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Stabilizing Effects of Finite-Amplitude RF Waves
on the Interchange Instability

Niels F. Otani

Electronics Research Laboratory
University of California

Berkeley, California 94720

The effects of the presence of a finite-amplitude RF wave on the interchange
instability are studied theoretically in a three-dimensional quasineutral Darwin
two-fluid system. An exact energy conservation law is developed for the system
equations. The perturbed dynamical quantities are expanded to second order
in the fluid displacements and it is demonstrated that a Lagrangian exists for
the system. The interchange perturbation energy is calculated and terms associ
ated with the perturbed magnetic potential energy are analyzed. For the terms
studied, it is found that no stabilization of the incompressible interchange mode
occurs unless the RF wave has a parallel-propagating component, and that cou
pling to perpendicular-propagating sidebands does not influence the stability of
perpendicularly-propagating interchange modes. The stabilizing influence of these
terms also does not depend directly on the presence of RF field gradients. The
analysis suggests a physical mechanism by which RF stabilization can occur—the
RF wave stabilizes the interchange mode by forcing the mode to bend magnetic
field lines.
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I. INTRODUCTION

The possibility of stabilizing the interchange mode with RF waves in the ion-cyclotron
frequency range in axisymmetric mirror geometry was recently demonstrated in a series
of experiments at the Phaedrus tandem mirror at Wisconsin [1]. The results of these
experiments have ledto considerable theoretical activityaimed at understanding the nature
ofthe stabilizing mechanism. Ponderomotive effects ofthe RF wave on interchange stability
have been studied by D'Ippolito and Myra [2] with a quasilinear kinetic model. Both
ponderomotive and sideband coupling effects have been examined by Cohen and Rognlien
[3] in the fluid approximation. Non-resonant [4] and resonant [5) sideband coupling effects
have been considered by McBride and Stefan. Recently, Myra and D'Ippolito [6] also
examined sideband effects. Finally, Similon and Kaufman [7] employed a two-timescale
variational approach based on an appropriate ponderomotive potential to study the RF
stabilization problem.

Alltheoreticalmodels which examine the ponderomotive effects find the influence ofan
outwardly-directed RF wave electric field gradient to bestabilizing above the ion-cyclotron
frequency Ud and destabilizing below it. The change in the stabilizing effect is generally
attributed to the cyclotron-resonance; Similon and Kaufman however conclude that the
transition occurs because resonances of the slow wave occur only below the cyclotron fre
quency. There is little agreement as yet on the effects ofsideband coupling; the effect is
found under various approximations to be stabilizing below Ud [4], stabilizing above <«;«• [5],
and stabilizing on both sides ofw«- [3]. Similon and Kaufman make no specific predictions
concerning sideband coupling, but find the effect of the reaction of the interchange wave
back on the RF wave, a related phenomenon, to be comparable with the ponderomotive
effect [7].

In this paper, we also examine ponderomotive and sideband effects within the fluid
approximation, buttake anapproach somewhat different from those advanced so far. First,
a set ofquasineutral fluid equations are developed which include the physics ofboth the
interchange mode and waves inthe ion-cyclotron frequency range intheDarwin approxima
tion. The equations are a 3-d extension oftheequations modeled by a computer simulation
reported previously [8]. Next, an exact energy conservation law is derived for these equa
tions. In considering the effect of an interchange-like perturbation on the resulting energy
integral, neither theelectrostatic approximation nor any approximation with regard to sep
aration of timescales is used. The interacting effects of the RF wave and the interchange
wave may thus be treated simultaneously. In avoiding these approximations we allow for,
for example, the possibility of electromagnetic sidebands to be associated with the low-
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frequency, predominantly electrostatic component of the interchange mode. Abo, since
low frequency and sideband effects are treated together, ambiguities associated with the
definition of these effects, which depend on the set of independent perturbation variables
used, are avoided.

II. THE EQUATIONS

By assuming inertialess, zero-temperature electrons, we find from the electron momen
tum equation that the electric field may be expressed as

E = —ue x B, (1)
c

where ue is the electron fluid velocity. Using Eq. (1) in Ampere's Law, we see that

E+-u xB=7-i-(V xB) xB, (2)
c Airen

where, for brevity, we have defined u = ii* to be the ion fluid velocity. Substituting Eq. (1)
in Faraday's Law and Eq. (2) into the pressureless fluid ion momentum equation, we obtain
the system equations,

|?=V.(Bue_-ueB), (3)

g+.-V«-^<B.VB-|V*) +l. (4)
ue = u-~VxB, (5)

47ren

^ +V-(nu) =0. (6)
Here g(x) = —V<f>g is a fixed gravitational field, m is the ion mass, and n = nc = n< is
the density of both electrons and ions as required by the quasineutrality assumption. From
Eq. (5), it is clear that the electron continuity equation

|^+V.(nue) =0, (7)
is also valid, and may be substituted for Eq. (6).

An energy conservation law exists for this system of equations. It is shown in Ap
pendix A that

* fl 2 B2 \ _ (I 2 , £2uc B(B-u.) , . \ _
— -mnv* + — + mnd>a + V • -mnu2u + — —A + mn<£gii = 0.
dt \2 Sir gJ \2 4ir 4tt 9 ) (8)
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which, of course, also implies conservation of the energy integral

£= / dx. I-mnu2 + -—I- mn<j>g J, (9)

up to a flux across the boundary

/ _,o- fl 2 B2"* B(B.Ue) , , \=]>dSn. ^-mnu2u +— ^— +mn^uj, (10)

where n is the outward-pointing unit normal vector from the boundary surface.
In this study, we concentrate on stabilizing processes which occur totally within the

plasma region and do not rely ontransferofenergy across the boundary. Processes involving
the energy flux will in general be important but can be deferred since, within the formalism
developed here, they may be treated separately by examining the flux integral Eq. (10). In
the meantime, we ignore the energy flux contribution, or equivalently, assume it to be zero.
The analysis will then be applicable to periodic systems, which have no boundaries, or to
undriven, plasma-filled systems bounded by perfectly-conducting walls, for which n •u and
n x E and therefore n •ue and the energy flux vanish at the boundaries.

in. THE PERTURBATION EXPANSION

We now expand the system quantities n, u, ue, and B in orders of the interchange
perturbation, e.g.,

B=B0(x,t) + 6B<1>(x,0 + $B<2>(x, *) + •... (")
Note that the zero-order quantities contain thetime-independent equilibrium and the finite-
amplitude RF wave and therefore depend on both time and space.

We find that all of the perturbed quantities may be expressed in terms ofthe electron
and ion fluid displacements £.(x,0 and &(x,t)- By considering the change in volume
occupied by aninfinitesimal fluid element of species s located at some unperturbed location
xo under thespatial transformation defined by the displacement field £a(x), we can calculate
the perturbed density to be

n(x+&(x)) =
'~J.6** *.!.**• *+Ho

(12)

where [,,], the triple scalar product, is the Jacobian ofthe transformation

Xne«,(x)=X +£a(x). (13)

Expanding Eq. (12) as a Taylor series in &, we obtain the desired expressions

6nM = -V •(noe*), (14)
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and

«n^ = JVV:(noe.e.). (i5)
Since the continuity equation holds for both species, the formulas derived here for n, 6n^\
and 6nW hold equally well for the displacement field of either species.

The expressions for the perturbations to the species fluid velocities 6ua as functional
of the displacements are obtained by considering the new velocity field experienced by an
infinitesimal fluid element resulting from displacement of the fluid element and perturba
tions to the velocity field. That is, as illustrated in Fig. 1,a fluid element located at x with
velocity u0a(x,t) at time t in the unperturbed system will instead find itself at x +£«(x,t)
with velocity (u0a +£u0«)(x+£a,t) at time t in the perturbed system. A similar statement
holds at time t + At, where At is infinitesimally small. By formulating the relation among
the vectors shown in Fig. 1 as a first order Taylor series in At and then allowing At —• 0,
we can obtain for <5u3 the expression

$Ua(x,t)=^+Ua0-V£a
- [ua0(x + C., 0 " ^o(x, t)] - [6ua(x + e., t) - 6u„(x, t)]. (16)

First- and second-order expressions for the perturbed fluid velocities may be obtained by
first evaluating Eq. (16) to first order,

«u<») =̂ +u.o •Vf, - €. •Vu.o, (17)
and then substituting this expression into Eq. (16) expanded to second order:

*u<2) =-& •V(^ +ua0 •V£a -£.. Vu80j - ±t,t.: VVua0.
When physicalquantities are expressible in terms of fluid displacements, it means that

those quantities depend only on the instantaneous configuration of the system without re
gard to how the system has evolved. That this property should hold for densities and fluid
velocities is in fact quite obvious, and indeed, the formulas derived above hold quite gener
ally for any system of fluids for which the image of the displacement-generated coordinate
transformation Eq. (13) does not "fold" on itself. Mathematically this requires that the
transformation be one-to-one with its image, or equivalently, that V • &, > —1 everywhere.

The functional dependence of the density and fluid velocities on the displacements
outlined here is just a kinematic relationship. In contrast, the functional dependence of
the magnetic field on the electron displacement is a field-dynamic physical property of our
system, and does not hold in general. For example, if our equations included resistivity,
the magnetic field would be able to relax to its lowest energy state, even if the fluids were
held fixed. Thus, an infinite number of magnetic field configurations correspond to a single
fluid state during the course of the evolution of a single system. In contrast, in our system,
the magnetic field configuration is completely determined by the electron configuration.

(18)
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iLso +Sys

time t +At

Trajectory of the fluid element
in the presence of the perturbation

Trajectory of the fluid element
in the absence of the perturbation

FIG. 1. Schematic illustration of the relationship among the unperturbed and
perturbed fluid velocities ua0 and 6ua of a single fluid element at time t, and
the associated fluid displacement £a at times t and t + At, where s indexes the
fluid species and At is considered infinitesimally small. Vectors in the diagram
are defined by 0 = £a(x,t), ® = ua0(x,t)At, ® = &(x + ua0Af,t + At), and
® = (ua0 + 6ua)(x + £a(x,t),t) At.
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We can motivate this by a simple argument. Consider two identical systems, both
initiated with identical magnetic fields B(x,0). Let the electron fluid of one system, des
ignated the primed system, evolve a factor of l/a more slowly than the unprimed system.
The electron fluid velocities of the two systems are then related by

ue'(x, t) = aue(x, at). (19)

At time t, we find the magnetic field of the primed system evolving according to

^B'(x,t) =V.(B'ue'-ue'B')
= oV •(B'ue(x, at) - uc(x, at)B'), (20)

i.e., the evolution of B' at time t is l/a times slower than that of B at time at but is
otherwise identical. With both the electron fluid and the magnetic field evolving l/a times
more slowly in the primed system, it is clear for this subset of system evolutions that the
magnetic field configuration is determined by the electron fluid configuration.

It is therefore with some confidence that we assume B(x, t) is a functional of £e(x,t).
Armed with this assumption, we can derive formulas for the magnetic field perturbation
quantities to any order. At first order, the perturbation magnetic field is

JUb<x> =V•(BotfuW +SB^Ueo - Ju^Bo - u^B*1*). (21)
Since, by assumption, <5B^) cannot depend functionally on u^ but only on £e, we can set
Ueo = 0 in solving for 63^ and then expect the resulting expression, which will depend
only on £e, to hold even when u«o # 0. By substituting the electron version of Eq. (17) in
Eq. (21), setting u^ = 0, noting that the latter implies d3o/dt = 0, and integrating once
with respect to t, we obtain

5B(1) = V-(B0^-^Bo), (22)

which we then easily check does satisfy the full equation Eq. (21) with u^ # 0. Using the
same method for 63^ in which expressions for 63^\ Sui , and Sui ' are used, we find

*B<2> = | VV: (McBo) - V •[ee(B0 •V)*J, (23)

which again may be checked in analogous fashion, this time by means of a fairly lengthy
calculation outlined in Appendix B.

The form of the first-order expressions for £n, £ua, and 63 allows the linear evolution
of the interchange mode in the presence of the RF wave to be described by a single vector
equation linear in the electron displacement £c. The equation is time-periodic with the
frequency of the RF wave and is thus suitable for study by means of an analytic method
described in a related report [8]. It is expressible as the ion momentum equation,
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ddu 1
-T- + 6u •Vu0 + u0 •V£u =- [B0 •V6B + 63 •VB0 - V (B0 •63)]

eft 47rmno

l^(Bo.VB0-ivBo'),
mno tio \ * /4irmno

with the substitutions

*u = -^ +uc0 •V& - &•Vurf + V x 63 -, (25)
ot 47reno no 47rcno

which follows from Ampere's Law,

5B = V-(B0ee-eeB0), (26)

and

$n = _V.(no&). (27)

Expressions for the perturbed densities and fluid velocities also allow a Lagrangian
formulation of our problem. By trial and error, a Lagrangian of the form L —f dx£ has
been found, where

t (n<, Uj, ne, uc, A, dA/dx.) =n;(x, t)
1 c-mtu2(x,t) + -u*(x,t) •A(x,t) - mt<^(x)
z c

(24)

. - n«(x, t);u.(x, t). A(x, t) - (V X*(*'0), (28)
is the Lagrangian density and the ion index i is temporarily indicated explicitly. The system
equations (3)-(6) are recovered by setting thevariation ofthe path integral J dtL equal to
zero and restricting solutions to those which obey quasineutrality as initial conditions:

nt(x,t = 0) = nc(x,t = 0). (29)

Allowed variations are defined in terms of the assumed-independent functions &(x,t),
£e(x,t), and A(x,t) which in turn determine the allowed variations of the dynamical vari
ables appearing in £ via the relations

6na = -V.(na£a), «= t,c (30)

and

5ua =%+ua.V£a-&-Vua, , =,',e. (31)
ot

Application of this prescription leads to the Euler-Lagrange equations for this system:

d dC d ( d£\ duak dC d dt _. fw .
di-du- +dTk {"'"duTj +-d^duT* ="'d^dnZ* 3~1^ (32a)

^ ^ =J- " . (32b)
dA3 dxk d(dAj/dxk)

where the indices j and k run through x, y, and 2, and sums over k are implied. Evaluation
of these equations for the Lagrangian density L given by Eq. (28) yields equations which
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preserve quasineutrality if so initialized. Setting n{ = ne = n, defining E = -(l/c)(dA/dt)
and B = V x A, and invoking the continuity equation for each species as implied by Eq. (30)
then yields Eqs. (3)-(6).

IV. THE EXPANSION ORDERING

The previous section has described derivations of first- and second-order expressions
for the dynamical quantities £na, 6ua, and 63. The derivations of the expressions for
6n^\ 6n&\ 6uaJ\ and 6ua2* are proof of their consistency with our perturbation model,
represented schematically by Fig. 1 and Eqs. (12) and (16), while the derivations of the
perturbed magnetic field quantities 63^ and 63^ may be considered proof of the con
sistency of the corresponding expressions with Faraday's Law. We also have found that
the expressions for 6n and 6ua are consistent with the continuity equation through at least
second order. However, while there are no apparent problems with the fluid kinematics
and Faraday's Law, inconsistencies do appear, starting at second order, when the ion fluid
dynamics are considered.

Demonstration of the presence of inconsistencies for our system of equations requires
a simple but lengthy calculation. This calculation has not been performed for our system,
but observation of the inconsistencies in analogous, simplified models leaves little doubt
that similar difficulties will appear. A few illustrative examples of the problem are given
in the two models described in Appendix C. The difficulty underlying this problem may
be traced to the system of ordering employed. As explained in the Appendix, formal
ordering in powers of £a apparently leads to inconsistencies when the zero-order system
is time-dependent. It becomes necessary in this case to order everything including £a
itself in powers of a parameter, say c, i.e., £a(x) = e£i '(x) + €2£i (x) + ..., and then,
as usual, set e = 1. The resulting ordering scheme removes all objections raised in the
Appendix and does not change our first-order expressions if we identify £A = £; '. The
second order expressions, however, are modified. Specifically, the second order expression

(2)
for each quantity is corrected by adding the quantity's own first-order expression with £a
substituted for &,. By this prescription, we obtain,

«n<2> = IVV: (#>#>„„) _V. (#>„„), (33)

Su?) =-tf> •V(^- +u,o •V{<" -<J»•Vu.„) -leiM1': Wu,
a«i2>+^- +u.0.-Vtf>-tf>.Vu.o, (34)

and

«B<2> = IVV •({(^("Bo) - V •[£<" •(Bo -V)eJ»] +V •(Bo*?' - «<2)B0), (35)

as our corrected second order expressions.
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V. THE PERTURBED ENERGY

The first-order and corrected second-order expressions for the perturbed quantities

may now be used to compute expressions for the energy integral to various orders of £i \
the main interest of this report. To zero order,

£&=[** Unomv2 +||+nQm<j>g\. (36)
Straightforward substitution of perturbation quantities into

£(1) =j dx Usn^mu2 +n0mu0 •*u<l> +-^B0 •*B(l) +«n<1>m*g),
yields, with some integration by parts,

£™ =fdx Lmuo •(^ +u0 •Vfc) - nomte •(-^ +u0 •Vu0J I,
while substitution into

£<2> = f dx h6n^mul +n0mu0 •6u<2> +i-B0 •6B<2> +6n<2W{

+I«om(*u«l>)a +Sn^muo •W1* +̂ (*B(1))2

(37)

(38)

(39)

leads to

e(2) =ef$ +ejp, («)
where

^'=/<6c{inom(f+Uo.Vf..)2
+£<*»•v*«>' -£<*•«*•(B° •v«+3 [(v •(-)2+? S%
+|nomet^:VV^J, (41)

where the sums over i and k are meant to indicate sums over the z-, y-, and z-components,
and

S™ =JdxLmuo •(^+u.•V<<«)
+i-B. •(Bo •Vtf>) - ^-B02(V •f<2>) +n0me|2) •VJ. (42)

4ir off J
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In all these expressions, ^ has been shortened to £a. In Eqs. (40) through (42), £{J is
meant to represent those terms which are formally square in the £j N, while £2 stands
for that portion of the second-order energy which is linear in the £i "s. In deriving these
expressions, surface terms are assumed to vanish, consistent with the boundary conditions
described earlier. Details of calculations leading to Eqs. (40)-(42) are presented in Ap
pendix D.

VI. STABILITY ANALYSIS

Having now obtained a second-order expression for the perturbed energy associated
with the interchange plasma displacements, we would normally proceed by analyzing the
stability ofthevarious terms. The presence, however, ofterms involving £i (i.e., theterms
in the integral in Eq. (42)), makes this taskdifficult. Infact, such a task might well beeither
analytically impossible or meaningless for general evolutions ofthe zero-order system; thus,
further analysis of the entire expression Eq. (40) would likely require use of some of the
various properties of the zero-order system of our problem. The time-dependence of our
zero-order system is weak for example, due to the presence of the weak finite-amplitude RF
wave, and time-periodic, allowing the use of time-Fourier components. Additionally, the
system isassumed spatially-periodic which would eliminate all spatial harmonic dependence
from all terms, greatly simplifying the analysis. A number of possibilities then exist, but
will be left for future pursuit.

For the present, we will be content in examining a simpler problem—that of the sta
bility properties implied by the perturbed magnetic potential energy terms formally square
in the linear interchange displacements in Eq. (41). Since the terms we are considering
represent a perturbation to a potential energy quantity, B2/8ff, we can be safe in assuming
that any analysis demonstrating its increase in the presence of an interchange perturbation
has demonstrated a stabilizing effect on that perturbation. In so doing, we are conceding
the possibility that other terms, in particular, those involving £i \ may contribute other
stabilizing or destabilizing effects in addition to those described here. It is likely in fact
that such additional terms exist. At present, there exists both a theory and a computer
simulation study [8] suggesting that perpendicularly-propagating RF waves have some sta
bilizing influence oninterchange modes, whereas the present analysis would predict nosuch
effect. Thus, we attempt in this analysis only to demonstrate the nature of some of the
available stabilizing mechanisms, not to predict the sum effect of all such mechanisms.

Consider then the perturbation magnetic potential energy terms from Eq. (41):

h) =5?(B.-V«»-CtV-tJB.-(B..Vfc)+1JL vv W +2L, dxk dxj
3*

(43)

As discussed in Appendix D, the first of these terms is the square-first-order line-bending
energy. The second contains both second-order line-bending perturbations and cross terms
from first-order compressional and first-order line-bending perturbations, while the third
magnetic energy term is the second-order magnetic compressional energy term.
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We restrict our analysis to incompressible modes since these are generally the most
unstable. The second and third magnetic energy terms are then zero, and we can conclude
that RF stabilization comes only from the line-bending term (Bo ♦ V£e)2/87r in Eq. (41).
This has a few important implications. First, for this term to be stabilizing, the RF
wave must have a wave propagation component along the background magnetic field. The
only perpendicularly-propagating wave existing in our system is the compressional Alfven
wave, for which the wave magnetic field is aligned with the background magnetic field. Bo
always points in a constant direction in this case, and a growing interchange displacement is
therefore free to propagate perpendicular to Bo since the line-bending term then vanishes.
In contrast, in the case of non-perpendicular RF wave propagation, the RF wave magnetic
field has a component perpendicular to the background field, the direction of Bo thus
oscillates (i.e., line-bending is occurring), and the line-bending term is then positive-definite
and therefore stabilizing.

A physical picture of the stabilizing mechanism is illustrated in Fig. 2. For simplicity,
assume that the background magnetic field points in the z-direction, the density gradient
and gravity are oriented respectively antiparallel and parallel to the z-axis, and the RF
wave is a shear Alfven wave propagating along z with wave magnetic field pointing in the
y-direction. The interchange mode thus propagates predominately in the y-direction. In
this geometry, a single magnetic field line, bent by the shear Alfven wave, instantaneously
sees different phases of the interchange mode. Plasma motion of the interchange mode,
typically in the z-direction, then tends to further bend the field line, thus drawing kinetic
energy out the mode. Put another way, the RF wave stabilizes the interchange mode by
forcing it to use energy bending field lines.

A second property of the stabilizing mechanism associated with the line-bending term
is that perpendicularly-propagating interchange modes can not be stabilized by coupling to
perturbation-induced perpendicularly-propagating RF sidebands. Such a stabilizing mech
anism is only available when one or the other is obliquely-propagating. This may be seen
by expanding both the zero-order magnetic field and the electron displacement in orders of
the RF wave amplitude:

B0(x,t) = B0(o)(x)'+ B0(i)(x, t) +..., (44)

&(x,t) = e«(o)(x,0 + &(i)(x,t) + ..., (45)

where the subscript in parentheses denotes the order. The time dependence of these ex
pansion quantities takes the form

B0(i) ~ exp(=Ftwj2jrt), (46a)
£e(0) ~ exp(:piwt), (46b)

£e(1) ~ exp[=Ft'(w ±uRF)t), (46c)

where ujrf is the RF wave frequency and w is the interchange frequency. To second order in
the RF wave, the sideband contributes to the d.c. line-bending energy only through terms
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A

z

tilted field line

FIG. 2. Schematic of the line-bending stabilizing mechanism. In the presence
of a parallel-propagating finite-amplitude shear Alfven wave propagating along z
with wave magnetic field in the y-direction, a typical field line will be "wiggling"
in the y-z plane, as illustrated, with the wave frequency. At a given instant, the
field line will take on a range of values for its y-coordinate at various points along
its length. Two such coordinates, y\ and y2, are labeled. These two y-positions lie
in different parts of the interchange wave, which we assume is propagating in the
y-direction. Electron plasma displacements associated with the interchange wave
are then directed primarily in the ±x-direction, and thus will tug on the field line
in that direction. Since y\ and y^ lie in different parts of the interchange wave,
different portions of the field line will tend to experience different displacements
£e(yi) and £e(j/2)> thus stretching the field line in the i-direction and drawing
energy out of the interchange mode. This picture is confused somewhat by the
fact that the field line actually oscillates with the Alfven wave frequency, but the
argument still stands; the field line sees different parts of the interchange wave
and thus forces the wave to expend energy bending it.
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^(B0(o) •V£e(0))(Bo(1) •V£e(1)), (47a)

^(Bo(o) •Ve.(i))(B0(i) •V£e(0))f (47b)

-^(Bow-V&d))2, (47c)
none of which contribute if both the interchange wave and its RF sidebands propagate
perpendicular to the background field B0(0). We note however, that the term

^(B0(,) •Vfe(0))5, (47d)
which contains no sideband terms, can contribute.

Finally, as is clear from the form of the line-bending term, the stabilizing effect does
not depend directly on spatial gradients of the wave magnetic field. This does not rule out
the dependence of stability on the gradient of the wave electric field, nor does it discount
the possibility that the mechanics of the propagation of the RF wave indirectly connects
the magnitude of this term with wave field gradients.

V. SUMMARY

The stability of the interchange mode in the presence of a finite-amplitude RF wave
has been examined in a three-dimensional quasineutral two-fluid system. An exact energy
conservation law has been shown to hold for the equations governing the system. Addition
ally, all the dynamical quantities of the system associated with the interchange mode—the
perturbed density, fluid velocities, and magnetic field—are demonstrated to be functional
of the electron and ion fluid displacements, and expansions for these dynamical quantities
in the displacements are calculated to second order. Furthermore, at first order, it is shown
that the ion displacements may be eliminated in favor of the electron displacements, al
lowing linear perturbations in a finite RF wave in our system to be described by a single
linear vector equation with time-periodic coefficients. Linear expressions for the perturbed
density and velocities are also used to demonstrate the existence of a Lagrangian for the
system.

As demonstrated in Appendix C, the formal expansion in the displacements leads to
inconsistencies in systems analogous to the one under study. The contradictions appear
when the zero-order system is time-dependent and are apparently removed by defining a
small parameter and ordering all dynamic quantities including the displacements in terms
of this parameter. Expressions for the second-order energy are however changed. Terms
involving the second-order displacements £i ' appear, and can probably be assumed to
appear also in the problem system. These terms may, in general, be expected to contribute
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significantly to interchange stability, as evidenced by related theoretical and computer
simulation studies [8].

Since the terms involving £a are difficult to treat, we focus our analysis on the per
turbed magnetic energy terms expressible as bilinear forms in £e , and leave open the
possibility that other stabilizing or destabilizing effects exist. We find that, of these terms,
only one contributes to the stability of incompressible interchange modes. It is found that
the term only affects stability when the RF wavehas a parallel-propagating component, and
that the stabilizing mechanism does not directly depend on spatial gradients of the RF mag
netic field. Furthermore, the term exhibits a stabilizing effect via sideband coupling only
when either the interchange mode or the sideband itself possesses a parallel-propagating
component.

Finally, a physical picture of the stabilizing mechanism associated with this term is
discussed. The stabilizing effect is produced by forcing the interchange mode to give up
energy bending magnetic field lines. This physical picture stands independently as a valid
concept, irrespective of the validity of the underlying analysis, since it is motivated sepa
rately by aphysically intuitive argument. That is, if the presence of the RF wavedoes not
force the interchange mode to bend field lines, one can reasonably ask why not, and expect
the answer to advance the understanding of the RF stabilization process. In fact, it cannot
be denied that this mechanism is stabilizing; it appears after all as a positive definite term
in the energy integral Eq. (41). It can only be argued, as already indicated, that other
effects present may act either to cancel or dominate it.
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APPENDIX A. ENERGY CONSERVATION THEOREM

Conservation of energy for our system of equations is shown by demonstrating that
the flow of magnetic field energy,

-±-V . [B2ue - B(B •u.)] =-i-V. [(uc xB) xB], (Al)
41T 47T

which, from Eq. (1), is just the divergence of the Poynting flux cV • (E XB)/47r, is equal
to the remaining terms in Eq. (8). Expanding the right-hand side of Eq. (Al) and using
Ampere's Law in the second term, we find:

J-V •[B2ue -B(B •uc)) =- J-B •Vx(u. xB) +^-ue xB-(VxB)
47r 47T 4ir

=-±B.[V.(Bue-ueB)]--^(u-i^VxB).(VxB)xB. (A2)
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Applying Faraday's Law to the first term on the right-hand side and the ion momentum
equation (4) to the second, we obtain:

-LV•[B2u. -B(B•«.)] =-L±B3- \mn^u2 -mnu•V(i«3 +*„). (A3)
Subtracting the quantity,

m

which is identically zero from the continuity equation (6), and using the fact the gravita
tional field in our system is static, we find

-(-
the desired energy conservation law (Eq. (8)).

4rr ( =mnu2 + — +mn<f>g J+V •( -mnu2u +—-^ */ +mn^u j=0, (A5)
ott / \2 Air Air )

APPENDIX B. CHECK OF THE EXPRESSION FOR 63™

The expression for 63™ (Eq. (23)),

63& = §VV : (McBo) - V .J£.(Bo •V)U (Bl)

obtained by assuming u^ = 0 in the expression

^-63™ =V•(fflWn.0 +*B<l>*u<l> +3Q6u™
ot

- 11*63™ - 6u™63™ - 6u™30), (B2)

is verified by again considering this equation, but now allowing u^ ^ 0.

When expressions for 6ui1] (Eq. (17)), 6ue2) (Eq. (18)), 63™ (Eq. (22)), and 63™
(Eq. (Bl)) are substituted into Eq. (B2), we find the terms of the vector equation obtained
fall into four categories. These categories include (a) terms which contain the factor d£e/dt,
and, to the exclusion of terms containing this factor, terms which acquire their vector
character from the components of the factors (b) Ueo, (c) £e, and (d) Bo.

It can be shown that the terms belonging to each category separately satisfy the
equation analogous to Eq. (B2). That is, we can show that

W: (eefBo) -V•(fV•(B0W) -V.[<eV .(b.^ =
(cVV^)bo-Bo(cVV) He

dt
(B3a)
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for the terms in category (a),

|VV:[«cV.(B0ueo)] =

V •{\VV: (&£eB0) Urf, - V •%V •(Bo*.)) u^ - V •(B0& - *.B0) (£e •Vu^)
- JB0 (&&: Wue0) +Bo (& •V) (& •Vue0) }, (B3b)

for the terms in category (b),

-V- {£eV • [V • (B0UeO - uc0B0) &]} =

V •{V . (B0£e - c\3o) (ue0 •V&) - Bo (e. •V) (iid, •V&)
+ UeoV •[e«V •(B0e.)] - (UeO •V*. - &•Vue0) V •(B0£e)}, (B3c)

for the terms in category (c), and

-iVV: [&&V •(ue0B0)] = V • [\ (Uc: Wii*)B0 - $u*VV: («3o)

+(UeO ' V& - &•VUe0) V •(£eB0) +&«V (u* ' V£, - £e ' Vu^JBq] , (B3d)
for the terms in category (d), where the terms on the left-hand side of Eqs. (B3a)-(d) sum
to the left-hand side of Eq. (B2) after the indicated substitutions are made, and similarly,
the sum of terms on the right-hand side of Eqs. (B3a)-(d) equals to the right-hand side of
Eq. (B2).

Some of the tricks used in verifying Eqs. (B3) were: (a) using V •B0 = 0 (necessary),
(b) eliminating factors of 1/2 by, for example, noting that

\didk [diitiMujBi] = dtdk tei(3i&)«,-£«l, (B4)
where dj = (d/dxj), etc. and sums over repeated indices are implied, and (c) consistently
associating the same indices with the same vectors within an equation; e.g., indices are
permuted so as to allow all terms in an equation to have the factors Bj, uy, &, and &.

APPENDIX C. ANALYSIS OF THE ORDERING SCHEME

We can demonstrate the inconsistencies related to our original ordering scheme by
examining two simple models.

Consider first a single particle moving in a static potential J7(x), i.e.,

x = -VU(x). (CI)

Allow the motion to be separated into a zero-order part Xo(t) and a perturbation £(£),
so that x(t) = xo(t) + £(*). We assume that there are zero-order flows Xo(t) # 0 and
zero-order forces xo(0 # 0. Since (d2/di2)(x0 + 0 = -W(xo + 0, we nave

xoM = -W(xo(*)), (C2)
and

l(t) = -£ •VVl7(xo(0) " i«: VVVC^(xo) +.... (C3)
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There is of course an exact energy conservation law for this system—multiplying
Eq. (CI) by x gives

^(iiJ +tf(x))=0,
which implies

\x2 + U(x) = £. (C4)

We now ask whether a conservation theorem exists for the energy associated with the
perturbation. There are two ways to derive an equation for the energy. The first is to
multiply Eq. (C3) by £. We then obtain

^e + «:VW(xo) = 0(|£|3),

i.e..

d '1*2^(^2) +«:VVCT(xo) =0, (C5)

to order |£|2.
The second method is to expand Eq. (C4) in orders of |£|:

J(*o +«2 +U(xo) + £•Vtf (x0) + J«: VVtf (xo) +... = £,
leading to, order by order in |£|:

Zero-order: \x2 +U(xo) = £(0), (C6)

First-order: xo•£+ £•VCT(xo) = £(1\ (C7)

Second-order: §£2 +±££:VV17(xo) = £™. (C8)

It is, of course, this second-order energy which is of interest. But if we differentiate
this expression with respect to time, we obtain

^{\k2) +«: VVtf(xo) +i«xo:VVV17(xo) =0, (C9)
which does not agree with Eq. (C5) when zero-order forces F0(xo) = - Vl7(xo) are present,
thus suggesting a problem with the expansion ordering. Note that Eq. (C3) relates the
acceleration of £ to a nonlinear force quadratic (and higher) in £. The structure of the
equations when a zero-order force is present requires us to make explicit the expansion of
£ itself in terms of its linear part:

^1) = ~e(1)-VV^(x0), (CIO)

£(2) = -l£<Oe(D: VVVCT(xo) - t™ •VW(xo), (Cll)
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where £ = £(1> + £(2) + 0(|£(1)|3). This ordering does not change the form of linear
equations; thus Eq. (C5), which was derived from a linear equation, remains intact. The
ordering changes the expansion of £™, however. We now have

Zero-order: \x2+ U(x0) = £(0), (C12)

First-order: xo •£(1) + £(1) •Vtf(xo) = £(1), (C13)

Second-order: xo •£(2) + £<2>. Vtf(xo) + ±£(1)2 + ±£(1)£(1):VVtf(xo) = £™. (C14)
Now differentiating Eq. (C14) yields

*o •£(2) +xo •e(2) +~(£e2)+«: VVCT(xo) + i££xo:VVV!7(xo)

+£(2) •W(x0) + £(2)x0: VW(xo) = 0,
which is just Eq. (C5) (with £ <-• £™) since

xo • £(2) + £(2) •VCT(xo) = 0,
from Eq. (C2), and

x0 •£(2) + £££xo:VVVtf(xo) +£(2)xo: VW(xo) = 0,
from Eq. (Cll). So Eq. (C14) is the correct form of the perturbation energy but is less
useful due to the presence of the £^2^s.

Now consider a simple fluid system represented by the equations

and

or

~+uVu = F, (C15)

^ +V-(nu) =0. (C16)
Again consider the evolution of the system to be composed of an unperturbed (zero-

order) part and a perturbation. In the unperturbed system, consider the fluid element
located at position x at time t. Define x + £(x,t) to be the location of the same fluid
element at time t in the perturbed system. With this definition of £(x,t), some careful
thought about the acceleration of the head and tail of the vector £, whose tail is being
carried along by the motion of an unperturbed fluid element, produces

(il+Uo *v) (If+Uo •ve)= (Fo+*F)(x+*»') -F°(x'*)' <C17)

(^+UoV)(S+u»-v«)=fF(x,+«-VFo
+ «F<2> + (• V4F*1' + ±«:VVFo

+ 0(|fIs). (C18)
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Order-by-order in |£| we obtain,

{§i+ Uo *V) (If +Uo've) =5F(1) +e'VF°' (C19)
0 =6F™ + £•V6F™ + i££: VVF0. (C20)

In fact it can be shown that both of these equations are tautologies when

Fo=^ +u0-Vu0, (C21)
6F(D =f?^l +Uq .V6u(i) +6u(i). Vu (C22)

ot

$F<2> =£^!!1 +Uo .V6u™ +W1). V*u<l> +6u™ •Vu0, (C23)
ot

where, as before,

6uil) =lf +Uo 'Ve ~*' VUo' (C24)
*u<2> =-£•V(^ +u0 •V£ -£•Vu0) - ±££:VVu0. (C25)

Nevertheless, as in the single particle case, we find inconsistencies with the perturbation
energy. When Eq. (C19) is multiplied by the linear quantity nQ(d/dt + u0 •V)£, we obtain

lno(|i+Uo.V£) ]+V.[in0uo(|f+u0.V£) ]
=n0 (j£ +uo •V£V (6?™ +£•VF0). (C26)

This equation should be right as it is analogous to Eq. (C5) in the single particle case; that
is, Eq. (C19) is a linear equation.

Now suppose the force in Eq. (C15) is conservative: F = -VU(x). Then 6F™ =
6F™ = 0. This produces an immediate contradiction in Eq. (C20) for a general potential
U{x). We would in fact expect £ to be affected by £££:VVF0, so the ordering £ =
£(i) + £(2) + ... is probably appropriate again. Then Eq. (C20) would be modified as

(| +uo •v) (^+u0 •V£<2>) =6F™[t™} +e(»). VFo
+6F™[£™, £(1)] +£(1) •V*F<l>[e(1)] +|£(1)£(1): VVF0. (C27)

and now there is no obvious difficulty. Note that the contradiction of ^££: VVFo = 0 is
eliminated if there are no zero-order forces.
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Now consider the energy for this system. Again, there is an exact conservation law:

d^ (±nu2 +ntf(x)) -I- V•(|nu2u +ntf(x)u) =0. (C28)

We have already shown in the original plasma system that expanding Eq. (C28) to
second order in |£| leads to an expression of the form:

d_
dt

i (** ^:2V 1n0££:VVtf(x) + V • [something] = 0, (C29)

but, again in contradiction, evaluation of Eq. (C26) with 6F™ = 0, F0 = -VU(x) yields

(lf +u°*ve) +5no«:VV<7(x)
^n0uo (|f+uo *V£J +in0u0££: VVtf(x)

the term on the right-hand side being the offending term. Here we have used

6n™ = -V •(£no),

and

*n<2> = ±VV:(££n0), (C32)

derived earlier. If £ must be ordered, as suggested above, Eqs. (C24), (C25), (C31), and
(C32) would be modified as

dt

+ V =£n0uo££:VVVtf(x), (C30)

5u(1) =^+uo-V£(1>-£(1).Vu0,
ot

(C31)

(C33)

d£<2>*uCa> = £111 +u0 •V£<2> - £<2> •Vu0 - £(1) •V6u™ - H™£™: Wu0, (C34)
ot

6n™ = -V •(e(1)no), (C36)

6n™ = -V •(£<2>n0) + iVV: (£(1)£(1)n0). (C36)
We have not verified that this kind of ordering produces consistent equations in the fluid
case, nor have we verified that a magnetic force of the form F = (V XB) x B/4irmno yields
inconsistent equations when ordering in terms of |£|. Both conjectures are likely, however,
in view of this analysis.

In summary, in the single particle case, ordering of £= £™ + £™ +... is required to
produce consistent expressions for the conserved perturbed energy. The resulting equation
is not immediately applicable within our analysis, due to presence of the £(2>'s. In the
fluid case, the ordering £ = £™ + £^2^ +... is required to remove two contradictions in
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the example of a static potential-derived force. All contradictions examined are removed
in both the particle and fluid case if there are no zero-order forces; in this case ordering
formally by |£| seems adequate.

APPENDIX D. PERTURBATION ENERGY CALCULATIONS

First order. The first-order energy perturbation is obtained by substituting first-order
expressions for the perturbed ion density and ion fluid velocity (Eqs. (14) and (17) applied
to the ion species) and perturbed magnetic field (Eq. (22)) into Eq. (37). We find

£™ =j dx - iv•(n0£i)mug +n0mu0 •(-^- +u0 •V£< - £< •Vu0 j
+?^ •V•(B0£e - £eB0) -V•(no*.W,J. (Dl)

Integrating by parts, assuming as before that surface terms vanish, and using the relation

Jdx[-\V- (nQZi)mul) =/ dx (±n0mti •Vug) =Jdx n0mu0 •(£; •V)u0, (D2)
to cancel a term, we obtain

fW =/ dx [„„muo •(^ +»o •V{.) -£« •((VX°°)XB° -nomV^)
or, using the unperturbed ion momentum equation,

£™ =jdx Lmuo •(^+u0 •Vfc) -n0mte •(?£• +uo •Vu0)]. (D4)
Second order. Calculation of the second-order perturbation energy is more involved;

thus we first split £™ = £$ + £2™ as described in the main text, and then define
£(2) = £(2) + UW + ^(2)^ where ^(2)^ UW^ and ^(2) m reSpectively the kinetic energy,
and magnetic and gravitational potential energy contributions to £ij. Calculation of£2
is similar to the first order calculations just outlined, since all terms are linear in £« . We
therefore describe just the calculation of <f1?1.

Considering first K™> we find:

(D3)

K™ =j dx [inom^uW)2 +\6n™mu2 +n0mu0 •6m™ +6n™mu0 •6u™],
=j dx \\n0m(6u™)2 +\6n™mu0

- n0mu0 •(££<£»: VVu0 +£» •V6u™) - V . (n0£;)mu0 •6vS% (D5)
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where here and in the following the subscript "1,1" refers to that part of the perturbed
quantity formally bilinear in £a. When the last term is integrated by parts, the last two
terms yield nom6u™ • (£» •V)u0. When combined with the first term, we obtain,

±n0m(6u™)2+n0m6u™. (£;. V)u0

=famf^ +u0 •V£, -&•Vu0) •(^+u0 •V£t +£, •Vuoj,
=in0mf| +u0 •V£t) - fam^i •Vu0)2. (D6)

Thus, when the remaining substitutions are made,

K™ =Jdx |jnom(^+uo•V£<) - \n0m(^ •Vu0)2
+ -mulVV: (n0£»£i) - -n0mu0 • (£»£,•: VVu0) • (D7)

The second and fourth terms of this expression simplify to (dj = (d/dxj), etc., sum over
repeated indices implied) :

-|n0m(£i •Vu0)2 - %n0muo •(£;£,•: VVu0)

= -5n0m[£J(dyuo,)£jfc(djkU0,) + u0,£y£jt6VdfcUo»]

= -^nomtjtkld^uoidkuoi)] = -£nom£y£jfedjdfcujk
= -in0£i£i:VV(«2i), (D8)

which, when integrated by parts two times, canceb the third term. Thus we obtain for the
second-order kinetic energy:

/C<2> =|<fxin0m(^+u„-V&)2. (D9)
The second-order magnetic field energy is found by evaluating the expression

8ff-/*(2i^+2^S). (mo)
Substituting the integral expressions for the perturbed magnetic field (Eqs. (22) and (23)),
we obtain

U<ff =/<**• ^{[V •(Bof,)|2 - 2[V •(B0«.)] •[V •(&Bo)] +[V •(f«Bo)]2
+B0 • [VV: (&&Bo)] - 2B0 •V • [€.(B0•V)&]}, (Dll)
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or, with the component indices displayed explicitly (sum over repeated indices implied),

-2ldj(Bj^)dk(^Bi) - (dkBMkBj(dj^))

-^Bidjd^j^Bi) + djUjBjdktikBi)]}. (D12)

For the first line in Eq. (D12), we obtain, using V •Bo = 0:

Jg a3(B,e,)afc(Bfce.) =j ^ (b0 •vu)\ (dis)
while for the second line, again using V • B0 = 0, we find

-j ~ dj(Bj£i)(dkik)Bi =-j ^ B0(V •£e) •(B0 •V)£e. (D14)
The third line is analyzed by applying the identity:

\n0(V •£)2 + \n0(djtk)(dktij) + £•V[V •(£n0)] - §££: Wn0 = \VV: (££n0). (D15)
Substituting for no components of the zero-order magnetic field B{ and for £ the electron
displacement £e, multiplying by 2?j, summing over t, and integrating, we find

j dx {-Bi£e •V[V •(teBi)] +£B,-£e£c: VVBt- +|BtVV: (£e£eBi)]} =
rfxB2[(v •£e)2 + (djtk)(dktj)]. (me)/

Integrating the first and third terms on the left-hand side by parts, we find for the terms
on the third line of Eq. (D12)

±/^{[V.(«„Bo)]J +Bo-(«.«.:VVBo)} =Ii;/«ix^[(V.Ws+EU^
L j,k

(D17)
Nowcombining Eqs. (D13), (D14), and (D17), we obtain the second-order magnetic energy:

(D18)

We can understand something of the nature of the terms appearing in the integral in
Eq. (D18) by tracing each back to the terms in the integral in Eq. (Dll). We find the
(Bo • V£e)2 term represents the square-first-order line-bending energy, while the second
term contains both second-order line-bending terms and cross terms between first-order
line-bending and first-order compressional terms.

The last term in the integral represents second-order magnetic compressional energy.
It is the only magnetic energy term remaining in the two-dimensional system oriented
perpendicular to Bq. In this system, Faraday's Law takes the same form as the continuity
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equation [8]. It is therefore not a coincidence that Eq. (D15), used in deriving the second-
order modification to the density Eq. (15), also appears here. Furthermore, to the extent
that the magnetic field behaves like a density through the form of Faraday's Law, it is not
hard to understand this last term as the second-order magnetic compression term, since
it comes from the second-order perturbation terms which resemble exactly terms obtained
from the second order expansion of the displacement-induced perturbation density.

Finally, we find the gravitational potential energy

U™ = fdx6n™m<f>g. (D19)

Substituting Eq. (15) with s = i and integrating twice by parts, we easily obtain

U™ =Jdx inom^^: VV*a. (D20)
By instead allowing s = e in Eq. (15), we also find a similar expression holds for the
electrons.

Combining the expressions for K™ (Eq. (D9)), U$ (Eq. (D18)), and Ug2) (Eq. (D20)),
we obtain Eq. (41). The expression for the entire second-order perturbed energy £™ is
then obtained by adding the expression for £2 , completing the derivation.
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