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ABSTRACT

This note presents a method for computing the sensitivity

functions of parametrized linear time-invariant systems, for the

case where the the system matrix A is diagonalizable. The method

is based on a formula, derived in the note, for the sensitivity of an

exponential of a diagonalizable matrix.
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1. Introduction

When designing a linear control system by semi-infinite optimization tech

niques, one is required to compute time and frequency domain responses as well

as their sensitivities to the designable compensator parameters, see, e.g.,

[Pol.1]. While there is a considerable literature on the solution of state equations

and the evaluation of frequency responses, see, e.g., [Lau.l, Lau.2], there are

hardly any results available dealing with the efficient computation of response

sensitivities.

This paper generalizes the unpublished results in [Bec.l] to obtain an

efficient method for computing time domain response sensitivities for an impor

tant class of problems. Our method results from the following observations.

Consider a parametrized linear time-invariant system whose dynamics are

given by:

*('.p) = A(p) x(t,p) + B(p) u(t), (1.1a)

y(t,p) = C(p)x(t,p) + D(p)u(t), (1.1b)

where x(t,p) e R?1 is the state, p€lRN is the design parameter vector,

A: R* -»mnxn. B : R* -Rnxfc, C: R* -*JRmXn and D : RN -Rmx* are continuously

differentiable matrices, and the input ii:R-»Rfc is of the form

u(t)~iL *a*e °t. where the c< eJR*. the at are nonnegative integers and the

AtC C.

Since the solution of (l.la) is given by

t

*(r.p) = fl^»x(0.p) + feAW^B(p)u(r)dT, (1.2a)
0

its partial derivatives are given by
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f^T<eA^^)B(pMT)dT +/e»(p)(^)MiELu(r)dT.

for all i €# i (1,2, •• •tN\. When the matrix A(p) is diagonalizable and the input

u(t) is componentwise polynomial, (l.2a) represents a viable method for com

puting the state response. In this case, the efficient computation of partial

derivatives —!Li requires an efficient method for computing {—: In
op dp

[Bec.l] we find such a technique, based on lie bracket decompositions, for the

case where A(p) has distinct eigenvalues. In this paper, the results in [Bec.l]

are extended to include the case where the matrix A(p) has repeated eigen

values, but is diagonalizable. We shall comment in the conclusion on possible

ways of dealing with the nondiagonalizable case.

deA(p)t
2. A Formula for the Matrix

dp*

dx(t 7)) deA&)t
If we are to use (1.2b) to compute —^f' , we must evaluate —-—;—.

dp dp

Proposition 1: Let A(p) be defined as in equation (l.la), then

dp1 J0 dp1 (2.1)

Ptoof : By assumption, A() is continuously differentiable. Hence eA^% is con

tinuously differentiable in (p,r), and it therefore follows that (see [Mar.l])

d deA<**

dp'
deAW

dt I & J dt =4rk>- ,A{p)t

^' dp* dp1

Integrating the linear differential equation (2.2) from 0 to t, we obtain that

deA<p)t

dp1 f=0

+ eA<p)t f^-A^yrMkBleA^yr^
Jq dp1

(2.2)

(2.3)
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deA(p)t *
dp*

- 0, (2.1) follows directly.

The evaluation of a*W* in (2.1) is relatively easy and can be carried out by

some of the methods described in [MoLl], [Par.l], [Lau.l]. In general, the

evaluation of the second term, fg-^frfr y*t eA^^dr% in (2.1) is more prob-
"o °P

lematic. However, the following two observations lead to the conclusion that

there may be cases where this term can be computed without resorting to

numerical integration.

(a) Let 7€RnXn be such that 4(p)V- V A(p) = 0. Then eAW* V = VeA™ and

i

fe-A{p)T y 2A{p)rdr -ty (2 4j

(b) For any tfeRnx*.

•^*W\A(p)U - UA(p)leAM =- ^<e-^)« UeAW). (2.5)

Proposition 2 : Let A(p) be defined as in equation (1.1a). For anyp eR*. if

there exist 7eRnxn and J7GRn5en, such that

Mai- =7+ \A(p)U -UA{p)\, (2.6a)

A(p)V-VA(p) = Q, (2.6b)

then

h-A{p)rQMj^LeA{pyTdr =ty+ g'A{p)t^gA{p)t U_U eA(p)t, /g ?)
o dp

Proof: Since

f^-A{p)rd^LeA^)rdT =fe~A^\V^[A{p)U - UA(p)]\eA^dT



-4-

= tV+ e-AW\eAM U - UeAWl. (2.8)

a

In establishing the existence and uniqueness of solutions (U,V) for Equation

(2.6), we shall make use of the following result which can be found in [Tay.l].

Proposition 3 : Let CL be a linear operator mapping a finite dimensional linear

space V into itself and let R(CL) and N(CL) denote the range space and the null

space of CL. Given any scalar \, if g is the smallest nonnegative integer such

that tf[(<X-A)«] = Jv-[(a-A)*+1], then

V = N[(CL-\I)*] $3 /?[(a-X/)*]. (2.9)

•

Corollary 4: If CL is diagonalizable, then V = R(CL ) © N(CL).

Proof : If a is diagonalizable. then N[(CL -A/)] = N[{CL -A/)2] for any scalar X.

Proposition 5 : Let A€.TRnXn and let the Lie bracket type operator CL:

R?*» -* K»*» be defined by

a (X) =[A.X] k AX - XA . (2.10)

Then R*** = R(CL) $3 N{CL), if and only if A is diagonalizable.

Proof : "<==": Suppose that A is diagonalizable. Let \lt Ag,. • • • , An be the

eigenvalues of A, let ult uz. •••,iin- be a set of linearly independent

corresponding right eigenvectors of A and let vf, vj, • • • , v£ be a set linearly

independent of corresponding left eigenvectors of A. Then (see [Gan.l]) (Ai-A^)

for alli j €ti is an eigenvalue of CL, andUivfis an eigenvector of CL correspond

ing to (A<—A^) for ij en. Since the set { u^vj \ i,j €n ] contains nz linearly

independent eigenvectors, CL is diagonalizable. By Corollary 4,

K*** = R(CL) ® N(CL).
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"==>": We give a proof by contraposition. Assume that A is not diagonalizable.

Then, by the Jordan form theorem [Gan.l], there exists a nonsingular nxn

matrix U such that

IT1AU =

Ji 0 ... o
0 J z • • • 0

0 0 • Jp
= / (2.11)

where the /< are 714X714 (note that ti* # m*) Jordan blocks associated with eigen

value A{, and n = J]71** H toe columns of U are denoted by itj, so that

U = [uI,it2, • • • ,Un ], and the rows of C/"1 are denoted by v/, so that

7= [vltvZt - • • ,vn ]T 4 C/~l, thenUi.Ug, • • • tun are generalized right eigenvec

tors of A and vf.vf, • • • .v,?* are generalized left eigenvectors of A, see [Gan.1].

Also the dyads in [u^vf \ i,j€n\ form a basis for R^Xn. Because / is block

diagonal, the equations AU - UJ and VA = JV decompose into equations of the

form

A in = A^ + ViUi.i; v?A = \v? + f^v^ , (2.12)

where i/4# /^ can have only the values 0 or 1. Consider the nl equations in (2.12)

corresponding to the first Jordan block J$

ilUisAjUi; vf4=A1vr +v|' (2.13)

A uz = AiU2 + ux; v JA = Aji/f

Xu^ =A^-j +t^ ; v^.^ =A^.! +*£

Hence a(ulv^i) = Q and a^v,^) =-u^. This implies that

*i«ni ^ JV(a) O /?(tt) and therefore that Rnxn * N(CL) $ tf (CI).



-6-

Gorollary 6 : Let A eR?** be diagonalizable, then for any MelRnXn, there exist

V, U € Rnxn such that

M = V+[A.U]l [A,V] = Q. (2.14)

Furthermore, the solution Vof [A, V] = 0 in (2.14) is unique.

Proof : By Proposition 5. for any MeRnXn there exists UeRn*n and VeN(CL)

such that M = V+CL(U). By the definition of direct sum, V and CL(U) are

unique.

•

Corollary 7 : Let A(p) be defined as in equation (1.1). If A(p) is diagonalizable

for a given p eR^, then

dS^L =tVkAW +[«*W*tCr] (2.15)
9p

for i € JV, where 7, C/ satisfy following equations:

2&l-=V+[A(p).U]; [A(p),7] =0. (2.16)

Proof : The proof follows directly from the results of Proposition 2 and Corol

lary 6.

QeA{p)t
3. A Procedure for Computing the Matrix -—r-s—via WflgonalizatioiL

op

We shall now state our procedure, based on (2.15) and Corollaries 6 and 7,

deAWfor computing r— when A[p) is an nxn, continuously differentiable,
dp

diagonalizable matrix. To simplify the notation we denote ^ff Dv ^(p)«

Procedure:

Data: Acontinuously differentiable, diagonalizable nxn matrix A(p).
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Step l: Diagonalize A(p) by computing amatrix of linearly independent eigen
vectors T(p) € ^n ^ setting

Step ft ^Compute M(p) =7-(p)*(p)r(p), and construct the matrices
V<P).V(p) <e C**» as follows:

(?) ifAi(p)=Ay(p)
0 otherwise (3.1)

5tf(p) = *i(p)-A/(p) ifXife)^^)
0 otherwise (3.2)

for all i,j en.

Comment Note that [A. V] = 0, and

Hence if = V+[A, £/].

Sep 3: Compute Vfr) =^(p)^)- and tr(p) =r(p)^)r<p,- which
solve equations (2.16), and set

deAb)*—t—m-w+c.iw.pj. (34)

If the sensitivity of the diagonalized system is required, set

(3.5)

_. QeA{p)t ^

dp^7 =tVeA(p)t +CeA(p,'.c/].

4. Conclusion

(3.3)

We have presented aprocedure for the computation of the matrix ***
which appears in (l.2b) for the oase where A(p) ^^^^ ^J^
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procedure involved the diagonalizaUon of the matrix A(p), it should be clear

that the completion of the computation of *2&J>Lis quite straightforward and

does not require numerical integration for inputs whose components are sums of
terms of the form tHH. with aanonnegative integer. Our procedure is particu
larly efficient when the matrix *<p) m(j.la) is large and/or when evaluations of

/ifpit de^fr)'
8 and dp* mUSt be carried out ^ many different values of t.

Since matrix diagonalizaUon is unstable when A(p) is defective or near-
defective, we foUow [Moi.l] and use the condition number. cond(T) =||r|| \\T-%
of the matrix of eigenvectors as atesting function for the defectiveness of A(p).
When A(p) is nearly (exactly) defective, the cond(T) is large (infinite). Hence
any errors in A(p), and roundoff errors in the eigenvalue computation, may be
magnified in final result of the decomposition A(p) =T(p)A(p)T~l(p) by

cond(T). Consequently, when cond(T) is large, the computed e'W* and

will most likely be inaccurate.

When cond(T) is large, we propose to abandon the formulae (l.la.b) and
solveinstead the following equation.

-4.
dt dx(t,p)

I dp*

A(p) 0
dA(p) A(v)

dp*

*(t,p)

I dp*

B(p)
dB(p)

dp*

u(t)

dp*

(4.1)

Solution methods based on the Schvr transformation [Par.l] or the Padk
approximation (see [Mol.l. Lau.l]) appear to be particularly appropriate for this
case.
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