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Abstract

The design of stabilizing compensators for linear, time invariant feedback systems, by means of semi-
infinite optimization algorithms, requires a stability test in the form of a finite or infinite set of
differentiable inequalities. The classical Nyquist stability criterion leads to an integer valued function
and hence cannot be used in the design of stabilizing compensators via semi-infinite optimization. This
paper evolves the classical Nyquist stability criterion into a semi-infinite inequality which is a necessary
and sufficient condition of stability, and which is compatible with the use of semi-infinite optimization.
Computational aspects of the new stability are discussed and design examples are given.

1. INTRODUCTION

The most basic requirement in control system design is exponential stability of the closed loop

system. The manner in which this requirement is fulfilled depends on the synthesis techniques adopted

by the designer. For very good reasons, the Nyquist stability criterion [Nyq.l], has served for many

years as a principal "manual" tool for ensuring stability in linear time-invariant systems. Unfortunately,

as was pointed out in [Pol.l], the Nyquist stability criterion cannot be used in conjunction with

computer-aided design techniques which make use of semi-infinite optimization. The reason for this is

easy to see. Consider a linear, time invariant feedback system E(p), where p is a design parameter vec

tor which determines the coefficients of the compensator blocks. Let %(pj) = n(p j)+d(p j) be the

characteristic polynomial of 'Up), with the polynomials n(pj),d(pj) such that n(pj)ld(pj) is a

proper rational function in s. The coefficients of n(pj), d(pj) can be assumed to be differentiable

functions of the design parameter peRm. Let q(p) be the number of C+ zeros of d(p,$) and let

N(p) £ {lim arg[x(pj(o)/d(pt/(o)]-arg[x(p,0)/rf(p,0)]}/2jc-^(p). (u)
00—»00

Then the Nyquist stability criterion [Nyq.l] states that xiPf) has no zeros in C+ if and only if

N(p) = 0. (1.2)
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Since the function N(p) is integer valued, equation (1.2) cannot be used as a constraint in an optimiza

tion problem solvable either by nonlinear programming or semi-infinite optimization algorithms.

A first attempt to modify the Nyquist stability criterion into a form compatible with

optimization-based control system design was proposed by Polak in [Pol.1]. In particular, it was shown

o

in [Pol.1] that if d(s) is a polynomial of the same degree as xOm). whose zeros are all in € , then

%(Pf) has no €+ zeros if and only if the Nyquist locus ofT(pJ<o) 4 x(pJ(o)fd(j(o)t traced out for

(06 (-00,00) does not encircle the origin. It was shown in [Pol.1] that a sufficient condition for this to

hold can be expressed in the form (by no means unique)

Im[r(pj(o)]-ClRe[r(pJa))]2+c2^ 0, V <oe(-oo,oo), (1.3)

where citC2>0.

The modified Nyquist stability criterion in [Poll] satisfies the requirements of semi-infinite

optimization. However, it does suffer from four drawbacks: (i) it is only a sufficient condition, which at

times can be very conservative, (ii) it involves anarbitrary polynomial d(s) whose definition requires

judgement, (iii) the selection of a form such (1.3) involves some skill, e.g., in some cases it may be

advantageous to use the inequality

-Ci lm[T(p Jd})]2-Rc[T(p J(a)]+c2 £ 0 Vcos [0,oo), (1.4)

where cuc2 > 0, instead of(1.3), and (iv) it proved to be sensitive to the frequency discretization step

size.

In this paper, we begin by establishing the critical role that a computational stability test plays in

the design of linear feedback systems via semi-infinite optimization. In particular, we show that the

function of the computational stability test is not only to ensure stability, but also to confine the compu

tation to a subset of the design parameter space where design specification inequalities are

differentiable. Next we present a new computational stability test which can be viewed as a modified

Nyquist stability test and which is both a necessary and sufficient condition of stability. The new stabil

ity test is compatible with semi-infinite optimization requirements and does not suffer from any of the

drawbacks of the computational stability test presented in [Pol.1]. Finally, we pressent a method for
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efficient numerical implementation of the new stability test and present two computational examples to

illustrate its performance as a design tool for obtaining a stabilizing compensator for a control system.

2. A MODIFIED NYQUIST STABILITY CRITERION

Consider a parametrized, linear, time-invariant, interconnected, finite dimensional dynamical sys

tem, !(/?), described by a set of state equations:

^i(0=Al(p)xl(/)+5i(p)tt,(0. i = 1,23, •••,*,
(2.1a)

y<(0 = Ci<p)*(o + A<p)*(0. * =1»2.3, •••.*.

together with a set of interconnection equations:

k

Uiio^YfiijyjiO + Ftndt), « = 1,2,3, ••• ,*, (2.iD)

where the r,(f) are external, vector valued inputs (many of which are usually identically zero), and the

matrices A,-(p), £j(p), C,(p) and D,(p) are continuously differentiable with respect to the design

parameter peR s. In fact, except for the the indices i corresponding to compensator subsystems, the

matrices A,(p), Bf(p), Q(p) and Dt(p) are constant

Let E 4 [Etf ],-,y64, where jc k [1,2, ••• ,*} , and let A, ^ diag^fr), ••• ,D*(p)).

When the the matrix (I-ED0(p)) is nonsingular, the interconnection equations (2.1b) can be elim

inated, to obtain a "closed loop" state space representation for the system I(p) of the form

x(t)=A(p)x(t) + B(p)r(t),

y(0 = C(p)j:(0 + i>(p)r(0,

where x = (xlt xk)t y = (yi,,....y*), and r = (n,,..../*). The matrices A(p), £(p), C(p) and

Dip) are continuously differentiable in p.

Any design specifications will require that the closed loop system (2.1c) be exponentially stable.

In addition, we can expect to have requirements of robustness, disturbance rejection (in the frequency

domain) and plant saturation avoidance (in the time domain). The disturbance rejection requirement (in

the output yt with respect to the disturbance input rm) is commonly expressed in the form



a[//>/rmO'©,p)]-^(©)£0, V©s[(D',(Q"], (2.2a)

A

whereHyr (j(a,p) is the appropriate transfer function matrix and c[H] denotes the maximum singular

value of the matrix H. The plant saturation avoidance requirement can be expressed in the form

<3[Hytrq(t ,p)]-bAO* 0, V*€[0,oo), (2.2b)

where H^T (t ,p) is the appropriate impulse response matrix.

We note that both o*[//3,|rm(/a>»P)] and <$[Hy r (t ,p)] can become unbounded when p is such

that Up) is not exponentially stable. Because of this, semi-infinite optimization algorithms for control

system design are invariably multiphase, with the first one or two phases devoted to computing a stabil

izing compensator p0 and the remaining (usually two) phases devoted to satisfying other design require

ments and to optimization. During the last two phases, the algorithms produce a sequence of design

vectors [pt }/£o which are all stabilizing and yield progressively better performance. Consequently, the

manner in which one ensures stability has a critical effect on the overall numerical behavior of a semi-

infinite optimization algorithm in the design of a closed loop system. We now proceed to develop a

new stability test for linear, time invariant mutivariable systems, which is efficient from the point of

view of semi-infinite optimization.

We shall denote the characteristic polynomial of Up) by x(* ,p). Clearly, the coefficients of

X(* ,/>) are continuously differentiable in p. We shall discuss efficient methods of evaluating xfr ,p)

and its derivatives with respect to p later.

When, it is desired to ensure not only exponential stability of a closed loop system, but also to

exercise some control over the location of its poles, it is convenient to make use of the following

definition of S-stability.

Definition 2.1 (S-stability): Consider a linear, time-invariant, finite dimensional dynamical system I

of the form (2.1c). Let S bean open unbounded subset of C (e.g., as shown in Fig. 2.1) which is sym

metrical with respect to the real axis, and such that Sc 3 <E+, where Sc is the complement of S and <E+

is the closed right half of the complex plane.
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We say that the system Z is S-stable if all the zeros of its characteristic polynomial are in S.

I

In practice, S-stability can only be ensured with respect to a set S having a reasonably simple

characterization. We shall assume that the set S has a right boundary dS which is given by an expres

sion of the form

dS = { se € I s = a + /©, a = /(©), -©o < © < ©o }, (2.3a)

where / :R->R is a negative valued, piecewise continuously differentiable function. In this case, the

set S can be described by a simple inequality:

S = ( se C I s = a + y©, a-/(©) <0,-oo <©<oo }. (2.3b)

Next, we shall denote by C[s] the ring of polynomials in se <E with coefficients in <T, by R[s]

the ring of polynomials in se C with coefficients in R, and by Pn the set of monic polynomials of

degree N contained in R[s]. Furthermore, for any polynomial x(0 *n Gfr] or in R[j], we shall

denote by Z\x(s)] the set of zeros of x(0-

We now state our new modified Nyquist stability test.

Theorem 2.1 (Modified Nyquist Stability Criterion): Let Sc G be as specified in Definition 2.1 and let

Be € be any simply connected set satisfying (0,0) g B. Suppose that D (s ,q)e C [s] is a parametrized

polynomial of degree N, whose coefficients depend on the parameter vector qeR*0 in such a way that

for every X(s)ePN satisfying Z[x(s)]cS, there exists a?X6R*° such that

(i) Z[D(s,qx)]czS, (2.4a)

(ii) x(s)'D(s,qx)eB, Vje3S. (2.4b)

Then, given a polynomial x(s)ePNt Z[x(s)]dS if and only if there exists a <?xeRn° such that (2.4a,b)

hold.

Proof : (=>) Suppose that Z[x(s)]cS. Then, by assumption, there exists a q%e R*D such that (2.4a),

(2.4b) hold.

(<=) Next, suppose that (2.4a), (2.4b) hold. Then, because B is a simply connected set which does not



contain the origin, the locus traced out in the complex plane by %(s)/D(s ,qx), for sedS, does not

encircle the origin. It now follows from (2.4a) and the Argument Principle [Mar.l] that Z[%(s)]aS. I

It is clear from Theorem 2.1 that an acceptable parametrization of the polynomial D(s ,q)

depends on the shape of the set S and the choice of the set B. A further requirement is imposed by

semi-infinite optimization: the parametrization must be such that it is easy to ensure that the zeros of

D(s tq) are in S. We shall see in the next section that the selection of a parametrization of D(s ,q)

and of the set B can be fairly easy.

3. PARAMETRIZATION OF THE NORMALIZING POLYNOMIAL D(s,q)

o

Because it leads to the simplest semi-infinite inequalities, we shall set B = <E+ (the open right

half plane), and we shall give a few examples of parametrizations of the normalizing polynomial

o

D(s ,q). The simplestparametrization of D (s ,q\ which can be used with anyset Sc <E_, is

D(s,q) = ao + axs1* ••• + awVM + *JV, (3.1)

where AT is the degree ofD(s,?), and q £ [a0tau •• • ,aw_i]rs RN. Since for any characteristic

polynomial X(s)epN> we can choose a coefficients vector qx for D(s ,q) in (3.1), such that
o

D(s ,<lx)- Xfr) and since (0,1)6 C+, it is clear that (2.4a), (2.4b) are satisfied by this parametrization

O O

for any set S c C_ and B = C+.

Unfortunately, from an optimization point of view, the parametrization (3.1) is not at all satisfac

tory for two reasons. The first is that the zeros ofD(s ,q) may turn out to be unacceptably sensitive to

variations in the parameter q. The second one is that, for a given set S, there appears to be no simple

way of ensuring that Z[D(s ,q)] c S. In fact, with the parametrization in (3.1), finding a qeRn°, such

that Z[D(s ,q)] c S is almost as difficult as placing the zeros of a parametrized characteristic polyno

mial x(s ,P) in S.

o o

A much better, general purpose parametrization of D(s ,q), for B = C+ and any Sc C_, is the

following one:
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N

£>(*,*) = n(*-<*.-;p.). p.2)
i=l

where N is the degree of D(s tq) and q =" [a^c^, •• • ,0^,0!,fc, *•* ,P\]T6RW.

0

Suppose that S is defined as in (2.3b), that B = <E+ and thatD(s ,q) is parametrized as in (3.2).

Referring to the requirements in Theorem 2.1, we see that given any x(s)ePtf such that Z[x(s)] c S,

the parametrization (32) allows us to choose a ?xeRw such that D(s ,qx) a x(s). Hence (2.4a) is
0

satisfied. Next, since X(*VD('»4x) s 1 and (0,1)€ C+, we see that (2.4b) is satisfied. It therefore fol

lows from Theorem 2.1 that a stabilizing parameter Ps^R** for the parametrized system Up) can be

obtained by solving the following set of ordinary and semi-infinite inequalities for a pseRHz and a

a, -/<&)+€ ^ 0, for / » 1,2, • • • ,7V, (3.3a)

X(/'(w)+y©)/D(/,(©)+y©,^)-e^0, V©e(-oo,oo), (3.3b)

for some £ > 0. Current semi-infinite optimization algorithms have no difficulty solving this system of

inequalities.

Note that as defined in (3.2), DO ,q) is a polynomial with complex coefficients whose zeros need

not occur in complex conjugate pairs, and that nD -IN. There are a number of cases where one can

use a parametrization of D (s ,q) with fewer than 2N parameters. We shall give two examples.

Example 3.1 : Consider the case shown in Fig. 3.1a, where S is defined as a sector with damping

angle 6e(0,ic/2),i.e.,

S k {se^ Ia+l©/tan0l <0}. (3.4)

Before giving a parametrization for D(s ,q) of arbitrary order, let us examine linear and qua

dratic polynomials. We see that when a, b e R, Z [(s+a)] c S if and only if

a>0, (3.5a)

and that Z[(s2+as+b)] cS if and only if

a > 0, (3.5b)
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&>0, (3.5c)

a2-4bcos2&>0. (3.5d)

To take advantage of this observation, when the degree of D(s ,q) is even, we set

D(stq) 2 TKs2+ais+bi), (3.6a)
i=l

where q k [aua2t ••• ,an ,bl,b2, ••• ,bHf e R2*, and N - In. When the degree of D(s ,q)

is odd, we set

A "D(s,q) g (.s+adYl(s2+aiS+bi), (3.6b)
i=l

where q =• [a0,alta2, • • • ,aH ,bltb2t • • • ,bnf e R2**1, andN = 2n+l. Hence, when the poly

nomial D(s ,q) is expressed as a product of linear and quadratic polynomials, as in (3.5a) or (3.5b), it

is very easy to ensure that its zerosare in S (defined in (3.4)).

Next we return to the requirements of Theorem 2.1. Since characteristic polynomials have real

coefficients, their zeros occur in complex conjugate pairs. Therefore, given any xCO6^, such that

Z[x(s)] c S, there exists a parameter vector qx such that D(s ,qx) =x(s) (with D(s ,q) defined as in
0

(3.6a) or (3.6b), as appropriate). Therefore, if we set B = <C+, we see that (2.4a), (2.4b) are satisfied. It

therefore follows from Theorem 2.1 that a stabilizing parameter p5 for the system Up) can be obtained

by solving the following set of inequalities for apseR*z and a^eR^:

tf'-ESsO, for/ = 1,2, ••• ,tf, (3.7a)

fli2-4^cos20 >0, for i =1,2, ••• ,« , (3.7b)

Re[X(re"*-*\p)/D(reH*-e),q)]-e * 0, V re[0,oo), (3.7c)

for some £ >0. Note that because of symmetry, if (3.7c) is satisfied, then it is also satisfied when 0 is

replaced by - 0.

o

As a trivial corollary of the above, we find that when S = C_, we can compute a p5eRnL such

that Ups) is exponentially stable, by solving the following set of inequalities for a PseR*z and a

qseRN:



tf'-ESrO, for/ =1,2, ••• ,W, (3.8a)

Retx(/fl>.P)AD(/©,?)]-e*0, V©€[0,oo). | (3.8b)

Example 3.2 : We saw in Example 3.1 that the parametrization (3.6a), (3.6b) has the property that

for any x(s)ePN there exists aqxeR*D such that D(s^x) s x(s). Hence it satisfies (2.4a), (2.4b) for
o

any "stability" set Sc G_ (defined as in Definition 2.1) and any simply connected set Be C such that

(0,0) gB and (0, l)eB. However, as a practical matter, it can only be used for ensuring S -stability in

the case where one can construct simple inequalities for ensuring that Z[D((s tq)<zS. In Example 3.1,

we gave such a case. We shall now show that the parametrization (3.6a), (3.6b) can be used with a

whole family of sets S.

Consider the case where

S = {s = (o+y©)e C I a </(©), ©e(-00,00)} (3.9a)

with

/(©) =g(©2) =min gJ(©2). ttQb)

where m, = {1,2, • • • tm }. We make three assumptions: for all jem> (i) the functions

g':R->R are continuous and negative valued, (ii) gJ(a2) < g(0) for all ©eR, and (iii)

g'(-a2) £ g(0) for all ©eR.

The following three examples illustrate the kind of sets S can one define within the above frame

work:

$'"(z)= -a, VzeR; (3.10a)

gJ(z)=-z-a, VzeR; (3.10b)

gk(z) = ' -az+Y2, V lzl<= 8 (3.10c)
pV=T+Y!, V z<-5

To set up the inequalities for ensuring that Z[D(s ,^)]cS, we again consider linear and qua

dratic factors. Now -a is the only zero of (s+a). Hence, Z[(s+a)] cS if and only if



-a<g(0). (3.11a)

Next, the zeros of (s2+as+b) are sx = -a/2+^la2/4-b, and s2 = -al2-^a2l4-b. Hence

Z[(s2+as+&)] cS if andonly if

a2/4-b£0 and -al2< g(b-a2/4) (3.11b)

or

a2/4-fc >0 and -a/2 ±^a2!4-b <g(0). (3.11c)

The relations (3.11b), (3.11c) cannot be used in conjunction with a semi-infinitie optimization algo

rithm. Therefore we propose to replace them with the following set of three inequalities which we shall

show to be equivalent to (3.11b), (3.11c):

-a/2-g(0)<0 (3.12a)

-a/2-g(b -a2/4) <0 (3.12b)

(a2t4-b)-[g(0)+at2]2<0. (3.12c)

Proposition 3.1 : The systems of inequalities (3.11b), (3.11c) and (3.12a), (3.12b), (3.12c) are

equivalent.

Proof: (=>) Suppose that Si = -a/2+^la2/4-b satisfies either (3.11b) or (3.11c)(This ensures that s2

satisfies either (3.11b) or (3.11c) as well). Suppose that (3.11b) holds. Then (3.12b) and (3.12c) hold

automatically, while (3.12a) holds because $(0) £ g(b -a2l4). Next suppose that (3.11c) holds. Then

(3.12a) and (3.12c) holds automatically. By assumption, because a2l4-b > 0, we have that

g(b -a2l4) £ g(0). Hence g(b -a2/4)+a/2 £ g(0)+o/2 :> 0, which shows that (3.12a) holds.

(<=) Suppose that Sx = -a/2+^a2/4-b satisfies (3.12a) - (3.12c). Then, ifa2l4-b <, 0, then (3.12b)

implies that (3.11b) is satisfied. If a2!4-b > 0, then (3.12a), (3.12c) imply that (3.11c) is satisfied.

Hence the two systems are equivalent. •
0

We conclude that if we set B = €+, then a stabilizing parameter ps for the system Up) can be

obtained by solving the following set of inequalities for a PseRnz and a^eR^ (we state the inequali

ties for the case where N is odd) :
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-«o-*(0)+e£0, (3.13a)

-fli/2-*(0)fe £ 0, for i = 1,2,...,n , (3.13b)

-ai/2-g(bi-o,-2/4)+e <S 0, for i = 1,2,...,n , (3.13c)

(a,-2/4-^)-[g(0)+fli/2]2+£^0, for/ = l,2,...,n , (3.13d)

Re[x(/,(a)>fya)),p)/D(/-(©)+y©),a)]-£ SO, V ©e[0,oo), (3.13e)

for some £ > 0.

4. EVALUATION OF x(sjf) AND ITS DERIVATIVES

The use of the stability test (2.4a), (2.4b), in the form (3.3a), (3.3b), or in the form (3.13a)

-(3.13e), in conjunction with a semi-infinite optimization algorithm, requires the evaluation of the

characteristic polynomial xfa^O and its partial derivatives. We shall now describe the method we chose

to perform these evaluations.

The characteristic polynomial of the interconnected system L in (2.1c) is given by

Xisj)) = det[sI-A(p)]. For se C, the evaluation of de\[sI-A(p)] can be very time consuming, partly

because it involves complex arithmetic and partly because the dimension of the matrix A may be large.

Hence, to ensure the efficient evaluation of d&t[sI-A(p)] overa range of values of s, matrix decompo

sition methods must be used.

Matrix decomposition methods are basedon similarity transformations yielding a matrix

A(p) = V(pTlA(p)V(p). (4.1)

For the purpose of facilitating the evaluation of dsi[sl -A(p% it is necessary to find a transformation

matrix V(p) which results in a matrix A(p) such that det[s/-A] is easy to compute. The simplest situa

tion occurs when the matrix A(p) is diagonalizable, i.e., there exists a matrix of eigenvectors V(p) such

that A(p) as A(p), with A(p) a diagonal matrix whose diagonal elements are the eigenvalues \j(p) of

the matrix A(p). In that case, assuming that A(p) is an NxN matrix,

N

X(sj)) = dcl[sl -A(p)]= deu>/ -A(p)] = IB* "MpM • (4.2)
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Unfortunately, the problem involving the diagonalization of a nonsymmetric matrix A(p) can be

arbitrary ill-conditioned. Consequently, diagonalization cannot be used reliably to compute

det[sl -A(p)] when A(p) has fewer than N eigenvectors or when the transformation matrix V(p) is

close to singular. Thus formula (4.2) should not be used when the condition number cond(Y(p))

k \\V(pM\V(pTl\\ is large.

When diagonalization cannot be used, one can simplify the computation of d&t[sl -A(p)] by first

reducing A (p) to upper Hessenberg form H(p) by meansof an orthogonal similarity transformation:

H(p) = V(p)TA(p)V(p), (4.3a)

where V(p) is a Hermitian matrix, so that cond(V(p)) = 1. This leads to the formula

X(sj>) = det[sl -A(p))= det[tf -H(p)]. (4.3b)

The Hessenberg form H(p)is cheaper to compute than the diagonal form A(p). Furthermore, the com

putation of H(p) is very stable and the computation of de\[sI-H(p)] only requires some simple pivot

ing. Consequently, the computation of det[sI-A(p)] by computing d&t[sI-H(p)] is numerically very

stable and, for a single value of s, it is definitely less cosdy than the computation of det[s!-A(p)] by

evaluation of det[sI-A(p)]. However, when, as in our case, one needs to evaluate det[sI-A(p)] for

many values of 5, the cost of pivoting in the computation of detfr/ -H(p)] dominates and it is prefer

able to use formula (4.2), provided that A(p) is not near defective.

Next we turn to the computation ofthe partial derivatives ofx(*>P)- When the eigenvalues Xj(p)

of A(p) are distinct, they are differentiable (see [Kat.l]) and their partial derivatives are given by

/ 3A(p) v
fyfr) _ {Ujl dp* Vj) (4.4)

3p*' <Mhvj) '

where v; and uj are the right and left eigenvectors, respectively, of A(p), corresponding to the eigen

value Xj(p). Therefore when the eigenvalues of A(p) are distinct, the partial derivatives of x(s#) can

be computed making use of the following formula:
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dXjip) m A
-£r- IB»-**(p)]

dP *=1

When the eigenvalues of A(p) are not distinct, the computation of 3detfo/-A (p)]/3p' becomes

much more difficult and requires the use of a general formula which we shall now develop.

Proposition 4.1: Let M(sp) k si-Aip), let mjt. and m,j denote the j-th row and the j-th column

dm-
of M(sp), let Mjt.isp) denote the matrix obtained from Misp)by replacing its j-th row by —4r-,

dp1

and let M'.jisp) denote the matrix obtained from Misp) by replacing its j-th column by -—
3p'

Then,

dtellsIAip)] Bgdarjjj^)] . £det[M'v(.,p)]. (4.6)
dP y=l y=l

Proof : We shall give a proof by induction. Equation (4.6) is clearly true for 2x2 matrices. Expand

ing a (k + l)x(fc+1) determinant in terms of kxk cofactors, we see that if formula (4.6) holds for kxk

matrices, it must also hold for (fc + l)x(£ +1) matrices.

I

The computation of ddett.sf-A(p)]/8p' according to (4.6) is very expensive. Fortunately, closed

loop control systems seldom, if ever, have repeated eigenvalues. In addition, the matrix dAip)ldpl is

sometimes very sparse, with the likely consequence that dm^Jdp1 = 0 for some j and hence that

det[MJt.(sp)] = 0.

To conclude this section, we shall summarize our suggestion for evaluating %{syp) and its partial

derivatives in the form of an algorithm. We make use of the fact that one of the most robust methods

(used in EISPACK [Smi.l]) for diagonalizing a matrix Aip) is first to reduce it to upper Hessenberg

form Hip), using orthogonal similarity transformations, and then to reduce the Hessenberg form Hip)

to Schur form Sip) by iterative unitary similarity transformations of the QR method. Finally, back sub

stitutions are applied to accumulate eigenvectors.

•13-



Algorithm 4.1: (Evaluates %(sp) and its partial derivatives)

Data : Matrix A ip), £>0, an upper boundon acceptable condition number.

Step 1: Reduce matrix A ip) to Hessenberg form Hip) by orthogonal transformation Qip) so that

Hip) = QTip)Aip)Qip). (4.8)

Step 2 : Attempt to reduce Hessenberg form Hip) to Schur form S(p) by the QR method.

(i) If the QR method fails to converge, i.e. the eigenvalues of Aip) cannot be computed,

then compute detfc/-Aip)] using (4.3b) and dd&t[sl-A(p)]/dpl, i = 1, • • • ,n2, using

formula (4.6). Stop and exit

(ii) If the reduction to Schur form was successful, then a complex orthogonal matrix Rip)

was constructed such that

Sip) = R(pfHip)Rip). (4.9)

The eigenvalues X,(p) of A(p) are given by

K(P) = [Sip)h , i = 1,2, • • • ,N. (4.10)

Step 3 : Compute a matrix of eigenvectors, Pip), of the upper triangular Schur form Sip) by back

substitutions and compute its inverse Pip)'1 (if it exists) and its condition number

cond {Pip)).

Step 4 : If cond {Pip)) £ £ or Pip) is singular, compute det[,y/-A(p)] and its partial derivatives

using (4.3b), (4.6).

Else construct the diagonal matrix Aip) =diag(\xip), • • • ,XNip)) which satisfies

A(p) =P(p)"15(p)P(p), (4.ll)

and compute the right and left eigenvector matrices

Vip) = Qip)Rip)P(p), (4.12a)

£/<p) k V-lip) = P-lip)RHip)QTip). (4.12b)
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Note : since Q and R are orthogonal matrices, cond (V) = cond (P).

Step 5 : Set vy to be the j-th column of Vip), set uj to be the j-th row of Uip) and compute

detfc/ -A (p)] and its partial derivatives using (4.2), (4.5).

Stop and exit I

5. DESIGN EXAMPLES

We shall now present two examples illustrating the use of our modified Nyquist stability criterion

in control systemdesign. We follow the design formulation methodology described in [Pol.3].

Example 5.1: Design of Control System for CH-47 Tandem Rotor Helicopter.

Consider the design of a control system, with configuration shown in Fig. 5.1, for a CH-47 tan

dem rotor helicopter. The control system controls two measured outputs, the vertical velocity and pitch

attitude, by manipulating collective and differential collective rotor thrust commands. An abstracted,

nominal plant model, denoted by P, for the dynamics relating these variables at 40 knot airspeed is

given in [Doy.l]

where

*n - Af/Xft +BNuN ,

yN = CNxN+DNUff ,

AN =

CN =

-0.02 0.005 2.4 -32.0

-0.14 0.44 -1.3 -30.0

0.0 0.018 -1.6 1.2

0.0 0.0 1.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 0.0 57.3

BN =

DN =

0.14 -0.12

0.36 -8.6

0.35 0.009

0.0 0.0

0.0 0.0

0.0 0.0

(5.1a)

(5.1b)

(5.1c)

(5.1d)

The eigenvalues of the plant are -2.22787, 0.0652232, and 0.491325 ± 0.415134L

We assume that we are required to design a compensator which stabilizes the closed loop system,

reduces sensitivity to output disturbances and avoids plant saturation by disturbances. We shall given a

mathematical expression for these requirements shordy. First, we chose a compensator C, with a state

space representation of the form
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with

ic = Acip)xc + Bcip)uc

yc = Ccip)xc +Dcip)uc

Acip) =

Ccip) =

12 3 4

P P P P
»5 „6 _7 _8
P P P P

P9 P10 PH P12
LP13 P14 P15 P16

P25 P26 P27 P28
p29 p30 p31 p32

*c(p) =

Dcip) =

P17 p"
P1' P20
P21 P22
Pa P24

P33 P34
p35 p36

(5.2a)

(5.2b)

(5.2c)

(5.2d)

andp ss [pl ,p2 , • • • , p36 ], the design vector.

• Closed-Loop System Stability Requirement:

We begin with the most fundamental requirement: that of exponential stability of the nominal

O O

closed loop system. Let B = C+, S = €_, and let

D(s,q) k Y[(s2 +aiS +bt) ,
i=l

(5.3)

where q k [ ax , bx , a2 , b2 ,a3, b3 , a4 , b4 ]. By Theorem 3.2.4, exponential stability of the «om-

inal closed-looped system will be ensured if

- ql +E<0, for i = 1,2, •• , 8 . (5.4a)

- Re[x(M P)ID(/©, a)] + e < 0 , V co e [0,oo), (5.4b)

where e > 0.

• Stability Robustness

Major unstructured uncertainties associated with our hellicopter model are due to neglected rotor

dynamics and unmodeled rate limit nonlinearities. These arc discussed at length in [Ste.l]. Forthe pur

pose of our design example, it suffices to note that the modeling uncertainties are the same in both con

trol channels and that if the actual plant model is expressed in the form P(s){I + A(s)), then we may

assume that
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S[A(/©)]<&(©) V©) 0, (5.10)

with 3 denoting the maximum singular value of the matrix in question and &(©) > 1 for all © > 10

rad/sec. Hence (see [Doy.l]) to ensure that not only the nominal design, but also the worst case design

is exponentially stable, we require that

V[Hyrij<op)] <; l/6(©) V© ) 0

• Plant Saturation Avoidance

(5.6)

To ensure avoidance of plant saturation by disturbances over the frequency range [0.01,100], we

impose the condition:

<SlHUf(j<ap)] <= 6.0, V©e[ 0.01, 100 ] (5.7)

Desensitization to Output Disturbances in System Bandwidth

We assume that the desired bandwidth of the closed loop system is [0,2.0]. We shall desensitize

the system to output disturbances within this frequency interval by introducing an appropriate cost func

tion. To ensure that the disturbances are not excessively amplified outside the closed loop system

bandwidth, we require that

^[Hyaijdip)] <= 2.40, V©e[ 2.0 ,1000.0 ] (5.8)

• Objective : Desensitization to OutputDisturbances

Finally, we model the requirement of output disturbance rejection over the frequency interval

[0.01,2.00], as a cost function f°: R36 -» R, i.e.:

/ °(p) = max{ 6*[//^(/©.P)] I ©e[ 0.01 ,2.00 ] }. (5.9)

The initial values for the compensator were chosen arbitrarily as follows:

Acip) =

0 10 0

-3 -10 0 0

0 0 0 1

0 0-20-8
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Bcip) =

1 0

0 1

1 0

0 1

(5.10a)



Ccip) =
10 10

0 10 1
Dcip) =

0 0

0 0
(5.10b)

The resulting closed-loop eigenvalues were -10.1505, -7.6577, -0.101678, -1.85382,

-0.0943453 ± 1.16857i, and 0.3505 ±4.52988i. The initial values of q for D(s, q) were chosen so

that the zeros of the polynomial D(s ,q) matched the stable closed-loop eigenvalues, above. Hence we

set q = [ 17.8282 , 77.9079 , 1.9755 , 0.2081 , 0.2087 , 1.3764 , 2.7724 , 22.4414 ]. The modified

nyquist diagram for the initial values is shown in Fig.5.2.

Design via semi-infinite optimization must be carried out in two stages. First a stabilizing com

pensator must be computed, then the remainder of the optimization is carried out while maintaining

closed loop stability.

After 14 iterations of the phase I - phase n, feasible directions method [Gon.l], the eight inequal

ities in (5.4a) and one functional inequality (5.4b), ensuring stability, were satisfied. The stabilizing

compensator had the following matrices:

Acip) =

Ccip) =

BC(P) =

-0.0597886 1.02787 -0.00941522 -0.00805203

-3.00538 -9.93141 0.00238179 -0.053201

-0.118403 -0.00252507 -0.154035 1.48117

0.00701371 -0.00863074 -20.0169 -7.95165

1.00561 0.00432885 1.00029 -0.0159385

-0.076972 0.9845 -0.17239 0.850142

0.993688 -0.100487

-0.151619 0.996535

0.863102 -0.206853

-0.23829 0.9523

Dcip) =
-0.111091 0.286772

-1.48049 -0.110133

(5.11a)

(5.11b)

(5.11c)

The resulting closed-loop eigenvalues at this point were -13.4488 + Oi, -9.1549 + Oi,

-0.0531313 + Oi, -0.686026 + Oi, -0.632693 ± 1.83429i, and -3.68045 ± 5.36757L

The vector q at iteration 14, was q = [ 17.8781 , 77.9102 , 3.81775 , 3.52904 , 3.86632 ,

4.98543 , 6.1543 , 29.4078 ]. The modified Nyquist diagram for the stabilized system is shown in Fig.

5.3a. The state of the other requirements is shown in Fig. 5.3b,c.
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After 63 iterations, all the design constraints were satisfied and the cost

fflefoauz.oi* S^0'<«V)] } = 0.3625. The final compensator is described by the following matrices:

Adp) =

Ccip) =

Bcip) =

0.469015 0.858198 0.0985659 -0.291412

-2.95312 -9.96053 -0.071059 -0.17516

-0.110506 0.031315 0.0878297 120987

0.0129985 -0.0674458 -8.01688 -3.74451

0.761554 0229028 -1.60218 0213464

0.127167 0.654161 -0.760495 -0278236

-0.379027 -0.319741

-0.0424007 0.37653

0.260686 1.77696

0.238893 -0.337195

Dcip) =
-0.902073 2.25228

-0.877849 0233123

(5.12a)

(5.12b)

(5.12c)

The results of the final design are shown in Fig. 5.4a,b,c in solid lines, which can be compared with the

results of the initial design shown in dashed lines.

Example 5.2 : A Design with Time and Frequency Domain Constraints

Consider the unity-feedback configuration shown in Fig. 5.1. We assume that the plant P is given

as in (5.1a), (5.1b), with

Aw =

CN =

-3-4-2

1 0 0

0-2-4

143

023

BN m

DN o

10

00

01

00

00

The compensator C is assumed to be the form (5.2a), (5.2b), with

Acip) =

Ccip) =

00

00 »

' P5P
.p'p

S "

i

Bc(p) =

Dcip) =

.1 »2where p = [ p1, pz, • • •, p* ] is the design vector.
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LP3/J

00

00

(5.13)

(5.14)



Our design constraints and objective are as follows:

• Time Domain Constraints:

(1) The step response constraints on plant output y(t) = iyl(t),y2it)), corresponding to an input

r(0 = ir\t)^2(t)), r'(0 = 1. for i = 1,2, were specified in terms of the following

numbers:

rise time 1.000

setding time 3.000
final time 10.000

peak amplitude 1.090

rise amplitude 0.800

setding amplitude ration 0.040

These constraints lead to the following pair of semi-infinite inequalities:

£(')<= y'itp)<= Fa). V/€[0,16.0],i o 1,2. (5.15a)

where

kit) = -
0, for allfe[ 0,1.00]
0.8, for all te [ 1.00 ,3.0 ] (5.15b)
0.96, for all te[ 3.0,10.0]

_ I109'
" L1.04,

for all/ e [0,3.0]
bin - 1i ru for alW e [3.0,10.0 ] (515c)

• Frequency Domain Constraints:

(1) Noninteraction constraint:

I HyirJij<i>p) I <= 0.15, V©€[ 0.01 ,200 ], UJ)e [ (12), (2,1) }. (5.16)

(2) Plant saturation by disturbance avoidance constraint:

6*[//M2r(/©,P)] <= 5.0, V ©€ [0.01 , 200 ]. (5.17)

(3) Output disturbance desensitization constraint:

at//^(/©/>)] <= 1.05, V©6[ 1.0,1000.0], (5.18)
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• Exponential Stability Constraints:

o

To apply the modified Nyquist criterion, we define B = C+ and let

D{s,q) k is+aJTli^ +aiS+bi),
1=1

where q k [ao, alt a^ bu6J, and we require that

- ?'" + e £ 0 , V / = 1, 2, • • •, 5 .

-Re[%(/©.P)/0(/<»,<7)] + e£O, V©e[0,oo),

where e > 0.

(5.19)

(520a)

(5.20b)

• Cost function:

We propose to achieve good output disturbances rejection by defining it as our cost This leads to

the cost function / :R8 -> R defined by:

/ °(p) = max{ oiHyaijaip)] I ©€[ 0.001 ,1.00 ] }. (5.21)

First a stabilizing compensator was obtained by means of the semi-infinite optimization algorithm

[Gon.l], which satisfied the stability constraints (520a,b):

Aeip) =

Ceip) =

00

00

1.001 -0.999

0.100 1.500

BdP) =
1.001 -1.000

-0.499 1.000

Deip) =
00

00
(5.22)

The system responses corresponding to this compensator are shown in Fig.5.5a,b,c,d,e,f in dashed

lines. We see that some of the design constraints arc violated. After 12 iterations of the Polak-Wardi

algorithm [Pol.4], all the constraints are satisfied. After another 59 iterations, during which the cost

function f°(p) was minimized without constraint violation, we obtained a compensator defined by the

matrices

Bcip) =
9.4709 -4.2233

-2.9109 10.5181
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Ccip) =
2.60501 -3.895

0.49817 1.38818
(523)



the matrices Ac and Dc remained as in (5.22).

The final design can be evaluated by inspecting the system responses in Fig.5.5a,b,c,d,e,f in solid

lines.

6. CONCLUSION

This paper has shown that the existing modified Nyquist stability test can be modified to allow

verification of S-stability in a numerically well-conditioned manner. This was achieved by introducing

a normalizing denominator D(spd) for the stability test Under the parameterization of case 12 and 3,

the constraints imposed on the parameter pd in order to guarantee Z[Dispd)]cS are continuously

differentiable. In the process, we have made it impossible to determine the usual gain and phase mar

gins for the SISO system. However, this is not a great loss, since by means of semi-infinite optimiza

tion, stability robustness can be ensured in a much more sophisticated manner; see [Pol.2].
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