuts when the adjoining faces are processed.

7. SOLID MODELING

A solid modeling operation on boundary representations of two {or more) solids requires pro-
ducing a set of contours that bounds the desired combination. Portions of the original solids’
boundaries will be present in the resultant boundary; these resultant portions are a subset of the
partitioned boundaries. Although the essential information for selecting among the boundary por-
tions is gathered during face cutting, some enhancements must be added to the basic partitioning

algorithm to support solid modeling operations.

-24-

7.1. Propagation of Membership Information

The creation of a solid modeling result from partitioned contours requires that every contour
of one solid be classified as inside or outside the other solid. Cutting returns this information by
labeling contours. However, many contours in a given boundary remain uncut when two or more
boundaries are superimposed. Therefore, some method is needed to classify uncut faces with

respect to the other boundary.

The first step is to propagate inclusion information from classified contour to unclassified
contour across shared edges.!® Propagation begins by filling in a field for each use of an edge
within a contour to point back at the contour in which it is used. The propagation then takes the
following form:

for each face do

for each contour do
if contour is classified do
propagateMark(contour);
end
end
end
procedure propagateMark(contour)
for each edge in contour do
if contour on other side of edge is unmarked, propagate mark from current to
unmarked contour.
propagateMark(other contour);
end
end propagateMark

Note that the propagation does not alter information about contours already classified.

Propagation lessens the number of unclassified contours, but may not eliminate them all;
some contours may not be connected to contours that were cut (i.e. the enclosed solid may have
holes). To classify these unconnected contours, the face list is traversed once more to find all con-

tours.

For each unconnected contour, a large triangle is constructed. One edge of the triangle is
formed by an edge of the unclassified contour. The third vertex is placed just beyond a corner of
the bounding box of the transversal solid. The idea is to cut this large triangle against the

transversal object, find the the resulting contour containing the original edge, and use the cut

«25-

contour’s classification to classify the original contour.* If no cut occurs, the original edge is out-
side the transversal solid. The result is then propagated from the original contour to any others
that are connected to it across edges or other conmtours. While a more efficient point-in-
polyhedron test could be used,1® this method employs the already present partitioning machinery,

obviating the need for a special algorithm.

7.2. Coplanar Contours

There is one final case in which the various attempts at contour classification fail: two con-
tours from distinct solids’ boundaries may coincide after partitioning (except possibly for their
orientation) as a consequence of coplanar faces. This situation represents a non-transversal inter-
section of the two boundaries. A small change in the position of either boundary would resolve

any ambiguity. (See Figure 18.)

A A
B [[B
-]
A in B Bout A Aout B Bout A
A A
B [[B
—> -—
Aowt B Bin A Ain B Bin A

Figure 18. Two dimensional version of coplanar contours
problem. Each edge is analogous to a contour. A decision
must be made as to which row represents the desired situa-
tion. The column is selected by relative normal orientation.
Arrows indicate edge normals.

There are two basic situations for a pair of coinciding contours: their relative orientation is
either equal or opposite. The algorithm distinguishes between these cases by examining the sign

of the dot product of the associated face normals. The requested set-theoretic operation then

*To prevent the transversal object from being cut, a global flag is set which disables cutting for any face not
bearing a special mark. The triangle is the only face with the mark, and so is the only face cut.

-26-

determines whether one or both of the coinciding contours is kept in the output (Table 1).

Normal
Operation Orientation
Same Opposite
AUB keep one keep neither
ANB keep one keep neither
A-B keep neither keep one

Table 1. Default case selection for coplanar contours in solid modeling.
The entries describe what should be done with members of a matching
pair of coplanar contours to achieve a solid modeling result.

The algorithm must locate any matching contour pairs so that the correct one(s) can be
eliminated from the boolean operation result. After cutting and propagation are complete, the list
of coplanar faces (if non-null) is traversed. Each contour of one of these faces is tested for a

match in the other.

Because the faces have already been partitioned, regions enclosed by coplanar contours are
either identical or disjoint. Therefore, if two contours from distinct coplanar faces share an edge,
and the enclosed regions of each contour lie on the same side of the edge, the contours must

match.

The test for a match is made by examining the face list of the first edge in the contour.
This list displays all uses of the edge; each item points to a face and contour in which it is
included. The contour’s orientation is used along with the face normal to test if a use of an edge
in the second face represents a matching contour. If the face normals point in the same direction,
the contours match if and only if the edge appears in the same direction in each. If the face nor-
mals oppose, the contours match if and only if the edge appears in opposing directions. If a
match is found, the default is applied or the user is queried. Coplanar contours with no matching

contours are not affected; these will have been given correct tags during propagation.

-27-

8. SUMMARY

We have described an algorithm for partitioning intersecting faces into non-intersecting
parts. One application of this algorithm has been the pre-processing of polyhedral scenes with
intersecting elements so that these can be displayed by renderers that do not tolerate intersec-
tions. By virtue of some simple extensions, the algorithm can be used to compute the boundary
representation of a set-theoretic operation on two or more solids, each specified as a boundary

representation. It is therefore useful as a solid modeling tool.

Special care has been taken in the design of the algorithm to ameliorate the effects of incon-
sistencies arising from inaccuracy in the input specification. It handles designed or incidental
alignments between two objects by employing tolerances to indicate when any two vertices, edges,
or faces from distinct objects should be considered connected. However, the use of tolerances can-
not resolve all possible ambiguities. The algorithm can detect where the use of specified toler-

ances may fail, but cannot overcome the possible failure to produce topologically viable output.

Our tolerance model is not the only one possible. One way to add some accuracy and make
ambiguous cases less likely (at the cost of increased complexity) is to localize a computed vertex
along the edge and within the face whose intersection it defines. Instead of a crude tolerance cube
around each vertex, which may extend beyond the tolerance region of the indicated face, the ver-
tex tolerance region would be a thin tube lying along the edge and entirely within the face. Thus,

face tolerances would not have to increase to accomadate computed vertices.

While this model could provide greater accuracy, situations could still arise in which the
available numerical information would be insufficient to produce an unambiguous partitioning.
Such situations require more extensive description in the affected regions. It would be interesting
to examine ways in which such extra information could be derived, either from the user or from

some more general description of the objects under consideration.
The algorithm has been implemented in about 2600 lines of C code. This is in addition to

about 5000 lines of previously existing subroutines designed to manipulate the UNIGRAFIX20

data structures and their ASCII descriptions. The program runs in reasonable time (less than 100

- 98-

CPU seconds on a VAX 11/750) for objects in which a few hundred faces (about 10000 face pairs)
must be checked for possible interaction, but the O(n?) behavior of the algorithm becomes prohi-
bitive with larger scenes. Of course, if a scene can be grouped into parts whose bounding boxes
do not mutually intersect, the program runs in acceptable time by considering each part in turn.

Some results of intersection removal and solid modeling operations are reproduced below,

Union of five interlocking tetrahedrons. The algo-
rithm also correctly produces an icosahedron (with no
duplicated vertices) for the intersection of these
tetrahedrons.

This object was created by starting with a cubeoc-
tahedron with each square face divided into four
equal triangles meeting at the square’s center. Each
square’s center point was then moved to a position
outside the face on the opposite side, pulling the
attached triangular faces with it. The algorithm was
run so that the object could be displayed.

An example illustrating the algorithm’s operation on
disconnected faces.

A pair of complex, non-convex faces.

.

. / _
;f /

77

7,
/ “
% 2
G R z '/4:5.’/::'-_5 ,:":':_..E
i .

These three examples show the algorithm’s operation
on simple hierarchical objects. Two objects consisting
of eight distinct cubes were superimposed, and the
union, difference and intersection simultaneously out-
put. 114 face pairs were paritioned out of a total of
735 pairs considered; total CPU time on a VAX
11/750 was 28 seconds.

R R R R

intersection difference

union

Solid modeling with coplanar faces.

UNIGRAFIX: User: O0; System: O; isect started.

UNIGRAFIX: User: 73; System: O; Readscene terminated.

ugisect: Number of face pairs examined: 836352

ugisect: Number of face pairs rejected using bounding boxes: 530912
ugisect: Number of face pairs partitioned: 504 (= 0.1%)

ugisect: Total cuts: 1072, New Vertices: 520

UNIGRAFIX: User: 2034; System: 14; isect finished.

UNIGRAFIX: User: O; System: 0; isect started.

UNIGRAFIX: User: 1; System: O; Readscene terminated.
ugisect: Number of face pairs examined: 15000

ugisect: Number of face pairs rejected using bounding boxes: 0
ugisect: Number of face pairs partitioned: 1056 (= 7.0%)
ugisect: Total cuts: 2176, New Vertices: 892

UNIGRAFIX: User: 487; System: 8; isect finished.

Some larger examples. The program’s diagnostic out-
put is reproduced to give an idea of its performance.
Both examples were run on a VAX 11/750. In the
first example, the use of bounding boxes around faces
reduces running time about 30%.

The second example was rendered after intersection
processing in 91 seconds on a VAX 11/750. For com-
parison, a scanline renderer designed to accomadate
intersecting faces ran in 251 seconds on the unpro-
cessed version.

-929-

Acknowledgements
1 would like to thank Ziv Gigus for his pestering me about details of the algorithm’s opera-
tion in tricky cases. His questions forced me to think hard about some aspects of the intersection

removal process, which often led to clearer and simpler methods.

I must also thank my research advisor, Prof. Carlo H. Séquin. Our early discussions played
an important role in shaping the underlying philosophy of the intersection removal process. His
patience in allowing me to spend needed time to work out many of the numerical problems is

much appreciated, as is his careful reading of many earlier versions of this report.

Thanks also go to the other members of the Unigrafix group: Eric Bier, Nachshon Gal, HB.
Siegel, and Paul Wensley, for listening to my ideas and providing suggestions for improved

software.

-30.-

References

1.

10.

11.
12,

13.

14,

15,

16.

17.

18

19

20.

C.H. Séquin and PR Wensley, “Visible Featyre Returp at Object Resolution,” Computer
Graphics & Applz'cations, vol. 5 po. 6, May 1985,

G. Hamjjp and C.w. Gear, “Raster—Scan Hiddep Surface Algorithm, Tecbniques,” Computer
Grap/zz'ca, vol. 11, no. 2, pp. 206—213, Summer 1977.

Scott D. Roth, “Ray Casting for Modeling Solids, " Compuyter Graphics and Image Procegg.
ing, vol, 18, pp. 109-144, 1982,

Peter R. Atberton, YA Scan~Line Hiddep Surface Removal Procedure for Constructive Soliq
Geometry,” S]G’G’RAPH 88 Proceed:'ngs, Compuyter G’raplu'cs, vol. 17, Bo. 3, pp. 73-82,
July 1983,

Y. T Lee apg A A G Requicba, “Algoritlims for Computing the Volume and Other
Integra) Properties of Solid Objects,” CACM vol. 25 Bo. 9, pp. 635~650, September 1982

Slreue-lig Lien apqg James T Kaﬂya, “A Symbolic Method for Calculating the Integra) Pro-
Perties of Arbitrary Nonconvex Polybedra,” IEEE G & A, vol. 4, no. 10, pp. 35-41,
October 1984,

Fujio Yamagucbi and Tosbiya Tokeida, “A Solig Modeler With a2 4x4 Determinant Proces.
sor,” IEER G &4, vol 5, no. 4, pp. 51-59, April 1985,

ing of Complex Scenes,” SIG’G’RAPH ‘80 Proceedz'ngs, Computer G’rap/zx'cs, vol. 14, no. 3,
pp. 110-116, July 1980

Kevin Weiler, “Polygon Comparsion Using , Graph Representation,” S[GGRAPH 80,
pPp. 10-18, July 1980,

M. Segal, “Maintaining Topology in the Face of Numerical Inaccuracy, In Preparatjop,
WR. Franklin, “Eﬂ'ecient Polybedron lntersection and Union,” Graphics Interface, pp. 73-
2

RB. Tilove, “Set Membersl)ip Classiﬁcation: A Unifieq Approach to Geometric Intersection
Problems,” IEER Tranaactions on C'omputers, vol. C-29, pp. 874—883, Oct. 1980,

C. M Eastmap and K. Weiler, “Geometric Modelling using the Euler Operators,” Proc.
Firgg Annyqy Conference on Compyter Graphice in CAD/CAM Systema, pp. 248-254,

B. G. Baumgart, “Geometric Modelling for Compyter Vision,” Report STAN-CS-74-463,
Stanforq Al Lab, 1974,

W.M. Newma and R F Sproull, “Plane Equations,” in Prz'ncz'ples of Interactive Compuyter
Grap}zics, 2nd Edz'tz'on, p. 499, McGraw-Hill, New York, 1979,

Spencer W, Tbomas,, “Modelling Volumes Boundeq by B-Splipe Surl‘aces,” PHD Tbesis,

UGISECT(UG) UNIGRAFIX User’s Manual UGISECT (UG)

NAME

ugisect - convert intersecting faces and wires into non-intersecting objects

SYNOPSIS

ugisect [-I|[-D || -U]| -A|[-¥VIF eps][-r | < inputfile > outputfile

DESCRIPTION

Ugisect reads a UNIGRAFIX file and cuts up any intersecting faces to produce a scene description
with no intersecting elements. Each existing intersecting element is partitioned into several
pieces. The default is to keep all these pieces together in a single statement with multiple contour
groups.

Instances of definitions that are intersecting are expanded to the next lower hierarchical level,
where all components are again checked for intersection.

Command line flags cause ugisect to compute the boundaries of boolean combinations of two
solids. To use these options, the input file must consist of exactly two instances at the top level.
Faces and wires may occur only in definitions. Each instance must define the boundary of a solid
object for the output to be meaningful (ugssect does not check that the boundaries are well
defined). The instances may contain arbitrary hierarchy.

-1 Output the boundary of the intersection of the two solids specified by the two input
instances.

-D Output the boundary of the difference of the first specified solid minus the second specified
solid.

-U Output the boundary of the union of the two solids specified by the two input instances.

-A <name>
Simultaneously output the intersection, difference and union of the two specified solids.
With this option, nothing is placed on standard output; instead, three files "name.inter”,
"name.difl” and "name.union” are created and the three separate results placed in them.
If no name is specified, "inter” is used.

The other flags are:

-v eps

~V eps Change vertex tolerances. The first form sets the nominal tolerance assigned to vertices
as they are read in. The default value is 1e-9. The second form sets the maximum vertex
tolerance, which determines how near vertices must lie to be merged into the same vertex.
The default is le-7.

—f eps

—F eps Change face tolerances. The first form sets the minimum nominal tolerance for input
faces; a face may have a computed input tolerance larger than this value if at least one of
its vertices lies sufficiently far from its computed plane equation. The default is le-6.
The second form sets the maximum face tolerance that no face may exceed. It also deter-
mines how close together two faces must lie to be considered coplanar. The defualt is 1le-
4. If a maximum vertex or face tolerance is exceeded as intersection processing proceeds
(as the result of merging), an error message is printed, and the final output may be topo-
logically inconsistent.

-r Recover vertices. Normally, in the interests of eliminating redundant calculation, com-
puted intersection points are saved even if not immediately incorporated into a cut face.
Such a point may arise again in the consideration of other face pairs. However, for large
scenes, the memory cost may be prohibitive. The -p option prevents intermediate inter-
section points from being saved, considerably reducing storage requirements.

UGISECT(UG) UNIGRAFIX User’s Manual UGISECT(UG)

EXAMPLES
ugisect -A slabs < “ug/lib/slabs
ugplot -ed .4 .5 -1 -sa -dw -sy 3 < slabs.inter
ugplot -ed .4 .5 -1 -sa -dw -sy 3 < slabs.diff
ugplot -ed .4 .5 -1 -sa -dw -sy 3 < slabs.union

ugshrink -f 1.3 < “ug/lib/cube | ugshrink -H -f 0.6 | ugisect
| ugplot -ep -6 5 -10 -ab -sa -dw -sy 2.5 -sx 2.5

FILES

“ug/bin/ugisect, “ug/src/ugc

name.inter, name.diff, name.union
SEE ALSO

ugexpand (UG), ugxform (UG}, ugshow (UG), ugplot (UG) ugdisp, (UG)
DIAGNOSTICS

Upon termination ugisect will print out statistics on the number of intersecting elements.

BUGS
Does nothing about wires; currently they always pass through uncut.

Will produce a warning and possibly incorrect results if coplanar faces are detected, unless each
member of the coplanar pair belongs to a distinct solid boundary.

Instances are expanded whenever their bounding boxes intersect; if it turns out that the instances
do not actually intersect the instances are left expanded.

Occasionally a hole is output as the first contour of a face when using boolean operations.

AUTHOR
Mark Segal

