

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

GLOBAL QUERY OPTIMIZATH

by

Timos K. Selis

Memorandum No. UCB/ERL M86/19

3 March 1986

GLOBAL QUERY OPTIMIZATH

by

Timos K. Selis

Memorandum No. UCB/ERL M86/19

3 March 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

GLOBAL QUERY OPTIMIZATION

by

Timos K. Selis

Memorandum No. UCB/ERL M86/19

3 March 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

GLOBAL QUERY OPTIMIZATION

by

Timos K. Sellis

Department of Electrical Engineering and Computer Science
Computer Science Division

University of California
Berkeley, CA 9J720

Abstract

In some recently proposed extensions to relational database systems as well as in deductive

databases, a database system is presented with a collection of queries to process instead of just

one. It is an interesting problem then, to come up with algorithms that process these queries

together instead of one query at a time. We examine the problem of multiple (global) query

optimization in this paper. A hierarchy of algorithms that can be used for global query optim

ization is exhibited and analyzed. These algorithms range from an arbitrary serial execution

without any sharing of common results among the queries to an exhaustive search of all possi

ble ways to process all queries. Preliminary experimental results are also given.

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 83-0254. and by the National Science
Foundation under Grant DMC-8504833.

1. INTRODUCTION

To extend the benefits of the database approach to other than business data processing

areas, like artificial intelligence and engineering design automation, many researchers have defined

various extensions to existing database languages. Examples of these extended languages include

the language QUEL* [KUNG84], designed to support artificial intelligence applications, GEM

[ZANI83], to support a semantic data model, and the proposal of [GUTT84], for support of VLSI

design. A significant part of extended database languages is support for multiple command pro

cessing. In [SELL85] we have proposed a set of transformations and tactics for optimizing collec

tions of commands in the presence of updates. Here, we will concentrate on the problem of

optimizing the execution of a set of retrieve-only commands (queries).

There are many applications where more than one query are presented to the system in

order to be processed. First, consider a database system enhanced with inference capabilities

(deductive database system) [GALL78]. A single query given to such a system may result to

more than one actual queries that will have to be run over the database. As an example, consider

the following relation for employees

EMP (name,salary,experience,manager,dept_name)

Assume also the existence of a set of rules that define when an employee is well paid. We will

express these rules in terms of retrieve commands.

/* An employee ia well paid if he/ehe makes more than 40K */

Rule 1: retrieve (EMP.all) where EMP.salary > 40

/* An employee ia »«ll paid if he/ehe makea more than SSK
provided he/she haa no more than 5 yeara of experience */

Rule 2: retrieve (EMP. all) where EMP.salary > 35 and EMP. experience <5

/* An employee ia well paid if he/she makea more than SOK
provided he/she haa no more than S yeara of experience */

Rule 3: retrieve (EMP.all) where EMP.salary > 30 and EMP.experience <3

Then a query that asks

Ia Mike well paid?

will have to evaluate all three rules in order to come up with the answer. Because of the similari

ties that PROLOG [CLOC81] clauses have with the above type of rules, our discussion on multi

ple query processing applies to the optimization of PROLOG programs as well, assuming that

- 2-

secondary storage is used to hold a PROLOG database of facts. As a second example, consider

cases where queries are given to the system from various users. Then batching all users' requests

is a possible processing strategy. In particular, queries given within the same time interval r may

be considered to be processed all together (we will see in the following what "all together"

means). Finally, some proposals on processing recursion in database systems [NAQV84,IOAN86],

suggest that a recursive Horn clause should be transformed to a set of other simpler Horn clauses

(recursive and non-recursive). Therefore, the problem of multiple query processing arises in that

environment as well. However, it is more complicated because of the presence of recursive

queries.

Current query processors cannot optimize the execution of more than one queries. If given a

set of queries, the common practice is to process each query separately. There are generally many

possible ways of executing a query (access plans). For example, there may be a choice of indexes

to use, or a choice of strategies for executing a relational operator such as the join. Access plans

are simply sequences of such simple tasks as relation scans, index scans, etc. The query processor

chooses the cheapest among these plans and then executes it to produce the result of the query.

However, in the case where more than one queries are given at the same time there may be some

common tasks that are found in more than one of these queries. Examples of such tasks may be

performing the same restriction on the tuples of a relation or performing the same join between

two relations. Taking advantage of these common tasks, mainly by avoiding redundant page

accesses, may prove to have a considerable effect on execution time. This problem of processing

multiple queries and especially the optimization of their execution, will be the focus of this paper.

This report discusses in more detail the ideas of [SELL86] and is organized as follows. Sec

tion 2 presents an overview of previous work done in similar problems while Section 3 first defines

the query model that will be used throughout this paper and then presents a formulation for the

multiple (or global) query optimization problem. Section 4 presents our approach to the problem

and introduces through the use of some examples, algorithms that can be used to solve the global

query optimization problem. Then, Sections 5 through 7 present these algorithms in more detail.

Section 5 suggests an algorithm which finds a serial sequence for executing the queries with better

performance than any other serial execution which executes the queries in an arbitrary order.

Section 6 describes an algorithm that goes one step further by allowing the executions of the

queries to interleave, while Section 7 proposes a more general heuristic algorithm. Finally, in Sec

tion 8 we present some experimental results and the last section concludes the presentation of the

-3-

global query processing problem by summarizing our results and suggesting some areas for future

research.

2. Previous Work

Problems similar to the problem of multiple query processing have been examined in the

past in various contexts. Hall [HALL74,HALL76] for example, uses heuristics to identify common

subexpressions, especially within a single query. He uses operator trees to represent the queries

and a bottom-up traversal procedure to identify common parts. In [GRAN80] and [GRAN81]

Grant and Minker describe the optimization of sets of queries in the context of deductive data

bases and propose a two stage optimization procedure. During the first stage ("Preprocessor")

the system obtains at compile time (i.e. at the time the queries are given to the system) informa

tion on the access structures that can be used in order to evaluate the queries. Then, at the

second stage, the "Optimizer" groups queries and executes them separately as groups instead of

one at a time. During that stage common tasks are identified and sharing of the results of such

tasks is used to reduce processing time.

Roussopoulos in [ROUS82a] and [ROUS82b] provides a framework for interquery analysis

based on query graphs [WONG76], in an attempt to find fast access paths for view processing

(view indexing). The objective of his analysis is to identify all possible ways to produce the result

of a view, given other view definitions and ground relations. Indexes are then built as data struc

tures to support fast processing of views.

Other researchers have also recently examined the problem of global query optimization.

Chakravarthy and Minker [CHAK82,CHAK85] propose an algorithm based on the construction of

integrated query graphs. These graphs are extensions of the query graphs introduced by Wong

and Youssefi in [WONG76]. Using integrated query graphs, Chakravarthy and Minker suggest a

generalization of the query decomposition algorithm of [WONG76]; however, this algorithm does

not guarantee that the access plan constructed is the cheapest one possible. Kim in [KIM84] sug

gests also a two stage optimization procedure similar to the one in [GRAN81]. The unit of shar

ing among queries in Kim's proposal is the relation which is not always the best thing to assume,

except in cases of single relation queries.

The work of [FINK82] and [LARS85] on the problem of deriving query results based on the

results of other previously executed queries, is also related to the problem of global query optimi

zation. The solutions suggested are useful to our analysis because they include efficient

- 4-

algorithms to detect common subexpressions among queries. These subexpressions characterize

the data that is shared and accessed by more than one query. Jarke also discusses in [JARK84b]

the problem of common subexpression isolation. He presents several different formulations of the

same problem under various query language frameworks such as relational algebra, tuple calculus

and relational calculus. In the same article he also describes how common expressions can be

detected and used according to their type (e.g. single relation restrictions, joins, etc).

The main objective of our approach to multiple query processing is to use existing query

optimizers as much as possible. We would like to avoid making significant changes to the query

optimizer; instead, our goal is to provide a preprocessor that will reduce the execution cost as

much as possible. This preprocessing phase is introduced as an extra step between the optimizer

and the execution modules. However, since not all relational database systems have been

designed based on the same query processing concepts, we will differentiate between two alterna

tive architectures that can be used for a system with multiple query processing capability. Figure

1 illustrates these two approaches. Architecture 1 can be used with minimal changes to existing

Ql,Q2,-,Qn

LOCAL

OPTIMIZER

I

Global Access Plan

RUN-TIME

SYSTEM

Architecture 1

Ql,Q*»;Qn

I
GLOBAL

OPTIMIZER

Global Access Plan

I
RUN-TIME

SYSTEM

Architecture 2

Figure 1: Multiple Query Processing Systems Architecture

- 5-

optimizers. A conventional Local Optimizer generates one (locally) optimal access plan per

query. The Plan Merger is a component which examines all n access plans and generates a larger

plan, the global access plan, which is in turn processed by the Run-Time System. In many exist

ing systems queries are compiled and saved in the form of access plans (see for example System-R

[ASTR76] and POSTGRES [STON86]). It is then an interesting problem to derive procedures

that, given a set of such plans, identify a sequence in which they must be run in order to reduce

the I/O and/or CPU cost. More sophisticated procedures can also be used for that reason. For

example, Chakravarthy and Minker [CHAK85] describe an algorithm to process multiple joins

involving the same relation R by scanning R once and examining several restriction conditions in

parallel. Using such a procedure though implies rewritting the query processor which, as we

argued above, requires a major effort.

On the other hand, there are systems that do not store access plans for future reusal (e.g.

INGRES [STON76]). To make our framework general enough to capture these systems as well,

we introduce Architecture 2. The set of queries is processed by a more sophisticated component,

the Global Optimizer, which in turn passes the derived global access plan to the Run-Time Sys

tem for processing. Architecture 2 therefore is not restricted to using locally optimal plans

already stored in the system.

The purpose of the following sections is to exhibit a set of optimization algorithms that can

be used for multiple query optimization either as Plan Mergers or as Global Optimizers. The

algorithms to be presented differ on the complexity of the Plan Merger and on whether Architec

ture 1 or 2 is used. The trade offs between the complexity of the algorithms and the optimality of

the global plan produced are also discussed.

3. Formulation of the Problem

We assume that a database D is given as a set of relations {Rl,R2, • • •,Rm}, eacn relation

defined on a set of attributes (or fields). A set of queries Q = {QvQz, • • -jQn} on D is also
given. A simple model for queries is now described. A selection predicate is a predicate of the

form R.A op cons where R is a relation, A a field of R, op€{=,t^,<,<>>,>} and cons some

constant. A join predicate is a predicate of the form RX~A = R2.B where Rx and R2 are rela

tions, A and B are fields of Rx and R2 respectively. For simplicity we will assume that the given

queries are conjunctions of selection and join predicates and all attributes are returned as the

result of the query (i.e. we assume no projection on specific fields). Clearly the above model

- 6-

excludes aggregate computations or functions as well as predicates of the form

RVA op R2.B=RZ.C. Extending a system to support such predicates is possible but would

require significant increase in its complexity. The restriction on conjunctive queries only is not a

severe limitation since the result of a disjunctive query can be considered of as the union of the

results of the disjuncts, i.e. each disjunct can be thought as a different query. Equijoins are also

the only type of joins allowed among relations. This assumption is made in all the proposals men

tioned in the previous section and seems quite natural considering the most common types of

queries. Finally, not allowing projections enables us to concentrate on the problem of using

effectively the results of common subexpressions rather than the problem of detecting if the result

of a query can be used to compute the result of another query. Assuming projection lists, does

not increase the complexity of the algorithms that perform multiple query optimization. It only

increases the complexity of the algorithms that detect common subexpressions among queries.

The proposals of [LARS85] and [FINK82] provide such algorithms.

A task is an expression relname «— expr. relname is a name of a temporary relation used

to store an intermediate result or the keyword RESULT, indicating that this task provides the

result of the query, expr is a conjunction of either selection predicates over the same relation or

joins between two, possibly restricted, relations. This latter type covers queries that are pro

cessed not by performing the selections first followed by the join, but in a "pipelining" way. For

example, consider the following query on the relations EMP (name,age,dept_name) and

DEPT (dept_name,num_of_emps)

retrieve (EMP.all,DEPT.all)
where EMP.age < 40
and DEPT.num_of.emps < 20
and EMP.dept_name = DEPT.dept.name

One way to process the query is by scanning the relation EMP and having each employee tuple

with qualifying age be checked across the DEPT relation. There is no need in storing intermediate

results for both EMP and DEPT. To be able to include this kind of processing in our model, the

second type of join tasks was introduced. In the remaining discussion, tasks will be referred to as

if they were simply the expr part, unless otherwise explicitly stated.

Let us define now a partial order on tasks. A task *,- implies task tj (tj=#• tj) iff f,- is a

conjunction of selection predicates on attributes Alf A2, ..., A* of some relation R, tj is a con

junction of selection predicates on the same relation R and on attributes Alt A2, ..., At with l<k

and it is the case that for any instance of the relation R the result of evaluating <t- is a subset of

-7-

the result of evaluating tj.

A task t{ is identical to task tj (*,- 3 tj) iff

a) Selections : f,• =^^ £y and fy =^ f,•

b) *7otn« : tt is a conjunction of join predicates EXA.X = E2.BX, EX~A2 = E2.B2f..., ExJLk =

f?2.£?£ and ty is a conjunction of join predicates E\.AX = E'2.BXf E\.A2 = E'2.B2f...t

E'x~Ak = E'frBft where each of Ex, E2) E\ and E'2 is a conjunction of selections on a single

relation and Ex = j?^ and E2 = Z?'2

Based on the above definition for tasks we now define the notion of an access plan. An access

plan for a query Q is a sequence of tasks that produces the result of answering Q. Formally, an

access plan is an acyclic directed graph P=(VfE,L) (V, E and L being the sets of vertices, edges

and vertex labels respectively) defined as follows :

• For every task t of the plan introduce a vertex v

• If the result of a task ft- is used in task tj, introduce an edge «,—•vy between the vertices t/,-

and Vj that correspond to t{ and tj respectively

• The label L(v,) of vertex t/,- is the processing done by the corresponding task *,- (i.e.

relname «— expr)

For example, consider the following query on the relations EMP (name.age.dept.name) and

DEPT (dept.name,num.of.emps)

retrieve (EMP.all.DEPT.all)
where EMP.age < 40
and DEPT.num.of.emps < 20
and EMP.dept.name = DEPT.dept.name

One way to process this query is

TEMPI 4- EMP. age < 40
TEMP2 «- DEPT.num. of.emps < 20
RESULT *- TEMPI.dept.name = TEMP2.dept.name

The graph of Figure 2 shows the corresponding access plan.

Notice that there are generally many possible plans that can be used in order to process a query.

Next we define a cost function cost : V—*TL for tasks. In general this cost depends on both

the CPU time and the number of disk page accesses needed to process the given task. However,

to simplify the analysis, we will consider have only I/O costs. Including CPU costs would only

- 8 -

TEMPI —

EMP.age < 40

TEMP2*-

DEPT.num.of.emps < 20

RESULT «-

TEMP1.dept.name=TEMP2.dept. name

Figure 2: Example of an Access Plan

make the formulas more complex. Therefore,

cost(v{) = the number of page accesses needed to process task tt-

The cost Cost(P) of an access plan P is defined as

Cost(P)= 2Jcost(vi)
v,ev

We will refer to the minimal cost plans for processing each query Qt- individually, as locally

optimal plans. Similarly, we use the term globally optimal plan to refer to an access plan that

provides a way to compute the results of all n queries with minimal cost. The union of the

locally optimal plans is generally different than the globally optimal plan. Finally, for a given

query Q, Bestcost(Q) gives the cost of the (locally) optimal plan P. Hence, Bestcost(Q) =

mm[Cost(p)\, where P is the set of all possible plans that can be used to evaluate Q.
p€P

Let us now consider a system that given a set Q of queries it is required to execute them

with minimal cost. According to the above definitions, a global access plan is simply a directed

labeled graph that provides a way to compute the results of al£ n queries. Based on this formula

tion, the problem of global query optimization becomes

Given n sets of access plans S,, S2, ..., Sn, with Si={Pix, Pi2, ..., Pik.} being the set
of possible plans for processing Qif 1<i><n,

Find a global access plan GP by "merging "n local access plans (one out of each set
Si) such that Cost(GP) is minimal

- 9-

The Plan Merger or the Global Optimizer of Figure 1 performs the "merging" operation men

tioned above. It is the purpose of the following sections to define this operation and derive algo

rithms that find GP.

4. A Hierarchy of Algorithms

The primary source of redundancy in multiple query processing is accessing the same data

multiple times in different queries. Recognizing all possible cases where the same data is accessed

multiple times requires in general a procedure equivalent to theorem proving, including retrieving

data from the database. Our intention here is to detect common subexpressions looking only at

the logical expressions used in the descriptions of queries, that is by simply isolating pairs of

expressions ex and e2 where ex => e2. Therefore, detection of sharing is done at a high level

using only the query expressions (qualifications) and without going to the actual data stored in

the database. For example, ex may be EMP.age < 30 and e2 may be EMP.age < 40. Then

ex =#> e2. However, we do not consider cases where e2 may be EMP.dept.name = "shoe" and it

happens in the specific instance of the database that all employees under 40 years old are the shoe

department. Unless such a rule is explicitly known to the system in the form of an integrity con

straint or functional dependency, it is not possible to detect that ex=^ e2 without looking at the

actual data stored [JARK84a,CHAK84,CHAK86]. Hence, query expressions are considered to be

the only source for detecting common subexpressions. Because several algorithms have been pub

lished in the past on the problem of common subexpression isolation [ROSE80,FINK82,LARS85]

we will not attempt here to present a similar algorithm. It is assumed that a procedure which

decides, given two expressions e1 and e2, if ex =^ e2 or e2 =^ ex, is available.

Second, as it was stated in the previous section, many systems store in the database optimal

local access plans that have been produced in the past (e.g. System-R [ASTR76] and POSTGRES

[STON86] choose to do so). Because the system cannot afford to store more than one plan for

each query, it stores only locally optimal access plans. Then, if a set of queries is given, there is

no need to generate new plans for those queries that have precomputed plans already stored in

the database. However, for the rest of the queries, optimal plans are produced and saved for

future reusal. When both precomputed and newly generated plans are available the global access

plan is derived.

The various algorithms that can be used for global query optimization are grouped in a

hierarchy shown in Figure 3. The reason the algorithms are organized in such a hierarchy is to

- 10-

(AS)

(BS)

P>)

(HA)

ARBITRARY SERIAL EXECUTION

BETTER SERIAL EXECUTION

DECOMPOSITION INTO

SMALLER QUERIES

HEURISTIC ALGORITHM (A*)

Figure 3: A Hierarchy of Multiple Query Processing Algorithms

indicate the interesting trade off between the time spent for optimization and the cost of execut

ing the resulting global access plan. As we descend the hierarchy, the complexity of the algorithm

increases while the access plan cost decreases. Algorithms AS, BS and D consider only access

plans that are locally optimal. As mentioned above, the locally optimal plan for executing a query

Q is derived by considering Q alone. Algorithm AS (Arbitrary Serial Execution) simply exe

cutes these plans in an arbitrary order. This corresponds to Architecture 1 of Figure 1 with the

Plan Merger absent, i.e. no optimization is performed. Algorithm BS (Better Serial Execution)

preprocesses the plans and generates a better order of execution so that intermediate results (tem

poraries) are reusable. In this case the Plan Merger of Figure 1 simply rearranges the order in

which the plans are processed. Notice that in both algorithms AS and BS the unit of execution

is a whole query, i.e. the second query is processed after the first one has been totally processed.

Algorithm D (Decomposition) presents a different paradigm. A query is decomposed into

smaller subqueries which now become the unit of execution. Therefore, a query is not processed

as a whole but rather in small pieces, the results of which are assembled at various points to pro

duce the result. As an example why D might be a better algorithm than BS, consider the follow

ing database,

- 11 -

EMP (name, age,salaryJob, dept. name)
DEPT (dept.name,num.of.emps;
JOB (job,project)

with the obvious meanings for EMP, DEPT and JOB. We also assume that there are no fast access

paths for any of the relations, and that the following queries

(Qx) retrieve (EMP.all,DEPT.all)
where EMP.age < 40
and DEPT.num.of.emps < 20
and EMP.dept.name = DEPT.dept.name

(Q2) retrieve (EMP.all.DEPT.all)
where EMP.age < 50
and DEPT.num.of.emps < 10
and EMP.dept.name = DEPT.dept.name

are given. If we run either Qx or Q2 first we will be unable to use the intermediate results from

the restrictions on EMP and DEPT effectively. However, the following global access plan is more

efficient

retrieve into tempEMP (EMP.all)
where EMP.age < 50

retrieve into tempDEPT (DEPT.all)
where DEPT.num.of.emps < 20

retrieve (tempEMP.all,tempDEPT.all)
where tempEMP.age < 40
and tempEMP.dept.name = tempDEPT.dept.name

retrieve (tempEMP.all.tempDEPT.all)
where tempDEPT.num.of.emps < 10
and tempEMP.dept.name = tempDEPT.dept.name

because it avoids accessing the EMP and DEPT relations more than once. It is drastically more

efficient in the cases where restrictions reduce the sizes of the original relations significantly. The

function of the Plan Merger, in the case of algorithm D, is to "glue" the plans together in a way

that provides better utilization of common temporary (intermediate) results.

Finally, algorithm HA (Heuristic Algorithm) is based on searching among local (not neces

sarily optimal) query plans and building a global access plan by choosing one local plan per query.

Architecture 2 of Figure 1 applies to this case. The effectiveness of algorithm HA is illustrated

with the following example. Suppose we have the queries

(Qz) retrieve (JOB.all.EMP.all,DEPT.all)
where EMP.dept.name = DEPT.dept name
and JOB.job = EMP.job

(Q4) retrieve (EMP.all.DEPT.all)
where EMP.dept.name = DEPT.dept.name

-12-

with optimal local plans

(Pz) retrieve into TEMPI (JOB.all.EMP.all)
where JOB.job = EMP.job
retrieve (TEMPI.all.DEPT.all) ,
where TEMPI.dept.name = DEPT.dept.name

(P4) retrieve (EMP.all,DEPT.all)
where EMP.dept.name = DEPT.dept.name

respectively. Notice that Pz and P4 do not share the common subexpression

EMP.dept.name=DEPT.dept.name. Algorithm HA considers in addition to Pz the plan that

processes the join EMP.dept.name=DEPT.dept.name. It also uses some heuristics to reduce the

number of permutations of plans it has to examine in order to find the optimal global plan. All

the above algorithms are examined in more detail in the following three sections.

5. Serial Execution

Algorithms AS and BS of Figure 3 are based on some serial execution of the given queries

Qit Q21—J Qn- As stated in the previous section we only consider the locally optimal plans Pit

l<t<n. In the first case no restrictions are imposed on the order in which the queries are pro

cessed; that is what a conventional query processor would do. In the second case though some

simple preprocessing is done aiming to better performance.

5.1.1. Arbitrary Serial Execution

In Algorithm AS the sequence in which the queries are run is chosen arbitrarily. We assume

that all queries are processed without taking advantage of any common tasks that they may

share. The global plan GP that is produced is simply the concatenation of the locally optimal

plans for the queries in an arbitrary way. Therefore, for any order of processing S =

\Q%i Qi7 ' ' ' Qinft w»th Q,fc€Q and all ik distinct, the cost of the global access plan will be

Cost(GP) = ZJBestcos^Qi)
y=i

As an example, consider the following queries Qs and Qa

(Qs) retrieve (EMP.all,DEPT.all)
where EMP.age < 40
and EMP.salary < 10
and EMP.dept.name = DEPT.dept.name

(Q8) retrieve (EMP.all.DEPT.all)
where EMP.age < 40
and EMP.dept.name = DEPT.dept.name

- 13-

Assume also that the sizes of the initial relations and temporary results are as follows

size (EMP) = 100 pages
size (DEPT) = 10 pages
size (EMP.age<40) = 20 pages
size (EMP[age<40 and salary < 10]) = 10 pages

It is also assumed that the local plans for Q$ and Q6 store temporaries for the above restrictions.

Then, processing S would require 110+Cy(10,10) page accesses for Qs and 120-K7y(20,10) page

accesses for Q6, where Cj(a,b) is the cost of processing a join between two relations of sizes a and

b pages. Hence, the total cost would be 230+C;(10,10)+C;(20,10) page accesses.

The above algorithm does not consider at all of reusing results that are produced as inter

mediate (temporary) relations. A simple extension would be to keep temporary relations after

they are used so that subsequent queries may use them. Better than that, with some simple

preprocessing we can find a serial execution that makes use of such temporary results. The next

subsection presents such an approach.

5.1.2. Better Serial Execution

The goal of algorithm BS is to look at the optimal local plans and derive a serial execution

schedule S that makes use of common subexpressions. Checking if a given temporary result can

be used by another query is done through the procedure proposed in [FINK82].

The first step in deriving the execution schedule S builds a directed graph that will eventu

ally suggest S using the directed paths of the graph. This kind of graph is very similar to the

precedence graphs used in concurrency control [ULLM82] and it is used to indicate how the read

set of one query is related to the read sets of other queries. First, queries that possibly have com

mon subexpressions are identified. If some query Q,- does not share any of its input relations with

any other query, it is put first in the sequence S. These queries are not amenable to any optimi

zation other than what the locally optimal plan suggests. For the rest of the queries we define the

following directed labeled graph QG(V,E,L), with V being the set of vertices, E the set of edges

and L a set of labels associated with edges

• For each plan P,(V;-,E,-,Lt) a node qr,- is defined

• A directed edge q{-+qj is introduced if

a) Proper Implication : There are v,€V;- and v.-gV} such that Lj(vj)=^Li(vi) and
LiM*?^ Lj(vj)

- 14-

b) Identical Nodes : There are v,-€V; and t/yGVy such that Ly(vy) s I^*(vt*) and •<j

• Assume that edge ft—*qfy is introduced because of nodes v,- of P,- and Vj of Py respectively.

Then the label of the edge qr,—>qj is the savings in the cost of executing Lj(vj) given the

result of L{(v{). This cost is estimated assuming that one or more of the relations used in t/y

are substituted by the temporary relation that is created in the task t/,-.

Edges of type (a) are introduced to indicate which queries (tail of an edge) can be used in the

evaluation of other queries (head of an edge). The second rule for edge definition is introduced to

break ties between identical expressions in a specified manner. Algorithm BS then proceeds in

the following way :

[1] If multiple edges with the same direction are found between two nodes <?,- and qj

replace them with a single edge with label the sum of the labels of the previous

edges.

[2] If the resulting graph is acyclic then the execution order S is derived from the

directed paths that are imposed on the graph.

[3] If the resulting graph has cycles, these are broken by omitting a set of edges with

minimal sum of labels. S is then produced as in [2].

Let QG'(V,E',L) be the resulting graph. The last step of the above algorithm is a well known

NP-complete problem, known as "the feedback arc set problem" [GARE79]. However, in multi

ple query optimization the graph will have few nodes equal to the number of queries that access

common data and not many cycles. Therefore, this problem has only minor effect on the perfor

mance of the algorithm. A simple analysis shows that the formula for computing the estimated

cost of the global plan imposed by the sequence S is

Cost(GP) = £Bestcost(Qi)- £L(e)
»'=1 eeE?

n

= £JBestcost(Qi)— £ na>savings(s)
»=1 e€CS

where CS is the set of common subexpressions s found among the queries and used in the final

graph QG', n8 is the number of times the result of a common subexpression s is used in the final

sequence and savings(s) is the cost that is saved if temporary results instead of ground relations

are used. That cost is defined as follows:

-15-

Let R be a relation and sx and s2 two subexpressions defined on R such that s2 can be pro

cessed using the result of sx instead of R. Let also CR be the cost of accessing R to evaluate

sx and C9l be the cost of accessing the result of sx to evaluate s2. Then

savings(s2) =
CR—C$X if 82=>8l

Cfl+C*, if «2s«i

In order to construct graph QG, the above algorithm requires time in the order of JJ IV; I,
»=i

where /:= I V"I is the number of vertices of graph QG and V^- are the sets of vertices for plans

Pit l^1^^- Step [3] is the most expensive step and in the worst case requires time exponential

on the number of the edges.

Let us show with an example how BS works. Suppose that the queries Qs and QQ of the

previous subsection are given. The directed graph constructed is shown in Figure 4.

(je) \qs)

Figure 4: QG Graph for Queries Qs and Q6

The edge q$-*qs is introduced because [EMP.age < 40 and EMP.salary < 10] =^> EMP.age

< 40. Therefore the serial execution will be S={Qq Qs} which uses 80 page accesses less than
an arbitrary serial execution which was seen in the previous section, for a savings of 35%.

To give an example where a cyclic graph QG may occur, consider queries Qx and Q2 of sec

tion 3

(Qx) retrieve (EMP.all.DEPT.all)
where EMP.age < 40
and DEPT.num.of.emps < 20
and EMP.dept.name = DEPT.dept.name

(Q2) retrieve (EMP.all.DEPT.all)
where EMP.age < 50
and DEPT.num.of.emps < 10
and EMP.dept.name = DEPT.dept.name

with optimal local plans

(Pi) retrieve into tempEMPl(EMP.all)
where EMP.age < 40

retrieve into tempDEPTl(DEPT.all)

-16-

where DEPT.num.of.emps < 20

retrieve (tempEMPl.all.tempDEPTl.all)
where tempEMPl.dept.name = tempDEPTl.dept.name

(P2) retrieve into tempEMP2(EMP.all)
where EMP.age < 50

retrieve into tempDEPT2(DEPT.all)
where DEPT.num.of.emps < 10

retrieve (tempEMP2.all.tempDEPT2.all)
where tempEMP2.dept.name = tempDEPT2.dept.name

and sizes of relations and intermediate results

size (EMP) = 100 pages , size (DEPT) = 10 pages

size (tempEMPl) = 20 pages , size (tempEMP2) = 40 pages

size (tempDEPTl) = 3 pages , size (tempDEPT2) = 5 pages

Figure 5 shows the QG graph built for these queries. The edge qx—*q2 is introduced because

tempDEPT2 can be derived from tempDEPTl, while the edge q2—*qx is introduced because tem

pEMPl can be derived from tempEMP2. The cycle is broken by removing the edge qx—*q2 for a

total savings of 60 page accesses.

Although algorithm BS provides better plans than AS it still does not take advantage of all

common subexpressions because of the requirement that queries must be run in some order and

no interleaving is possible. In the next section we present another approach which takes advan

tage of all common subexpressions that can be identified in locally optimal plans.

6. Decomposition Algorithm

If query processing is done based on creating temporary intermediate relations, then it is

known from existing algorithms [WONG76] that it is beneficial to break the query down to

smaller and simpler subqueries. In the case of global query optimization, a similar approach

seems promising also. Relaxing the assumption of the previous section which forced each plan to

60

Figure 5: QG Graph for Queries Qx and Q2

-17-

be processed totally before other plans start being processed, we will examine here the possibility

of interleaving the execution of various access plans. Algorithm D (Decomposition) takes an

approach based exactly on this idea of interleaved plan execution.

The main idea is to decompose the given queries into smaller subqueries and run those in

some order depending on the various relationships among the queries. Then, the results of vari

ous subqueries are simply assembled to generate the answers to the original queries. The only

restriction imposed is that the partial order defined on the execution of tasks in a local access

plan, must be preserved in the global access plan as well. As it was the case in the previous algo

rithms, we consider only locally optimal plans. A final assumption made for algorithm D is that

temporary intermediate results are replacing relations used in tasks and this is done without

changing the operations performed in the local plans. That is, the only transformation allowed is

renaming of input relations. This restriction makes the global access plan produced by D easier

to derive. Allowing more complex transformations on query plans in order to achieve even better

utilization of temporary results is also possible and is described in the context of the heuristic

algorithm of the following section.

Algorithm D proceeds as follows. First, as in BS, the queries that possibly overlap on some

selections and joins are identified by checking the ground database relations that are used. For

all queries Q,-€Q that overlap with some other queries, we consider the corresponding plans P,-

(local access plans) and define a directed graph GP(V,E,L) (global access plan) in the following

way

• V=UV;
*=i

• E= \JE{
»=i

• For every Vj-eV", L(v,) = Lt(v,)

GP is in a sense the union of the local plans. We also define a function Res : Q—*V such that

Res(Qi)=vif where v,- is the node of plan P,- that provides the result to Q,-. Based on this graph,

the decomposition algorithm performs some simple steps that introduce the effects of sharing

among various tasks. The main idea is to avoid accessing the same data pages multiple times.

Hence, the transformations that are done on the graph are based on changing the input relations

to subqueries, to previously computed temporary relations. Figure 6 illustrates the basis of our

- 18-

transformations. In the following figures we use nemps for num_of_emps and dept for

dept^name. The temporary relation TEMPI created by subquery SQX can be further restricted to

give the result of subquery SQ2 (SQ2=$> SQ x). Therefore, TEMPI can be used as the input to

that last subquery, instead of EMP. This is accomplished by adding a new edge from the node

representing SQX to the corresponding node for SQ2. Also the relation name in SQ2 is changed

to TEMPI.

Formally algorithm D proceeds as follows. After building the graph GP, the following

transformations are performed in the order they are presented

[1] Proper Implications : Let PI(v{) = {vj IL(v{) => L(vj) and L(vj) =f&> L(v{)}.
For a given task t;,-, P/(v,) gives the set of tasks vj, the results of which can be used

by Vf as inputs instead of other base relations. Let ct«6Pr(f/,*) be the task such that

V v;€P/(vt), L(c,-)=^L(vy) (if more than one such task exists, let c,- be the one

belonging to the plan P* with the least k). In other words e,- is the strongest condi

tion that can be performed on some input relation(s) so that the result of this condi

tion can still be used to answer v,-. Then, replace the occurrences of base relations

used in tasks t/t- with the corresponding temporary relations TEMP^ found in the

SQ2=$>SQX

Subquery Subquery Subquery Subquery

SQi SQ2 SQX SQ2

TEMPI <-

EMP.age < 40

Rest of Plan

TEMP2<- .

EMP.age < 30

TEMPI 4- TEMP2<

EMP.age < 40 TEMPI.age < 30

i t * f

Rest of Plan Rest of Plan

Figure 6: Basic Merge Operation

Rest of Plan

- 19-

tasks C{=[TEMPk-*—expr]. This is accomplished by adding an edge c,—*>v,- and

changing Z/(vt) by substituting the relation name involved in the selection or join to

the name of the temporary relation which holds the result in L(c{) (i.e. TEMPk).

[2] Identical Nodes : In the case of nodes that produce identical temporary relations a

simple step is used to compute that temporary relation result only once and then

change relation names to the one selected to hold the result. First, the equivalence

classes C,- are identified, each composed of nodes from V, such that for every

Vj,vk£Ci, L(vj) s L(vk). Select the vertex Vj belonging to the plan Pj with the
least index j as the representative c,- of class C,-. Then, for each equivalence class

Ci, remove from the graph GP all nodes VjEQ—{c,} and substitute each edge

Vj-+vk with a new edge c,—>vk. Let L(vk)=[TEMPk*-exprkl\, for all such vk. Also

let e,=[72£MPl<-ea:prt]. Change all occurrences of relation name TEMPk in vk to

TEMPf. Finally, if for some query Qm, Vj = Res(Qm) and v;€C,-, set Res(Qm) to

C{. This last step makes sure that identical final results are never computed more

than once.

[3] Recursive Elimination : Because steps [1] and [2] may have introduced new nodes

that are now identical, step [2] is repeatedly applied until it fails to produce any

further reduction to the graph GP. Example of such a case is a join performed on

two relations that are restricted with identical selection clauses. Step [2] will merge

each pair of identical selections to a single one and then in the next iteration the two

join nodes will also be merged into a single node.

The result of the above transformation is a directed graph GP* which is guaranteed to be acyclic

if the initial graphs P,- are acyclic. This is due to the fact that any transformation performed on

the graph in all cases adds new edges that go always from less to more restrictive tasks. Therefore

a cycle is not possible, for it would introduce a chain of proper implications of the form

vx=$>v2=^> • - =^vx. Finally, using the directed arcs of GP1 a partial order on the execu

tion of the various tasks can be imposed. That is the global access plan that algorithm D sug

gests. The function Res also gives the nodes that hold the results for all queries.

To give an example of the algorithm, Figures 7, 8 and 9 show the initial access plan graphs,

the graph GP after transformation [1] and the final global access plan graph (as a sequence of

operations) respectively for the two queries Qx and Q2 of section 3.

-20-

TEMPI «—

EMP.age ^C 40
TEMP2*—

DEPT.aemps < 20

TEMPI +—

EMP^ge < 60
TEMP2«—

DEPTuiemps < 10

RESULT*—

TEMPI .dept *= TEMP2.dept

RESULT 4—

TEMPI .dept = TEMP2.dept

Figure 7: Initial Global Access Plan

TEMP21 «—

DEPT.nempfl < 10

TEMP2«—

DEPT.cemp0 < 20

TEMPll <—

EMP^ge < 40

RESULT"*—
TEMPI .dept = TEMP21.dept

RESULT «—

TEMPI 1.dept s= TEMP2.dept

Figure 8: Global Access Plan after Transformation [1]

retrieve into TEMPI (EMP.all)
where EMP.age < 50

retrieve into TEMP2 (DEPT.all)
where DEPT.num.of.emps < 20

retrieve into TEMPll (TEMPI.all)
where TEMPI.age < 40

retrieve into TEMP21 (TEMP2.all)
where TEMP2.num.of.emps < 10

retrieve (TEMPll.all.TEMP2.all)
where TEMPll.dept.name = TEMP2.dept.name

retrieve (TEMPI.all.TEMP21.all)
where TEMPI.dept.name = TEMP21.dept.name

Figure 8: Final Global Access Plan

Estimating the cost of the global plan imposed by the graph GP*, we have

- 21-

Cost(GP,)= X!Bestcost(Qi) - £ ng.savings(s)
*'=1 a€CS

where CS is now the set of a/£common subexpressions found in the local access plans and n8 and

savings(s) are defined in the same way as in the previous section. For example, for the queries

Qx and Q2, Cost(GP') = 223 + Cy(20,5) + C,(40,3), where Cj(a,b) is the cost function for a join

between two relations as introduced in the previous section. This cost represents a savings of 65

page accesses compared to an arbitrary serial execution. Concerning the complexity of the algo

rithm, it can be observed that steps [1] and [2] of the above algorithm require time in the order of
k

JJ I Vj- | , where k is the number of queries represented by their representative plans in graph
»=i

GP and Vj- is the set of vertices for plans P,-, l<t <k. The number of times N step [2] is exe

cuted as a result of the recursive elimination of common subgraphs, generally depends on the size

of common subexpressions and in the worst case is the depth of the longest query plan. The total
k

time required by the algorithm is therefore in the order of NJJ \ Vj- | .

We now move on to discuss the most general algorithm that can be used to process multiple

queries. As mentioned in the beginning of this section, the heuristic algorithm to be described

also captures more general transformations than the ones allowed here (simple relation name

change).

7. Heuristic Algorithm

As it was illustrated through an example in section 4, merging locally optimal plans to pro

duce the global access plan is not always the optimal strategy. The main reason is that there are

more than one possible plans to process a query, yet the algorithms presented in the previous sec

tions consider only one of them, i.e. the optimal in terms of execution time. Using suboptimal

plans may prove to be better. Grant and Minker in [GRAN80] present a Branch and Bound algo

rithm [RICH83] that uses more than locally optimal plans. One assumption they make is that

queries involve only equijoins while all selections are of the form Rji=cons. This section

presents a similar algorithm which is defined as a state space search algorithm (A* [RICH83])

with better average case performance than the one of [GRAN80]. To simplify the presentation of

the algorithm we will also make here the assumption that all queries have equality predicates. At

the end of the section extensions that can be made to include more general predicates in queries

are discussed.

- 22-

As shown in Figure 1, the Global Optimizer receives as input a set of queries

Qr=\Qi,Q2, ' ' ' ,Qnf- Then for each query Qi a set of possible plans that can be used to pro

cess that query is derived. Let that set be S,={Ptl, P,-2, ..., P»*,}- For a given query Qi, St- con

tains the optimal plan to process Qi along with all other possible plans that share tasks with

plans for other queries. For example, for the two queries Qz and Q4 of section 3, in addition to

the plans P3 and P4 presented there the plan

(P32) retrieve into TEMPI (EMP.all.DEPT.all)
where EMP.dept.name = DEPT.dept.name

retrieve (JOB.all.TEMPI all)
where JOB.job = TEMPI.job

should also be considered for query Qz because it shares the join

EMP.dept.name=DEPT.dept.name with P4. Hence, the sets of plans S3 and S4 will be

S3={P3,P32} and S4={P4}. Generally, this algorithm considers optimizing a set of queries

instead of a set of plans, which was the case with algorithms BS and D. Considering more than

one candidate plans per query has the desirable effect of detecting and using effectively all com

mon subexpressions found among the queries.

This section is organized as follows: in the first subsection a state space is defined and an A*

algorithm that finds the solution by searching that space is described. Then subsection 7.2

presents a preprocessing step that can be applied in order to improve the average case perfor

mance of the algorithm. Finally, the last subsection discusses the performance of the algorithm

and suggests some possible extensions.

7.1.1. The Heuristic Algorithm

In order to present an A* algorithm, one needs to define a state space S>, the way transi

tions are done between states and the costs of those transitions.

Definition 1 : A state s is an n-tuple <Pi,P2, • • • ,Pn>t where p,-6{NULL} US,-. If

Pi = NULL it is assumed that state s suggests no plan for evaluating query Q{.

Definition 2 : Let sx=^<px,p2t . . . ,pn> and a function next : $ -* 2Z with

next(sx) = min{/ I py=NULL} if {j | py=NULL}^0

A transition T(si,s9) from state sx to s2 exists iffsx has at least one NULL entry and

«2=<9i,<72> • • • ><ln>> ^h qi=Pi for 1<i <next(sx), ?„«*(,,)6 Snert(tl) and

-23-

gy=NULL, for next(sx)+l <j<n.

Definition 3 : The cost tcost(t) of a transition t=T(sx,s2) is defined as the addi

tional cost needed to process the new plan qm introduced at t (according to

Definition 2), given the (intermediate or final) results of processing the plans of sx.

From the above definition it can be seen that the way transitions are defined, the first NULL entry

of a state vector, say at position i, will always be replaced by a plan for the corresponding query

Qi. Finally, we define the initial and final states for the algorithm. The state

«o=<NULL,NULL, . . . ,NULL> is the initial state of the algorithm and the states

sf = <PvP2> • • • tPn> with P,'7^NULL, for all t, are the final states.

The A* algorithm starts from the initial state s0 and finds a final state sF such that the cost

of getting from s0 to sF is minimal among all paths leading from s0 to any final state. The cost

of such a path is the total cost required for processing all n queries. For brevity it will be

assumed that each plan is an unordered set of tasks instead of a directed graph. In order for an

A* algorithm to have fast convergence, a heuristic function h is introduced on states [RICH83].
This function is used to prune down the size of the search space that will be explored. Such a

function h:$ —7Z was introduced in [GRAN80] in the following way : let s= <pX)p2,...,pn> be

some state. Then

n

h(s)=^ 27 m!n [est_cost(Pij) -£nt.est_cost(t)]
i=next($) * t

where t are common tasks found in plans already in s and nt is the number of times task t

appears in these plans. The function est_cost is defined on tasks as follows

est_cost(t) = —-
ni

where nq is the number of queries the task t occurs in. The idea behind defining such a function

is that the cost of a task is amortized among the various queries that will probably make use of it.

For a plan p, it is assumed that

est_cost(p)=* JJest^cost(t)

If it is true that est_cost(p)<Cost(p) then the convergence of the A* algorithm is guaranteed

[RICH83]. Therefore, one significant issue is to define a correct function est_cost, "correct"

- 24-

meaning that it underestimates the actual cost. Let us give an example, also drawn from

[GRAN80], which will motivate the discussion of the following subsection.

Two queries Qx and Q2 are given along with their plans : Pn, P12, P2i, P#, P^- We will

use t* to indicate the k—th task of plan P,y. The table below gives the costs for the tasks

involved in each plan

Plan Task Cost Task Cost Task Cost Total

Pn «A 40 t2 30 tz 5 75

Pl2 'A 35 t2*12 20 55

P21 «i 40 t2C21 10 t3*21 5 55

P22 *22 10 t2l22 30 t3l22 10 50

P2Z *23 30 t2l23 20 50

and the identical tasks are

t1 =*tlcn — f21 t2 =t2*n — C22 t2 =t2*12 — l23

Given the actual task costs and the sets of identical tasks, the estimated costs (est_cost) for these
tasks are

Task «i <t2i tz «i t2C12 t2C21 C21 *22 t3*22 *23

Estimated

Cost
20 15 5 35 10 10 5 10 10 30

and the estimated costs for the plans are,

Plan />!! P12 ^21 P22 P23

Coalesced

Cost
40 45 35 35 40

Based on the above numbers and the construction procedure outlined, Figure 10 shows the search

space S along with the costs of transitions between states and estimated costs of going from

intermediate to final states.

- 25-

<NULL,NULL>

75

(0)
<Pn,NULL>

55

<P12,NULL>
(30)

Figure 10: Example Search Space for A* Algorithm
(numbers in parentheses show estimated costs)

Tracing the A* algorithm we get

s0 = <NULL,NULL> / * expand state «0 */
8X = <Pn,NULL> /* expand state sx */
s2 = <P21,NULL> 1* expand state s2 */
8jr = <Pi2>^>23^> 1* the final solution */

yielding <Pi2,P23> as the best solution. Notice that with this set of estimators the algorithm

exhaustively searches all possible paths in the state space. It is exactly this bad behaviour of the

algorithm that we will try to improve by examining more closely the relationships among various

tasks. For example, in the case presented above, it is clear right from the beginning that plan Pxx

will not be able to share both of its tasks t^ and t2x with plans P21 and P22 respectively, since

only one of these two latter plans will be in the final solution (final state). Therefore, the value

est_cost(Pxx) is less than what could be predicted after looking more carefully at the query plans.

It is a known theorem in the case of A* algorithms, that the higher the estimator values the

- 26-

faster the convergence [RICH83]. Hence, estimating the cost function better will enable the algo

rithm to converge faster to the final solution.

7.1.2. The Modified Algorithm

The goal of this subsection is to describe a preprocessing phase which provides a way to

compute a better cost estimation function. Suppose that n sets of plans Sx, S2, ..., Sn are given,

with S^IP,!, P,-2, ..., P,a,}. Assume also that the pairs of tasks *,GPtf and tjEPjm such that

ti = tj are known. We then define a directed graph G(V,E) in the following way

• For each plan P,y that has a task t£. identical to task(s) used for evaluating other

than the t-th query, introduce a vertex v,-y

• For each pair t^EP/Ut *™€PM of such identical tasks there is an edge connecting the

two vertices (vjy—>vM) if there is no other plan P^ with a task t* such that t • = t'

Given the above definition a unique graph can be built based on a set of plans and a set of identi

ties among tasks. Notice that not all plans are needed to build the graph. Only those having

identical tasks among them are considered. Also, there may be more than one directed edge

(vij—*vki) going from v,-y to vy if there are more than one pair of identical tasks involved in plans

Pij and Pjy. In order to reduce the size of the graph, only one edge v^—tvy is recorded for any

two vertices t/,y and vw that have at least one edge between them. No information is lost that

way. The number of identical tasks found between the two plans is of no importance.

The goal of the preprocessing phase is to find plans that are most probably not sharing their

tasks with other plans. The algorithm used is a slightly modified Depth-First-Search (DFS) algo

rithm. The difference is that in the course of backing up to the vertex t/,-y from which another

vertex v^ was reached using the edge v,-y—>v^, the identification (subscript) kl is stored in some

set associated with vertex v,y. Call that set the Need set of vertex vty. Then, at the end of the

algorithm, delete from G all vertices that have two or more members k'V and kl in their Need

sets, such that k'=k. Along with the vertex, its edges (both out- and in-going) are also marked

as OUT. This deletion process is continued by deleting vertices that have at least one out-going

edge marked OUT. The edge and vertex elimination process stops when no more deletions are

possible. Call the final graph G'(V,i?') and let S' be the set of plans P,-y that have a correspond

ing vertex vt-y in G'.

- 27-

What is achieved through that preprocessing phase, is to reduce considerably the size of the

search space for the A* algorithm. Only plans in S' are considered in order to derive the est_cost

values. To give an example of the preprocessing phase along with a run of the A* algorithm, we

will redo the example of the previous subsection.

We are given again the same two queries and five plans : Pn, P12, P21, P&, P^. The graph

of Figure 11 gives the graph G for the set of plans given.

12

Figure 11: Graph G for Queries Qx and Q2

After the DFS s performed the Need sets for the various vertices, will be

Vertex Need

"ii {11,21,22}

vx2 {12,23}

v2x {11,21}

Vjja {11,22}

"23 {12,23}

23

From the above table it can be seen that vertex vxx must be eliminated since it can reach both 21

and 22 through directed paths. After that, the edges (vxx-*v2x), (v2x-*vxx), (vxx^v22) and

("22~*t,u) are marked as OUT. This causes vertices v2x and V& to be deleted also. Finally, we

see that no more vertices can be deleted. The remaining graph is shown in Figure 12.

- 28-

12) (v23

Figure 12: Final Graph G'

Finally, S'={^2^23}.

Using the result of the preprocessing phase, we next compute the new estimated costs for

tasks and plans. First, based on the cost function cost defined for tasks, the following function

coalesced^cost on tasks t [GRAN80] (which is identical to the estimator used in the previous sub

section) is defined

coalesced cost(t) = i-J.
nq

where nq is the number of queries this task occurs in, and for plans

coalesced^cost (Pt;) = £J coalesced_cost(t)
ten;

Now, given a plan Pij and a specific task t$. , let Q,-y be the set of, other than t, queries q that

have common tasks with P,-y. Also, let n9. be the number of plans P„ that correspond to query q

in Qij. Then, est_ cost is defined as follows

a) If the plan P^ is not in S' and n9.> 1 for at least one query q, then

est_cost(Pij) = Cost(Pij) —£ max[coalesced_cost(tj?.)]

where tj?. = t' , for some r and s.

b) If the plan is in S' or it is not in S' but the above condition on n9. is not true, then

est_co8t(Pij) = coalesced_co8t(Pij)

Finally, we show how to compute the function h(s). First, define

add_co8t(i) = m\n [est_cost(Pij) — £J ntest_cost(t)]
i teOiHPij

1-1

where 0,-= U Pik and Pik is the plan that provides, for a given /, the above minimum value in
{=1

the computation of add_cost(l). Also, t are common tasks that belong to plans already in the

- 29-

state 8 and nt is the number of times task t appears in these plans. Then, define

n

h(s)= U add_co8t(i)
i=nezt($)

The A* algorithm can then be applied using these new estimators. For example, processing the

two queries Qx and Q2 given above, the following are the computed estimated costs for the plans

Plan ^11 Pl2 ^21 P22 ^23

Estimated

Cost
55 45 35 35 40

Tracing the A* algorithm, we see that it explores the following states

8F =

<NULL,NULL>

<P12,NULL>

< Pl2>P23 >

/ * expand state s0 */
I* expand state sx */
I * the final solution */

yielding again <Pi2>^23> as the optimal solution with cost 85. Notice that if the commands

were executed sequentially it would have costed Cost(Px2) + Cost(P2z) = 105. Therefore, a

total savings of 19% was achieved using the global optimization algorithm. Moreover, compared

to the trace of the previous subsection, it can be seen that exhaustive search is avoided because of

the high cost estimates for some paths.

Summarizing, the final algorithm is the following

ALGORITHM HA

[1]. Build graph G and apply the preprocessing DFS algorithm

[2]. For all queries with no representative plan in the initial graph G, find the origi

nally cheapest plan and put it in the final solution

[3]. Based on the result set S', compute the function est^cost

[4]. For the rest of the queries run the A* algorithm described in the previous subsec

tion

-30-

7.1.3. Discussion and Extensions

The global access plan is derived from integrating the local plans found in the final state 8F

returned by the A* algorithm. The integrating process is very similar to the one described for

the decomposition algorithm where local plan graphs are merged together. Examining the

estimated cost of the global access plan, we have

Cost(GP) = £Co8t(p)- J2 nB.8avings(s)
pGar aGCS

where CS represents the total number of subexpressions found in the n queries (not plans as it

was the case in algorithm D) and n9 and savings^) are defined in section 5. Regarding the com

plexity of the algorithm HA we must notice that it is very hard to analyze the behaviour of an

A* algorithm and give a very good estimate on the time required. In the worst case of course it

may require time exponential on the number of queries but on the average the complexity

depends on how close the cost estimation function is to the actual cost. However, the A* algo

rithm with the new estimator function we proposed will not take more steps than the original A*

algorithm presented in subsection 7.2 (which uses coalesced[.cost as its estimator function). This

is based on the fact that for any task t it is true that est_co8t(t)> coalesced_cost(t). Therefore

with the help of a known theorem [RICH83] our algorithm will give a solution in at_ most the

same number of steps as the algorithm of [GRAN80].

Finally, note that the algorithm described is correct only in the cases where queries use

solely equijoins and equality selection clauses. If arbitrary selection clauses are used, the A* algo

rithm presented above will not find the optimal solution. This is true because the imposed order

in which the state vectors are filled (i.e. in ascending query index) may not result to the best utili

zation of common subexpression results. As an example, consider two queries Qx and Q2f such

that Qx has a more restrictive selection than Q2. Then clearly, it would be better to consider

executing Q2 first since in that case the result of Q2can be used to answer Qx, the opposite being

impossible. This problem with the heuristic algorithm can be easily fixed by changing the transi

tions to fill not the next available NULL slot in a state s, as it was before done through the use of

next(8), but rather any available (NULL) position of s. This results to larger fanout for each

state and clearly more processing for the A* algorithm. The heuristic cost function est_cost is

defined similarly with the difference that in addition to identical tasks, pairs of tasks t{ and tj
such that ti=^>tj and tj=fe> <t- must be considered as well.

- 31 -

8. Some Experimental Results

We expect that for a large number of applications and query environments global query

optimization will offer substantial improvement to the performance of the system. In a series of

experiments, we have simulated these algorithms using EQUEL/C [RTI84] and the version of

INGRES that is commercially available. The experiments were run over the set of queries that

Finkelstein used in [FINK82]. The database schema used was modeling a world of employees,

corporations and schools that the employees have attended, the relations being Employees, Cor

porations and Schools respectively. All eight queries along with a brief description of the data

they return are shown in the Appendix. Seven different sets of queries QSET1-QSET7 where

chosen and the queries within each of these sets were processed

a) as independent queries

b) as the Better Serial Execution Algorithm suggests

c) as the Decomposition Algorithm suggests, and finally

d) as the Heuristic Algorithm suggests.

Table 1 describes some characteristics of the sets QSET1 to QSET7.

Query Set Number of Queries Queries BS D HA

QSET1 2 {1.7} X

QSET2 2 {1.6} X

QSET3 4 {1.2.6.7} X

QSET4 2 {6.7} X

QSET5 4 {2.3.4.6} X X

QSET6 7 {1.2.3.4.5.6.7} X X

QSET7 2 {7.8} X X X

Table 1: Query Sets Used in Experiments

The second column indicates the number of queries used in each set while the third column shows

which queries from Appendix A were specifically used. The rest three columns indicate which

algorithms were applicable to each of the given query sets. In general, not all algorithms give dis

tinct global access plans. For example, in section 5.2 it was shown that if the query graph QG is

acyclic, algorithms BS and D will give the same result.

-32-

The above sets of queries were tested in various settings. First, unstructured relations were

used with their sizes varied according to Table 2.

Relation Number of tuples

Employees

Corporations

Schools

100 - 10.000

10 - 500

20 (fixed)

Table 2: Sizes of relations

Second, the same experiments were performed with structured relations. Specifically, the follow

ing structures were used

isam secondary index on Employees (experience)
isam primary structure on Corporations (earnings)
hash primary structure on Schools (sname)

Finally, in a another series of experiments the given queries were slightly modified by changing

the constants used in one-variable selection clauses. The goal was to introduce higher sharing

among the queries. Higher sharing is achieved when more queries can take advantage of the same

temporary result. As it was indicated in section 5.2, the formula that provided an estimate on

the cost savings using a global optimization algorithm is (for n queries Qx, ..., Qn)

n

£]Bestco8t(Qi)— £ nt-savings(s)
*=1 s€CS

where CS is the set of common temporary results s and n8 is the number of queries using the

same temporary result s. Therefore, higher cost reduction is achieved if more queries can use the

same temporary result. By changing the constants in the qualification of the queries it was possi

ble to check how ng affected the cost of processing the global access plans.

The measure used in this performance analysis was

Costl(I/0)-Cost2(I/0)
PERCI=

Costx(I/0)

where Costx(I/0) is the number of I/O's required to process all queries assuming no global

optimization is performed. CostalJO) is the corresponding figure in the case where a global

access plan is constructed according to some of the presented optimization algorithms. The

- 33-

(F)

analogous CPU measure was also recorded; however, the numbers were almost the same and will

not be shown. In the following, the results of the experiments are described in detail.

8.1.1. Unstructured Relations

As indicated in Table 1, some query sets were processed using only one or two of the algo

rithms. Because of the similarity of the results we will group the diagrams according to the algo

rithm used for optimization. Hence, three diagrams are presented. One for query sets QSET1.

QSET2 and QSET3, one for QSET4. QSET5 and QSET6 and another for QSET7. The first group

was optimized using only BS because D and HA were not applicable. The second group was

optimized using BS and D while for the last group all three algorithms were used. Figures 13, 14

and 15 illustrate how PERCI varies for the three above mentioned groups according to the size of

the database in the case of unstructured relations. Also, Figure 16 gives the overall average

improvement in the performance of the system for all query sets. The size of the database i3

represented by the size of the Employees relation. The reasons for choosing that relation was

first that all queries were using Employees (compared to Corporations or Schools) and second

the fact that the diagrams are similar for the Corporations relation as well.

Some comments can be made here for these diagrams. First, it is clear that there is always

a gain in performance by doing global query optimization, i.e. PERCI>0 in all the above figures.

Second, after some size of the relations, PERCI starts to decrease. This was due to the specific

80l

20

PERCI

10

100

Query Sets 1,2 and S

1000 10000

Employees

Figure 13

SO

20

PERCI

10

100000

-34-

04
100

Query Sets 4,6 and 8

1000 10000

Employees

Figure 14

100000

PERCI

100 1000 10000

Employees

Figure 16

60

40

SO

PERCI

20

10

100000 100

All Query Sets

1000 10000

Employees

Figure 18

100000

Performance Improvement for Unstructured Relations

type of queries used. In particular, because of queries involving joins, the denominator of the for

mula (F) grows faster than the numerator. In the given queries, the selection clauses were respon

sible for the savings in the numerator. That savings increases with rate proportional to the factor

by which a relation is reduced as a result of performing a restriction on it (i.e. 1—5, where S is

the selectivity of the selection clause). On the other hand, if joins are included in the queries,

Costx(I/0) increases with a rate which depends on the cost of the join operation. It turns out

that for small sizes of the relations the latter factor is less than the former while after some size

this relationship is reversed. Hence, the slight increase followed by a decrease in the values of

PERCI indicated in the above diagrams.

The diagrams also show that there was no significant difference between the improvements

achieved by the BS and D algorithms. In order to have a difference in the global plans generated

by the two algorithms, as discussed in section 6, cycles must occur in the query graph QG. Even

in that case though, the difference may not be significant depending on the sizes of the temporary

results. In the experiments ran, the temporary relations not shared by more than one queries in

the global access plan constructed by BS but shared in the corresponding plan generated by D,

were rather small. Hence, sharing of these relations contributed only marginally to the perfor

mance improvement. Finally, for the last query set QSET7, the plan generated by HA was

significantly better than the one generated by BS (or D since these are the same for QSET7). By

- 35-

allowing the result of the join

e.employer = c.cname

to be shared by both queries 7 and 8, significantly better, performance was achieved.

8.1.2. Structured Relations

The same set of experiments was run over a structured database. Relations were indexed as

mentioned in the beginning of this section. The reason for doing these experiments was to check

if the overhead of accessing a relation through a secondary structure might be higher than the

overhead of accessing an unstructured intermediate result. For example, suppose that retrieving

the part of a relation that satisfies a simple one-variable restriction requires 10 page accesses.

That includes the cost of searching first the index table and then accessing the data pages. Sup

pose now that there is an intermediate result, produced by some other query, that can be used to

answer the same restriction clause. If the size of that intermediate result is less than 10 pages

then it will be more efficient to process the restriction by scanning the unstructured temporary

result than going through the index table.

Figures 17, 18 and 19 illustrate how PERCI varies for the three above mentioned groups

according to the size of the database in the case of structured relations. Also, Figure 20 gives

again the overall average improvement in the performance of the system for all query sets. Com

paring the values of PERCI with the corresponding ones of the previous subsection, we can

301

20

PERCI

10

04
100

Query Sets 1,2 and 3

BS

1000 10000

Employees

Figure 17

30i

20

PERCI

10

100000

- 36-

04

100

Query Sets 4,5 and 0

BS

• i

1000 10000

Employees

Figure 18

100000

60

40

SO

PERCI

20-

10'

100

Query Set 7

I

1000 10000

Employees

60

40

SO

PERCI
20<

10

100000 100

All Query Sets

HA

1000 10000

Employees
100000

Figure 10 Figure 20

Performance Improvement for Structured Relations

observe some decrease of 10-20% for BS, D and HA depending on the size of the involved rela

tions. This was expected since using indexes reduces Costx(I/0). However, after some size of

Employee, PERCI starts increasing instead of decreasing, which was the case in the experiments

of the previous subsection. This behaviour is due to the fact we mentioned above, i.e. the over

head involved in using an index to access a relation. Moreover, the above effect is more obvious

in cases where the involved relations are large. Then the size of the secondary indexes is in many

cases significantly larger than the sizes of temporary results. Notice also that for small sizes of

the relation Employee PERCI is decreasing. That was expected because for small relations tem

porary results grow faster in size than the index tables. Finally, we notice that the relative per

formance of the three algorithms is not affected by the existence of indexes, i.e. HA still performs

better than the other two and D provides better plans than BS.

8.1.3. Higher Sharing

In this last experiment, the given query sets were run over the same database with a

modification in the queries so that higher degree of sharing is possible. That effect was intro

duced by changing the restrictions experience^20 found in queries 2,4,5 and 7 to experi

ence > 10. This way the same temporary result could be used in the evaluation of more queries,

compared to the ones in the experiments of the previous two subsections. Figure 21 illustrates

- 37-

how PERCI varied with the size of the database in the case of unstructured relations and for the

second group of query sets (i.e. QSET4. QSET5 and QSET6).

30n

20-

PERCI

10

100

Query Sets 4,5 and 6

1000 10000

Employees

Figure 21: Performance Improvement for Higher Sharing

The rest of the query sets were not affected by this modification in the selection clauses in the

sense that no increase in sharing was possible. Notice that the curve is similar to the one of Fig

ure 14. However, because of the higher degree of sharing among queries an increase of about 10%

in the performance improvement was observed.

0. Summary

This paper presented a set of algorithms that can be used for multiple query processing.

The main motivation for doing such iuterquery analysis is the fact that common intermediate

results may be shared among various queries. We showed that various algorithms can be used for

global query optimization. These algorithms were presented as parts of an algorithm hierarchy;

as we descend the hierarchy more sophisticated algorithms can be used that give better access

plans at the expense of increased complexity of the algorithm itself.

Some of the algorithms proposed were based simply on the idea of reusing temporary results

from the execution of queries, where the processing of each individual query is based on a locally

optimal plan. Using plans instead of queries enabled us to concentrate on the problem of using

efficiently common results rather isolating common subexpressions. The last (heuristic search)

- 38-

100000

algorithm, is a variation of the algorithm for optimizing a set of relational expressions originally

proposed by Grant and Minker in [GRAN80]. The preprocessing phase added to the algorithm

intends to derive a better cost estimator function used in the A* algorithm.

We expect that for a large number of applications and query environments global query

optimization will offer substantial improvement to the performance of the system. In a series of

experiments, we have simulated these algorithms and checked the performance of the resulting

global access plans under various database sizes and physical designs. This enabled us to check

the usefulness of these algorithms even in the presence of fast access paths for relations. The

results were very encouraging and showed a decrease of at least 20-50% in both I/O and CPU

time. We should also mention that our methods do not pose any problems to the concurrency

control and recovery modules. Since the given set of queries is thought as a transaction itself,

changing the way processing is done has no effect on the system. The transaction boundaries are

preserved. In terms of concurrent access, it should also be clear that our transformations do not

affect the degree of concurrency. The data that each query processes is exactly the same as in

any arbitrary serial execution of the queries. Hence, we neither increase nor decrease the size of

the data sets that each query competes for.

As interesting future research directions in the area of global query optimization we view the

development of efficient algorithms for common subexpression identification and the extension of

the algorithms presented to cover more general predicates. Also the application of our method in

rule-based systems in general seems like a very interesting problem for investigation. For exam

ple, PROLOG and database systems based on logic [ULLM85] can easily be extended to perform

global query optimization. Finally, some of the techniques that we developed here, can be applied

in processing recursion in database environments [IOAN86]. This is mainly due to the fact that

in evaluating recursive queries one usually processes iteratively similar operations. These opera

tions often access the same data, for the relations accessed are always the same. Investigating

how our algorithms can be used in this recursive query processing environment seems to be a very

interesting problem for future research.

10. REFERENECES

[ASTR76] Astrahan, M. et al, "System R: A Relational Approach to Database Management",
ACM Transactions on Database Systems, (1) 2, June 1976.

[CHAK82] Chakravarthy, U.S. and Minker, J., "Processing Multiple Queries in Database Sys
tems", in Database Engineering , (1), 1983.

- 39-

[CHAK84] Chakravarthy, U.S., Fishman, D.H. and Minker, J., "Semantic Query Optimization
in Expert Systems and Database Systems", in [KERS84].

[CHAK85] Chakravarthy, U.S. and Minker, J., "Multiple Query Processing in Deductive
Databases", University of Maryland, Technical Report TR-1554, College Park, MD,
August 1985.

[CHAK86] Chakravarthy, U.S., Minker, J. and Grant, J. "Semantic Query Optimization:
Additional Constraints and Control Strategies", in [KERS86].

[CLOC81] Clocksin, W. and Mellish, C, Programming in PROLOG , Springer-Verlag, New
York, NY, 1981.

[FINK82] Finkelstein, S., "Common Expression Analysis in Database Applications",
Proceedings of the 1982 ACM-SIGMOD International Conference on the Manage
ment of Data, Orlando, FL, June 1982.

[GALL78] Gallaire, H. and Minker, J., Logic and Data Bases . Plenum Press, New York, 1978.

[GARE79] Garey, M.R. and Johnson, D.S., Computers and Intractability , W.H. Freeman and
Co, San Francisco 1979.

[GRAN80] Grant, J. and Minker, J., "On Optimizing the Evaluation of a Set of Expres
sions", University of Maryland, Technical Report TR-916, College Park, MD, July
1980.

[GRAN81] Grant, J. and Minker, J., "Optimization in Deductive and Conventional Relational
Database Systems", in Advances in Data Base Theory , vol. 1, H. Gallaire, J.
Minker and J.-M. Nicolas, Eds., Plenum Press, New York, 1981.

[GUTT84] Guttman, A., "New Features for Relational Database Systems to Support CAD
Applications ", PhD Thesis, University of California, Berkeley, June 1984.

[HALL74] Hall, P.V., "Common Subexpression Identification in General Algebraic Systems ",
IBM United Kingdom Scientific Centre, Technical Report UKSC 0060, November
1974.

[HALL76] Hall, P.V., "Optimization of a Single Relational Expression in a Relational Data
Base System ", IBM Journal of Research and Development, (20) 3, May 1976.

[IOAN86] Ioannidis, Y., "Processing Recursion in Deductive Database Systems ", PhD Thesis,
University of California, Berkeley, July 1986.

[JARK84a] Jarke, M., Clifford, J. and Vassiliou, Y., "An Optimizing PROLOG Front-end to a
Relational Query System", Proceedings of the 1984 ACM-SIGMOD International
Conference on the Management of Data, Boston, MA, June 1984.

[JARK84b] Jarke, M., "Common Subexpression Isolation in Multiple Query Optimization ", in
Query Processing in Database Systems , W. Kim, D. Reiner and D. Batory, Eds.,
Springer-Verlag, New York, 1984.

[KIM84] Kim, W., "Global Optimization of Relational Queries : A First Step", in Query
Processing in Database Systems , W. Kim, D. Reiner and D. Batory, Eds., Springer-
Verlag, New York, 1984.

[KUNG84] Kung, R. et al, "Heuristic Search in Data Base Systems", in [KERS84].

[LARS85] Larson, P. and Yang, H., "Computing Queries from Derived Relations", Proceed
ings of the 11th International Conference on Very Large Data Bases, Stockholm,
August 1985.

- 40-

[NAQV84] Naqvi, S. and Henschen, L., "On Compiling Queries in Recursive First-Order
Databases", Journal of the ACM, (31) 1, January 1984.

[RICH83] Rich, E., Artificial Intelligence . McGraw-Hill, 1983.

[ROSE80] Rosenkrantz, D.J. and Hunt, H.B., "Processing Conjunctive Predicates and
Queries", Proceedings of the 6th International Conference on Very Large Data
Bases, Montreal, October 1980.

[ROUS82a] Roussopoulos, N., "'View Indexing in Relational Databases", ACM Transactions on
Database Systems, (7) 2, June 1982.

[ROUS82b] Roussopoulos, N., "The Logical Access Path Schema of a Database ", IEEE Transac
tions on Software Engineering, (8) 6, November 1982.

[RTI84] EQUEL/C User's Guide , Version 2.1, Relational Technology, Inc., Berkeley, CA,
July 1984.

[SELL85] Sellis, T. and Shapiro, L., "Optimization of Extended Database Languages",
Proceedings of the 1985 ACM-SIGMOD International Conference on the Manage
ment of Data, Austin, TX, May 1985.

[SELL86] Sellis, T., "Global Query Optimization", Proceedings of the 1986 ACM-SIGMOD
International Conference on the Management of Data, Washington, DC, May 1986.

[STON76] Stonebraker, M. et al, "The Design and Implementation of INGRES", ACM Tran
sactions on Database Systems, (1) 3, September 1976.

[STON86] Stonebraker, M. and Rowe, L., "The Design of POSTGRES", Proceedings of the
1986 ACM-SIGMOD International Conference on the Management of Data, Washing
ton, DC, May 1986.

[ULLM82] Ullman, J., Principles of Database Systems , Computer Science Press, 1982.

[ULLM85] Ullman, J., "Implementation of Logical Query Languages for Data Bases",
Proceedings of the 1985 ACM-SIGMOD International Conference on the Manage
ment of Data, Austin, TX, May 1985.

[WONG76] Wong, E. and Youssefi K., "Decomposition: A Strategy for Query Processing",
ACM Transactions on Database Systems, (1) 3, September 1976.

[ZANI83] Zaniolo, C, "The Database Language GEM", Proceedings of the 1983 ACM-
SIGMOD International Conference on the Management of Data, San Jose, CA, May
1983.

APPENDIX

The set of queries used in the experiments of section 8 were the following

Employees (name,employer.age,experience.salary,education)
Corporations (cname.location,earnings.president.business)
Schools (sname,level)

range of e is Employees

range of c is Corporations
range of cl is Corporations
range of s is Schools

-41-

/* get all employeea with more than 10 yeara experience */

(1) retrieve (e.all) where e.experience > 10

/* get all employeea leaa than 65 yeara old with more than SO yeara
experience */

(2) retrieve (e.all) where e.experience > 20 and e.age < 65

/* get all pairs (employee,corporation), where the employee
haa more than 10 yeara experience and worka in a corporation with
earninga more than SOOK and located anywhere but in Kansas */

(3) retrieve (e.all.call)
where e.experience > 10 and e.employer=c.cname
and c.location ^ "KANSAS" and c.earnings > 500

/* get all pairs (employee,corporation), where the employee
haa more than SO yeara experience and worka in a corporation with
earninga more than SOOK and located anywhere but in Kansas */

(4) retrieve (e.all,call)
where e.experience > 20 and e.employer=ccname
and c.location ^ "KANSAS" and c.earnings > 300

/* get all paira (preaident,corporation), where the president
ia leaa than 65 yeara old with more than SO yeara experience and the
corporation ia located in MEW YORK and haa earninga more than SOOK */

(5) retrieve (e.all.call)
where e.experience > 20 and e.age < 65
and e.employer=c.cname and e.name=c.president
and c location = "NEW YORK" and c. earnings > 500

/* get all pairs (preaident, corporation), where the preaident
ia leaa than 60 yeara old with more than SO yeara experience and the
corporation ia located in MEW YORK and haa earninga more than SOOK */

(6) retrieve (e.all,call)
where e.experience > 30 and e.age < 60
and e.employer=ccname and e.name=cpresident
and clocation = "NEW YORK" and cearnings > 300

/* get all triples (employee, corporation,school) where the employee
ia leaa than 65 yeara old, haa more than 20 yeara experience and holda
a university degree working for a corporation located in MEW YORK and
with earninga more than SOOK */

(7) retrieve (e.all,c.all,s.all)
where e. experience > 20 and e.age < 65
and e. employers. cname

and c location = "NEW YORK" and coamings > 500

- 42 -

and e.education = s.sname and s.level="univ"

/* get all paira (employee,corporation), where the employee
ia leaa than 65 yeara old with more than SO yeara experience and the

corporation ia located in MEW YORK and haa earninga more than SOOK */

(8) retrieve (e.all.call)
where e.experience > 20 and e.age < 65
and e.employer=ccname
and clocation = "NEW YORK" and coamings > 300

- 43-

	Copyright notice1986
	ERL-86-19

