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Abstract ‘needed, so that memory interconnection schemes
. . permitting much higher bandwidth are possible. This,
viewgdngro:}?zsors with shared memory are currently then, permits high performance multiprocessors with

best way to obtain high (aggregate)
performance at moderate or low cost. Shared memory is
needed for the efficient and effective cooperation of
processes and high performance requires the use of cache
memory for each processor. A major problem is to ensure
that all processors see exactly the same (consistent) view of
those regions of memory that they are referencing; this is
the cache consistency problem.

Almost all published and/or implemented solutions to
the cache consistency problem have relied solely on
hardware, and suffer from cost and performance
disadvantages, especially for large numbers of processors.
Some of the hardware solutions cannot be made to work at
all for large numbers of processors. The generally known
software solution for cache consistency requires write-
through on all references and cache purging when a shared
data area is released; this solution has a performance
problem due to the memory bandwidth requirement of
write-through.

In this paper, we propose & new software controlled
cache consistency mechanism which doesn’t require a
shared bus and needs only limited hardware support.
Shared writeable data is treated as write through in the
cache; otherwise the cache is (optionally) copy-back, to
minimize memory traffic. Write through ensures that the
main memory copy of write-shared regions is always up to
date, so that when a processor reads a line from main
memory, it always gets the current value. A “one-time
identifier” is associated with the TLB entry for each
(shared) page and with the address tag for each line of that
page that is cache resident; one time identifiers function as
unique capabilities. Stale shared cache contents are made
inaccessible by changing the one time identifier in the TLB
entry for a page, so that the address tag on the cache line
no longer matches; this avoids the need to purge the cache
whenever write shared regions of memory are passed
between processors. Limiting write through to data items
to be read by other' processors minimizes memory traffic
and cache purges are required only when the supply of
unique identifiers is exhausted. Our discussion in this
paper also includes possible optimizations for this basic
idea.

The advantages to the cache consistency mechanism
proposed here include the fact that no shared bus is
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ghared memory to be built with many more processors
than shared bus schemes allow.

1. Introduction

The development over the last few years of high
performance microprocessors and high performance ‘super-
minicomputers’ has made it very cost effective to obtain
high aggregate performance by building multiprocessors
[{Smit84b). The performance of the processors in this class
is very sensitive to the memory access time, and can also
be limited by memory bandwidth; thus cache memories
[Smit82,84a] are necessary. The problem is that
potentially the contents of the same word of memory can
appear in several cache memories at the same time, and
unless care is taken, the values for that word held in the
caches can differ with each other and with main memory.
This is known as the cache consistency problem, the
problem of ensuring that any and all (legitimate)
references to a word of memory at a given time obtain the
same value. (We use the word “legitimate” to mean that
the computation is deterministic, in the sense of the use of
correct synchronization operations.)

Almost all published and/or implemented solutions to
the cache consistency problem rely entirely on hardware;
we survey those solutions in section 2, below. Those
mechanisms have the advantage that consistency is
maintained transparently and no software changes are
required, but none of those mechanisms are plausible for
large numbers of high performance processors: directory
methods are expensive and slow, and bus and broadcast
methods suffer severe performance bottlenecks for more
than a small number of processors.

For large numbers of processors sharing memory,
software intervention seems to be necessary to maintain
cache consistency, but the standard software solution of
write through caches and frequent cache purges also limits
performance. The standard software solution to cache
consistency functions as follows: by using write through,
main memory can be guaranteed to be up to date.
Between the time a write shared region is released and the
time it is rereferenced by a processor, the cache must be
purged, to ensure that no "stale” copies of write-shared
data remain; fresh copies are then obtained from the up to
date main memory. The use of write through stresses
memory bandwidth, which is frequently a system
bottleneck, and the purging of cache not only significantly
increases the cache miss ratio, but it is difficult to
implement efficiently and can be slow. The software
solution to cache consistency is discussed further in section



2.6.

In this paper, we propose a new means of assuring
cache consistency through the use of software control and
with appropriate hardware support. Our new mechanism
works as follows: We use write through only for shared
writeable data, since for read shared data, main memory is
always up to date, and for nonshared data, it doesn’t matter
whether main memory is current. Rather than purge the
entire cache in order to avoid using stale data values, we
make those values inaccessible: A ome time identifier
(OT) is appended to the TLB entry for a page and to every
line within that page which is cache resident; that identifier
can be considered to be a capability. When a line is
loaded into the cache, the current one time identifier for that
page is placed in its real address tag, and subsequent
references require that the one time identifier on the line
match that in the TLB entry. Those lines can be made
inaccessible by changing the OTI in the TLB entry.
Generating the OTIs is discussed in section 3.4.

The two new features of our design are: (a) Use
write through only for shared writeable data, and use copy
back otherwise, thus minimizing memory traffic. (b)
Associate with each entry in the TLB and also with each
address tag for each cache line a ‘one time’ identifier; the
identifier in the TLB and the one in the line address tag
must match in order to reference the cache. When a write-
shared memory region is passed from one processor to
another, the passing processor makes the shared stale data
inaccessible in his own cache by destroying the existing one
time identifier.

There are several advantages to our new mechanism.
Primarily, it permits shared memory designs with very
large numbers of processors, since no shared bus is needed,
and thus memory bandwidth limitations are much less
stringent. Avoiding cache purges significantly improves
performance, both by improving the cache hit ratio, and by
avoiding the real time delays for that purge to occur. The
selective write through keeps the memory bandwidth well
below what would be needed for write through on all
writes, and thus either permits larger numbers of
processors to be used or permits an implementation with a
lower performance and cheaper memory interconnect.

In the next section of this paper, we survey the
existing mechanisms for cache consistency. (For other
surveys, see [Smit82, 84a, 85a), {Yen85]) Our new design
is presented in section 3, with all relevant details, and
with an extensive discussion of the various optimizations
possible. The last section provides a brief overview.

2. Survey of Existing Cache Consistency Mechanisms

2.1. Shared Cache

The simplest possible solution to the cache consistency
problem is to have only one cache and make all the
processors share it; this is illustrated in Figure 1. Just
this solution was used in the Amdahl 470, in which IO
was routed through the cache; the original design for the
470 also permitted a second CPU to use the same cache,
but that machine version was never built. Another type of
shared cache is shown in Figure 2, where the caches are
associated with the memories, and are thus shared by all
processors. Analyses of aspects of a shared cache in
[Yeh81}, [Yeh83]. appest

'There are two factors which make a shared cache
design poor. First, the access time to the cache is the
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most high performance machines, and the access time to a
shared cache would have to be greater than for a dedicated
cache due to longer (physical) access paths, arbitration
delays and access conflicts. Second, it is difficult to make
the bandwidth of a shared cache sufficient to support even
two high performance processors; this is the reason that
the multiprocessor version of the Amdahl 470 was never
built.

We do note here that our comments about how many
processors a cache or bus can support implicitly assumes
that those are high performance processors. If a cache or
bus is made fast enough, at considerable expense, and slow
(cheap) processors are used, then large numbers of
processors can be accommodated. Since our interest is
maximum performance at minimum cost, the latter
solution is of little interest and we do not consider it
further.

2.2. Shared and Private Cache

In this architecture, every processor has its own cache
for data local to that processor, and then there is another
cache which is shared among all processors. Data tagged
as shared would be allocated to the shared cache. Such as
scheme is discussed in (Flet83a,b], [IBMS83], [Puza83].
Figure 3 illustrates that architecture.
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This design is feasible although rather inelegant due
to the lack of symmetry of reference, but does have some
problems. First, it must be possible to identify what data
is shared; this is possible and our solution assumes this as
well. There are & pumber of cases, however, (see section
3.3 below) and it is easy to designate far too much as
ghared. Second, the bandwidth of the shared cache still
limits the number of processors. Finally, the slower access
time to the gshared cache may still affect system
performance.

2.3. Broadcast Stores

A solution used in some machines (e.g. the IBM
370/168, 3033) is to broadcast all stores to all machines.
The receiving machine then checks its own cache and if
the target of the store is found there, then either the target
is updated or (as with the 370/168 and 3033) is
invalidated. This mechanism is discussed in {Jone76,77).

The problem with this design is that the fraction of

the cache bandwidth required to service external
updateslinvalidates grows {almost) linearly with the
pumber of processors and the resulting ~memory

interference makes this solution implausible for more than
2 to 4 high performance processors, or 8 dozen or 80
medium performance processors such as the M68010. (The
bandwidth required will grow somewhat less than linearly
as cache access contention causes each processor to

compute less rapidly and issue fewer writes.)

The use of the broadcast consistency mechanism can
be extended to 2 considerably larger pumber of processors
with the use of & BIAS Filter Memory (BFM) [Bean79].
The BFM remembers the k most recently invalidated lines
and filters out repeated requests to invalidate the same
cache line. The performance limit is now determined by
both the bandwidth of the BFM, which has to handle all
stores by all processors, and the interference with the
cache by initial invalidates. If the hit ratio in the BFM
were 75%, then at most four times as many processors
could be used before the cache bandwidth was seriously
stressed; this is still a small number of processors. (The
BFM bandwidth itself might not be a problem, since it
could be interleaved; the cache i8 generally too expensive
to interleave.)

2.4. Directory Methods

The first hardware based consistency mechanism to be
described in the literature was that of a centralized
directory {Tang76]. In this architecture, main memory
maintains a directory which keeps track of which lines are
in which caches, and in what status (shared / exclusive).
When a processor requests a line for ghared access, the
main memory controller ensures that no other processor
has that line for exclusive access by searching its directory
and requiring that . any processor holding the line for
exclusive access relinquish it. When a processor requests a
line for exclusive access (or converts 8 line from shared to
exclusive) the controller invalidates the line in the caches
of any processor bolding it
architecture of this type, where the "memory controller”
holds the directory. Analysis of and improvements to this
basic scheme appear in [Arch84], [Cens78], and [Dubo82].
The IBM 3081 uses 8 version of this algorithm in which
the System Controller (SC) maintains a copy of the
directory for the cache for each CPU [Gust82]; when the
SC is queried, it is called a “cross interrogate.” arious

Figure 3

AND MEMORY COMTROLLER

INTERCOMNECTION NETWORK

Figure 4

optimizations to the IBM design are discussed in [Bren84],
{Flus83), {Hrus82), [Kryg84], and [Knig84].

There are some limitations to the centralized directory
method. First, the central controller 18 expensive and
complicated. Second, processing of misses can be slow due
to the need to reference the directory and perhaps recall
lines from other caches, queueing delays will slow up
memory access even further. Finally, the bandwidth of the
controller must be sufficient to accommodate all processors

at all plausible miss rates.

2.5. Bus Methods

With the availability of high performance, large
address space microprocessors, multiprocessor designs in
which several microprocessors all share the same main
memory bus have become popular; this architecture is
illustrated in Figure 5. Because all processors share the
same path to main memory, each can monitor misses from
all other caches, and the directory method can be
jmplemented straightforwardly in 8 distributed manner.
In one design, 8 fetch (shared access) from memory will
cause any cache holding a dirty copy of the line to provide
it to the requesting processor before main memory can
respond. A write (exclusive access) miss, or an attempt to
write to a line held as shared, will cause all other caches
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to invalidate their copy‘ of the line.

The first bus consistency method was proposed in
[Good83]. Improvements and extensions have appeared in
[Fran84], [Papa84], [Rudo84], and [Katz85).

There are several problems with the bus methods,
which limit their applicability. First, all processors must
share a common bus, which may be difficult due to
aggregate memory traffic and other reasons such as bus
length, bus loading, physical configuration, etc. Second,
the bus traffic limitation sets an upper limit on the
number of processors that can be accommodated. Finally,
the interface between the cache and the bus must be fairly
sophisticated.

2.6. Software Enforced Consistency

In order for & computation to be deterministic,
synchronized access to shared resources, such as memory,
must be enforced. This implies (although not trivially)
that the operating system goftware knows which areas of
memory will be gshared and when, and it can issue
commands to the various processor caches Bo that
references to that ghared memory will be correct.

There are two issues in enforcing consistency:

(1) When a processor requests a line for a read, it must
get the latest value; this can be arranged if all misses
are serviced from main memory and if main memory
is itself guaranteed to be up to date. The use of write
through ensures that main memory is current.

(2) When an area of memory is referenced sequentially by
processors A, then B, and then A again, we must be
sure that the values that A sees are not “stale”,
through having remaining in A’s cache while B
modified them. The traditional solution to this
problem is to have A purge its own cache when it
releases the shared area of memory. This
implementation is used by the RP3 [Bran85], and
NYU Ultracomputer [Edle85] (both of which also
make some shared information uncacheable) and is
also discussed in [Maza77].

This traditional way of implementing software
consistency causes two performance problems. First, all
caches are write through, which burdens main memory
with write traffic and may cause processors to block while
waiting for writes to complete [Smit79]. Second, the
frequent purging of caches when shared areas of memory

are released can significantly increase the overall cache
miss ratio. It is also worth noting that purging & cache
which is implemented using standard RAM chips is slow;
each entry has to be invalidated in turn.

3. New and Efficient Software Solution

3.1. Assumptions and Hardware Support

In order for a software consistency mechanism to
work, we have to make some assumptions and have to
require certain hardware support. We list those items
here:

(1) We assume that memory is paged, that the processors
generate virtual addresses and that the caches use
real addresses. A TLB (translation lookaside buffer)
[Smit82,84a] is used to translate virtual to real
addresses. TLBs are one per processor, and are not
shared between processors. (The real address cache is
needed so that the OTI in the TLB entry can be
compared with the OTI part of the line address tag. It
is possible to create a design in which operation with a
virtual address cache is possible; this is discussed
below in section 3.5.) A TLB entry is shown in Figure
6.

(2) We assume that the relevant goftware (operating
system or user) knows which areas of memory are
write shared and when control is passed. For
simplicity, we assume that access to a write shared
region begins with a P(S) (semaphore request) action
or its equivalent (eg. test and set); the access
terminates with a V(S) (semaphore release) action.
(We assume that there is some indivisible
synchronization operation such as PS) and V() or
test and set, or compare and swap) We further
assume that the operating system can determine
which pages compose the shared region and that each
shared region uses an integral number of pages. (Le.
unneeded regions of the last shared page are not
allocated to something else. Our mechanism does not
support a finer level of granularity of sharing than the
page.)

(3) The caching is controlled on a page basis by a two bit
field. The first bit (cacheable bit) specifies whether a
line is cacheable at all, or whether it must be
referenced only from main memory. (Uncacheable
jtems  would typically include semaphores
(synchronization variables) and data that is write-
shared with few references by each processor before
access is passed. The RP3 and NYU Ultracomputer
make some items uncacheable.) The second bit (write-
through bit) specifies whether the line is to be
managed copy-back or write-through. In general, as
explained below, shared areas will be managed write-
through. When an entry is made in the TLB, the two
bit field is copied into the TLB in order to specify the
appropriate type of operation on each reference (see
Figure 6). We note that the settings of the write
through and cacheable bits can be different for
different processes, since they reside in the page table
for each process. (The availability of copy back is for
performance reasons only; write through is sufficien
for the correctness of our mechanism.)

ADORESS | VIRTUAL PAGE RO TECTION{STORE THROUGH one Tmar | WEAL
sPACE vaLmn oI COPY BACK/ _ (SHARE BT saGE
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(4) A third bit, called the shared bit, specifies whether the
page is shared between processors. This bit is set by
the operating system, either from its own knowledge
or by an explicit request from the user. For the
optimized versions of the implementation of our
consistency mechanism, the shared bit is not always
the same as the write through bit; in the simplest
implementation, it is always the same.

(5) The TLB real address field and the real address tag
for each line each have room for an additional field
which we call the one time identifier (OTI) field. When
the shared bit is on, the OTI fields from the TLB and
the line address tag are compared, and if they don’t
match, the overall match circuitry reports “no match.”
(If the shared bit is off, the compare does not include
the OTI fields) The function of the OTI is very
similar to that of a capability, in that it authorizes
(permits) reference. See Figures 6 and 7 for an
illustration.

(6) There is an OTI register, the contents of which are
loaded into any new TLB entry for which the shared
bit is on. The OTI register is incremented every time
it supplies a value. When the OTI register overflows,
the entire cache is purged. There must be some
mechanism to purge the cache; since it happens
seldom, it need not be especially efficient. Generation
of OTIs is discussed in more detail in section 3.4,
where we also consider the frequency of overflow of
the OTI register.

(1) There must be an Invalidate TLB Entry ATLBE)
command which will remove an entry from the TLB
based on its virtual address. (This can also be
accomplished by purging the TLB, but with significant
additional performance loss. Also, as discussed below,
purging all TLB entries which have the shared bit set
is sufficient.)

Although the list above of assumptions and hardware
requirements appears to be long, that is the result of an
attempt to very clear and explicit about what is needed.
In fact, the amount of hardware needed is no more than is
required for any of the hardware consistency schemes, and
is considerably less than for some.

REAL ADDRESS TAG | ONE TIME VALID | paTa
IDENTIFIER T
CACHE ENTRY
REPLACEMENT
ENTAY 1 | EnTRY 2| e ENTRY E STATUS
CACHE SET .
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8.2. The (Basic) Consistency Algorithm

For the basic version of the consistency algorithm
given here, we assume that the shared bit is on for all
pages which are write shared between two or more
processors and any shared page is designated write
through.

Initial Use of Shared Area: The first reference to a
write shared region (i.e. one with the shared bit on) or a
(re)reference subsequent to the use of the region by

another processor, will cause the TLB to be reloaded,
automatically, via the hardware, with a new translation
entry for any page referenced in that region. This is
arranged (see below) by ensuring that there is no current
valid TLB entry. Associated with the new TLB entry will
be a new one time identifier (OTI) obtained from the OTI
register.

Whenever a line is fetched which is within a page
marked as shared, the OTI field from the corresponding
TLB entry is loaded into the line address tag. The OTI in
the TLB entry is compared on all references with that in
the cache line. This will prevent access to any line which
remains in the cache from previous use, ie. stale data,
since those stale entries will have a different OTI value in
their tags. Any lines loaded by virtue of this new TLB
entry will have the same new OTI and will be accessible
via that new TLB entry.

End of Use of Shared Area: When access to a write
shared region is about to be given up (equivalent to V(8)),
the TLB entry for every page in that region is invalidated
by issuing ITLBE (invalidate TLB entry) commands for
each page. This ensures that all data in this region in the
cache is now inaccessible and that subsequent references
will require new fetches from main memory.

As should be clear, this algorithm avoids the stale
data problem without purging the entire cache; only
individual TLB entries need to be purged. Memory traffic
is minimized by limiting write through to write shared
regions.

In Figures 8 and 9, we illustrate the design and
operation of the cache, with the special modifications we
have proposed.

8.3. What is Shared, and Special Case Optimization

The issue of what is shared is not quite as trivial as it
might seem on first inspection. In this section, we list all
of the circumstances that lead to the same region of
memory being write shared between processors. Some of
those cases benefit from special optimizations. We note in
particular the distinction between the use of the shared bit
and the write through bit. The shared bit is to ensure that
when a processor reads a region for which this bit is set, it
gets fresh (up to date) data from main memory. The
function of the write through bit is to ensure that when a
processor with that bit set writes a region, main memory is
forced to be current, and thus another processor, when
reading the region currently being written to, gets the up
to date values. If the use of the shared region is not
symmetric, optimizations are possible, as we describe
below. '

3.3.1. Supervisor Data Structures

The typical shared region of memory would be one
containing supervisor data structures such as the job
queue. This is handled quite well using the basic
algorithm.

3$3.2. Input/Output

Input/output processors (or channels) write directly to
main memory, 80 memory is guaranteed to be current on a
read. A processor reading from an input buffer must have
the shared bit set for that region to be sure of getting the
fresh data from memory. It need not have the write
through bit set, since this is an input buffer and no other
processor will subsequently read from the area.
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A processor writing to an output buffer must have the
write though bit set, so that memory is made up to date.
It need not have the shared bit set, since it is not reading
from the region.

3.3.3. Message Buffers and Regions

In some systems, processes communicate by passing
message buffers, or using mail boxes or pipes. This is one
way communication, which means that the sender must
use write through and the receiver must use the OTI
mechanism, i.e. have the shared bit set.

3.3.4. Forking a Process

If a process is forked off, and the child processes run
on the same processor, no special steps need be taken; i.e.
neither the write through nor shared bits need to be set in
either address space.

If a child process is to run on a different processor,
then precautions must be taken. We consider two cases:
when the new child has a new copy of the address space,
and when the children share the existing address space
and physical memory.

If a new address space copy is created, then the
program (OS function) making the copy must have the
write through bit set in the target pages. The child, which
gets a new address space and page table, referencing the
physical memory which was the target of the copy, should
not have the write through bit set. It does need to have
the shared bit set, since although the address space is new,
the local cache may contain stale values for that region of

main memory.
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If the child operates in the same address space on the
same (shared) physical memory, then access to data must
be controlled in the same was as access to shared
supervisor data structures.

3.3.5. Semaphores

Semaphores are by definition shared. (By
“semaphore”, we refer to those variables used for
synchronization, including the targets of P(S) and V(8),
and test and set instructions.) Since semaphores are only
referenced on entry and exit from critical sections, they are
likely to be referenced infrequently, and may be made
uncacheable; if they are cacheable, they must be placed in
a region which is referenced both with the write through
bit and shared bit on. Further, it must be possible to
operate on semaphores in an indivisible manner so as to
accomplish synchronization (i.e. both the cache and main
memory are locked and held until the operation is
complete); this is a general requirement and is not specific
to our consistency mechanism.

3.3.6. Process Migration

Ideally, in a shared memory (tightly coupled)
multiprocessor system, we would like to be able to move
processes from one processor to another. When memory
and all VO devices are shared between processors, this can
be very easy to do, since the process is not bound to any
aspect of a specific processor. (Migrating processes in a
distributed system in which neither memory or /O devices
are shared is, conversely, very hard, since a process in that
case is generally bound to the processor and its o
devices.) In order for a process to be migratable, it must be
treated as if it were a shared data structure: all accesses
must be write through, and the processor giving up the
process must purge (ITLBE) all relevant TLB entries. This
solution, while correct and feasible, because of write
through results in a high level of memory traffic and a

- consequent performance penalty or limitation.

There are two possible ways to minimize the
performance penalty here of using write through. One
possibility is to create a hardware cache flush mechanism,
go that when the process is relinquished, the dirty lines in
the cache are immediately expelled and main memory
updated. This is straightforward but additional logic is
required, and a considerable real time delay can elapse
while the cache is flushed.

The second possibility is to create an architecture with
two levels of consistency, such as that illustrated in Figure
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T I £
CACHE CACHE §
PROCESSOR PROCESSOR é £
¢ 2
T T ! g MEMORY
PROCESSOR PROCESSOR g
I I 5
CACME
vo
PROCESSOR PROCESSOR Figure 10




processors on each bus. The busses are connected via a
crossbar to the main memory. In that architecture, bus-
type consistency protocols can be used to ensure that all
processors on the same bus have consistent caches; in that
case, processes can be moved (only) among the processors
on the same bus without using write through. A more
extreme version of this approach is to simply forbid process
migration; the dispatch queue would be particular to each
processor. We believe that the advantages of a bus watch
consistency mechanism are substantial, when performance
considerations (i.e. bus bandwidth) permit such an
architecture. Our proposed design permits the use of a
shared bus for small numbers of processors, with our
consistency mechanism used only for sharing between
processors on different busses.

3.4. One Time Identifiers

Thus far we've given only a very cursory description of
the creation and use of the one time identifiers (OTls);, we
expand on that here.

The OTI consists of a k-bit field supplied by the OTI
register (OTIR). The OTIR is simply a counter, which is
incremented every time a value i8 read from it. The k-bit
OTI is kept in every TLB entry and in the address tag field
of every cache line. In both cases, the extra storage can be
significant in relative terms, although likely not in
absolute terms. Assume a machine with 16Mbytes of real
storage, 32 bits of virtual address, a 4K page size and a 12
bit OTI (i.e. 4096 different OTls available). Then a TLB
entry consists of 20 bits of virtual address tag, 12 bits of
real address field, and 12 bits of OTI. The real address tag
on a cache line has expanded from 12 to 24 bits, including
the new OTI. (With a reasonable line size [Smit85c], such
as 16-bytes (128 bits), the extra 12 bits per line are less
than 10% of the total storage to implement the cache.) The
comparators that check the real address tags for a match
have increased from 12 to 24, plus a new signal line to
disable the OTI compare if the share bit is off.

The name “one time identifier” implies that every OTI
value is unique and never reused, much like a capability.
If it were possible to make the OTI field large enough, eg.
48 bits, then OTIs could indeed be unique. Because of the
need to conserve storage and minimize comparators,
however, the size of the OTI needs to be much smaller,
which means that eventually the OTIR will overflow or
wraparound. If wraparound were to occur, there would be
a (very small) chance that a preexisting real address/OTI
pair in the TLB could be recreated, leading to a match
with stale data still in the cache. The implication is that
when the OTIR overflows, the cache must be purged.

The cache can be purged in either the foreground or
background. A foreground purge means that the machine
stops while a small engine (microengine or finite state
machine) invalidates: each address tag for each line in the
cache; because the tags are typically implemented out of
standard RAM chips, they can’t be invalidated the way a
set of flip-flops could be reset. A foreground purge thus
requires a real-time halt in processing. We note that only
entries with the shared bit on need to be invalidated, but
every entry mneeds to be examined. It might also be
possible to purge a cache in soltware, by writing a code
loop guaranteed to cause every current entry in the cache
to be pushed. Such a use of software simplifies the
hardware, but is likely to be slower. Another difficulty
with a software purge is that it must be completely clear

- conversely,

that all existing entries are actually purged, even when
traps and interrupts occur during the purge loop.

A cache purge in the background is also possible; i.e.
the processor continues processing while spare cache cycles
are used to perform the necessary invalidates. We add one
more bit to each address tag, which we call the bank bit
(as in “memory bank”). The bank bit is compared to the
bank flag on each access, and the real addresses match
only if the bank bit matches the bank flag. When an entry
is loaded into the cache, the bank bit is always set to the
current value of the bank flag. A cache purge can be
temporarily accomplished by flipping the bank flag, thus
causing every entry in the cache to become invalid. We
say “temporarily” because every entry in the cache with
the old value of the bank bit must be genuinely
invalidated before the bank flag is again flipped; this can
be done by an engine using spare cache cycles to invalidate
entries.. If the time until the OTIR overflow is reasonably

large, as would be the case for a 12 bit OTI, then all
invalidations could be easily accomplished in the
background. This same mechanism was used in the

Amdahl 470 to purge the TLB [Smit82,84al.

It is also possible to implement the valid bits for each
cache line as a set of flip flops, rather than as one bit fields
within the line address tags. In that case, all of the flip-
flops can be reset in one cycle with one signal.

An important issue is the size (number of bits) of the
OTIL. Because the OTI takes space, we would like to
minimize its size. On the other hand, we would like to
minimize the frequency of OTIR overflows, since they are
costly both in terms of delay to purge the cache and in
extra cache misses to reload the cache. As a first
approximation, an OTI that is slightly larger than the log2
of the size of the TLB seems to be appropriate. For
example, a 512 entry TLB with a 12 bit OTI would at most
cause the cache to be purged after 2048 TLB misses, or 4
~TLB-loads”. If OTIs are issued only for shared pages,
then only a fraction of the TLB misses would use an OTI
and overflow would be even less frequent. Since the time
to overflow increases exponentially with the size of the
OTI, decreasing the size of the OTI by 1 or 2 bits seems to
have little payoff due to the increased frequency of
overflow (and 1 or 2 bits doesn’t save much storage);
with an OTI of the indicated size, the
frequency of overflow should be low enough that further
decreases would have little merit.

38.5. Some Alternatives

For some aspects of our design, there are alternatives.
In this section, we list some such which don't naturally fit
elsewhere in this paper.

Instead of having the V(S) (release of shared area)
function purge one's own TLB entry, it could instead
broadcast a TLB entry purge (based on real rather than
virtual address) and require that all other caches do a
purge. This seems to be less efficient and more difficult to
implement.

The ITLBE (invalidate TLB entry) command could
instead be given by the P(S) function, when the shared
region is acquired, rather than by V(S) when the shared
area is released.

Our scheme is compatible with a virtual address cache
design in one of two possible ways. The first way is to

‘create a TLB that provides only the OTI as an output,



instead of both the real address and OTI; the match is then
made with the OTI only. This forfeits the access time
advantages of a virtual address cache [Smit82,84a). For
the second method, we have to consider how a real address
cache works; see Figures 8 and 9 for an illustration. In
brief, the high order bits of the virtual address are fed to
the TLB which yields the corresponding bits of the real
address. The middie bits of the virtual address (which are
not translated, and so are the same as the corresponding
real bits) are used to select the set in the set-associative
cache. The real address tags from that set are then read
out and compared with the now available real address. If
a match is found, the appropriate portion of the line is
selected and read out.

What we can do instead is as follows: we read out the
tags from the chosen get and do the select based on 2
comparison of virtual address tags, and gate out the result
if successful. Somewhat (slightly) later, the real address
and OTI comparison is performed. If it is successful (i.e.
yields the same result as the virtual address comparison),
then no action is taken; if it is not successful, then a trap
signal is sent and the instruction is restarted after the
cache miss is serviced. The important point is that to do
this we have to be able to halt the current instruction
before it updates registers or memory.

Instead of using write through, it is also possible to
have the V(S) action result in a push of all modified lines.
This decreases main memory traffic at the cost, as
explained above, of examining every cache entry and
pushing the dirty ones. Extra hardware is needed, and
every such global push causes a significant real time delay.

In addition, the burst of writes over the bus or
interconnection net to memory can block the other
processors.

We noted above that our algorithm uses store through
only for shared writeable data. It is possible to use store
through for all data, at the cost of increased memory
traffic, and thereby avoid the need to implement copy back
as well as store through. This doesn't affect the use of the
shared bit nor the OTL.

It is worth observing that the OTI mechanism
provides an easy way to purge the entire cache. If all TLB
entries are invalidated, then all current cache entries
become inaccessible, and the cache must be reloaded.
Since the TLB is substantially smaller and has fewer
entries than the cache, it can be easier to invalidate than
the cache itself.

3.6. The Optimized Algorithm

The optimized algorithm is exactly the same as the
basic algorithm, but the shared and write through bits are
set differently. The shared bit is set only if the shared
region was (or may have been) written by a different
processor. The write! through bit is set only if the shared
region will (may) be read by another processor. The cases
for which this applies are discussed in detail in section 3.3.

These changes substantially reduce the frequency of
write through and also the frequency with which OTIs are
issued, and therefore the frequency of OTIR overflow and
cache purge.

8.7. Costs and Performance

As noted throughout this paper, there are costs
associated with our software consistency mechanism. In

this section we review those costs.

Extra storage is required in the TLB and in the cache
address tags for the OTls; we estimated less than a 10%
increase in cache storage and perhaps 30% increase in TLB

storage, using the field sizes from section 3.4. There is
also an approximate doubling of signal lines out of the
TLB and address tag storage and an approximate doubling
of the number of comparators required.

The engine to do a cache purge when the OTIR
overflows is needed, unless the valid bits are kept in flip-
flops. The additional misses caused by such a cache purge
must be accommodated. The pumber of additional misses,
with a reasonable size OTI, overall should be negligible.

The ITLBE (invalidate TLB entry) function must be
provided and must be issued by the V(S) operation.

The cache should be able to support both write
through and copy back (for best performance), specified on
a page by page basis. The memory system must be able to
support the extra traffic due to writes to the shared
storage. (The amount of such traffic is very sensitive to
the software and the algorithms used in the operating
system. In some cases, the write through traffic would be
negligible; in others, almost all stores would be write
through, amounting to 10-20% of all memory references
[Smit79,85b). This uncertainly in the frequency with which
store through would have to be used prevents any detailed
and exact performance analysis of the mechanism proposed
in this paper.)

The hardware required to support ITLBE, cache
purge, and selectable write through/ copy back seems to be
no worse than that required to implement the hardware
based consistency protocols. Some extra hardware is
needed, however, so a sharp reduction in hardware cost is
not the primary advantage of the OTI scheme.

It is important to note that the efficiency of our
algorithm does not decrease significantly with increasing
numbers of processors, provided that the memory
bandwidth is otherwise sufficient to support write through.
All actions, except the store throughs to main memory, are
insensitive to the number of processors. It should be
possible to minimize the impact of the store throughs by
very selective use of the store through feature. Because
unlike the bus consistency algorithms, we can tolerate
multiple data paths to memory, as with a banyan or omega
network, or crossbar, additional memory traffic can be
easily accommodated. (The RP3 system {Bran85] uses an
omega network, and can tolerate store through on all
writes, with 512 processors.)

4. Conclusions

We have described a new software controlled and
hardware supported mechanism to maintain cache
consistency in a shared memory (tightly coupled)
multiprocessor system. It can be implemented with
modest extensions to most machine architectures and with
modest additional amounts of hardware to support the
consistency mechanism.

The use of OTIs to maintain cache consistency
provides a new and significantly improved means to high
performance multiprocessing. Because our mechanism
does not require a shared bus, nor a complicated central
directory, very large numbers of processors can be
accommodated. Since we don't require cache purges
.(except very infrequently) nor do we require write through



on all writes, performance should be significantly better
than for other software controlled designs {e.g. [Bran85],
[Edle85])). We believe that our design should have
important applications for tightly coupled multiprocessor
systems with large numbers of processors.
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