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ABSTRACT

Algorithms for solving the problem of minimizing the maximum of afinite number of functions

are proposed and analyzed. Quadratic approximations to the function are employed mme detennina-

tion ofa search direction. Global convergence is proven and it is shown that aquadratic rate ofcon

vergence is obtained in the convex case, and asuperlinear rate ofconvergence in the non-convex case.
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1. INTRODUCTION

We consider the problem:

P: min max/>(r), (1.1)

where the y7:R" -• R have locally Lipschitz continuous second derivatives and m denotes the set

{1,... jn ). This problem arises frequently in optimization-based design, see, e.g., [8], but can also

arise indirectly when, for example, a constrained optimization problem is converted into an uncon

strained problem by the use of an exact penalty function, see eg., [9]. In work on optimization-based

control system design, see [12,19,17] for example, it has become evident that existing algorithms per

form badly on problems with poor scaling. To mitigate these problems we have developed algorithms

which incorporate second derivative information in the search direction calculation. The resulting

search directions are well seated, and the algorithms are, under reasonable assumptions, superlinearly

convergent

Problem P can be written in the equivalent form:

min y(x). (12)

where v:R* -> R is defined by:

w(x) £ max/>(*). (13)

Since y is non-differentiable, Pis anon-differentiable optimization problem and it is not immediately

evident that a superlinearly convergent algorithm can be devised. The problem can, of course, be con

verted into a constrained optimization problem through the employment of an additional variable. The

following problem is equivalent to P:

min {wl/to-w^OJe at). (1.4)
few) « It**1

This formulation reveals that standard algorithms, such as the feasible directions algorithm [11], or the

' sequential quadratic programming algorithm [9], may be employed to solve P. However it is possible

and preferable to employ the original rormulation. In particular, the drawbacks of using a sequential



quadratic rrogramming algorithm (such as [9]) in solving (4) are CO one must employ acurvilinear step

size rule to ensure quadratic convergence, and (u) the sequential quadratic programming algorithms are

not invariant under mvertible affine transformations of the parameter space. As we shall see, the algo

rithm that we shall describe, addresses the original formulation P, and does not suffer from these disad

vantages.

There is an extensive literature dealing with methods for solving problem P.Here webriefly sum

marize some related work. One of the earliest approaches to solving the problem P is Pshenichnyfs

linearization method [IS], which is a phase I version of the Pironneau-Polak method of centers [10],

uses first order expansions of the functions/' and a fixed quadratic term toobtain a search direction. It

is straightforward to demonstrate that, with a suitable step length calculation, any accumulation point

produced will satisfy first order optimality conditions. In [15] Pshenichnyi noted that near a Chebyshev

point (also called a vertex minimum and aHaar point by other authors) the search direction returned by

his method is the same as Newton's method for equalizing the maxima, and hence it follows that if a

step size of unity is accepted, then the sequence of iterates converges quadratically. In [2] this result

was completed by showing that near such a point that an Armijo step size calculation returns unity. In

[1] another first order method is presented, but no rate of convergence is stated. In [6] a method is

presented which uses first order expansions of the/' and a trust region to compute the step size. They

note that under conditions similar to those of [2], the method is essentially Newton's method, and so

obtain quadratic convergence. In [4] this method is extended by switching to and from a quasi-Newton

iteration scheme under certain conditions, in an effort to relax the Chebyshev point assumption. This

algorithm has the potentially undesirable property that it is not a descent algorithm, and the conver

gence properties are somewhat weaker than those of the original algorithm. Another trust region

method for minimizing composite functions (of which max functions are a special case) is presented in

[3]. The algorithm- uses previous multipliers and second order information in the search direction sub-

problem. The main result of the paper is to show that under suitable assumptions an accumulation

point exists at which first order optimality conditions hold. A local quadratic convergence result is also

stated, but it is observed that the socalled Maratos effect [7] could cause problems by rejecting a unit

step near a solution. An active set method which uses reduced Hessian information isproposed in [18].
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It is shown thatunder suitable assumptions any accumulation point satisfies first order optimality condi

tions. The algorithm is shown to have finite convergence when the/' are quadratic with identical con

vex second order terms, and local 2-step superlinear convergence is obtained in certain circumstances.

Asin [3] it is noted that the Maratos effect could inhibit the superlinear convergence. A general discus

sion of first order minimax algorithms can be found in [13].

The algorithms presented in this paper employ quadratic approximations to y to determine suit

able search directions. Hie first algorithm applies to problems inwhich the/' are convex, and has qua

dratic convergence toDanskin points (points which satisfy first order necessary conditions for problem

P) satisfying second order sufficiency conditions. It solves quadratic problems (ie. each/' is a convex

quadratic) in one step, and under certain conditions the algorithm is scale invariant under invertible

affine transformations of thedomain. The second algorithm is a modified version for non-convex prob

lems. It is not scale invariant, but it does converge quadratically under appropriate conditions. A third

algorithm (also not scale invariant) is presented which yields superlinear convergence under less restric

tive conditions. Numerical results are presented which compare the performance of the first algorithm

with that ofthe Pshenichnyi linearization method, showing a agnificant decrease inthe number ofitera

tions required to solvevarious problems.

2. THE ALGORITHM (Convex Problems)

An obvious quadratic approximation toy(0 at x is given by:

w(xO-^x) =maxf/(x) +<V/'(x).(^ C")
jmm *•

where

f(x) A/'(r)-y(x);€fl|. <23>
As in Newton's method for differentiable functions, a search direction for minimizing y(x) can be

obtained by minimizing (2.1) with respect tox* Le, bysolving

min max (?(x) +<V/'(x) ,x+ - x)+ \<lx+ - x) jUfib*- *)1



* min maxJ2y?C*) +£<^/*(*).(^ <23>
where

££iieR"ln a0,2^«l[. @-4>
/(x.n) A <n^(x)>. ^>

/(x) £ ^(x).---/"(x)]T. <W>
One of the ways of solving this search direction problem is to apply to its dual a gradient projection

method or constrained Newton method [14]. We define the optimality function 6(-) and the search

direction map //(•) as follows:

9(x) £ nan tD2Jimx) +{Vfyx),h)+^Qi,fJx)hi

» min niaxIyM?«+<S^V/'(x).A>4^»^^>4' ^

tf(x) £ argmin max Ijfc n>?(x) +(£ M^ V/fc).**- 4 WjNtiA. &*)
Ac It* l*«£ |f-l >-l * J

The algorithm for solving P (where each fi isconvex) may now be stated.

Algorithm 2.L

Data: xo e RR, a, p e (0,1), S £ { 1.0,0?,-. }.

Step 0: Set i« 0.

Step 1: Compute 0fo), and hie H(xd.

Step 2: Compute the step size

X, £ maxfXe 51yfe +X^)-v(xj) £ Xo^xj)). (2-°)

Step 3: Set x*i = x,+tyi,.

Step 4: Replace i by i+1 and go to Step 1. •



To establish global convergence we make the following assumptions:

Assumption 2.1: The functions /':R"-»R, je m» are twice locally Lipschitz continuously

differentiable. •

Assumption 22: There existie mand i\ > 0 such that

<h,fjx)h) Z r\lhf V x.h e R". (2-10)
•

Assumption 23: Each function is convex, Le.

(h,fa(x)h) * 0 Vx.he R\ Vi e ffl. 0.11)
•

The main result of this section is that any accumulation point generated by Algorithm 2.1 satisfies a

necessary condition ofoptimality for P. Assumption 22 ensures that the optimality function 0(0 is con

tinuous, and that the search direction map #(•) is ilsx. Assumption 2.3 is sufficient to prove that the

resulting directions yield descent directions for yC). Afew preliminary results are necessary. First,

we introduce a notation for open balls: B(x.p) £ {x* Ilx*-xl <p }.

Lemma 2.1: Suppose Assumptions 2.1, 23 are satisfied, then the function 6:R"->R iscontinuous,

and the search direction map tf:R" -> 2*" isu.sx.

Proof: By Assumptions 2.1,2.2, it is clear that for all bounded sets Kc R" there exists a5>0 such

that for all x e K the definitions of 6(0 and //(•) may be replaced by:

9(x) k min maxJ2^/(x) +<f;^V/'(x),A)+4^»'»(«^)A>h (2-12)

H(x) &argmin max \£vl~f(x) +<£ mW*).*> +̂ ih,ljxt]i)h) \. (2.13)

Hence by Proposition 3.1 and Corollary 3.1 of [13], 6() is continuous, and by Proposition 32of same,

H(-) isuac. "

Let dy(x;h) denote the directional derivative ofy(0atx in the direction h.

Lemma 22: Suppose Assumptions 2.1-2.3 are satisfied. Tlien the following are true:



6(x)*dy(x\h) VAe//(x); <^14>

6(x) =0 ifandonlyif Oe 3y(x). P-15)

Proof: ® Let the active index set be defined by

A(x) £ {/ e ml/'(x) - y(x) }. <2-16>

Then for all Ae i/(x) we have that

6(x) * max Wf(x)Ji)+ ± {hfijx)h\ (2.17)
>«A(i) 2

Because of (2.7), this results in

6(x)£ max (V/'(x),A>= <fy(xtf). (2.18)
>« AW

Hence (2.14) is true.

(ii) (<= = =) First, Oe 3y(x) holds if and only if <ry(x;A)£Oforall he R". Hence it follows

from (2.14) that if 0 e dyC*) and he ff(x), then 0 £ <ty(x;A) £ 6(x) £ 0, which implies that

6(x) = 0.

( = = =>) Note that if 6(x) • 0 then for all A€ R",

max f(x) - v(x) +(V/fc),AH i {h,f*J(x)h)7> 0. (2.19)

Consequently, for some p > 0 and any h € £(0,p), we have

max {Vfi(x).h)+ -i (hJ*Jx)h)Z 0. O20)
>« AW 2

Hence there exists a L > 0 such that for any A€ £(0,p),

LIW2+ max (V/»(x).AteO. (231)

Therefore for all X € [0,1] and h e 5(0,p),

X2LIM2 + Xmax (Vfi(x).h)Z0, (232)
>€At*)

from which we may conclude that <ty(x;A) £ 0 for all he £(0,p). Since <ty(x;) is positive homo

geneous, it follows that <fy(x; A) £ 0 for allAe R", and hence that 0 e dy(x).



Theorem 23: Suppose Assumptions 2.1-23 are satisfied. Then any accumulation point x of an

mfinite sequence (x, )£*generated byAlgorithm 2.1, satisfies 0 e dy(x).

Proof: Suppose x* Axwhere Kis some infinite subset of Nand that 0cdy® (equivalently that

6(x) <0). Let {hi )Sq be the sequence of search directions produced by Algorithm 2.1. As in Lemma

2.1 we note that on bounded sets, the search directions are bounded and, without loss of generality, we

assume that hi Aft. Since //() is uac.. we have te H&>. Since 6<x)<0. <fy(x;fi)<0. Hence by

Lemma 22 (ii) and by definition of the directional derivative, there exists a%e Ssuch that

By continuity ofv(0 and 6(0. there exists an k e N such that for all z£ to. *e K*

y?{Xi +$hd-V<xd<5am. (2*24)

Therefore A,2s£ for all iStio.ie K. Furthermore, since 6<*)<0, we may assume, without loss of

generality, that 6(xj) £% <0, for aU i £ i* i e K. Therefore we obtain that

V(x*i)-V(*i)£^ao1 Vf^io.iEi:. ®^

Combining (235) with the fact that the sequence {v&) )£© * monotonically decreasing, we conclude

that vfo) -> -°°»whicn contradicts the continuity of y(0 at x. •

Clearly, 0€ By® ifand only if there exists afeR" satisfying

fiSO,
<?37)

(238)

(239)



Hence, to honor John Danskin who pioneered many results in the theory ofmmimax, we introduce the

following:

Definition 2.1: A point (x.ff) satisfying conditions (236) to (239) will be referred to as &Danskin

point for problem P. H

To demonstrate scale invariance of Algorithm 2.1, werequire an additional hypothesis:

Assumption 2.4: The search direction set//() is asingleton for all x e R". •

Theorem 2Ai Suppose Assumptions 2.1-2.4 are satisfied, and that L:R" -*R"is an invertible affine

transformation. For / e m» let gJ £ f*oL. Let y& e R" be arbitrary and let xo » Uyo). Suppose that

Algorithm 2.1 is applied to the functions y,(x) £ max g'(x) and y(x) £ max/'(x), respectively, from

the initial points be yo and xo, respectively, and suppose that it produces the sequences {yu )£o and

{x, }«• Tben *i a Uyd for all i e N.

Proof: It is sufficient to show that xx =Ifo), since the rest of the proof then follows by induction.

Let A and b be such that Uy) =Ay +b. By assumption A is invertible. Let hg and fy be the search

directions produced by Algorithm 2.1 at y<>, x* respectively. Next we show that ^ =AA,. For/ € m*

let g'(y) § g'(y)-vf(y).Then

A. « argmmmax<|i'(yo) +<V '̂(y0),AH4,<*'*»0'(>)A)f

sargminmax<?<&$)+ <ATVfJ(fJ(yo)).h)+\ <A.A%I(L(yo))AA>[

*A^argmin max i?(xb)+(V/>(x<MAH -i (AA./UxrfAA)\. (2-30)
Afc€R" *«B [ ^ J

Because of Assumption 2.4, this implies that h/ =AA,. Finally, since L(y0 +^) » xb +ty, it isclear

that the same step size is returned inboth cases. Hence X\ =Uy{). •

3. QUADRATIC CONVERGENCE (Convex Problems)

To establish superlinear convergence werequire additional assumptions.



Assumption 3.1: Strict complementarity holds at any Danskin point (x.fi), Le., /*(x) =v(x) implies

&>0. •

Assumption 33: At any Danskin point (x,ji) second order sufficiency conditions are satisfied, i.e.,

there exists a mo > 0 such that

(A.Ux.ftAtemolAI2. (^

for all A € R" satisfying

<V/'<J),A>=0. V/eA(x). <3<2)

where A(0 is the active function setdefined by (2.16). •

There are two main results in this section, the first shows that if algorithm 2.1 is started

sufficiefflly close to a Danskin point and the step size in step 2 is set to 1, then the sequence of iterates

converges quadratically to the Danskin point The second result shows that near aDanskin point satisfy

ing Assumptions 3.1-33, the step size X,- becomes 1. Combining these results with Theorem 23 shows

that if the sequence of points generated by the algorithm has an accumulation point, then, in fact, it

converges quadratically to this point. Observe that Assumption 3.1 implies that at a Danskin point the

active gradients are affinely independent (a set ofvectors [pi) are said to be affinely independent tf

and only if the set ofvectors { (1 ,pd ) are linearly independent). We now establish that Assumption

33 is, in fact, a second-order sufficiency condition.

Proposition 3.1: Let <x4& be aDanskin point for problem Pat which Assumptions 2.1, 3.1 and 33

hold. Then x is a local minimizer for problem P.

Proof: Suppose x is not a local minimizer for P. Then there exists a sequence {x* }£o such that

Xi -> x and

V(xi)<Y6) Vi. ®3)

Letoxf A Xi-xandii,- £ 6xj/I6x,I. Without loss ofgenerality, we may assume that a* -»u. Then we

must have that
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fi<xd-f><b=&f>G+&xdM<o, (34)

for all; € A(Jc),iE N and some j{e (0,1). Hence, in the limit we must have that

<vy(xO,io£ 0 V; e A(x). C3i)

(i) Suppose u satisfies (V/'(x), u)=0 for all / e A(x). By Assumption 33, we have

Then

Vfed - V<£) =max £ nWfe) - V<*H

=max JT^[f'6) - v<x)] +(£ M^V/'̂ .ox,) +J(l - sKoxiJjx+saXi.vyoxiVs \

* £PV<&-v6>] +<LiW(S).6xl0+ hl-s)^JJ$+soXi.\iyoXi)ds. (3.7)

The first and second terms are zero by assumption. Hence

for all i sufficiently large, which is a contradiction.

(ii) Suppose (V/*<£) ,u) <0 for some Ae A(x). Then

2 j?vy'<S) =0, (3.9)
f«a£)

jj.>0j (3.10)

<V/*&.i&<0, <3-">

imply that

• oxv/*<J),2)>=- 2 WfavfiGbSito. (312)
;«aG>

which contradicts (35). Hencex is a local minimizer forP.

-10-



The proof of local quadratic convergence follows the ideas in [161. It differs in that our proof

deals direcdy with the max function formulation, whereas the proof in [16] centers around a constrained

differentiable problem. A version of the Implicit Function Theorem given in [5] is utilized, and is res

tated here for convenience. In fact, the statement of the Implicit Function Theorem in [5] can be

strengthened slightly without any change in the proof, and this modification is included below.

Theorem 33: ([5, Theorem 1, section 4.XVTI]) Suppose that 0) Q c R" x Rm is a neighborhood

of the point (x,% (ii) the function g: ft -> R* iscontinuous at (x,y), and (iii) the following hold

8$.y) =0; <3.13>

g£,0 exists on Qand is continuous at Cc,y); (3.14)

&(x,y) is invertible. ^*15)

Then there exist neighborhoods Nc R" and Mc Rm of x and y respectively, such that Nx Mc G,

and a function Z:M -> N with the following properties:

g(Z(y).y) =0 VyeAf; (3-16)

Z<5) =x; (3.17)

Z(0 is continuous at y; O.K)

V ye Mt Zfy) is the unique zero of g(- ,y) in N. (3«1™
For convenience we adopt the notation z-(x.\i)e R"*". To continue, we observe that if, with

A=(x+ - x), (Xf - x),M+) is a Danskin point for the search direction problem (2.8), then

£ Mi{ V/'(x) +/i,(x)(x* - x) }«0. (3.20)

M* *0. 021)

£|il«l. (332)
.pi

Mil B(x)- I/>(x)- v(x) +(V/'(x).x+-x)+4<(x.-x)./4i«(x+-x)>] }=0 . V;e a . (333)

41-



Furthermore, summing (333) over; e m, we obtain that

6(x) o £[/'(x)-v(x)+(V/'(x).xf-x)+4<(^-*)./4«(x)(x+-x))].

Condition (333) is equivalent to:

(3.24)

Vii l/*C*) - W) +<V/*(x) ,(x+ - x))+ j ((x* - x),/LCxXXf-x))]-

[/'(x)-v(x) +<V/'(x),(x+-x)>+-j((x+-x),/4s(xXx+-x)l} £ 0, V;.AEm. (3.25)
In addition it should be clear that if the convexity Assumption 23 is satisfied, then conditions 3.20-333

are also sufficient for x+ - x to solve the search direction problem.

Suppose that r is a Danskin point for problem Pat which Assumption 2.1 holds. Without loss of

generality, we may assume that A<£) « { l,....r }. We now define the function giR-^VR^ -> R"*"

as follows:

ifo.**) =

Z ^{V/te) +/&x2Xx1-x2))

Mil?*^(Xj) +<V7*(X2) ,X! - Xj>+ -j((Xj - Xj) JgftX* - **) >]

M^ir^w+<vf**w .* - *2>+ 7 <(xi - **> ^sr1wc«i - *2> >i

Zm(-i
>I

jirltf^(i)+<v"w.(* - *&+ 4- <c^ - x2> ^p1wc«i - **» j

where7^ £ f -/' and V?'' and/S are defined siinilarly. The following result summarizes the useful

characteristics of the function g(-,-).

Proposition 33: Let z be a Danskin point for P, and suppose that Assumptions 2.1-23 and 3.1-33

-12-
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are satisfied. Let g(v) be defined asin (336). Then the following are true:

(i) g(?5) = 0;

(ii) gtX',') exists and is continuous in some neighborhood of(J2) and is invertible at (zS);

(iii) There exist neighborhoods Mand Nof z and a function ZQ satisfying (3.16) - (3.19);

Ov) Z((x*i)) - ZKxJT)) V |i, p e R" such that (xji), (xJO e ilf;

(v) There exists a neighborhood UcM containing z such that V ze (/, Z(z) is the (unique) solution

to the search direction problem (2.8);

(vi) There exists a neighborhood G of x such that V x e G , the search direction map H(x) is a single

ton. Furthermore, //(x) = { 0 } and //(•) is continuous at r,

(vii) The multiplier vector ^ defined by (x+40 » Z((x,u)) are continuous in x atx.

(viii) The vector 0MI+) « Z(C*4*)) satisfies (330) - (333).

Proof: That (i) is true follows immediately from the definition of a Danskin point and the fact that

A<£) e { l,... s }. It is straightforward to verify that &t(v) exists and is continuous in some neighbor

hood of(53). To show that gtfiS) is invertible, observe that

&i<M>

Wt> V'(S) • • • vr*<& vr® • •• Vf*&

(Fv/^W o ... 0 0 0

0 1

... 0 0

... 1 1 .

0

1

0 0 ••• 0 0 ?**& 0

0 0 ••• 0 0 ••• ?"$)

Suppose gsfi&hy? • 0. Then since ?*ft>0 for all ieA(x) it is clear that

vrtBVH2= ... « v., « 0. Next fiKVp(x),A)= 0 for all i e tl and, since the strict complementarity

Assumption 3.1 implies that ff >0 for all i e £, it follows that (v7,,'(x),A>= 0 for aU i e £=1. In addi-
r

tion, since z is a Danskin point, 2 ffV/*(x) =0. Combining these facts wehave
M

•13-

(337)



(ZSl)(V/r6).A>=0. (338)
M

which implies that (Vf$)Ji)= 0, V i e £. Since VH.i......vm are all zero, the top n components of

8h$$Xhy)T are given by

£ffi4G)A +£v*yr(x) =0. (339)

Hence <A,£ff/„(x)A)= 0. It now follows from Assumption 33 that A=0. It remains to show that

Vjbv2= ... =vr = 0. Since A= 0, it follows from (339)

tWf& =0. (3.30)

Next, since gh0^ihyf =0, it follows that

£v* =0. (3.31)
M

Since by Assumption 3.1, {V/*®} . are affinely independent, (3.30), (331) imply that

Vj o v2 « ... - vr =0. Hence we conclude that gfl(z3) is invertible, and so fli) is proved. Conse-

quently it isclear that $(v) satisfies the assumptions ofTheorem 33, thus proving (iii).

To prove (iv), we deduce from the definition (3.26) that g(z,(x.p)) =g(?.(xp)) V zxpfL Sup

pose that (x4t),(xJ0 e M. Then by definition of Z(0 we have g(Z((x4i)).(x,M)) =0, and by the above

remark, we see that g(2ftx4i)).(x.p)) • 0. (3.19) in Theorem 33 allows us to conclude that (iv) is true.

More generally, it should be clear that this result implies that Z(0 depends only on it's first argument

(x).

Because of (3.18) in Theorem 33, and of the fact that 7*& >0 v *6A<£), we may chose a

neighborhood UczM of z, such that for all ze U and (x^) *Z(z)t jii4i£....M+>0. and

fix) +{V?'(x),x+ - x>+ 4 <(*♦ - *)72(*)(** - x) >>0for all ieA(x). Since g(Z(z).z) =0, we see

that z+ satisfies 3.20-333 and therefore is a Danskin point for the search direction problem (2-8). In

addition, it is the only such point in the neighborhood Nof part (iii). By Assumption 23, the search
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direction problem is convex. Hence we conclude that x+ - x is the unique solution to the search direc

tion problem. This proves (v).

Since V in (v) is an open set containing z, it. should be clear that for some e > 0, the set

B$js) x( ft} is contained in U. Let G £ B(xz). Suppose xe G. Then clearly (x,\i) e U and there

fore, by. (v), 2((x,ji)) is the unique solution to the search direction problem (2.8). Hence H(x) is a sin

gleton. Since by Lemma 2.1 H() isu£.c, it follows that it is continuous on G. Since Z(z) = z, it fol

lows that //(x) a { 0 }, and so (vi) is true.

It is obvious from (3.18) in Theorem 33 that2(0 is continuous at z. To prove that (vii) is true, it

suffices to show that 2(0 depends only on x in some neighborhood of x. Let xe Gt then as above we

have (xfi) € t/, and so 2((x£)) is well defined. Because of (iv) and the fact that g(z,(x,\i)) = g(z,(x,JD)

for all zx,\ifc we obtain thatg(2((x£)),(x,u)) s 0 for all x e G, V(l Pan (viii) follows immediately

from the fact that g(Z(z).z) = 0. This concludes theproof. •

In light of Proposition 33, Proposition 3.1 can be strengthened as follows.

Proposition 3.4: Letz be a Danskin point for problem P at which Assumptions 2.1,3.1 and 33 hold,

then x is a local minimizer forproblem P, and there exists a neighborhood Wsuch thatz is die unique

Danskin point of P in W.

Proof: Define G(z) 4 g(za), where g(v) is defined by (336). Notice that G/z) « g^GS), and so U

is invertible. Thus by the inverse function Theorem, there exists some neighborhood 0 of z, such that z

is the unique zero of GQ) in 0. Furthermore, by choosing Wc 0 sufficiently small, we may ensure

that?^) > 0 V i eA(x), and |iV \ir >0, V (x,y) e 0. Hence if z e O is a Danskin point of

P, then it should be clear that g(z) s 0 and hence 2 = z.Thisproves the Proposition. •

Note thatProposition 3.4implies that x is an isolated local minimizer forP. Toprovide quantita

tive bounds on the variation of 2(0* we use a version of Robinson's Theorem 23 [16]. Our proof is

somewhat simpler than that in [16].
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Proposition 33: ([16, Theorem 23]) Suppose that (a) Q c R* x R" is a neighborhood of the point

&y), (b) the function g:a ->R" is continuous at (x,y), and (c) the following hold:

g<53) =0; (3-32)

gy(v) exists on Q and is continuous at (xy); (333)

gx(x,5) is invertible. (3.34)

Then there exist neighborhoods N c R" and Afc R~ of x and y respectively, and a function

Z:M ->N such that (3.16X3.19) are satisfied. Furthermore, for every 8 e (0,1), there exist neighbor

hoods Nc N and M c Af of x and y respectively, such that

lx-2(y)I^Yjg-lga(5.5)-1llg(x,y)l *(xy)eNxM. (335)

Proof: The existence of neighborhoods N, M and of the function 2(0 follows direcdy from Theorem

33. Now, let 8 e (0,1), T £ g&yf1. and select tfciv* and Afc Af to be open neighborhoods of x

and y respectively, such that

•g^3)-*^y)l£-jfj- V(x,y)EJ7xAf. (336)

Without toss of generality, M and N may be taken to be convex, and M may be taken to be small

enough to ensure that Z(M)cW. Fbllowing Robinson [161, we define <P(x) k x-Tg(xy). For

(xy) e NxM, &(-) is differentiable, and:

«Kx)«/-r&(«0') ^'37)

«r(g^5)-g^y)). 0«

i

It follows from (338) that W^x)l £ 8, and since ^fo) - ^(xj) = f^fo +tfx* - xO^xj - x^,

^(x^-^O^I^SIXi-xjl Vx^eW Vy€f, (3-39)

where the normon CJ(0 is the induced norm. Substituting for <&*(•) gives

Ixi - rg(x!y) - (X2 - TgOc^))! £ 81* - x2l. (3-40)
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Using the inequality \a\ - IM £ \a - W, we obtain from (3.40)

b, - xjl - r(gCikoO - *(*2O0)l £ 8b, -x2l. (3.41)

from which it follows that

b, - xjl -2j^ £lg(x„y) - g(*2,y)l. (3.42)

By letting x, =x and x2 =2(y), and noting that gfoy) =0, we obtain the required result. •

To complete the derivation of the bound on the variation of 2(0, a growth condition on g(v) must

be established.

Lemma 3.6: Suppose Assumptions 2.1-23 and 3.1-33 are satisfied and that z is a Danskin point for

P. Let g(\) be defined as in (336). Then there exists aneighborhood Kc R*"" of z and aL >0 such

that

lg(zi,Z!) - g(z,^2)l £Liz, - z2P V 2l,z2 e K. (3.43)

Proof: The proof is obtained by expanding (336), and noting that by Assumption 2.1, the matrix

valued functions/«(0. i e m» are locally Lipschitz continuous. •

We are now ready to establish the first main result of this section.

Theorem 3.7: Suppose that Assumptions 2.1-2.3 and 3.1-33 are satisfied and that 2 is a Danskin

point for P. Let g(v). be defined as in (3.26), and let Af x Nc R"** x R"*1, be a neighborhood of z

2:A# -• N be such that (i) g(Z(z),z) = 0 V z e Af, (ii) 2(z) = z, (iii) 2() is continuous at z,

and (iv) for all z e Af,2(z) is the unique zero of g(- ,z) in JV.

Then there exists a neighborhood V of z such that if zo e V, then the sequence { z,- )£o defined by

zM & Ztz$ iswell defined, and converges to z with R-order at least 2 (U. quadratically). Specifically,

there exist constants T| e (0,1), K> 0 such that

fi-z.4 £ tfn*. Vi * 0. OM)
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Proof: Let e e (0.1) be such thatB(z&) cK n Mn «/, where K% and Ware the open neighborhoods

ofz specified in Lemma 3.6 and Proposition 3.4 respectively. Let ye (0.1), and Lbe as (3.43). Sup

pose, in addition, that e is small enough to ensure that 2*0 (i-e- tire composition of2 with itself) is

well defined on B&&), and that for aU z e B&e) both z and 2(z) are contained in Nn MnK% where iv

and Mare the neighborhoods defined in Proposition 3.5 for 8» 1/2. Let L k 2lgH(z5rllL and let

p>0 such that for all z e B$,p),

G-zlSe/2. 0.45)

Let V £ B(z^>). To continue, we must establish that the sequence { z{ )Zo is well defined. Note

that e has been selected so that for all z e B(z£)t

I2*(z) - 2(z)l S-j^j l^ftzT'llgC^z)^))!

£ 2lgIl(z;zrlllg<Z(z).2(z)) - g(2(z).z)l

£2lg,l(zS"1l^l2(z) - zl2. (3.47)

Suppose zo e B(z.p). Then z, =2(z<d is well defined. Let a ^ Lb, - zoL then by construction, a<1.

and hence for all n £ 0

Then

b,-zol£Ye/2£e/2.

bi-zl^^-zol + lzo-zl^e.

Therefore z, e £<z.e), and so z* is wen defined. We now proceed by induction. We have

bj-z^SL^-zol2

£ O lz, - zol,
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and

Izj-zlSlzj-ZjI +bi-zoI +lzo-zl 0-52)

£(o+l)lz,-zol +c/2. ^-^

By using(3.48) we obtain

. Iz, - ZqI _.
b2-zlS J +g/2

l-Lb,-zol

l-i(e/2)/(l+2L)

Now suppose that for some k£ 2, (i) z, e J(z,e) V i £ Jfc, and (ii) b*, - z,4 £ ab, - zwl for all

i e t=L Then clearly zM is well defined, and as above

lz*fi-zl£Llzi-zwl + lzo-zl
M

^ £a? b, - zqI +e/2

^ bL-ioi+c/2^E (355)
1-a

Hence zM e B{z,e), and in addition

lzM-zk\£Llzk- z^PZLIz! - zjlzk- z^lSa^- z^l. (3.56)

It follows from this that the sequence { z,)So is well defined. To show that the sequence converges,

supposethat kj £ 0. Then

l*i**-**l£ ElM-Mi jrfbi-ZolS-^-bj-Zol. (3.57)

Hence the sequence is Cauchy, and so converges to some z e 5(z,e). We may conclude from this that

gizj) =0,and byProposition 3.4 that z ^l.

To prove quadratic convergence, note that
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bj-ZjlSLbi-zol^-pa2. <**>

Suppose that for £21, lz4 - zwl £ or 'iL. Then

Furthermore since z-zk = Y* (2*i " *& we lmt ^ foUowin8 estimate
C-*

a*i

and since 2*(2I* -1) £ i, for all ijc Z 0, we have

^_^^i_tf\ (3.61)
*l L(l - a)

Lcttine if £ -=—^ and n £ a,we obtain the required result -
* L(l - a)

To show that the step size eventually becomes 1, we must establish abound on 6(0 near asolu

tion.

Lemma 3.8: Suppose Assumptions 2.1-23 and 3.1-33 are satisfied and that z=ftp) is aDanskin

point for P. TTien there exists K>0and aneighborhood 0 ofx such that

8(x) £-Klhf Vxe 0. Vhe H(x). Q'6®

Proof: By Proposition 33 property (vi). we nmy assume that//() is asingleton. Hence we denote

the search direction by h(x). The search direction is continuous as a function of x and furthermore

fc<£) «0. By properties (vii) and (viii) of Proposition 3.3, the multipUers p+ defined by (330) -(333),

forx+ =x+*(x) are continuous at x. Suppose that the Lemma is false. Then there exists asequence

x*-» x, such thatthe following holds

8(x4)>-|lA*l2 V*eN. &**>

where A* £ A(x*). Since by Proposition 3.4 x is an isolated local minimizer, we must have that

.20-
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hk 4 0 for all k sufficiently large. Without loss of generality we may assume that this is so for all

ke N. Let uk k W* and let u* be the multiplier vector, defined by (330) - (333), corresponding

to the solution of the search direction problem atx*. It should be dear that the multipliers p* converge

to the multiplier vector ft at the solution x. Clearly, we must have that uk -> u, for some infinite subse

quence K c N.

(i) Suppose that usatisfies (V/*(x),tt)= 0, for all; e A(x). Then because ofAssumption 33,

<U£fi)2tei*>0. 0*>

It follows that thereexists a *osuch that forall k £ *o, k e Kt

From (334) we obtain that

©(**) - £ M^Cxa) - V(*i)) +<S MiV/'WAkH i (W»(*.M*) fc>. (3.66)

Making use of (330), (3.66) and the fact that/'(x) - v(*) * 0, (3.66) simplifies out to

6(x*) £--j<M«(**44)**>. (3*67)

Hence fork sufficiently large we obtain a contradiction.

CO Suppose that <V/'<3c),u)* 0 for some / e A(x). Let Lbe the subspace spanned by the active gradients

at the solution, i.e. L k sp{ V/*(£)) - and let Lx denote the orthogonal complement ofL. Note that

ueLa. Let the projections ofa vector x onto Land I4be denoted by the superscripts 13, respectively,

U., x a x1 +x2 with x1 e L, x2 e I*. From the continuity of the projection operators, it should be

clear that there exists a x, such thatV k £ «,, k e AT,

hA/liA*21*1/01. G-6**

Combining this with the fact that IM2 =IA1I2 +Mr2!2 implies that I/j*I <JLI/i{l for some L<«> and for

ke Ksufficiently large.
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Let g(v) be as in (336), then for * suffidendy large *(**«.**) =0and pki >0 for all; e A(x). Hence,

from (335) we conclude that

J^W +̂ WAkH^^JSiW^^O viea®. vye«. (3.69)

which may be written as

/to -/to - <V/to^>- -j {htfUxdk)* -tV/Wfc>- -jU*/L(xiDA*). (3.70)

By maximizing first the left and then the right hand side of (3.70), with respect to i e A<£), and noting

thatA(x*) c A(x) for k sufficiently large, we obtain

V(xi) -/to"<V/to.*t>- «T <WidWfc> * "^ "<VtoAk>- \ VtkfUxdht) (3.7i)

* max-<V/to.**> -LiMi?. (3.72)

for some L> > 0. To continue, let C £ co{ V/>(x)} _, then strict complementarity (Assumption

3.1) implies that 0 e riC (where ri denotes the relative interior ofaset). Hence there exists an T| >0

such that B(0,t0 nlcC. Hence, for any h e I, we musthave

max {Vf&Ji) « max(v^r) £ max <v,A) • T|MI.. (3.73)

Since the V/>(0 are continuous, it follows that there exists a ndghborhood 0, ofx such that for all

xe 0,

max <V/*(x),Ate ^ •*• • <3-74>

Substituting this into (3.72) yields

*W -/to -<V/toM- -J Utfijxdh)* %lhkl - I*IW2

2-JLlW - I*l*iP Vjeia. (3-75)

Therefore we obtain
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e(x*) s-^W+̂2«W2. (3*76)

which results in a contradiction for k sufficiently large. •

The second main result of this section shows that in the vicinity of a Danskin point, the step size

calculation returns a step length of unity.

Theorem 3.9: Suppose Assumptions 2.1-23 and 3.1-33 are satisfied and that z isaDanskin point for

P. Then thereexists a neighborhood 0 of x such that

Y(x+*)-Y(x)-ae(x)£0 Vxe 0, V he H(x). (3-77)

Proof: As in the previous Lemma, we note that by Proposition 33 property (vi), there is a p>0

such that H(x) is a singleton for all x e B(x,p). For x e B&q), we denote the search direction by h(x)t

and observe that *(0 is continuous and fc(x) =0. From Taylor's Theorem, we have that

V(x+A(x)) - y(x) - a8(x)

=max \j\^(x)-v(x)] +<£ p>V/>(x)./i(*» +hl-s)(h(x)JJx+sh(x)v)Kx))ds\- <x6(x)
MZ|f.i • >«1 0 J

£max Jy ^(f'(x) - v(x)] +<£ V^fJ(x).h(x)) +-i {h(x),lJx.\L) h(x)) \
l

+max f(l-s){h(xUlJx+sh(x),]i) - ljx,\i))h{x))ds - a9(x)

S(l-a)6(x) +LI/i(x)l3

£ -(1 - a)KUt(x)f +LIA(x)l3. (3.78)

Hence for x sufficiently close to x, the step size will be 1. •

4. THE ALGORITHM (Non-Convex Problems)

If any of the/'(0 in (1.1) are non-convex, it is possible that the search direction problem (2-8)

becomes non-convex. The effect of this is that therelations described in Lemma23 are no longer true,

and so we can no longer guarantee descent at a non-stationary point In this section a simple

modification is described which augments the Hessians fiJ:) of non-convex functions to ensure a con-
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vex search direction problem.

Let mo > 0 and let Y(0 be defined by

V(x) k max{ 0.^ - T^fUx)) }. (4.1)

where j e m and KtA') is the minimum eigenvalue of its argument We define the new optimality

function 6(0 and the search direction map //() as follows

9(x) k mmmax|£mx)+<£iWx)*H (4-2>

Hix) k argmin max j£ ujtyg) +(£ lW(x)^)+ ^ v^L uKfiM +VC*V)« K (43)

The algorithm for solving the non-convex case of P can now be stated.

Algorithm 4.1.

Data: xb e R",.mo >0,o, pe (0,1), 5 k { l,p,p2,... }.

Step 0: Set i = 0.

Step 1: Compute 60O, and h, e H(x$.

Step 2: Compute the step length

\t k max{XE S\yO<i + tod-V(xdZln&(xd- (4-4)

Step 3: Set x*, • x,- + tyi,.

Step 4: Replace i by i+1 and go to Step 1. •

Global convergence of the modified algorithm follows almost immediately from the convex case.

In the present case, only Assumption 2.1 is required, and the proofs of the following results are essen

tially those of results in Section 2 and are omitted.

Lemma 4.1: Suppose Assumption 2.1 is satisfied, then the function 6:R" -* R is continuous, and

the search direction map H: R" -> 2*1 is u&c. •

Lemma 43: Suppose Assumption 2.1 is satisfied, then
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9(x) * dy(x\h) VAe H(x); 1M

6(x) =0 if and only if 0 e 8y(x). (4-g

Theorem 43: Suppose Assumption 2.1 is satisfied. Then any accumulation point x of an infinite

sequence { x, }£o» generated by Algorithm 4.1 satisfies 0 e 9y(x). •

5. QUADRATIC CONVERGENCE (Non-Convex Problems)

To establish superlinear convergence, we require an additional assumption which ensures that y(0

is convex near a solution.

Assumption 5.1: For any Danskin point (x,p) for problem P. (1.1), there exists amo >0 such that

ihfU&h) ZmolM2 . V hE R". V; e A(x) , (5-X)

where A() is the active function setdefined by (2.16). •

The results of this section are almost identical to those of Section 3, and in mostcases the proofs

are omitted.

Proposition 5.1: Let (x£) be a Danskin point for problem Pat which Assumptions 2.1, 3.1 and 5.1

hold. Then x is a local minimizer for problem P.

•

To continue, wenote that a necessary and sufficient condition for a vector h to be optimal for the

search direction problem (43) is that there exists a z+ • (x+,p+) satisfying x+ - x =hand

LMi{V/>(x) +(^x(x) +yCx)7)(xf-x)}=0, (53)
/-i

M+*0, (53)

Lnl-1. (5.4)

pi{ 0(x) - tf{x) - v(x) +(V/>(x)^.-x)+ «j ((x+-x).(fiL(x) +y(x)/)(x+-x)>] }«0. (53)

for all j e m. Condition (53) is equivalent to
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Mil F*Oc) - V(*) +<V/W*- x)+ j <(x, - x).(fUx) +y(x)7)(x+ - x))] -

(ftx) - y(x) +<V/>(x),x*-xH -j ((x.-xX^x) +y(x)iXxf-x)>] UO.Vi.ien. (5.6)

Suppose that z isa Danskin point for problem P at which Assumption 2.1 holds. Without loss of

generality, we may assume that A<£) = { l,....r }. Let the function g : JRT'-xR** -> R"** bedefined

as in (336) except that each occurrence offijx) is replaced by Afz) +i(x)I. The following result is

essentially the same as Proposition 3.3, with the addition of property (viii) whose proof is obvious

under Assumption 5.1.

Proposition 53: Suppose Assumptions 2.1,3.1 and 5.1 are satisfied and that z isa Danskin point

for P. Lei $(v) be as above. Then

0) g£*)»0;

(ii) &.('/) exists and is continuous in some neighborhood ofQ$) and is invertible at &z);

(iii) There exist neighborhoods Mand Nof z and a function Z() satisfying (3.16) - (3.19);

(iv) Z((x,ji)) = Z((x,P)) for all pjl e R" such that (x,|i),(x,ff) e M;

(v) There exists a neighborhood UcM containing z such that for all z e U, Z(z) is the unique solu

tion to the search direction problem (4.2);

(vi) There exists a neighborhood G of x such that V x e G , the search direction map H(x) isa single

ton. In addition //(x) = { 0 } and //() is continuous atx;

(vii) The multiplier ji* defined by OmO =Z((x,p)), is continuous inx atx;

(viii) There exists neighborhood 0 ofx such that for all x e 0, V(x) =0 for all; e A(x). •

As in Section 3, Proposition 5.1 can bestrengthened togive the following result

Proposition 53: Suppose that Assumptions 2.1, 3.1 and 5.1 hold and that z=<x,ji) is aDanskin

point for problem P. Then x is alocal minimizer for problem P, and there exists aneighborhood Wof

z such that z is the unique Danskin pointof P in W.
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Proof: Since property (viii) ofProposition 53 implies that

±wjb+i$>r)=±wjb. (5J)

the proof of this Proposition is the same as the one for Proposition 3.4. •

Aquantitative bound on the variation of Z() is provided, as before, by Proposition 33. Lemma

3.6 has tobe modified slightly toaccount for the extra terms in g(v).

Lemma 5.4: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that zis a Danskin point

for P. Let g(v) be as above, and let Z() be as in Proposition 5.2. Then there exists a neighborhood

K c R"**" of z and a L > 0 such that

lg(Z(z).Z(z)) - g(Z(z).z)l £LIZ(z) - zl2 . Vze K. (5-8>

Proof: Tne proof is essentially the same as that of Lemma 3.6, provided (5.7) is taken into account*

The proof oflocal quadratic convergence is almost identical to that ofthe convex case.

Theorem 53: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that zis a Danskin point

forP. Let g(v) be as above, and let Z() be as in Proposition 53. TTien there exists aneighborhood V

of z such that if zoE V, then the sequence {z,- }*> defined by z*, k Z(zd is well defined and con

verges to z with R-order at least 2 Qa quadratically). Specifically, there exist constants

T)E (0,1),K>0such that

C-zil^Fn21, Vi*0. (5*2

To show that the step size eventually becomes 1, we must establish a rate bound on 6(0 near a

local solution.

Lemma 5.6: Suppose that Assumptions 2.1.3.1 and 5.1 are satisfied and that zis aDanskin point for

P. Then thereexists K > 0 and a neighborhood 0 of x suchthat

6(x)£-JHM2 VxeO, Vhe H(x). (5l0)
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Proof: Tne proof is similar to that of case ® in Lemma 3.8, and is based on the fact that by con

struction

ifcCftM+rttfOV a-yIW2. (511)

where xk, hkdiQ defined as inthe proof ofLemma 3.8. •

The second main result of this section shows that in the vicinity of a Danskin point the step size

calculation returns a step length of unity.

Theorem 5.7: Suppose that Assumptions 2.1, 3.1 and 5.1 are satisfied and that z is a Danskin point

for P. Then there exists a neighborhood 0 of x such diat

Y(x+*)-v(x)-ae(x)£0 Vxe 0, V he H(x). (5-12)

Proof: As in Lemma 5.6, wenote that by Proposition 53 property (vi), H(x) isa singleton near x. In

this case, we denote the search direction by h(x) and observe that h(-) is continuous and ft(x) =0. In

addition, in a neighborhood of x y(0 may be written as

V(x) = max fiix)

In view ofTaylor's Theorem and Proposition 53 (viii), because *(x) =0. for x sufficiendy close to x,

we may write

y(x + A(*))-Y(*)-o:0(x)

=max J/'Oc) -W) +W(x).ft(x)) +f(l-*)W*)/4(* +sh(x))h<x))ds [- a6(x)

£ max |/>(x) - y(x) +<W(x)Mx)) +±{h(x)f>Jx)K*» \
l

+ max fa^^x).^^^))-/^))^)^-018^)

£(l-a)6(x) +LIA(x)l3

S -(l-a)Kih(x)* +Llh(x)l3. (513)
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Hence for x sufficiendy close to x, the step size will be 1. •

6. NUMERICAL EXPERIENCE (Convex problems)

Three examples which illustrate the performance ofAlgorithm 2.1 are considered. For the purpose

of comparison, the Pshenichnyi linearization method is also applied to these problems. In each case the

cost function value is indicated at each iteration. All of the problems considered satisfy Assumptions

2.1-23, 3.1 and 33. Tbe Armijo step size parameters are taken to be a =0.1 and P=0.5 in all cases.

In figures 1-3, the solid line represents Algorithm 2.1, and the dashed line represents the Pshenichnyi

linearization method.

Test Problem 6.1: (figure 6.1)

y(x) k max{ e™^ .e™*^ }.
The initial point isxb k (50.0.0.05)7".

Test Problem 62: (figure 63) Define/: R10->R as

A >oooix,)*«|f4+av^*--+*io (63)
fix) o e

and let«, k (1,0,....,0)T. Define the cost function as

V(x) k max{/[x+2«,).y(x-2ei)}. (63>
The initial point isxb k (100.0,0.1,0.1,....0.1)r.

Test Problem 63: (figure 63) Define/': R50-^ for all; e 5Q as

fix) k Zc*'*^. (6.4)
M>

where aj £ [0,150] and Uj e [0.13]. The cost function is defined as

V(x) k max/fc) (63)

The initial point isxb k (1.0.1.0.....1.0)T.
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APPENDIX

In the previous algorithms, quadratic convergence was obtained by assuming that y(0 was

strongly convex in a neighborhood of a local solution. By relaxing this assumption slighdy, superlinear

convergence can still be obtained, at the expense of a more complex algorithm. This algorithm requires

that the reduced active Hessians be sufficiendypositive definite at local solutions.

Assumption A.1: At any Danskin point (x,(i) of problem P, there exists a mo >0 such that

{hfUbh)ZmdmP. (A-1)

for ally e A(x) and for all h satisfying

<V//<SW= 0, V/eAfl, CA3)

where A(0 is the active function set definedby (216). •

Let x e R", 5 e R"\ y e R. For i e N, we shall denote by It subsets of m and by G, matrices

whose range is R*. We define the quantities 6(\v.O, tf(v.v). /(v.w) and G(v) as follows:

6(x,8.Y,G) k min maxjfp^+̂ MW^H^ vV£^(f4(*) +#/+YGGW. (A3)
a«wii«sLh >-i 2 >-i J

H(xJB,y,G) £ argmin max j£ nftx)+<£ uW(*)^>+ T<*.£ mW*) +*'+YGGT)J0 l(A.4)
*«r- i** ^ L>.i >i 2 j*i J

I(x,o.y,GJi) k\jem\?(x) +<V/>(x).ft>+ -j <*.(&(*)+#/+yGGt)A)

max If vffix) +<t vftf(x),h)+ ±<h,t vitfjx) +S/l^yGGT)h)\
*mZ{M >-i 2 >* . J

(A3)

Next we turn to the matrix of G(xJ). Let the cardinality of / be r and let {i) }£,, = / be an ordering

of the indices in / such that i)< fa. Then

G(xJ) k [v/»(x) •••V/Hc)] • (A^
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The algorithm for solving P may now be stated.

Algorithm A.1.

Data: xq e R\ m<, > 0, a, p e (0,1), S k [ 1.P.P2,... },/0cs.

Step 0: Set i = 0.

Step 1: Compute G, k G(xJd and Nit an orthonormal matrix whose columns span the orthogonal

complement of the range of G,.

Step 2: Compute 8, e R* according to

61 k max{ 0^-K.MfUxdNd ). je m. (A.7)
Step 3: Compute yt as follows. Let

%k minfYl ^OUx^ +c^Z +YGiGj)^^ VyEo). (A-8)
Then

Ym if Ym * *
V- k 'Yi •

N *

*+l if yt-i<*

(A.9)

Step 4: Compute 6(xj,6j,Yj.Gj) and /», e //(xM5„Y„Gi).

Step 5: Compute 7M £ KxiJOi.yi.GM.

Step 6: Compute the step size

X,- k max{ Xe SI vfetMD-V&) * Xa6(xi)}. (A.10)

Step 7: Set x*, = x,+V»i.

Step 8: Replace i by i+1 andgo to Step 1. *•

Theorem A.1: Suppose Assumptions 2.1, 3.1 and A.1 are satisfied and that { x, }£o and { Yt )So are

bounded sequences generated by algorithm A.1. Then {x, )2o converges to a Danskin point x with R-

order at least V2. •

The proof of the above theorem is similar in nature to that given for the previous algorithms, but

considerably morelaborious and full of technical details. SinceAlgorithm A.1 does not represent a very
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large advance over Algorithm 4.1, the proof is omitted to save space.
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