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Two computer codes based on different algorithms are employed in the study
of the AlfVen ion-cyclotron instability. Features of quasilinear diffusion are clearly
exhibited and identically modeled by the two codes. Ion trapping is also observed
and appears to play an important role in the saturation process. Relaxation
of the anisotropy in the ion temperature and transverse wave energy transfer
from intermediate to long wavelength modes are observed to proceed more slowly
following instability saturation when the possibility of nonlinear ExB electrons
is allowed, and more slowly still when longitudinal ion sound modes are present.
Fluctuations in the short wavelength modes are shown to be a discrete particle
effect, with levels agreeing with predictions calculated from a test-particle model.
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I. INTRODUCTION

The Alfven ion-cyclotron (AIC) instability is an important process in both space and
experimental fusion plasmas. It is driven by a temperature anisotropy (Ti±/Ti\\ > 1) in the
ion velocity distribution. Evidence for its existence has recently been obtained in the local
afternoon to dusk region of the Earth's magnetosphere by the geostationary satellite ATS-6
[1], and its existence in the magnetospheric ring current region has also been theorized [2].
The AIC instability was first observed in a laboratory in the tandem mirror experiment
TMX at Livermore [3]. The instability played a role of considerable importance in the
experiment, causing significant degradation of plasma confinement in the tandem mirror's
central region [4-6].

Theoretical studies of both the linear [7,8] and quasilinear characteristics [9-11] of
the AIC instability have been conducted by several researchers. In the linear regime,
the instability is most unstable for propagation along the background magnetic field for
wavenumbers in the vicinity of k ~ 0{<jJd/vA). In the quasilinear regime, diffusion in ion
velocity space occurs predominately in the region defined by v\\ « (w —We»)/fc, where w
and k take on the values of the frequencies and wavenumbers of the largest waves present.

Analysis of the nonlinear regime has been more difficult. Except for general theories
predicting, for example, coupling of parallel-propagating Alfven waves to longitudinal ion
sound waves [9], theoretical study has been conducted primarily by means of computer
simulation [11-14]. The computer studies display two common features: (1) the ion tem
perature anisotropy relaxes very rapidly as the instability saturates, and then continues
to relax more slowly following saturation, and (2) field energy, found mainly in the most
unstable modes at saturation, is observed to transfer slowly to the long-wavelength modes
after saturation.

In this article, we report new results obtained from computer simulations of the AIC
instability, and also make comparisons to previous simulations. Features of the linear and
quasilinear behavior of the simulations are discussed in the context of existing theory and
compared with other simulations. Post-saturation behavior of the instability is likewise
compared with previous simulations with additional attention paid separately to the long,
intermediate, and short wavelength modes after saturation. Three models are used for
the electrons with differences noted. Finally, a fluctuation theory for parallel-propagating
transverse waves is derived and applied to the analysis of the simulation results.

II. THE SIMULATION ALGORITHMS

Two simulation codes were used in the study. Both codes are based on algorithms
similar to those described in Ref. 15. The codes are quasineutral, electromagnetic, assume
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particle ionsand fluid electrons, and ignore displacement currents. Although the two codes
employ different algorithms, both model the same three equations,

at m\ c ) (i)

§ =-cV XE, (2)
and

V x B = —(J* - neue), (3)
c

and differ only in the way electrons are treated. One of the codes, TRACY, considers the
electrons as a cold, linear E x B fluid,

7l()6cE X Bo /A\
neue = ^2 » * '

while the other code, named PEPSI, uses the inertialess electron momentum equation,

E=-±2*-Wl, (5)
c en

where Te, the electron temperature, is considered fixed. In these equations, v< is the
velocity of the i-th ion simulation particle, m is the ion mass, and J,- and n = rii = ne are
calculated from the ion particle current and number density respectively. Details of the
TRACY algorithm may be found in Ref. 16 while the PEPSI algorithm is essentially the
same as one used by Harned [17], differing only in its dimensionality (2 1/2-d, here run
as a 1 2/2-d code) and its lack of provisions to treat low- and zero-density regions. All
simulations for this study were conducted on a one-dimensional spatial grid aligned with a
uniform background magnetic field Bo = B0z with periodic boundary conditions.

IH. RESULTS

The two codes were used in three runs initialized with ion velocities chosen to model
the ion distribution function [18]

/(•x,»|) =(«i - v3k - -g^L) fr(»i -«J -^L) exp(-a||Wf -ax«4). (6)

typical ofdistributions found in mirror machines. Here H(x) is the Heaviside step function.
In these runs, R = 1.5, I = 4, vj/v^ = 0.01875, and a± and a\\ were chosen so that
Pi± = 0.05 and /fy| = 0.033. These parameters are representative oftrapped ion velocity
distributions expected in an axicell version of MFTF-B, the tandem mirror experiment
under construction at Livermore [8]. The three runs, here denoted as Run Nos. 1, 2, and
3, used respectively the TRACY code (Te = 0), the PEPSI code with Te = 0, and PEPSI
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FIG. 1. Wave magnetic field mode amplitudes vs. time for Run No. 1 for (a) long
wavelengths (modes 1-7, 0.20 < kvA/ud < 1.39), (b) intermediate wavelengths
(modes 8-12, 1.59 < kvA/uci < 2.38), and (c) short wavelengths (modes 13-16,
2.58 < kvA/ujd < 3.18).

with (Te/mvA)^2 = 0.45. The simulations employed 10,000 particles and 256 grid-points
with Uci&t = 0.077 and vAAt/Az = 0.62, where <*/„• = eB0/mc, vA = (Bj/47rmno)1/2,
and At and Az are the timestep and grid spacing, respectively.

The runs were initialized in identical fashion with small perturbations in both the fields
and the particle velocities. All runs displayed essentially identical diagnostics through the
linear and quasilinear regimes up to wave saturation at t « ISOu;"1. Stability or clean
linear growth through two orders of magnitude is observed for the long-wavelength modes
(Figs. 1(a) and (b)) in agreement with theoretical linear growth rates calculated using G.
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FIG. 2. Linear growth rates and principal mode frequencies obtained from
TRACY for the mirror distribution function with R = 1.5, / = 4, vl/vA = 0.01875,
fc± = 0.033, and ft|| = 0.05 using 10,000 particles (open circles), or 100,000 par
ticles (filled circles). The error bars onsome ofthe growth rate data points reflect
erratic growth on the part of the corresponding modes.

R. Smith's AIC dispersion solver [18]. Four or more decades of clean linear growth have
been observed of similar modes in other simulations initialized with smaller perturbations.
Mode frequencies at all wavelengths also agree well. Growth rates of the short-wavelength
modes are, however, somewhat erratic (Fig. 1(c)) and generally differ from rates predicted
by theory. Figure 2 compares the growth rates and mode frequencies obtained in these runs
to an otherwise identical run employing 100,000 particles. The improved agreement of the
short-wavelength growth rates with theory with the larger number of particles indicates
that a discrete-particle effect is involved. A detailed discussion of this effect appears in a
related paper [16].

Following the linear growth phase, the ion distribution of the three runs exhibits rapid
velocity space transport in the vicinity of the resonant parallel velocities V|| = ±(u-uci)/k.
This effect is clearly displayed in Figs. 3(a) through (d). Diffusion in velocity space is
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FIG. 3. Ion particle distribution contours in velocity space for Run No. 1 at
times (a) t = 0, (b) t = 920;^*, (c) t = ltfw^1, (d) t = 138a/;;1, (e) t = 406W"1,
and (f) t = 675u£l. The contours are separated by factors of %/2. The arrows
indicate the resonant velocities for the linearly most unstable waves: w = 0.87u;c;,
k = ±1.99ud/vA.
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FIG. 4. Snapshots of ion particles loaded initially in the portion of the ion dis
tribution between energies £\ = 0.131v^ and £2 = 0.148v^ in the wave frame
defined by w = 0.87u;ct-, k = l.99uJci/vA, the linearly most unstable mode, at
times (a) t = 860/^, (b) t = 134w^1, and (c) t = 144w^1 for a run similar to Run
No. 1 using 100,000 particles.
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FIG. 5. Ti±/Ti\\ vs. time for Run Nos. 1, 2, and 3.

FIG. 6. Ion kinetic energy as a fraction of initial ion energy vs. time for Run
Nos. 1, 2, and 3.
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FIG. 7. Fraction of the total number of ions and total ion kinetic energy in the
loss region v\ —v\ —uj?/{R —1) <0 as functions oftime for Run Nos. 1, 2, and 3
for (a) t < lSOu^1 and (b) the entire run.

observed to be directed along constant energy contours in the principal wave frame V|j =
u/k, as detailed in Fig. 4. Both the location and direction of velocity space diffusion
thus agree with quasilinear theory. The nearly 'Vertical" transport observed in Fig. 4 is
also consistent with the large relative change of perpendicular energy with parallel energy,
d£±/d£§ = We»/(w —(jJd) = —7.7, predicted by quasilinear theory for resonant particles.
In contrast, when the non-resonant particles are included, d£±/d£\\ —• —1.7 as saturation
occurs (t < 140w^1), which we find consistent with the relaxation of T,j./3i|| from 15 to
6.5 (Fig. 5), the decrease of £± by 6.4% (Fig. 6), the increase of field energy to 2.5% of the
kinetic energy, and the conservation of total energy occurring over the same period. The
apparent asymmetry between the two diffusion regions in Figs. 3(b) and (c) was caused by
asymmetries in the initial perturbation. Particle and ion kinetic energy loss rates into the
loss region have been measured for this simulation to be 0.180/^ and 0.170;^, respectively
(Fig. 7(a)).

Definite departures from quasilinear theory are also observed in the pre-saturation
phase. Although at saturation the regions of resonant trapping of many of the modes are
well-overlapped (Fig. 8), characteristics of magnetic trapping are clearly visible in plots
of selected particle trajectories (Fig. 9). Most of the trapping occurs about a gyrophase
angle of rj) = ir, where ij> is the angle between v± and Bx(^), consistent with theories
of parallel-propagating monochromatic electromagnetic waves [19,20]. Some trapping also
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FIG. 8. Resonant trapping regions in parallel velocity space for modes 8-12 at
mode 10 saturation (t = 112o;^1) in Run No. 1. Each resonant region iscomputed
from (w —Ud)/k —vt< V|| < (w —Ud)/k + vt, where u is the theoretical linear
mode frequency and vt is the trapping velocity {eBk(v\)lJ2/mck)1/2 evaluated at
Udt = 112.

occurs about V = 0 later in the run (t > lSOw^1). Additionally, saturation of the most
unstable mode (mode 10) occurs well before changes in the velocity distribution render it
linearly stable. Saturation may instead occur by trapping, since the initial linear growth
rate 70 is of order the trapping frequencyut at saturation (specifically, 70/wt = 0.26±0.05).
This possibility has been suggested by Ossakow et at. [14] in a similar study on the whistler
instability, in which comparable values of 7o/u« at saturation were obtained.

Evidence from other AIC simulations with TRACY supports the hypothesis that both
quasilinear and trapping effects play important roles in the pre-saturation phase. Simu
lations following the evolution of an ion distribution initialized with a single value of v±
under the influence of a single AlC-unstable mode display a number of distinctive character
istics including conservation of particle "helical" momentum and the appearance of a sharp
"edge" in the ion velocity distribution function which is found associated with ion trapping
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FIG. 9. Ten selected ion particle orbits in V||-^ space from Run No. 1 for (a)
69 < (Jdt < 130 and (b) 130 < w„i < 192. Here V is the angle between vx and
Bx- Points composing the orbits are spaced one timestep apart.
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FIG. 10. Ion temperature anisotropy {Ti±/Ti\\) obtained from a TRACY simu
lation run, and as calculated numerically by Davidson and Ogden [10] using time-
dependent quasilinear equations. Initial conditions for both runs were r»x/2\|| =
20 and 0i± = 1. The total initial wave magnetic field energy was chosen to be
0.01 of the total initial ion perpendicular kinetic energy, and was equally dis
tributed among the unstable modes (modes 2-21). Simulation parameters were
UdAt = 0.077 and vAAt/Az = 0.62. The simulation employed 65,536 particles
and 256 grid-points. In the figure 7mox = 0.385u;c; is the largest of the theoretical
linear mode growth rates.

by the wave [20]. When several modes are allowed by the simulation, helical momentum
is no longer conserved, but the edge in velocity space is still observed. Quasilinear theory
would normally applicable to the multiwave simulation, but however would not predict this
type of edge structure.

Simulations were also conducted with the same bimaxwellian ion distribution and
initial parameters used by Davidson and Ogdenin one of their quasilinear studies [10]. The
evolution of the iontemperature anisotropy Ti±/Ti\\ produced by each calculation is shown
in Fig. 10. The initially slow relaxation of the anisotropy (for 0 < t < 1.27~ix) occurs
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FIG. 11. Wave magnetic field mode amplitudes vs. k at times i —1380;^*,
t = 406w^1, and t = 675w^1 for (a) Run No. 1, (b) Run No. 2, and (c) Run No. 3.

because the simulation was not initialized with pure eigenmodes of the AIC instability.
Following this period, the simulation anisotropy histories agree fairly well. The slight
differences observed in the pre-saturation relaxation rates may be due to particle trapping,
the evidence for which was again observed in the simulation particle trajectories. Differences
in the slower post-saturation rates might be attributable to the presence of nonlinear mode
coupling in the simulation.

Differences in post-saturation behavior were also noted in the three main runs of this
study. As observed in previous simulations, the temperature anisotropy Ttx/T,|| drops
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rapidly during the quasilinear stage and then relaxes considerably more slowly after the
instability saturates. However, as shown in Fig. 5, the slow relaxation occurs at different
rates in the different runs. Differences have also been noted in the time histories of the
total ion kinetic energy (Fig. 6). Curiously, the ion energy rises late in Run No. 1. Small
differences also appear in the time histories of the particle and ion kinetic energy fractions
in the loss region (Fig. 7(b)). Physically, we expect the differences to be attributable to
the presence of nonlinear ExB electron drifts in Run No. 2, and to bothnonlinear ExB
electron drifts and longitudinal ion sound waves in Run No. 3. AIC wave energy may for
example be transferred to sound waves via a wave-wave mode coupling process [9], and in
fact longitudinal electric field energy is observed to be two orders of magnitude higher in
Run No. 3 than Run No. 2.

Another feature, common among nonlinear simulations of the AIC instability [11,13]
and its electron analog, the whistler instability [14], is shown in Figs. 1(a) and (b). In Run
No. 1, wave magnetic field energy, primarily concentrated in the linearly most unstable
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FIG. 12. Ion temperature anisotropy (Ti±/T^) at mode saturation vs. mode
number for Run Nos. 1, 2, and 3. The linear stability boundary vs. mode number
assuming a bimaxwellian distribution is plotted for comparison. The stability
boundary is computed from the formula [10] kvA/ud = (Ti±/Ti\\ -l)(Ti\\/Ti±)1' .
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modes at saturation, is observed to transfer gradually to longer and longer wavelengths
following saturation. The process occurs much more slowly in Run No. 2, and more slowly
still in Run No. 3, as shown in Fig. 11. Other researchers have suggested that the shorter
wavelength modes, unstable at first, give up their energy as they become linearly stable
and then are damped as the ion temperature anisotropy relaxes. This theory does not
explain why the long-wavelength modes, which are also linearly stable, acquire the energy,
but does seem at least partially consistent with results obtained.

Figure 12 shows the ion temperature anisotropy at saturation for modes 1 through 10
in Run Nos. 1, 2, and 3. Also shown is the anisotropy present theoretically at marginal
stability, assuming a bimaxwellian distribution. The two plots do not coincide—the modes
saturate earlier (i.e., at higher anisotropy) than predicted—nevertheless, it is clear that the
linear stability of the ion distribution plays a role in the saturation process. Early saturation
is also observed by Ossakow et al. [14] in their simulations of the whistler instability. They
suggest that the stability boundary may not be correct because the distribution at satura
tion may not be bimaxwellian. Our distributions do however appear to be bimaxwellian,
particularly late in the runs (Figs. 3(e) and 3(f)); thus we speculate that trapping may
influence saturation early in the runs, as previously indicated, while later nonlinear mode
coupling is certainly present and may act to funnel away energy from otherwise unstable
modes.

While the intermediate wavelength modes (i.e., the linearlyunstable modes) are trans
ferring energy to the long wavelength modes following saturation, the linearly stable, short-
wavelength modes are observed to maintain a fairly constant post-saturation amplitude
(Fig. 1(c)). This short-wavelength "noise" appears in all our AIC hybrid simulations, and
is evidently a discrete particle effect. The short-wavelength noise level was measured in our
three representative runs and also in several simulations employing bimaxwellian initial ion
distributions. The results are displayed in Fig. 13. The mode magnetic field amplitudes
are observed to scale as iV-1/2, where N is the number of particles, are strong functions
of the initial perpendicular ion temperature, and are weak functions of the initial ion tem
perature anisotropy. We note that significant noise levels are even observed in Maxwellian
simulations started with small perturbations. Although the distribution is theoretically
stable, its particle representation is unstable due to an AlC-like mechanism acting on fine
structures in the distribution [16]. The mechanism is physical and should serve as a colli-
sionless relaxation mechanism in real plasmas. Provided with unstable transverse modes,
the Maxwellian distribution eventually achieves natural noise levels in a manner entirely
analogous to its non-Maxwellian counterpart.

An estimate of the noise level may be calculated using a test particle model [21]. The
plasma response to the current of a test particle of surface charge density qo/LxLy is

iVxB-J =S£22J«(«-ab-nol>. (7)
where the 0-subscripted dynamic variables refer to the unperturbed motion of the test
particle. In the spirit of the test particle model as it applies to our simulation, simulation
particles double in the role of test particles; thus
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where n0 is the number density of the plasma being simulated, Lz is the length of the
simulation system, and N is the number of simulation particles. By using the linearized
versions of Eqs. (1) through (4) in the left-hand side of Eq. (7), we can obtain for the
magnetic field response
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D{k, Jbo.,0 +̂ ci)^^- =-i-^±°e-<(**o+*o)e-<(fcv„o+^)t? (8)
•oo Ny/2 We*

where B+ = (Bx + iBv)ly/2, 9q is the unperturbed gyrophase of the test particle, k is an
admissible wavenumber of the system,

P(fc,w) = —^ + — + / dv|, g(v||) r B— + -. 2, ±/ , (9)

is the linear dispersion function representing Eqs. (1) through (4), the ion distribution
function

f(v) = g(n)h(v±),
is assumed separable in v± and V|| with g and h normalized to unity, and

(v\) =f2irv'±dv'±v,2±h(v'±).
Calculation of the ensembleaverage of \B+(z, t)\2 then yieldsthe fluctuation magnetic field

{Bl(z,t) + Bl(z,t)) _^(B%
Bl — L*/ R2 »

where each of the terms in the sum,

(B')k_ 2k'{vl) f
bi -n u% ydo»

9{v\\)

(10)

(11)

includes contributions from both ±k. This result is also obtained by applying the fluctua
tion-dissipation theorem to the linear dispersion function Eq. (9) in which /(v) is taken to
be Maxwellian.

Equation (11) has been evaluated numerically for a Maxwellian distribution, with
the results plotted in Fig. 13. The noise levels obtained agree well with those observed
in Maxwellian simulations. Simulations starting with non-Maxwellian distributions show
short-wavelength post-saturation noise levels close to those predicted by the Maxwellian
theory, even though substantial post-saturation anisotropy is generally present. Both types
of simulations exhibit noise levels which scale as N"1^2 with dependence on 0i± matching
the dependence obtained from Eq. (11).

The noise levels in our simulations were typically one order of magnitude below the
longer wavelength modes of interest, and thus had little effect on these modes. This may
not be true of other simulations, particularly those which employ Maxwellian ions. As
we have observed, comparable noise levels persist in these simulations, and thus may be of
considerable concern to other simulation studies focusing on smaller-amplitude phenomena.

IV. CONCLUSIONS

Two simulation codes have been employed in the study of the Alfven ion-cyclotron
instability, and results have been compared. We are afforded some confidence in the proper
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operation of both codes as they produce identical results in the linear and quasilinear
regimes. But for certain explainable discrete particle effects, both codes exhibit linear
growth rates and frequencies in excellent agreement with Vlasov theory. Features of quasi-
linear diffusion are clearly exhibited prior to wave saturation and behave qualitatively as
predicted by theory. Some ion trapping is also occurring during this phase, and may serve
to explain why the simulation temperature anisotropy relaxation rate and conditions for
mode saturation do not agree rigorously with quasilinear theory. Effects attributable to
differences in the simulated electron physics appear following wave saturation. All runs
display a slow transfer of mode energy from intermediate to long wavelengths occurring si
multaneously with a gradual relaxation of the remaining anisotropy in the ion distribution
function; however these processes are observed to occur at different rates in the different
runs. We can speculate that the processes are slowed when additional electron physics is in
cluded because such inclusion provides additional sinks for the saturated AIC wave energy.
For example, the wave energy may in part feed longitudinal ion sound waves rather than
the parallel ion energy, thereby delaying the anisotropy relaxation process. We find lastly
that the linearly-stable short-wavelength modes do not participate in the energy transfer
process following wave saturation. Rather, these modes simply settle to thermodynamic
noise levels predicted by a test-particle fluctuation model.
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