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A Superlinearly Convergent Algorithm for Min-Max Problems!
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ABSTRACT

Algorithms for solving the problem of minimizing the maximum of a finite number of functions
are proposed and analyzed. Quadraﬁcappmximaﬁonstotheﬁmcﬁmareanployedinmedetmim-
tion of a search direction. Globaleonvageneeispxovenmditisslwwnﬁmaquadraﬁcmteofeon-

vergence is obtained in the convex case, and a superlinear rate of convergence in the non-convex case.
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1. INTRODUCTION

We consider the problem:
P:. ‘Ti:. ﬂaﬁ.ﬂ(‘)' Q.

where the f/:R* - R have locally Lipschitz continuous second derivatives and m denotes the set
(1,....m). This problem arises frequently in optimization-based design, see, e.g., [8], but can also
arise indirectly when, for example; a constrained optimization problem is converted into an uncon-
W problem by the use of an exact penalty ﬁmct_ion. sec &.8., [9). In work on optimization-based
control system design, see [12,19,17] for example, it has become evident that existing algorithms per-
form badly on problems with poor scaling. To mitigate these problems we have developed algorithms
which incorporate second derivative information in the search direction calculation. The resulting
search directions are well scaled, and the algorithms are, under reasonable assumptions, superlinearly

convergent.

Problem P can be written in the equivalent form:

min (), : 12
where y: R* = R is defined by:
Ve & max 7). (13)

Since v is non-differentiable, P is a non-differentiable optimization problem and it is not immediately
evident that a superlinearly convergent algorithm can be devised. The problem can, of course, be con-
verted into a constrained optimization problem through the employment of an additional variable. The
following problem is equivalent to P:

min wl -ws0,je .
W, (wlfix) Jem) 4
This formulation reveals that standard algorithms, such as the feasible directions algorithm [11], or the
* gequential quadratic programming algorithm [9], may be employed to solve P. However it is possible
and preferable to employ the original formulation. In particular, the drawbacks of using a sequential
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quadratic programming algorithm (such as [9]) in solving (4) are (i) one must employ a curvilinear step
size rule to ensure quadratic convergence, and (ii) the sequential quadratic programming algorithms are
not invariant under invertible affine transformations of the parameter space. As we shall see, the algo-
rithm that we shall describe, addresses the criginal formulation P, and does not suffer from these disad-
vantages.

There is an extensive literature dealing with methods for solving problem P. Here we briefly sum-
marize some related work. One of the earliest approaches to solving the problem P is Pshenichnyi’s
linearization method [15]}, which is a phase I version of the Pironneau-Polak method of centers [10],
uses first order expansions of the functions f/ and a fixed quadratic term to obtain a search direction. It
is straightforward to demonstrate that, with a suitable step length calculation, any accumulation point
produced will satisfy first order optimality conditions. In [15] Pshenichnyi noted that near a Chebyshev
: poim(alsocalledavcnexminimwnandaﬂaarpgwﬂyothermthoxs)mesemhdirecﬁontemmedby
his method is the same as Newton’s method for equalizing the maxima, and hence it follows that if a
mpsizeofmﬁtyisawepteimmesequemofimmvugsquadmﬁmny.mmthismnlt
wascomplaedbyshowingmatnearsuchapoimthatanAnnijoswpsiucalcﬂaﬁonmmunity.ln
[l]amdwrﬁrstordamemodispresenwd.bmmme'ofconvagmceismiln[6]amethodis
presented which uses first order expansions of the / and a trust region to compute the step size. They
note that under conditions similar to those of [2], the method is essentially Newton's method, and so
obtain quadratic convergence. In [4] this method is extended by switching to and from a quasi-Newton
iteration scheme under certain conditions, in an effort to relax the Chebyshev point assumption. This
algorithm has the potentially undesirable property that it is not a descent algorithm, and tht': conver-
gence properties are somewhat weaker than those of the original algorithm. Another trust region
method for minimizing composite functions (of which max functions are a special case) is presented in
(3]. The algorithmr uses previous multipliers and second order information in the search direction sub-
problem. The main resuit of the paper is to show that under suitable assumptions an accumulation
point exists at which first order optimality conditions hold. A local quadratic convergence result is also
stated, but it is observed that the so called Maratos effect [7] could cause problems by rejecting a unit
step near a solution. An active set method whi;husesreducedﬁwsianhlfomnaﬁmispmposedh [18).
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It is shown that under suitable assumptions any accumulation point satisfies first order optimality condi-
tions. The algorithm is shown to have finite convergence when the f/ are quadratic with identical con-
vex second order terms, and local 2-step superlinear convergence is obtained in certain circumstances.
As in [3] it is noted that the Maratos effect could inhibit the superlinear convergence. A general discus-
sion of first order minimax algorithms can be found in [13].

The algorithms presented in this paper employ quadratic approximations to W to determine suit-
able search directions. The first algorithm applies to problems in which the f/ are convex, and has qua-
dratic convergence to Danskin points (points which satisfy first order necessary conditions for problem
P) satisfying second order sufficiency conditions. It solves quadratic problems (i.e. each £/ is a convex
quadratic) in one step, and under certain conditions the algorithm is scale invariant under invertible
affine transformations of the domain. The second algorithm is a modified version for non-convex prob-
lems. It is not scale invariant, but it does converge quadratically under appropriate conditions. A third
algorithm (also not scale invariant) is presented which yields superlinear convergence under less restric-
tive conditions. Numerical results are presented which compare tbe performance of the first algorithm
with that of the Pshenichnyi linearization method, showing a significant decrease in the number of itera-

tions required to solve various problems.

2. THE ALGORITHM (Convex Problems)

An obvious quadratic approximation to y(*) at x is given by:

Ve — i) = max () + (VP (= 2+ 2 (@ - 0 )z, = DY), @1)
where
F@) 8 -y jem. Q2

As in Newton’s method for differentiable functions, a search direction for minimizing (x) can be

obtained by minimizing (2.1) with respect to x,, i.¢, by solving

min_max (Flo) + (V). x, = 0+ Uz - B.SL@x = )

s eRr /e
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= min max {Z WG + 2‘, (WVfi(x), (x=x))+ — {(x = x), I, 1)Cxe = x»}. 23)

z,eR*PE
where
zé{uek'mzo.}'iwel}. @4) .
=l
Ix.1) & u S, @5)
T
w8 o, o). - @9

One of the ways of solving this search direction problem is to apply to its dual a gradient projection
method or constrained Newton method [14). We define the optimality function 6()) and the search

direction map H(-) as follows:

8(x) & min max f(x)+<fo(x).h>+-§ Un-f;(x)h}
AeR*JS D

= min max {; W) + (i W VFi(x), h¥ -;- Vl.ln(l-ll)h} (v N)]
AaR*B A =
H) & argmin max {):i WF® + W V@AY + W.(x.u)h}. @38)
AeR® REI o) =1 2

The algorithm for solving P (where each 7 is convex) may now be stated.

Algorithm 2.1,

Data: e R, aBe (01),5 & {1LBF%. ).
Step0:  Seti=0.

Step1:  Compute 6(x), and ; € H(x).

Step 2:  Compute the step size

A A max(Ae StyG +Ah)-yx) S Aab(x) ). 29)
Step 3:  Setx;y; = x+Ah;.

Step 4:  Replace i by i+1 and go to Step 1. -



To establish global convergence we make the following assun;pﬁons:
Assumption 2.1: The functions f/:R"— R, je€ m, are twice locally Lipschitz continuously
differentiable. [ |
Assumption 22: There exist i € m and 1| > O such that
h.fia@h) 2 MR ¥ x,he R (2.10)
Assumption 2.3:  Each function is convex, ie.

(i 20 Vx,he R, Viem. 2.11)
]

The main result of this section is that any accumulation point generated by Algorithm 2.1 satisfies a
necessary condition of optimality for P. Assumption 2.2 ensures that ;lte optimality function 0(-) is con-
tinuous, and that the search direction map H(') is u.s.c. Assumpﬁon?..Sismﬁiciemtoprovgmatme
resulting directions yield descent directions for y(:). A few preliminary results are necessary. First,
we introduce a notation for open balls: B(xp) & {X Il -xl<p).

Lemma 2.1: Suppose Assumptions 2.1, 2.3 are satisfied, then the function' 8:R* = R is continuous,

éndthewatchdirectionmapli:l!‘—)z‘"isu.s.c.

Proof: ByAmptionsZ.l.2.2,itisclwdlatforallboundedsetsxck'thereexistsa8>0such
that for all x € K the definitions of 6(-) and H() may be replaced by:

. - . o= 1
6 & min m{z, Wik + (Z,u’ VA .hY + 5 (h.l,.(x.uw}. (2.12)
. [ - L} . 1
Hi) 8 argmin m {E WA + (E WV(x), k) + > (h.l,.(x.u)h)}. 2.13)

Hence by Proposition 3.1 and Corollary 3.1 of [13], 6() is continuous, and by Proposition 3.2 of same,

H(’) is us.c. [ |

Let dy(x; h) denote the directional derivative of (") at x in the direction A.

Lemma 22: Suppose Assumptions 2.1-2.3 are satisfied. Then the following are true:
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0G) 2 dy(ch) ¥ he H@D; - ] @.14)
6(x) = 0 if and only if 0 € 3y(x). : (2.15)

Proof: () Let the active index set be defined by

A® 8 (jemlf) =v@ ). (2.16)
Then fo;'allhe H(x) we have that

8) 2 max (VFih+ 7 hfloIh). @.17)
Because of (2.7), this results in

0G:) 2 max (Vfi(a).h)= dy(ah). | @.18)

Hence (2.14) is troe.

(i) (<===) First, 0 € dy(x) holds if and only if dy(x;k) 20 for all h € R"*. Hence it follows
from (2.14) that if 0 dy(x) and h € H(x), then 0 < dy(x;h) < 6(x) < O, which implies that
6(x) = 0.

(== =>) Note that if 6(x) = O then for all h € R",

max fi) - wo) +(Vf(e) )+ 3 b fah)20. @.19)
Consequently, for some p > 0 and any h € B(0,p), we have
1
jmax (Vfi(x), hY+ 2 B fin(xh)2 0. (2:20)

Hence there exists a L > 0 such that for any h € B(0,p),

LinP + max (VA(x),m20. 2.21)

Therefore for all A € [0,1] and & € B(0,p),

2 .
AZLUAR + xj%) (Vf’(x).h)z.o. | 2.22)

from which we may conclude that dy(x;k) 20 for all A € B(0,p). Since di(x;-) is positive homo-
geneous, it follows that dy(x; k) 20 for all h € R", and hence that 0 € dy(x).
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|
Theorem 2.3: Suppose Assumptions 2.1-2.3 are satisfied. Then any accumulation point % of an ’

infinite sequence { x; )30, generated by Algorithm 2.1, satisfies 0 € Q).

K
Proof: Suppose;;—»‘iwhereKismeinﬁnitembsetofNandtbatoea\y&) (equivalently that

8(%) < 0). Let { h; }q be the sequence of search directions produced by Algorithm 2.1. As in Lemma
21 we note that on bounded sets, the search directions are bounded and, without loss of generality, we

assume that h.-f)h Since H() is u.sc., we have & € HQ®). Since 6@®) <0, dy(x:%) < 0. Hence by
Lemma 2.2 (ii) and by definition of thedimcﬁonaldgxivative. ﬂmecxistsaﬁ.e S such that
v(i+ﬁ3)-\p®<ﬁ.amp(i;ﬁ) <%a6@). | . 223)

By continuity of y(-) and 6(), there exists an ip € N such that for all i 2 i, i € K,

vz + M) - wix) < Rod(x). . R24)
Therefore A, 2% for all i 2 iy, i € K. Furthermore, since 6(3) < 0, we may assume, without loss of
generality, that 6(x) S 3 < 0, for all i 2 iq, i € K. Therefore we obtain that

V) - YE) S8 Vi ieK. (229

Combining (2.25) with the fact that the sequence { W(x) )io is monotonically decreasing, we conclude |

that y(x) — —oo, which contradicts the continuity of y(") at% ' ]

Clearly, 0 € 3y() if and only if there exists a fi € R™ satisfying

3 #vF® =0, 2.26)
=1
i20, 27
Sw=1, 2.28)
=

PFy® -1 =0 Vjem. 2.29)
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Hence,tohonalohnbanskinwhopioneuedmanymltsindwtheoryot'minimax,weintroduceme

following:

Definition 2.1: A point (&, {i) satisfying conditions (2.26) to (2.29) will be referred to as a Danskin
point for problem P. ) L]

To demonstrate scale invariance of Algorithm 2.1, we require an additional hypothesis:

Assumption 24:  The search direction set H(") is a singleton for all x € R* [
Theorem 24: SupposeAsmnnpﬁonsZ.l-ZAmsatisﬁed.andtlmL:R“—)R“isaninvenibleafﬁne
transformation. For j e m, let g/ & foL. Let yo€ R" be arbitrary and let xo = L(yo). Suppose that
Algorithm 2.1 is applied to the functions v,(x) max g/(x) and \p(x) n:a:: fXx), respectively, from

the initial points be y, and x,, respectively, and suppose that it produces the sequences { ¥ Jimo and
( xs }oo- Thenx; = L(y) forallie N.

Proof: hissufﬁcienttoshowthatx,=L(y,).sinceﬂwmtofthepmoﬁhenfcllowsbyinduction.
LetAandbbesuchthatL(y)nAy+b.ByasmnpﬁonAisinvem'ble.wh,mdh,bedwmh
directionswodmdbyAlgorilhmz.latyo.xo.mspectively.Nextweshowtlmh,=Ah,. Forje m,
let §/0) & g/0) - w,0). Then

h, = argmin max

ARt i€

{8”00) +{Vg/(yo) . )+ — . g0k )}

AcR® jen

argmin max {f(b(yo))+m’vf’(l.(vo)) hY+ — .A%(L(yo»Am} |

= A™ argmin max {f(xq) + (Vfi(xp) . AR)+ - (Ah ,f’,(xo)Ah)} (2.30)

ANe R
Because of Assumption 2.4, this implies that h, = Ah,. Finally, since L(yo + M) = Xo + Ay, it is clear
that the same step size is returned in both cases. Hence x; = L(yy). . =
3. QUADRATIC CONVERGENCE (Convex Problems)

To establish superlinear convergence we require additional assumptions.



Assumption 3.1:  Strict complementarity holds at any Danskin point ®.{1), ie., /&) = ¥(z) implies
¥>0. ]

Assumption 3.2: At any Danskin point (,fi) second order sufficiency conditions are satisfied, i.e.,

tbmexistsanno>0mchm

(b 1aG DAY mglh, | XY
for all h € R" satisfying

(Vi) m=0, v' je AG, (32
where A() is the active function set defined by (2.16). n

There are two main results in this section, the first shows that if algorithm 2.1 is started
sufficiently close to a Danskin point and the step size in step 2 is set to 1, then the sequence of iterates
converges quadratically to the Danskin point. The second result shows that near a Danskin point satisfy-
ing Assumptions 3.1-3.2, the step size A; becomes 1. Combining these results with Theorem 2.2 shows
tlmiftheseqnmceofpoimsgamtedbymenlgoﬁmmhasmaccumﬁlaﬁonpomumm.infacnh
cmv.erges quadratically to this point. Observe that Assumption 3.1 implies that at a Danskin point the
active gradients are affinely independent (a set of vectors { p; } are said to be affinely independent if
and only if the set of vectors ( (1,p) ) are linearly independent). We now establish that Assumption

3.2 is, in fact, a second-order sufficiency condition.

Proposition 3.1: Let (3fi) be a Danskin point for problem P at which Assumptions 2.1, 3.1 and 32

hold. Then % is a local minimizer for problem P.

Proof: Suppose X is not a local minimizer for P. Then there exists a sequence { x; }o such that

V) <y® Vi. (33)



Fix) - FG) = VfiG + sfix) &)< 0, (4)
for all j € AR), i € N and some 5 € (0,1). Hence, in the limit we must have that

VFiR).,Ws0 Vje AR®). (35)
(i) Suppose & satisfies {Vf/®), %)= 0 for all j € AQR). By Assumption 3.2, we have

GG D2 m>0 . 3.6)

Then
v - ¥ = max T W) - vl
pe :Pl
L] »n 1
= max {z u’[fl(i) - VG)] + (Z '!ij&) 'axl') + 1(1 = S)(&I,'.I,G*’SEI;,].I)SX,‘VS}
kel L =
L. ~n 1
2% Fir®-v@) + Y AvFG),&x)+ {(l—s)wxe.z.,&sax,-.u)ax.-vs. G
= =
The first and second terms are zero by assumption. Hence

@ -y@® 2 52"48:.1’. . (38)

for all i sufficiently large, which is a contradiction.

(i) Suppose (VF*() %) < O for some k € AG). Then

T @i =0, 69)
je A®
fi*>0, (3.10)
(VF*&).W)<0, (3.11)
imply that

0>(V'®. )=~ T (@FRHvF®W 20,

; ‘j‘a o (3.12)

which contradicts (3.5). Hence X is a local minimizer for P.
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]

The proof of local quadratic convergence follows the ideas in [16]. It differs in that our proof

deals directly with the max function formulation, whereas the proof in [16] centers around a constrained
differentiable problem. A version of the Implicit Function Theorem given in [5] is utilized, and is res-
tated here for convenience. In fact, the statement of the Implicit Function Theorem in [5] can be

strengthened slightly without any change in the proof, and this modification is included below.

Theorem 3.2: ([S, Theorem 1, section 4.XVII]) Suppose that (i) Q < R"* x R" is a neighborhood

of the point &.9), (ii) the function g:Q — R* is continuous at (%,5), and (iii) the following hold

8.5 = 0; G.13)
2(*,*) exists on Q and is continuous at %.5); (3.14)
&:(.y) is invertible. , . _ (.15)

Then there exist neighborhoods N € R* and M c R™ of % and 5 respectively, such that N x M c Q,
and a function Z: M — N with the following properties:

8Z0).) =0 VyeM; B.16)
26) = ; @3.17)
Z(-) is continuous at ¥; (3.18)
V ye M, Z() is the unique zero of g(-,y) in N. R

For convenience we adopt the notation z = (x,p) € R™". To continue, we observe that if, with

h = (x, - %), (x, - x),),) is a Danskin point for the search direction problem (2.8), then

gu.'.{ VAR + Fal@)x, — 1) } = 0, (3.20)
M 20, (3.21)
§m= 1. G2)

Kh{ 8() = [F(x) - w(x) + (V). x, - x)+ -;- (e = 2) fa®)x-0)1}=0, ¥Vjem.(3.23)

.11-



Furthermore, summing (3.23) over j € m, we obtain that

09 = £ 1700 - v + (V) x, = )+ 7 (= 2. e = )] G24)
Condition (3.23) is equivalent to:

KL [) - W) + (V) (e - D+ ‘% (= 2). fale)xe — X)) -

U’(x)-v(x)+(Vf’(x).(&-x)>+-§-((&-x).f’a(x)(xw-x)ll S0,Vjkem. (3.25)
In addition it should be clear that if the convexity Assumption 2.3 is satisfied, then conditions 3.20-3.23
are also sufficient for x, — x to solve the search direction problem.

Suppose that % is a Danskin point for problem P at which Assumption 2.1 holds. Without loss of

generality, we may assume that AR) = { 1,...,r ). We now define the function g2:R™™SR™™ — R™™"

as follows:
5. WV + flleXer-s)
-
WP + () 1 = 2+ 3 (@ - ) TGl = 2]
M) + (VP00 0 — )+ 5 (G = ) T o = )
s & | Ee-1 326
=
W) + (T, = 2+ 5 1 = 2 T2 = 2]
| W)+ T e o = 2 (1~ 2) FEde - 7))

where /¥ & f— f/ and V77 and fi are defined similarly. The following result summarizes the useful
characteristics of the function g(,).

Proposition 33: Let 2 be a Danskin point for P, and suppose that Assumptions 2.1-2.3 and 3.1-3.2

«12-



are satisfied. Let g(-,") be defined as in (3.26). Then the following are true:

@) 8G3=0;

(i) g,(.) exists and is continuous in some neighborhood of (22) and is invertible at (22);

(iii) There exist neighborhoods M and N of  and a function Z(") satisfying (3.16) - (3.19);

@) Z(xp) =Z(xW) V R, Fe R such that (xy), x0) € M;

"(v) There exists a neighborhood U © M containing 2 such that V¥ z € U, Z(z) is the (unique) solution
to the search direction problem (2.8);

(vi) There exists a neighborhood G of % such that vV x € G , the search direction map H(x) is a single-
ton. Furthermore, H®) = ( 0 } and H(:) is continuous at X; |

(vii) The multiplier vector 1, defined by (x,4) = Z((x.}1)) are continuous in x at X.
(viif) The vector (x,.i,) = Z((x)) satisfies (3.20) - (3.23).

Proof: That (i) is true follows immediately from the definition of a Danskin point and the fact that
A® ={1,...r ). 1tis straightforward to verify that g, (") exists and is continuous in some neighbor-

hood of (23). To show that g, (z.3) is invertible, observe that

L® V'® - VO YE - e
ﬁlvf.r.l(bf o . 0 o cee 0
FvFIeT 0 o o0 -+ 0
8:,63 = “‘ f; a) 1 1 1 cee 1 @-27)
? 0 oo 0 0 ?ﬁl@ 0
0 0 oo 0 0 e fm@

Suppose  g,G3)(Av)'=0. Then since F¥@)>0 for all ieA® it is clear that

Vet © Va2 B ... =V = 0. Next fi{V7“G).h)= 0 for all i € r=1 and, since the strict complementarity
Assumption 3.1 implies that {' > 0 for all i € r, it follows that {V/¥@®),)= 0 for all i € r=1. In addi-

' .
tion, since  is a Danskin point, 3" f'Vf'®) = 0. Combining these facts we have
= :



(?‘XVf’@Jaa 0, 328)

which implies that (VF®).h)=0, ¥ i € £, SiNCe Vy41......Vm &re all zero, the top n components of

85,G2)(h.v)" are given by
SRkOn+ EFIE =0 3.29)

’ ]
Hence (h,Y fiif.()h)= 0. It now follows from Assumption 32 that 4 = 0. It remains to show that
p=1

vy=vy= ... =V, =0, Since h = 0, it follows from (3.29)

' .

21V‘Vf'6) =0. (3.30)
Next, since g, G2)(hv) = 0, it follows that

EG‘ =0. (331

Since by Assumption 31, {VF®) _, 5 e afnely independent, (3.30), (3.31) imply that

Vi=Vy= ... =V, =0, Hence we conclude that g, (Z3) is invertible; and so (ii) is proved. Conse-
quently it is clear that g(;.-) satisfies the Mpﬁom of Theorem 3.2, thus proving (iii).

To prove (iv), we deduce from the definition (3.26) that g(z.(xJ)) = 8E.(x{) ¥ Zxpu i Sup-
pose that (x1),(xJf) € M. Then by definition of Z() we have 8(Z((x.1)).(x.1)) = 0, and by the above
remark, we see that g(Z((x41)),(xJD) = 0. (3.19) in Theorem 3.2 allows us to conclude that (@v) is true.
Mmgcmrally.itshouldbecwarthatﬁﬁsmﬂlimpli&eMZ(*)dependsonlyonit’sﬁrstm'gmnem
).

Because of (3.18) in Theorem 3.2, and of the fact that f“®) >0 ¥ i ¢A®), we may chose a
neighborhood Uc M of 2, such that for all ze U and oty = Z(z), Hipd.... 05 >0, and
7409 + (PH@x, — 29+ 3 (@ DFENE - ) > 0 for ll § €A). Since 3Z()3) = 0, we seo
that z, satisfies 3.20-3.23 and therefore is a Danskin point for the search direction problem (2.8). In

addition, it is the only such point in the neighborhood N of part (iii). By Assumption 2.3, the search

-14-



di:ecﬁonpmblemiseoanencewecondudeﬂmz.-xistheuniquesoluﬁonwmemhdimc-
tion problem. This proves (v).

Since U in (V) is an open set containing 2, it should be clear that for some e > 0, the set
BGe) x( i } is contained in U. Let G & BRe). Suppose x € G. Then clearly (xi) € U and there-
fore, by. (v), Z((x,1)) is the unique solution to the search direction problem (2.8). Hence H(x) is a sin-
gleton. Since by Lemma 2.1 H() is u.s.c., it follows that it is continuous on G. Since Z() =%, it fol-

lows that HR) = { 0 }, and so (vi) is true.

It is obvious from (3.18) in Theorem 3.2 that Z(-) is continuous at . To prove that (vii) is true, it
suffices to show that Z(-) depends only on x in some neighborhood of %. Let x € G, then as above we
have (xfi) € U, and so Z((x{})) is well defined. Because of (iv) and the fact that g(Z .(x.u)) = g(z.(xJI))

for all 7.x4uT, we obtain that g(Z((xD)).(xq) = O for all x € G, V . Pant (viii) follows immediately
from the fact that g(Z(z),2) = 0. This concludes the proof. n

In light of Proposition 3.3, Proposition 3.1 can be strengthened as follows.

Proposition 3.4: Let Z be a Danskin point for problem P at which Assumptions 2.1, 3.1 and 3.2 hold,
thm’x‘isalocalminimizerforpmblemP.ammeteexissaneighborhoodWmchmm'iismeunique
Danskin point of P in W. :
Proof: Define G(z) & g(z.2), where g(-) is defined by (326). Notice that G,() = g, (), and 50 it
is invertible, Thus by the inverse function Theorem, there exists some neighborhood O of Z, such that 2
is the unique zero of G(-) in O. Furthermore, py choosing W c O sufficiently small, we may ensure
that 7%(x) > OV i €AQR), and p'p2,... 0" >0, V (xt) € O. Hence if z € O is a Danskin point of
P, then it should be clear that g(z) = O and hence z = 2. This proves the Proposition. .
Note that Proposition 3.4 implies that X is an isolated local minimizer for P. To provide quantita-

tive bounds on the variation of Z(-), we use a version of Robinson’s Theorem 22 [16]. Our proof is
somewhat simpler than that in [16].



Proposition 3.5: ({16, Theorem 2.2]) Suppose that (8) Q < R* x R™ is a neighborhood of the point

(3), (b) the function g:Q — R* is continuous at (), and (c) the following hold:

2GY) = 0; : (3.32)
8:(-*) exists on Q and is continuous at (X3); (3.33)
&:(x5) is invertible. (3.34)

Then there exist neighborhoods N R* and M c R™ of % and 5 respectively, and a function
Z : M — N such that (3.16)-(3.19) are satisfied. Furthermore, for every 8 € (0,1), there exist neighbor-

hoods N.c N and M c M of % and § respectively, such that
k- ZG) < -1—1—5- LG MG ¥ (xy) € N x . (3.35)

Proof: The existence of neighborhoods N, M and of the function Z(-) follows directly from Theorem
32. Now, let 5€ (0.1), T & g,G5)", and select N c N and M < M to be open neighborhoods of %

and § respectively, such that
ls,&&)-s,(x.y)lS% vV (xy)eNxH. (3.36)

Without loss of generality, M and N may be taken to be convex, and M may be taken to be small

enough to ensure that Z(M) c N. Following Robinson [16], we define @(x) & x~Tg(xy). For
(xy) € N x M, () is differentiable, and:

&) =1 - Tgx)) @37

= L @R - 8:xy))- (3.38)

1
It follows from (3.38) that I®Y(x)l < S, and since ¥'(x)) - P(xp) = l DUxy + 50z = xy))ds(xy = x1),

W(x,)-@'(x,)lSSlxi-xz! VX‘JQEﬁ Vye}-vl—, (3039)
where the norm on ®)() is the induced norm. Substituting for (") gives

Ix; - T g(x1.y) = (2 = T g(x2y))1 < 8lxy — x3l. (3.40)
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Using the inequality lal — 1b1 < la — b, we obtain from (3.40)

Ix; = xol = T (g(x1.y) — 8(r2 Y < 8lxy — xol, (3.41)
from which it follows that

1, - A= < 1) - gt (342)
By }ening x; = x and x, = Z(y), and noting that g(x,,y) = 0, we obtain the required result. B

To complete the derivation of the bound on the variation of Z(), a growth condition on g(,”) must

be established.

Lemma 3.6: Suppose Assumptions 2.1-2.3 and 3.1-3.2 are satisfied and that Z is a Danskin point for
P. Let g(:,’) be defined as in (3.26). ThenthaeexistsandghborhoochR""‘of?;mdaL>0such
that

lg(zl,z,) - g(z, .zz)l < lel - 22‘2 v 21,22 € K. (3043)
Proof: The proof is obtained by expanding (326), and noting that by Assumption 2.1, the matrix
valued functions £.(-), i € m, are locally Lipschitz continuous. [

We are now ready to establish the first main result of this section.

Theorem 3.7: Suppose that Assumptions 2.1-2.3 and 3.1-32 are satisfied and that % is a Danskin
point for P. Let g(-) be defined as in (3.26), and let M x N c R™" x R™", be a neighborhood of 2
Z:M = N be such that ) g(Z(z),2)=0 Vze M, (i) 2G) =% Gi) Z() is continuous at Z,
and (iv) for all z € M, Z(z) is the unique zero of g(-,2) in N.

Then there exists a neighborhood V of Z such that if z € V, then the sequence { z; }=o defined by
24 & Z(z) is well defined, and converges to 3 with R-order at least 2 (ie. quadratically). Specifically,

there exist constants 7| € (0,1), K > 0 such that

G-21 < Kn?.viz2o0. (3.44)
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Proof: Letee(0.l)besuchthat'B-G.e)cKnMnW.whaeK,andWaretheopenneigbborhoods
of 2 speciﬁedinumma3.6andeposiiion 3.4 respectively. Let Y€ (0,1), and L be as (3.43). Sup-
pose, in addition, that € is small enough to ensure that ZX(-) (i.e. the composition of Z with itself) is
wdldeﬁnedonb‘(i.e).andma:foranzeE(z,e)bomzandm)mcommedinﬁn;f‘nx.whemﬁ

and I are the neighborhoods defined in Proposition 3.5 for § = 1/2. Let L' 8 2ig, G2)™'IL and let

p > 0 such that for all z € BG.p),

E-z<eR, (3.45)

. 1 e
-2l min{ —=,——= ). y
2 -3l < ymin{ L. ) | (3.46)

Let V & BG.p). To continue, we must establish that the sequence { z; )z is well defined. Note
that ¢ has been selected so that for all z € BGe),

1226s) - ZUo) € 77 8 G B 2!

< 21g, GH113Z().2(2)) - 8Z(2)2)

< 21g, GHLIZE) - 2. (3.47)

Suppose zp € BG.p). Then z; = Z(z) is well defined. Let a 8 [z - 2, then by construction, & < 1,

and hence foralln 20
LI 1
of S —, .
§ Q- G49)
Then
Iz, - 2l Syer2<e2, ) (3.49)
I, - 2SStz -2 + Iz, -2 Se. - (3.50)

Therefore 2, € B(.€), and 50 z, is well defined. We now proceed by induction. We have

bz, - 20 S L2y - 2P



lh“?ls lzz-z,l+iz,-zol+ Ilo-’il
S (o+1)Iz; = 201 + &/2.
By using (3.48) we obtain

Iz; — 2ol
1-L1z; - 20l

s—i—M—)—-“’“l"'uT +e2se
1-L(e2)((1+2L) '

'Zz-‘;ls +¢ef2

Now suppose that for some k22, () z € BEe) ¥ i<k and (i)
i € k=1. Then clearly 2, is well defined, and as above

1.2}
24 -32< zll,'- Zigl + 129 -2
[

Sia_‘lz,-zol-l-en
=0

Iz, — .
SI—.ﬂ.pmSe.
1-a

Hence z;,; € B(.e), and in addition

Lz, — 20 S Llzp = 2P S Ly = 20l bz = zpl S @lzp = 2.

@3.52)
(3.53)

(3.34)

Iz, - z1< alz; - 25.1l fOl’ all

@3.55)

(3.36)

It follows from this that the sequence { z; ) is well defined. To show that the sequence converges,

suppose that £,/ 2 0. Then

=1 -l ot
Zyy=-21s 2'3“1-2;'5 Za‘lzl-zols-l:k,-zol. )
o -k

@57

Hence the sequence is Cauchy, and so converges to some 7 € B(z.¢). We may conclude from this that

8(Z.2) = 0, and by Proposition 3.4 that 7 =%

To prove quadratic convergence, note that
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lzz-'lﬂsrlh-Zole‘Ilfaz. : (3:58)
Suppose that for k 2 1, lzy = 21 < o®"/L. Then
ey - 20 S Ll - 2P S 17(-% P < %a". (3.59)

Furthermore since 2 — 2; = Y (zi1 — 2), we have the following estimate
-

620 < Sl - 1 s LEo? s E T, (3.60)
s L

-

and since 2%(2 — 1) 2 i, for all ik 2 0, we have

1
Izy,; - — . :
- WS o (.61)

Letting € & ——— andn & o, we obtain the required result.

L-0 =

' To show that the step size eventually becomes 1, we must establish a bound on 6() near a solu-

tion.

Lemma 38: Suppose Ampuons 2.1-23 and 3.1-3.2msatisﬁedandthm'§=(iﬁ) is a Danskin

point for P. Then' there exists K > 0 and a neighborhood O of X such that

6(x)<-KWh? ¥ xe 0, ¥ he HR. (3.62)

Proof: By Proposition 3.3 property (w). we may assume that H(") is a singleton. Hence we denote
the search direction by h(x). The search direction is continuous as a function of x and furthermore

hG) = 0. By properties (vii) and (viii) of Proposition 3.3, the multipliers p, defined by (3.20) - (3.23),
for x, = x + h(x) are continuous at %. Suppose that the Lemma is false. Then there exists a sequence

x; = %, such that the following holds

8(x) > -% WP VkeN, (3.63)

where hy & h(x). Since by Proposition 3.4 % is an isolated local minimizer, we must have that
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hy # O for all k sufficiently -large. Without loss of generality we may assume that this is so for all
ke N. Letu; & hythd, and let p be the multiplier vector, defined by (3.20) - (3.23), comesponding
to the solution of the search direction problem at x;. It should be clear that the multipliers p, converge

K
to the multiplier vector {i at the solution %. Clearly, we must have that u, — &, for some infinite subse-

quence K € N.
(i) Suppose that % satisfies {Vfi(®).i)= 0, for all j € AQ). Then because of Assumption 3.2,

(ElGDH2m>0. (3.64)

It follows that there exists a ko such that for all k 2 kg, k € K,

Uit )2 5 Ui, 365
From (3.24) we obtain that
0x) = gw(xo-v(xomf; YRS JUNNCNMINY , (3.66)
F

Making use of (3.20), (3.66) and the fact that fi(z) — w(x) < 0, (3.66) simplifies out to
8(x,) s--;-(h,,.z,(x.,ug B (3.67)

Hence for k sufficiently large we obtain a contradiction.

(ii) Suppose that {Vf'(®). i)+ 0 for some ! € A(R). Let L be the subspace spanned by the active gradients

at the solution, i.e. L & sp{ V//®) ]-. " and let L* denote the orthogonal complement of L. Note that
, J

% €I*. Let the projections of a vector x onto L and L* be denoted by the superscripts 1,2, respectively,
je., x=x +2 with x' € L, 2* € *. From the continuity of the projection operators, it should be
clear that there exists a k; such thatv k2 &, k € K,

L1/hlt < 2021/64. (3.68)

Combining this with the fact that 1K1 = k' + Ix#? implies that Ih) < L1k1 for some L < oo and for
k € K sufficiently large.
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Let g(©) be as in (3.26), then for k sufficiently large g(zp1.2) = 0 and by > O for all j € AR). Hence,
from (3.25) we conclude that

Flix) + (T v+ 3 (hFdah)20 Vie 4@, Vje m. (3.69)
which may be written as
1) - £ = O n) = 5 hifalrd Y= ~(VF D ) - (el (3.70

By maximizing first the left and then the right hand side ‘of (3.70), with respect to i € A(®), and noting

that A(xy) < AQ) for k sufficiently large, we obtain

max ~(Vfxd - 3 (hfhd @)

VD - FiGe) = (VD A)- = Lo ) 2
2 is A®

2 ma:(;-(vf‘(xg).hx) - LR, G.12)
ie Al

for some L, > 0. To continue, let C 4 co{ VF®) }i o then strict complementarity (Assumption
[ ]

3.1) implies that 0 € riC (where ri denotes the relative interior of a set ). Hence there exists ann >0
such that B(0.n) N L < C. Hence, for any h € L, we must have

\"/ & = = I.,
im (VFi®).h) ?l‘aé(\r.h) 2 e % M(V.h) A (3.73)

Since the Vf/(:) are continuous, it follows that there exists a neighborhood Oy of % such that for all

X € 0;

max (Vfi).h)2 32- IAl. (3.74)
ie AQ)

Substituting this into (3.72) yields
W) = Fx) — (VFxD) - % et )z 2 VAl - Lt
2 %w -L? Vjem. (3.75)

Therefore we obtain
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8(x) < --%‘Em.l + L2, (3.76)

which results in a contradiction for k sufficiently large. ]
'I‘heweondmainxeml{ofdnissectionshowsthalinthevicinityofaDanskinpoim,mestepsize
calculation retums a step length of unity.

Theorem 39: Suppose Assumptions 2.1-2.3 and 3.1-3.2 are satisfied and that Z is a Danskin point for

P. Then there exists a neighborhood O of % such that
yix+h) - y(x) - ab(x) S0 V¥ xe O, V he H(). 3.77)

Proof: AsinthepreviousLunma.wenoteﬂmatby?roposition3.3pmpeny(vi).mereisap>0
such that H(x) is a singleton for all x € BG.p). For x € B(x.,p), we denote the search direction by h(x),
and observe that A() is continuous and k() = 0. From Taylor's Theorem, we have that

Y(x+h(x) - y(x) - a8(x)

m m ' 1
= ‘lpa’;{% W~y + (E WVFi(x),h(x)) + {(1-3)(11(1)‘»1,(#8 h(x).u)h(x))ds} - a6(x)
« . 1 .

< :‘“ﬂ{g Wirx) - w)l + (g WVFix),h(x)) + %(h(x),lz(x,u) h(x))}

1
+ max [(1-s)00). Guless D) ~ Lur) ) ds - .0G)

<(1-a)éix)+ LIk(x)P

€S-(1-a)K P + Lin(x)®. (3.78)
Hence for x sufficiently close to X, the step size will be 1. [
4. THE ALGORITHM (Non-Convex Problems)

If any of the f/(-) in (1.1) are non-convex, it is possible that the search direction problem (2.8)
becomes non-convex. The effect of this is that the relations described in Lemma 2.2 are no longer true,
and so we can no longer guarantee descent at a non-stationary point. In this section a simple

modification is described which augments the Hessians FL() of non-convex functions to ensure a con-
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vex search direction problem.

Let mo > 0 and let Y() be defined by

V) & max( 07" - Aalfela)) ). @D

where j € m and A.,(*) is the minimum eigenvalue of its argument. We define the new optimality
function 6(°) and the search direction map H(") as follows

6G:) & min max {y'_'; W@ + (& W@ a+ + 03 Wk + Yo m}. @2)
AeRWEL | o = 2 jul
H(x) 4 argmin max {i W) + (i WA = (h.f‘, WL + YD h>}- @3)
AeR" Bel| =l 2 jml

The algorithm for solving the non-convex case of P can now be stated.
Algorithm 4.1.
Data: %€ R\mg>0,0,Be (01),5 4 {188 ).
Step0:  Seti=0. |
Step 1: | Compute 6(x), and k; € ‘H(x.-).
Step 2:  Compute the step length
A 2 max{ A e S1yx+ M) - y(x) < Aad(x). @4)
Step 3:  Setx;,) = x; + Ah;
Step 4:  Replace i by i+l andgc.noStep 1. =
Global convergence of the modified algorithm follows almost immediately from the convex case.

In the present case, only Assumption 2.1 is required, and the proofs of the following results are essen-

tially those of results in Section 2 and are omitted.
Lemma 4.1: Suppose Assumption 2.1 is satisfied, then the function 8:R" — R is continuous, and
the search direction map H:R* - 2% is us.c. ]

Lemma 4.2: Suppose Assumption 2.1 is satisfied, then
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6(x) 2 dy(xh) ¥ he H(x); 4.5

6(x) = 0 if and only if 0 € dy(x). (4.ﬂ
Theorem 4.3: Suppose Assumption 2.1 is satisfied. Then any accumulation point % of an infinite
sequence { x; )}z, generated by Algorithm 4.1 satisfies 0 € Iy (). u
5. QUADRATIC CONVERGENCE (Non-Convex Problems)

To establish superlinear convergence, we require an additional assumption which ensures that ()

is convex near a solution.

Assumption 5.1:  For any Danskin point (%,i1) for problem P, (1.1), there exists a mo > 0 such that

DR 2mlhP , ¥ he RV je AR, (5.1)
where A(") is the active function set defined by (2.16). [ ]

Therwultsot'thissectionatealmostidenticaltomoseofSection3,andinmostcasesﬁxepioofs

are omitted.

Proposition 5.1: Let (3.{i) be a Danskin point for problem P at which Assumptions 2.1, 3.1 and 5.1
hold. Then X is a local minimizer for problem P.

To continue, we note that a necessary and sufficient condition for a vector h to be optimal for the

searchdirectionpmblem(4.2)isthatmmexistsaz,z(x,.u,)saﬁsfyingx.-x=hand

f"z;:f.{ VAR + (Flala) + Y@ Dz, - 2) ) =0, 52)
P
20, ' (53)
Sw=1, ' (54)
=

W 0G2) - ) — W) + (TR, = 1)+ 3 L (s = DLW + YDk - DN ) =0, (59)

for all j € m. Condition (5.5) is equivalent to



Wh{ [P - W) + (V)X — o)+ -;- { (& = DfL®) + YR D, - )] -

() - wx) + (Vi) x, - x)+ % (- D@ + YO N -2))) )1 S0,V jkem. (56)

Suppose that 2 is a Danskin point for problem P at which Assumption 2.1 holds. Without loss of
generality, we may assume that AR) = { 1,....r ). Let the function g : R*"R™" — R™" be defined
as in (3.26) except that each occurrence of fL(x) is replaced by fL.(x) + ¥(x)I. The following result is
essentially the same as Proposition 3.3, with the addition of property (viii) whose proof is obvious
under Assumption 5.1.

Proposition 52: Suppose Assumptions 2.1, 3.1 and 5.1 are satisfied and that 2 is a Danskin poiht
for P. Let g(-,-) be as above. Then

@ Gd=0;

(i) g,() exists and is continuous in some neighborhood of (33) and is invertible at (3);
(iif) There exist neighborhoods M and N of ? and a function Z(") satisfying (3.16) - (3.19%
(v) Z((xw) = Z((D) for all ,JT € R™ such that (1), (x) € M

(v) There exists a neighborhood U € M containing 2 such that for all z € U, Z(2) is the unique solu-
tion to the search direction problem (4.2);

(vi) 'I'hexeexistsaneighborhood(?of’isuchtlmv x € G, the search direction map H(x) is a single-

ton. In addition H®) = { 0 ) and H() is continuous at %;

(vii) The multiplier jv,, defined by (x..jt,) = Z((x.4)), is continuous in x at %;

(viii) MexistsmiéhborhoodOofisuchthatforallxe 0, ¥(x) = 0 for all j € AQR). ]
As in Section 3, Proposition 5.1 can be strengthened to give the following result.

Proposition 53:  Suppose that Assumptions 2.1, 3.1 and 5.1 hold and that 2 = (i) is a Danskin
point for problem P. Then % is a local minimizer for problem P, and there exists a neighborhood W of

2 such that % is the unique Danskin point of P in W.
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Proof: Since property (viii) of Proposition 5.2 implies that

g;. L@ + Y& = i} G, 6.7
P
the proof of this Proposition is the same as the one for Proposition 3.4. u

A quantitative bound on the variation of Z(?) is provided, as before, by Proposition 3.5. Lemma
3.6 has to be modified slightly to account for the extra terms in g(-,).

Lemma 54: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that Z is a Danskin point
for P. Let g() be as above, and let Z() be as in Proposition 5.2. Then there exists a neighborhood

K cR"™ of 2 and a L > 0 such that
18(Z(2).Z(2)) - g(Z(2)2) SLIZz) -2, vze K. (5.8)
Proof: The proof is essentially the same as that of Lemma 3.6, provided (5.7) is taken into account.®
'I'heproofoflocalquadraﬁcconvergenceisalmostidenﬁcaltomatoftheconvucase.

Theorem 5.5: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that Z is a Danskin point

for P. Let g(-;) be as above, and let Z(-) be as in Proposition 5.2. Then there exists a neighborhood V
* of 2 such that if zy € V, then the sequence { z; }io defined by z;,; & Z(z) is well defined and con-

verges to % with R-order at least 2 (ie. quadratically). Specifically, there exist constants
1 € (0,1), K> 0 such that

G-z1<Kn?, vi20. (X))

To show that the step size eventually becomes 1, we must establish a rate bound on 6(-) near a

local solution.

Lemma 5.6: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that Z is a Danskin point for

P. Then there exists K > 0 and a neighborhood O of % such that

0(x)S-KIWP Vv xe O, ¥ he HQ). . (5.10)
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Proof: 'Ihepmofissimilartothatofcase(i)inumm3.8.andisbasedonthefactﬂ:atbycon-

* struction
holfate) + YO D) 2 U, s1)
where x,, h, are defined as in the proof of Lemma 3.8. |

The second main result of this section shows that in the vicinity of a Danskin point, the step size

calculation returns a step length of unity.

Theorem 5.7: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that Z is a Danskin point

for P. Then there exists a neighborhood O of % such that

yx+h) - y(x) -08(x) SO0 vV xe 0, V he HQR). . (5.12)

Proof: As in Lemma 5.6, we note that by Proposition 5.2 property (vi), H(x) is a singleton near % In
this case, we denote the search direction by h(x) and observe that k(") is continuous and k3@ =0. In

addition, in a neighborhood of X y(-) may be written as

y(x) = max fi(x)
je A

In view of Taylor’s Theorem and Proposition 5.2 (viii), because k() = 0, for x sufficiently close to %

we may write

y(x + h(x)) - y(x) - a6(x)
1

= max {f’(x) = ¥(®) + {VF().Ax) + {(l-s)(h(x)f{,(x + sh(x))h(x))ds }- a6
je A®

S max {f'(x) - y(x) + (VX)) + %(h(x)f’;.(x) h(x))}

je AR
1

+ max l[(l-s)(Mx).VWsh(x)) - L) hx))ds - 2 8(x)
je A® .

< (1 - 0)6(x) + LIk(x)P
< -(1-0) KWh(x)P + LIh(x)P. (5.13)
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Hencé for x sufficiently close to %, the step size will be 1.

6. NUMERICAL EXPERIENCE (Convex problems)

Three examples which illustrate the performance of Algorithm 2.1 are considered. For the purpose

of comparison, the Pshenichnyi linearization method is also applied to these problems. In each case the

cost function value is indicated at each iteration. All of the problems considered satisfy Assumptions

2.1-23, 3.1 and 32. The Armijo step size parameters are taken to be & = 0.1 and B = 0.5 in all cases.

In figures 1-3, the solid line represents Algorithm 2.1, and the dashed line represents the Pshenichnyi

linearization method.

Test Problem 6.1: (figure 6.1)

2 . 3
v(x) & max{ ' l)z.c’°°° l)z].

The initial point is xo 4 (50.0,0.05)".

Test Problem 6.2: (figure 6.2) Define f : R’—RR as

) & S xPerdi@sgads... axy
andlet e; 2 (1,0,.....0)". Define the cost function as

v(x) & max{flx+2e) , fx-2¢)) ).
The initial point is x, & (100.0,0.1,0.1.....0.1)".

Test Problem 6.3: (figure 6.3) Define f/ : R—R for all j € 50 as

fiw & Fod
)
where o/ € [0,150] and ¢,/ € [0,1.5). The cost function is defined as

v 8 ;gag'cx)
The initial point is x 4 (1.0,1.0.....10)".
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APPENDIX
In the previous algorithms, quadratic convergence was obtained by assuming that (') was
strongly convex in a neighborhood of a local solution. By relaxing this assumption slightly, superlinear
convergence can still be obtained, at the expense of a more complex algorithm. This algorithm requires
manhemdueedacﬁvenas'nnsbemfﬁgiendyposidvedcﬁniwatbcalsduﬁon&
Assumption A.1: At any Danskin point (%,{i) of problem P, there exists a mg > 0 such that
(hfLDh) 2 molhi?, (A1)

for all j € AQX) and for all h satisfying

VRM=0, Vje AR, (A2)
where A(") is the active function set defined by (2.16). ) [ |

Let xe R", 8 € R™ ve R. For i € N, we shall denote by J; subsets of m and by G; matrices

whose range is R*. We define the quantities 6(-,".-,"), H(:,'), I(:,,-) and G(:,°) as follows:
6(x5YG) 4 min max {5: W@ + (5 WV L 03 WL + 51496 G’)h)}. (A3)
heRTBSE {jan = 2 A .
H(x57,G) & argmin max { 3 WP + (5 V@A L 03 Wl + F1+ vccf)m}w.)
Ra R® pe X -Pl 'Fl 2 'Pl

Ix5x.G.h) & { j e mFG) + (VFx).m+ % h(Le) + 81+ YGGNHA)
= max {i W@ + (3 WM+ L 0SS WL + §1+7G G’)h)} (AS)
ReZ | jm =1 2 m .

Next we turn to the matrix of G(x.J). Let the cardinality of 7 be 7 and let { §; )5 = I be an ordering
of the indices in / such that i; < iy). Then

Gal) 4 [vr"(x) Vf"“(x)]. (A6)
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The algorithm for solving P may now be stated.

Algorithm A.1,

Data: e R my > 0,0,Be (01),S & {1BB%.. Jocm

Step0: Seti=0.

Step 1:  Compute G; 2 G(x,J) and N, an orthonormal matrix whose columns span the orthogonal

complement of the range of G;.

Step 2:  Compute §; € R™ according to

8 & max( 05" - huWIFLGIN) ). j € m.

Step3:  Compute ¥; as follows. Let

% & min( Y1 Aolflale) + F1+YGGN2 7 Ve m).

Then

L if %y 2%
% =
B+1 i <Y

Step 4: Compute 6(x;5,.Y;,G) and h; € H(x,5,7..G).
Step 5:  Compute I, & I(x8,%.Gih).
Step 6:  Compute the step size

A 2 max{Ae S)yx+Mh) - y(x) S Aab(x) ).
Step 7:  Set x;,y = x+Ah;.

Step'8:  Replace i by i+1 and go to Step 1.

A7

(A-8)

(A9)

(A.10)

-8

Theorem A.l: Suppose Assumptions 2.1, 3.1 and A.1 are satisfied and that { x; }i2 and { ¥; }3o are

bounded sequences generated by algorithm A.1. Then ( x; }izo converges to a Danskin point X with R-

order at least V2.

The proof of the above theorem is similar in nature to that given for the previous algorithms, but

considerably more laborious and full of technical details. Since Algorithm A.1 does not represent a very
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large advance over Algorithm 4.1, the proof is omitted to save space.
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