

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ELOGIC:

A RELAXATION-BASED SWITCH-LEVEL SIMULATION TECHNIQUE

by

Young Hwan Kim

Memorandum No. M86/2

3 December 1985

ELOGIC:

A RELAXATION-BASED SWITCH-LEVEL SIMULATION TECHNIQUE

by

Young Hwan Kim

Memorandum No. M86/2

3 December 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

Electrical-Logic (ELogic) is a new form of relaxation-based switch-level modeling and simu

lation which provides more accurate timing information than existing strength-oriented logic

simulation or switch-level simulation, at almost the same speed. ELogic can be used for circuit

simulation, mixed-mode simulation and as the basis for accurate, switch-level timing verification

of MOS digital circuits.

In this report, the basic ELogic algorithm and two of its derivatives are presented and

described in detail so that the appropriate algorithm can be chosen for a particular application.

The description of the implementation and results of the experiments are included. The applica

tion of ELogic algorithms to both simulation and timing verification are also included.

Acknowledgements

I sincerely would like to thank my research advisor Prof. A. Richard Newton for his consistent

encouragement and effective guidance throughout course of my work.

I also wish to thank everyone in the CAD group at University of California,Berkeley, who has

provided me with the privilege to work in such a good co-operative atmosphere. But a few people

deserve special mention. I would like to thank Resve A. Saleh for the many long hours of engage

ment in useful discussion of the algorithms and their implementation. I also thank him for his

critical reading of the manuscript. The implementation of ELogic technique as a delay model in

Crystal and all the related experiments are due mainly to the efforts of Seung Ho Hwang. Many

bugs in the stand-alone program were corrected through discussion with him. I would also like to

thank J. Kleckner for his initial work on ELogic and for the suggestion to work on it.

Finally, I wish to thank my wife, Young, for her patience and my family members in Korea for

their support.

The support ofSRC (Semiconductor Research Cooperation) is also acknowledged.

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION 1

1.1 Motivation of Electrical-Logic Simulation 2

CHAPTER 2 : ELECTRICAL-LOGIC SIMULATION 5

2.1 Introduction 5

2.2 Inverter Example 7

2.3 Voltage States g

2.4 Output Waveform Representation 10

2.5 Application of ELogic 12

2.6 ELogic Circuit Models 13

2.6.1 ELogic MOS Model 13

2.6.2 ELogic Node Model •. 19

2.6.3 Composite ELogic Model 19

2.7 Event Scheduling and Canceling 21

2.8 Relaxation-Based Electrical Simulation 23

- 2.8.1 Relaxation-Based Electrical Simulation 23

2.8.2 Convergence of Relaxation-Based Methods 25

2.9 ELogic Algorithms 26

2.9.1 Modeling of the Capacitor 27

2.9.2 Basic ELogic Algorithm 29

2.10 Strong Coupling 32

2.10.1 Discretized Newton-Raphson Method 35

2.10.2 ELogic-2 Algorithm 39

2.11 Bi-Directional Pass Transistor 40

2.12 Floating Capacitor 42

2.13 Area of Future Work 44

2.14 Summary of ELogic Algorithms 47

CHAPTER 3 : APPLICATION TO SIMITLATION 50

3.1 Introduction 50

3.2 ELogic-3 Algorithm 50

3.3 Analog Circuit Examples 53

3.3.1 Single-Stage NMOS Amplifier 55

3.3.2 NMOS Ring Oscillator 55

3.3.3 Floating Capacitor Example 57

3.3.4 Industrial Sense Amplifier 59

3.4 Digital Circuit Examples 61

3.4.1 NMOS Inverter Chain 61

3.4.2 CMOS Static RAM Cell 63

3.4.3 ALU of CMOS SOAR (Smalltalk On A RISC) 64

3.5 Conclusion 66

CHAPTER 4 : APPLICATION TO TIMING VERIFICATION 67

4.1 Introduction 67

4.2 Path Analysis and Delay Modeler 69

4.3 Implementation of ELogic Model in Crystal 71

4.4 Examples and Results 73

4.4.1 ALU of CMOS SOAR (Smalltalk On A RISC) 73

4.4.2 SOAR Chip 77

4.5 Conclusion 77

V

CHAPTERS: CONCLUSIONS 80

REFERENCES 82

CHAPTER 1

INTRODUCTION

Computer-aided integrated circuit simulation has been used extensively over the last

few years for designing circuits, analyzing their electrical performance and verifying their

function. Previously, a designer could synthesize a breadboarded version of the network with

minimal effort, and make modifications to get a final version on the test bench. However

MOS integrated circuits designed today contain thousands of transistors and form the basis

for most large-scale integrated digital circuits. Therefore it is almost impossible to test the

performance of these circuits by breadboarding. Another option is to fabricate prototype ver

sions of the circuit and test them. However the fabrication of the circuit is very expensive

and time consuming, and is not a feasible alternative for the debugging process. Therefore

integrated circuit designers must use computer-aided design and analysis tools to ensure that

their circuits will function correctly and meet the performance specifications rather than

fabrication or breadboarding.

Table 1.1 illustrates the various levels of the integrated circuit simulation, their use and

examples of the simulators for each level [1,2]. Depending on the stage of the design process,

the designer can select a simulator at the proper level.

Level

Behavioral

RTL

Logic
Circuit

Device

Process

Use

Algorithmic Verification
Logic Verification
Logic Verification
Performance Evaluation
Device Model Development
Process Development

Simulator Examples

GASP,SIMULA,ISPS,ADLIB
ISPS,ADLIB,SPLICE2
LOGIS,ILOGS,SPLICE2
SPICE2,ASTAP,SPLICE2
GEMINI

SUPREM,SAMPLE

Table 1.1 Hierarchy of Large Integrated Circuit Simulation

1.1. Motivation of Electrical-Logic Simulation

Circuit simulators, such as SPICE2 [3] and ASTAP [4], have been successfully used for

the design and performance evaluation of integrated circuits, since they provide very accurate

output waveforms. However, it is almost prohibitive to use these simulators for the analysis

of large integrated circuits, due to long computer run times. A large effort has been made to

reduce the required CPU-time for large circuits, while maintaining the same waveform accu

racy. Techniques include the use of relaxation methods such as Iterated Timing

Analysis(ITA) [2,13,5] and Waveform RelaxationfWR) [6,32,33] , and the use of vector pro

cessors [7,8]. Relaxation methods provide significant speed improvement with the same

waveform accuracy as SPICE2, assuming identical devices models, and have guaranteed con

vergence and stability properties [5]. The cost estimates of logic, relaxation-based and circuit

simulation for simulating one 32-bit integer multiply instruction of a recent 450,000 device

microprocessor [9] are shown in Table 1.2. The cost estimates are normalized to the perfor

mance of a logic level simulation on the IBM 370/168 and ignore virtual machine overhead

i.e., assumes uniform addressing and memory access times [2,10]. The term circuit simulation

refers to the use of direct methods as implemented in the program SPICE2 [3,11].

Table 1.2 indicates that relaxation-based simulation using ITA can be much faster (360

times) than a classical circuit simulation like SPICE2, with comparable waveform accuracy,

for circuits that are loosely coupled. However ITA is still much slower (72 times) than logic

simulation and the actual CPU-time requirement of relaxation-based simulation depends on

the characteristic of the circuit under analysis. That is, strong coupling between nodes due to

Simulation Normalized CPU-time

Logic
Relaxation-based(ITA)
Circuit

1

72

26000

Table 1.2 Normalized CPU-time Comparison

3

gain and feedback in the circuit may increase the simulation time unless some partitioning

scheme [12] is used. As an extreme example, ITA without using any partitioning scheme may

be slower than SPICE2 for analog circuits such as operational amplifiers, because they usually

contain large feedback paths and high gain and there is little or no latency to be exploited

[13].

One of the major differences between accurate electrical simulation(including ITA and

WR) and logic simulation is the models used to describe the elements being analyzed. Logic

simulators use much simpler models than circuit simulators. In circuit simulation, individual

transistors are modeled using complex analytical expressions. However in a logic simulation,

the circuits are modeled as logic gates, which are groups of transistors, or by single transistors

modeled as ideal switches [14]. Therefore a logic simulator is used for functional verification

or to obtain first-order timing information of integrated circuits, and therefore trades offaccu

racy in favor of shorter run times.

What is required is a simulation technique which fills the gap between logic simulation

and circuit simulation, in terms of speed and accuracy. Electrical-logic (ELogic) simulation

[15] is a new relaxation-based switch-level simulation technique which provides a continuous

speed-accuracy tradeoff between the two simulation levels using transistor level circuit

models. ELogic also can be used for any purpose where a continuous speed-accuracy tradeoff

is desirable, for example, delay modeling in timing analysis. This is the motivation of

electrical-logic simulation.

In Chapter 2, the basic ELogic algorithm and its two derivatives are described in detail.

The best algorithm among the three depends on the application. Therefore, rather than pro

posing the best one, the detailed basis of the all algorithms are presented so that the one

which best fits the purpose can be chosen and they can be modified ifnecessary. The descrip

tion of how ELogic computes the output waveform and the comparison with existing

relaxation-based electrical simulators are also included. In Chapter 3 and 4, the application

of ELogic in simulation and as a delay modeling teclmique in timing verification are

described. Conclusions are given in Chapter 5.

CHAPTER 2

ELECTRICAL-LOGIC SIMULATION

2.1. Introduction

Electrical-Logic (ELogic) simulation [2,15] is a new form of relaxation-based, multi-

signal and multi-strength switch-level simulation which obtains waveforms in the circuit being

analyzed. The notion of signal - strength of ELogic is similar to that of most modern logic

simulators which allows transistors in the circuit description, in addition to logic gates

[5,16,17,14,18]. This notion is included to handle the problems specific to MOS integrated

circuits. In logic simulators, the most frequently used logic levels are 0 (FALSE), X (UNK

NOWN) and 1 (TRUE). In ELogic, we define a set of discrete voltage levels called voltage

states. They can be considered as same as logic levels of logic simulations, except that an

actual voltage value is assigned to each state. The strength used in logic simulation is an

abstraction of conductance, not a specific value, from a node to ground or to power supply.

It can be an attribute of MOS gate or a node. It is used to determine which element will

decide the logic state (signal - strength pair) of the node, when many fanin logic-elements are

connected at the same node. On the other hand, the strength of ELogic is defined for each

circuit element with a specific conductance value and is used to obtain the waveforms of the

circuits.

In ELogic, circuit nodes are allowed to make a transition from one state to an adjacent

state only. Figure 2.1 represents an expected, ideal ELogic output waveform. In the Figure,

the voltages of VO through V4 are defined as a set of discrete voltage states. The dashed line

represents an exact output waveform, while the solid line represents an ideal ELogic output

waveform.

ELogic solves for the amount of time required to make a transition from one voltage

state to an adjacent state, rather than solving for the amount of voltage change at each node

ELogic

Electrical

Simulation

time

Fig. 2.1 Ideal ELogic Output Waveform

to the given time step as in conventional electrical simulators.

Figure 2.2 is an example of ELogic output waveforms at two neighboring nodes. Notice

that the nodes achieve the next voltage state at different time points, independent of each

other. The input to a circuit consists of a set of state changes at discrete time points. That

waveform fragment is used as input to the state machine model of the input device and an

output waveform fragment is computed. As a result, small edge transitions are moved

through the network. Therefore ELogic can be considered as an asynchronous windowed

waveform relaxation method, but can be implemented using the event-driven mechanism

available in a relaxation-based simulator like SPLICE [2,31].

In this chapter, a basic ELogic technique will be described first, then the description of

its versions will follow.

Waveform fragment
at node B

k k

Waveform
fragment at node A

time

Fig. 2.2 Example of Output Waveforms at Two Neighboring Nodes illustrating
asynchronous windowed waveform nature of ELogic

2.2. Inverter Example

To illustrate further how ELogic works, consider an NMOS inverter of Figure 2.3(a).

ELogic assumes that there is a grounded capacitor at each node as in other relaxation-based

electrical simulators. Figures 2.3(b) and 2.3(c) represent an input waveform to the inverter

and output waveform, respectively, where VO, Vl, V2, VS, V4 and V5 are chosen as the

discrete states using a uniform voltage step size. The input makes a sequence of transitions

from VO to V5 and the output makes a corresponding sequence of transitions from V5 to VO.

For example, the input waveform achieves a new voltage state Vl from VO, at time tx. How

ever the input state Vl is not high enough to pull down the output of the inverter and there

fore it remains high. When the input reaches its new voltage state V2 at time t2, from Vl,

the output begins to pull down from V5 to its new state V4 and ELogic calculates the time

Vin

A

V5

V4

V3

V2

VI

VO

+5V

Ml

o
T

o

M2

(a) NMOS Inverter

tl t2 t3 t4
time tl t2 t3 t4

(b) Input Waveform (c) Output Waveform

Fig. 2.3 NMOS Inverter Example using ELogic

time

required for that transition (AT of Figure 2.3(c)), using the electrical properties of the NMOS

inverter. Sometimes the output node may be pulled one more voltage step down to VS and,

if that is the case, ELogic calculates the time for that transition too. In this example, the

output stays at V4, and when the input reaches the next new state V2 at time 14, the process

continues. To summarize, ELogic determines whether or not the output can change its state

in following two cases :

1) when the input reaches the new state
2) when the output reaches the new state

and if it changes, ELogic calculates the corresponding transition time.

2.3. Voltage States

The voltage states which ELogic nodes can take are a set of discrete values. If an ELo

gic node voltage is computed to lie between two adjacent states at some steady-state value, it

must be rounded off to the nearest discrete ELogic state. Therefore the precision of an ELo

gic waveform is determined by the number and values of the voltage states defined.

The number and/or the values of the voltage states can be varied. Most of CPU-time

saving of logic simulation over electrical simulation comes from fewer time points evaluated

rather than fewer iterations at the same time point. From the previous section, it is observed

that the number of time points evaluated during a transition depends on the number of vol

tage states. If more states are allowed for a simulation, the output waveform will be more

precise, but it will cost more. On the other hand, if the number of the voltage states is

reduced, it will cost less. However the output waveform will be less precise. Therefore ELo

gic can save CPU-time by trading off the waveform precision. Furthermore, since there is no

restriction in defining the number and/or the values of the voltage states, ELogic can provide

a continuous speed-accuracy trade-off. This is one of the major features of ELogic technique,

in its applications. Sometimes a designer may need to quickly verify the logic function or

determine the first order timing information of a preliminary circuit design. This usually hap-

10

pens at the early phase of a design process. In this case, only a few states would be defined

for fast simulation speed. Later on, more states may be defined if more accurate information

is desired. Using ELogic, a designer doesn't have to switch back and forth between a circuit

simulator and a logic simulator. Also, different parts of the circuit may have a different set of

ELogic states which constitutes a form of mixed-mode simulation.

The values of the voltage states may be nonuniform. Even though the same number of

voltage states are allowed for the simulation of the same circuit, if different values of the

states are chosen, the accuracy of the output waveform may be different. Therefore the user

can choose an intelligent set of voltage states, based on the design and simulation experience.

2.4. Output Waveform Representation

The output waveforms generated from an ELogic simulation must represent all the

information available without misleading the designer. Assume that a node voltage is Vl at

time tl and achieves a new voltage state V2 at time t2. Some of the possible waveform

representations are shown in Figure 2.4. Figure 2.4(a) represents the waveform by a straight

line between Vl and V2. In practice, this method provides detailed information about the

starting and ending points of the transition. The disadvantage is that it may mislead the

user, since it looks similar to the output waveform of an electrical simulator. A user may

mistake it for an accurate output waveform which is obtained by electrical simulation. This

is especially true when many voltage states are allowed. Figure 2.4(b) represents the

waveform by a straight line at t2, with an infinite slope. Figure 2.4(c) uses a similar straight

line, but in the middle of tl and t2. Although either method is less likely to mislead the user,

they do not provide information about the start and/or end-time point of the transition.

Another method is to use a string of numbers and characters to represent the output

waveform rather than using a plot, as in Figure 2.4(d). In this figure, Vl and V2 are level

numbers rather than specific voltage values and R means it is rising. This method gives all

available timing information and does not mislead the user. However it is difficult to see the

V2

VI

V2

VI

tl t2

(b)

VI R V2

tl t2

(c) -

tl

(d)

Fig. 2.4 Representation of Output Waveform

t2

11

overall waveforms, particularly when the circuit being analyzed has waveforms which are ana

log in nature. Unless otherwise specified, Figure 2.4(a) will be used throughout this report to

represent ELogic output waveforms.

12

2.5. Application of ELogic

The ELogic technique can be used in a variety of applications where a continuous

accuracy-speed trade-off is useful.

First, ELogic can be used for simulation purposes. The waveform accuracy depends on

the number and values of the voltage states used. Second, ELogic can be used as a basis for

accurate critical path analysis for timing verification [19,20]. In general, the delay modeling

section of a timing verifier is separate from a path analysis section in the program. By replac

ing an existing delay modeler by ELogic delay modeling, the timing verifier can provide more

accurate critical path information, depending on the number of states used. Third, ELogic

can be used for mixed-mode simulation. A mixed-mode simulator is one which allows more

than one simulation level of Table 1.1 in the same simulation. In this report, the term

mixed-mode simulation will be used to mean a simulation technique which allows an electrical

simulation on part of the circuit and a logic simulation for the rest of the circuit depending

on the required accuracy [2,21,22]. ELogic can be used to divide the circuit into as many

sub-circuits as necessary, each with a different state model, depending on the required accu

racy in that sub-circuit and also for the interface between them. That is, rather than divid

ing it into only two sub-circuits for an electrical simulation and a logic simulation, a mixed-

mode simulation can also have a variety ofELogic state models. Furthermore, ELogic tech

nique can be used for a basis of electrical • logic interface element in mixed-mode simulators.

Since electrical simulation handles voltage and current while logic simulation handles logic

levels, mixed-mode simulation generally requires a special interface element between two lev

els. A Boolean-controlled switch which is used in the program DIANA [21] is one example of

Logic-to-Electrical signal conversion element. While pre-existing interface elements are used

successfully, ELogic can provide a more accurate basis for the mixed-mode interface element.

Finally, ELogic can be used as a basis for electrical fault simulation. Although a large effort

has gone into developing logic fault simulators, electrical fault simulation is still an open

13

research area. Certainly, one of the most important requirements of a simulation technique

for electrical fault simulation is speed with moderate accuracy of waveforms and this is what

ELogic can provide by choosing a proper set of voltage states.

In Chapter 3, the application of ELogic to simulation is described, and in Chapter 4,

application to timing verification is presented.

2.6. ELogic Circuit Models

2.6.1. ELogic MOS Model

ELogic models MOS transistors using the Schichman-Hodges model [23] equations

which are adequate for most MOS digital circuit simulation, provided that the dc parameters

are obtained experimentally. Unless otherwise specified, the reference direction of terminal

current of MOS transistors is defined as follows throughout this report :

Definition 1 : The sign of current is positive if it enters the MOS transistors.

The Schichman-Hodges model equations for NMOS and PMOS transistors are shown in

Table 2.1, where,

VT0 : zero-bias threshold voltage.
KP = \iC0X, process transconductance parameter.
<f>p : equilibrium electrostatic potential.
X : channel-length modulation parameter.
7 : body-effect coefficient.

ELogic uses either a small-signal model or a line-thru-origin model for MOS transistors

to linearize the device. The proper model to use depends on the situation and will be

addressed later. The small-signal model and the line-thru-origin model are shown in Figure

2.5. The small-signal model represents the nonlinearity of the MOS transistor by an incre

mental conductance at the operating point and a currentsource in parallel(or a voltage source

in series). This model is also referred to as the discretized model in the literature [24]. From

Figure 2.5(a), the small-signal model is given by :

0*-
+

v

O

(a) Small-Signal Model

©
Q

o—>

o

(b) Line-Thru-Origin Model

0-*-
+

v

o

Fig. 2.5 (a) Small-Signal Model (b) Line-Thru-Origin Model

14

Jv«

15

„ di , , .
<*SMALL = ~fa \v - Eq, i= JQ (2.1)

h = JQ~ gsmall Eq . (2.2.a)

VQ = - h I Gsmall (2.2.b)

All equations necessary for getting a small-signal model for various terminal connections

are derived from the Schichman-Hodges model equations and are shown in Table 2.2, where,

did did did did
9m dV^, gb - QVb, gd - jy^, 9*--^

Using the equations in Table 2.2, the incremental conductance of MOS transistors with any

terminal connection can be obtained. For example, a small-signal model looking back into

the pass transistor from the source is given by :

G'd==Tv7 = -dv7 = ~g> = 9m+ 9d+ 9b <2-3>
IQ = JQ- GEQ =• is - G,dV,d = -id + (gm+ gd+ gh)Vd, • (2.4)

The small-signal model looking back into the depletion load from the source is given by :

G'd = TvJ+ Jv7 = -gm-g°=9,>+ 9d <2-5)
IQ = JQ- GEQ = is - G9dVtd = -i, + (gd+ gh)Vdt .. (2.6)

In the line-thru-origin model, the nonlinearity is modeled by a simple conductance

between drain and source, and there is no current source (no voltage source) involved. From

Figure 2.5(b), the line-thru-origin model is given by :

Jq
LT0 = "fy (2J)

The conductance between drain and source is independent of terminal connections and the

terminal for which the line-thru-origin model is evaluated.

T(type) NMOS(l), PMOS(- 1)

K

V9'Eff

W

- 2 T <j>F > 0

VTo + T t(y/0 + T V,b-y/<f>)

T (Vgs-VT)

lF(VgtEff<0) OFF

ELSE

Vd$Bff

id

min(TV,, , VgeE/f)

T*(V^-^fL) VdlB/f (1+ T\Vd9)

T(type)

*d

9m

9b

9d

9,

Table 2.1 Schichman-HodgesMOS Model Equations

NMOS(l), PMOS(- 1)

TKVdtEff(l+T\Vd9)

1

2>/* + T Veb

VK(V9tEJ1- VdeE//)(l+ T\Vd.) + K(VgaEn- -^J-)Vd8EU\

-{9m+9b+9d)

Table 2.2 Useful Equations for Small-Signal Models

16

17

tables, e.g./

O = Ta (VtN) (2.8.a)

/ = Tj (Vw), or 0 for Line-Thru-Origin Model (2.8.b)

where Tq and 7/ are tables, which take input voltage states VJN and provide a corresponding

linearized MOS transistor model. This process is illustrated in Figure 2.6. Once the fabrica

tion technology is determined, the preliminary I-G tables can be obtained experimentally or

using the Schichman-Hodges equations. The preliminary I-G tables refer to tables which

contain the small-signal model and the line-thru-origin model of all different model types with

a normalized W/L ratio. These preliminary tables are stored in a technology library for the

program. When a simulation starts, ELogic obtains the actual W/L ratios and different ter

minal connections for all different devices while reading a circuit description. Then ELogic

generates the final I-G tables for each different model/element type in the circuit using the

preliminary I-G tables. The final tables are used during the simulation. Using the table

INPUT STATES
I-G TABLE MOS MODEL

Fig. 2.6 ELogic MOS Transistor Models

i'
Vs

Vs
>

Pass

TR.

Gd(Id)

Vg >
•

Vd
Gs(Is)

&.
——fc r

(a) NMOS Pass Transistor

+Vdd

HE
6 Vs

(b) NMOS Load

Vd

Vg,

(c) NMOS Driver

Fig. 2.7 NMOS Transistors Table Model

18

19

preliminary I-G tables. The final tables are used during the simulation. Using the table

look-up models, a simulation can be sped up. The process of generating the table look-up

models efficiently, in terms of memory usage, is described in reference [25]. A detailed

representation for various terminal connections of NMOS transistors are shown in Figure 2.7.

For example, the NMOS pass transistor table(Figure 2.7(a)) takes, as input, the gate, source

and drain voltage states, and provides conductance (and current) for the drain or source as

output. The I-G tables for PMOS transistors work in a similar way.

2.6.2. ELogic Node Model

The other class of circuit element used in ELogic analysis is the node which consists of

the node itself and a grounded capacitor, CN (Figure 2.8). Here, the inputs to the node

model are the Norton equivalent {I3- , <3y} pairs of the fanin elements and the fanin nodes.

The outputs are the new node voltage, VN, and the time point, TN, at which V^ is achieved.

The method that ELogic uses to calculate VN and TN depends on the particular algorithm in

use, and will be described shortly.

2.6.3. Composite ELogic Model

An NMOS inverter and its composite ELogic model are shown in Figure 2.9. The signal

flow graph between nodes and elements are illustrated in Figure 2.9(b), where a thin line

represents a fanin node of an element and a thick line represents a fanin element of a node

(the fanin node ofa node is not shown here). The fanin nodes ofelement Mf is a set ofnodes

which directly influences the operating condition of the element M{. Similarly, the fanin ele

ments of node i are the elements which directly play some part in determining the voltage at

node i. For example, input node A is a fanin node of driver Ml and Ml is a fanin element

of output node B. If we look at the relationship between B and M2, not only is B a fanin

node of M2 but also M2 is a fanin element of B. Therefore node B serves as an input node

as well as an output node of the inverter. When ELogic calculates the next waveform frag-

A

O

Gi ,1 i

G2 ,1 2 *Vn

*Tn

Fig. 2.S Node Model for Basic ELogic

+5V

Ml

B _

M2

Fig. 2.9 (a) NMOS Inverter (b) Composite ELogic Model

20

21

ment, both A and B are taken into account. This is one o/ the reasons why ELogic is much

more accurate than conventional multi-strength, multi-level switch-level simulators.

Assume that input node A achieves a new voltage state Vt0 at tQ. Since A achieves a

new state, its fanout node B must be processed at t0. There are two fanin elements of B :

Ml and M2. Therefore Ml and Ml obtain the discrete voltage states of its fanin nodes, A

and B. Then Ml and M2 provide the Norton equivalent {/,• , Gj} pairs from I-G tables to

node B. Using this information, B determines the next voltage state and calculates the time

for that transition. When evaluating MOS transistors, I-G tables use discrete voltage states

as input. Even though ELogic solves for the time at which the next discrete state is

achieved, the terminal voltages of MOS transistors may be between the discrete states, and if

so, it must be rounded off to the discrete state. In this case, the next voltage state to which

the terminal voltage is moving is used as input to the I-G tables.

2.7. Event Scheduling and Canceling

The fanin nodes of node i are defined as a set of nodes whose voltage change directly

influences the voltage change at node i, through one of the fanin elements connected to node

». Similarly, the fanout nodes of node i are those whose voltage is directly influenced by the

voltage change at node t through one of fanout elements of node i. As an example, a MOS

transistor which is modeled by Schichman-Hodges equations [23] and its associated fanin-

fanout node-signal flow graph are shown in Figure 2.10. Ifa directed edge is connected from

node i to /, node t is a fanin node of / and node / is a fanout node of i.

The ELogic implementation of an event-driven selective-trace can be described using

the associated signal graph. The term event-driven selective-trace means that ELogic

processes the node t at tn only in the following two cases.

(1) When Node i achieves new voltage state at tn (event-driven)
(2) When the fanin node of node i achieves new voltage state at tn (selective-trace)

H B

(a)

Fig. 2.10 (a) NMOS TR Modeled by Schichman-Hodges Equations
(b) Associated Node-Signal Flow Graph

22

Processing a. node t at tn involves the following steps :When ELogic-time reaches at ta,

ELogic obtains the state Sf(f.) = Vt at tn (called updatmg the voltage at node i) and next

voltage state £,•(*„+j) = Vk+l. Then ELogic computes a corresponding time for the transi

tion, h, and schedules node t in the time queue at future time point (*B+1 = tn + h) so that

node t can be processed when ELogic-time reaches fn+1.

Consider the node-signal flow graph shown in Figure 2.11. If the voltage at node A

moves through its discrete set of voltages, the time points at which new values of node B and

C will be attained are computed. Assume that node A achieves its new state. Then nodes A

is re-processed and the adjustment for fanout nodes B and G is done. If node B had been

scheduled in the time queue already (this happens when input transition is fast), the pending

event is canceled and a new voltage state and a new transition time are computed. Node B is

23

JOG

ao:
O F

Fig. 2.11 Example of Node-Signal Flow Graph

then re-scheduled at the new time point. This procedure is called fanout adjustment. If the

other fanout node, G, were not in time queue (e.g., node C is latent), it may or may not be

scheduled latent, depending on the electrical properties of the circuit being analyzed. This

procedure is called activating latentfanout nodes.

2.8. Relaxation-Based Electrical Simulation

2.8.1. Relaxation-Based Electrical Simulation

Consider a set of linear equations of the form :

A x = b, where A € R"XB , x,b e Rn (2.9)

Standard circuit simulators such as SPICE2 [3] or ASTAP [4] use direct methods to solve the

above equations, such as Gaussian Elimination or LU Decomposition. However if Eqn. (2.9) is

sparse and matrix A has a diagonal dominance property, relaxation methods such as Gauss-

24

Jacobi or Gauss-Seidel algorithms can be more efficient in terms of CPU-time. Both Gauss-

Jacobi and Gauss-Seidel generate a sequence ofapproximate solutions {xk} and the iterations

continue until {**} converges to A'1 b. Gauss-Jacobi differs from Gauss-Seidel in that it does

not use the most recent information when computing ar*+1 while Gauss-Seidel does. Further

details about applying direct and indirect methods to the solutions of a set of linear equations

may be found in references [24,26,27,28].

Relaxation methods decouple a system of equations and solve them using an iterative

method. Since it involves each equation separately, both temporal latency and spatial latency

can be exploited. The terms temporal latency and spatial latency are used to mean the

latency in a waveform over a time period and the latency in the circuit at a given time point,

respectively. A family of the relaxation-based electrical simulators are compared to standard

electrical simulation in reference [29].

Timing simulation. is an early form of relaxation-based circuit simulation which was

introduced in the mid-seventies [30,31]. Even though timing simulation programs use relaxa

tion methods to solve the set of circuit equations, none of these programs carries the itera

tions to convergence. Each equation is solved only once at each time point to reduce cost,

while one or more Newton-Raphson iterations may be used. The accuracy of timing simula

tion is maintained using a small time step for the whole simulation period. In fact, timing

simulators have been successfully used for constrained IC design methods such as gate array

or standard cell. However the selection of an appropriate step size is difficult and it may be

limited by stability considerations. Therefore it sometimes has difficulties in solving custom-

designed circuits which contain strong coupling. Thus, the Iterated Timing Analysis and

Waveform Relaxation have been developed.

In Iterated Timing Analysis (ITA) [2,13,5], nonlinear relaxation is used to solve a sys

tem of nonlinear equations obtained by applying numerical integration method to capacitors

and inductors in the network. ITA is similar to timing simulation except that it carries the

25

outer relaxation loop to convergence. ITA exploits waveform latency by processing only the

nodes which are changing at each time point. The remaining nodes are updated using their

values at the previous time point. However, only one Newton-Raphson iteration is performed

per equation for each Gauss-Seidel iteration.

Waveform Relaxation (WR) [6,32,33] is another form of relaxation-based electrical

simulation. In this method, the relaxation is applied at the differential equation level. The

difference of the basic WR from ITA is that WR solves for one variable (waveform) of each

equation for the entire simulation period1 while fixing the other variables in the equation,

rather than solving for all variables at a given time point as ITA does. WR algorithm has

also captured considerable attention due to its favorable numerical properties and has been

successfully applied to the analysis of large MOS digital circuits. A modified version of WR

algorithm has been implemented in program RELAX2 [32].

2.8.2. Convergence of Relaxation-Based Methods

The convergence properties of relaxation methods can be understood by looking at the

convergence properties of the linear relaxation methods which solves Eqn. (2.9). The follow

ing is a well known theorem on the convergence property of linear relaxation methods : [28].

Theorem 2.1 [G. Golub and C. Van Loan]

Let A be split into L + D + U, where L € IRBXB is strictly lower triangular, D 6 IRBXB

is diagonal, and U 6 RBXB is strictly upper triangular. Let N € IRBXB , N —-(L + U).

It is known that if D is nonsingular and the spectral radius of D~lN satisfies p(D~1N) < 1,

then the iterates {xk} converges to A~lb.

One condition that guarantees p(D~xN) < 1 is strict diagonal dominance of A. Clearly, the

1WR algorithm may break the simulation period into pieces, called windows, so that thenumber of relaxation
iterations required to achieve convergence can be reduced. This is called windowed WR (32).

26

more dominant the diagonal of A, the more rapid will be the convergence. All relaxation-

based electrical simulators assume a grounded capacitor at each node. Since the conductance

of the grounded capacitors appear only in the diagonal entries of the matrix A after an

integration method is applied, it helps these methods obtain convergence. If there is strong

coupling in the circuit, the relaxation-based methods still obtain convergence but the conver

gence speed becomes very slow. In this case, both ITA and WR requires more iterations to

get convergence. One of the techniques to solve this convergence speed problem of

relaxation-based methods in the presence of strong coupling is by partitioning the system

variables. That is, the program or the user partitions the circuit into loosely coupled sub-

circuits by grouping tightly coupled nodes together. The sub-circuits are solved using direct

methods and relaxation is applied between sub-circuits [12].

2.9. ELogic Algorithms

Three ELogic algorithms, ELogic-1, ELogic-2 and ELogic-3 respectively, are proposed

and described in the remainder of this chapter. The ELogic-1 (basic ELogic) is the simplest

one and it is used with relatively small voltage steps. Floating capacitors are not allowed in

the circuit description. ELogic-2 is more complex than ELogic-1 but simpler than ELogic-3.

No floating capacitor is allowed either but larger voltage steps may be used than ELogic-1.

ELogic-3 is the most complex and floating capacitors are allowed in the circuit description.

All ELogic algorithms are similar to timing simulations since they do not carry the iterations

to convergence and, do not iterate between nodes while processing. The main difference

between ELogic-1 and ELogic-2 (ELogic-3) is the way they model the grounded capacitor as

will be explained shortly.

Consider the relaxation process for each equation at each iteration, after decoupling the

system. At each iteration of the Gauss-Seidel algorithm which solves Eqn. (2.9), ar*+1 is

computed according to Eqn. (2.10), where xf+l is the (k+ l)th approximation of xt.

27

Tk+1 _ y-i /-*+i (2.10)

The Gauss-Jacobi iteration is obtained by replacing ar*+1 with x* in the above equation. At

each iteration, all values of x, except xit are fixed values in both algorithms. This means that

when the relaxation method solves for a voltage at node t at each iteration, it regards the

fanin nodes of i as ideal constant voltage sources with no resistance. Therefore all nodes

except the fanin nodes play no role in determining the voltage at node t at each iteration.

Hence such nodes are simply ignored. After solving for the node-voltage at t, the next node in

sequence is processed in the same way. This procedure is repeated until all node-voltages

converge. This is a physical interpretation of the way that the relaxation-based method

solves the circuit at each time point.

Similarly, when ELogic algorithms process a node t, they decouple a sub-circuit, consist

ing of only node i and its fanin nodes, from a given circuit. Then, ignoring the remainder of

the circuit, the transition time for the node t to achieve next state is calculated from the

information associated with the sub-circuit.

2.9.1. Modeling of the Grounded Capacitor

Four ways of discretizing the grounded capacitor are as follows [24,34].

(1) Constant voltage source

(2) Discrete model by Forward Euler method

(3) Discrete model by Backward Euler method

(4) Discrete model by Trapezoidal method

The first model is used in most timing simulators and for each iteration of relaxation-based

electrical simulators, as explained before. Let Vn be the voltage across the capacitor being

28

modeled and in be the current through the capacitor, at nth time point. Then the Forward

Euler method is :

V.+ i = V. + hV% (2.11)

The Backward Euler method is :

V.+ i = V. + h Vn+l = VB + h i"±i.= Ebb + *«*Vm (2.12)

The Trapezoidal method to model the grounded capacitors is :

v.+1 = v.+ A(V. + v.+1) = v.+ ±(i. + i.+1)

Etz = Vn +in+1Rrz

(a) (b)

Fig. 2.12 Discrete model of capacitor using (a) Backward Euler (b) Trapezoidal

(2.13)

29

The discrete circuit models of the grounded capacitor, using the Backward Euler and the Tra

pezoidal integration method, are shown in Figure 2.12. Refer to references [24,35] for their

numerical properties.

The basic ELogic algorithm (ELogic-1) uses the constant voltage source model for the

grounded capacitor at each fanin node. The voltage value is equal to the voltage across the

grounded capacitor at the corresponding fanin node, at the given time point. However, it

uses the Forward Euler method for the grounded capacitor at the node under analysis.

ELogic-2 and ELogic-3 use both the constant voltage source model and the discrete model

using the Trapezoidal integration method.

2.9.2. Basic ELogic Algorithm

Consider a circuit fragment shown in Figure 2.13(a), where the node A is being pro

cessed. Since the fanin nodes of node A are regarded as being connected by constant voltage

sources; the circuit can be simplified to Figure 2.13(b). The norton equivalent of its fanin

nodes is given as follows :

n

^NORTON = S @i (2.14.a)

^NORTON = Yj(Vi~ Va)G((2.14.b)
i—l

The transition time, h, is calculated using a Forward Euler model for the grounded capacitor

of node A, CA.

Vn+l= Vn+ hVn

vn+l-vn (Vn+l-Vn)CA
h =

v.

(2.15.a)

(Vn+l-Va)CA
(2.15.b)

^NORTON ~ VaGNORTON

Assume Va+l > Vn, e.g., VA is going up. Let the threshold voltage be, VTHRESH, be defined

as the midpoint value of two adjacent states :

/VV

A G3 3
AV-^VV

-J— Ci —

(a)

2

1 'A °3 3|—/W 'W—|
J.V1 JcA

(b)

v.

A/V—rA/V

I
T

I NORTON

(c)

Fig. 2.13 (a) Circuit Fragment (b) Simplified Circuit (c) Norton Equivalent

30

31

„ Vn -f Vn+1
Vthresh = 5 (2.16)

When the Thevenin equivalent voltage

V-THEV = INORTON / GNORTON (2-17)

is larger than VTHRESH, Eqn. (2.15.b) is used to calculate the transition time. If VTHEV is

smaller than VTffRESH, there will be no transfer and node A is not scheduled.

The flow of the basic ELogic algorithm is shown below.

/* main program */

BasicJELogic()
{

setup();
proc();

}

/* read, construct data structures and initialization */

setup()
{

readin();

/* process all nodes at t=0 */

forall (nodes j in the circuit) {
if (PLOT) print(y);
get next voltage state;

/* solve for next time point */

if (get_time(;) is not FALSE) schedule(; at next time point);
else do_nothing; /* / is inactive */

}

proc()
{

while (time queue is not empty) {
get next node, /, from queue;
update ELogicjtime;
if (PLOT) print(y);

/* Try self-scheduling */

get next voltage state for ;;
if (get_time(y) is not FALSE) schedule '̂ at next time point);

else dojnothing; /* / is, inactive */

/* Fanout node adjustment */

forall (fanout nodes k of j) {
if (k is in the queue) {

delete k from queue;
if (getjtime(fc) is not FALSE)

schedule(A: at next time point);
else

do_nothing; /* k became inactive */

/* Try activating inactive fanout nodes */

else {
if (get_time(Ar) is not FALSE)

schedule^ at next time point);
else dojnothing; /* k remains inactive */

}
}

}

/* compute the transition time for j to achieve next state */

getjbime(y)
{

forall(fanin nodes i of node /) {
evaluate the fanin elements between * and j by table;
model node, t, by constant voltage source;
update GN0RT0N, Inorton)

>
compute a transition time; /* FE */

32

2.10. Strong Coupling in ELogic

Strong coupling in a circuit slows the convergence speed of relaxation-based methods, as

described earlier. Since the basic ELogic also belongs to the family of relaxation-based

methods, strong coupling deserves special attention. Consider a test circuit, shown in Figure

2.14(a), where node A and B are strongly coupled. Assume node A is being processed. Let

V^(0) = VB(0) = 0 V. Using the basic ELogic algorithm, a fanin node B is virtually

grounded, since the voltage across its grounded capacitor CB is zero(Figure 2.14(b)). The

Norton Equivalent pair for node A obtained from its fanin elements is given as follows.

33

SORTON

' *! I i ' n i I •

I
E

5V

(a)

j-
CTE

5V

Gl=lmho G2=9mho

(b)

'•THEV

(c)

Fig. 2.14 (a)Example of Strong Coupling (b) Equivalent Circuit seen from
Node A,using the Basic ELogic (c) Final Equivalent Circuit

^NORTON = 5 C?! = 5X1 = 5 (A)

^Norton = <?i + G2 = 1 + 9 = 10 (mho)

Therefore the Thevenin equivalent voltage (Figure 2.13(c)),

5 <?!
VTHEy =

Gx+ G2
0.5 V

(2.18.a)

(2.18.b)

(2.18.c)

From Figure 2.14(c), if the voltage step is larger than IV (2VTHEY), basic ELogic claims VA

can not transfer to next state and VA, and consequently VB, remains at same voltage which

is zero V. The maximum voltage step which can be used in the basic ELogic depends on the

ratio of Gx and C?2. While strong coupling slows the convergence speed of ITA and WR, it

results in a transition time error in the case of basic ELogic, since it does not perform itera

tions to convergence. The voltage step of 0.1 V to 0.25 V works well for practical NMOS

34

circuits.

Consider the strong coupling example again, using the Backward Euler integration

method for grounded capacitors. Assume that node A is being processed as in previous exam

ple and let VA(0) = V^(0) = 0V. Figure 2.15(a) is the equivalent circuit of Figure 2.14,

using the Backward Euler integration method. In Figure 2.15(a), node B is no longer

grounded and it has a conductance to ground, whose value is /(A). Since f(h) goes to

zero(open) as h goes to infinity and the transition time h is the unknown which we are going

to compute, node A can transfer to next state no matter how large the voltage step is in the

presence of the strong coupling in circuits. Therefore the Backward Euler integration method

can be successfully applied to the grounded capacitor in this example. Similarly, the Tra-

(a) (b)

Fig. 2.15 Test Circuit after Applying BE. Solving for:
(a) Node A (b) Node B

35

pezoidal integration method also can be used to model the grounded capacitor in this exam

ple.

Now consider the test circuit shown in Figure 2.14(a) once more. Assume that node B

is being processed at this time and let VA(0) = 5 V and VB(0) = 0 V. When processing node

B, ELogic ignores node G as mentioned previously. The equivalent circuit when processing

node B is shown in Figure 2.15(b) after applying the Backward Euler method to CA. There

fore VB[h) is given as follows, where the resistance R2 = -77-.
G2

Let RA be equal to RB (CA = CB). Then VB(h) always smaller than 2.5Vregardless of the

value of A. If the voltage step is 5V, ELogic will claim that node B can never reach 5V unless

R2 = 0. Even though the voltage step is chosen as other than 5V, VB(h) still can not reach

5V and it remains at one step below 5V. The solution for this is to use both a constant vol

tage source model and either one of the Backward Euler or the Trapezoidal method together.

In other words, if the fanin node helps the transition of the node under analysis, it is modeled

as a constant voltage source. Otherwise, either the Backward Euler or Trapezoidal method is

used.

2.10.1. Discretized Newton-Raphson Method

Consider the circuit shown in Figure 2.16(a), where node 1 is being processed by

ELogic-2. Figure 2.16(b) is the simplified circuit which ELogic-2 uses when it solves for node

1. This is obtained from Figure 2.16(a) by ignoring all nodes except node 1 and its fanin

nodes. For the sake of simplicity, the Backward Euler method is used to model all the

grounded capacitors. ELogic-2 and ELogic-3 use the Trapezoidal method and will be dis

cussed later. The fanin nodes which are modeled by the constant voltage source may be

included in Ix and Gu using their Norton equivalent. In Figure 2.16(b),

Gi

Llm

Glm Gm.

_ Il2

Ci G12 Gg

(a)

«i£ 01!

(b)

AV
Glm

G12

l

g

m

©
1

m -m

© i3~rc2

m

©i
m

2 —

©1

Fig. 2.16 (a) Circuit Example (b) Simplified Circuit

36

37

*i = /i+ EAy+ Vi-r- (2.20.a)

V= /y - /iy + VJ-JL, for / = 2,...,m (2.20.b)

?y = Gy + -^-, for ; = l,...,m (2.20.c)
, where Vf is the voltage at node j at the nth time point. The nodal analysis equations to

solve Figure 2.16(b) at (n+ l)th time point are given as follows.

For node 1,

(fi+ EGu)^+'-E(GwV?+') = .1 (2.21.a)
y-2 y=2

For nodes j=2,3,...,(m-l),m,

-GuVrl + (Qj + Gu V?+l) = ,) (2.21.b)

From Eqn(2.21.b),

Substituting Eqn. (2.20) and (2.21.c) into Eqn. (2.21.a) and rearranging, we obtain

Since

livj+i-v"l)+ (civj+> _/,_ 2/w)

+JF" 0S +A(G, +G„) 1-°

si n (a + b,)]
y=2 y=2,iyy

,,.A/+B, ft(A.+ B/)

(2.22)

(2.23)

y=2

Eqn. (2.24) given below is an mth order polynomial obtained from Eqn. (2.22) after rearrange

ment.

™ m

/(*)- ElG.y(G/V7+1 -(//-/«))** II (Cy + MGy + G,,))]
j=2 y=2,iyy

m m

+ (GLVT+1 - A - 2/iy) A JJ(C}- + h(Gj + Gu))
/=2 y=2

»» in

+ E[<?i/<Mv?+1 - 17) a n (Ot + A(G, + Qu))]
;'=2 y=2,iVy

38

m

+ 0,(17+1 - VDntCy + A(Gy + GU)) = 0 (2.24)
y=2

In the above equation, C}- and A(<3y + Gl}-) are comparable in the order of magnitude

in practical circuits and neither one may be ignored. Note that the fanin node which is

modeled by the constant voltage source does not contribute to the order of the Eqn. (2.24)

and m is the number of the nodes which are modeled by Backward Euler, including the

grounded capacitor at the node being processed. If the grounded capacitor at the node being

processed is the only capacitor modeled by Backward Euler method, the transition time can

be obtained by ELogic-1. If Eqn. (2.24) is a quadratic or a cubic equation, the transition

time, A, can be computed easily using the known formula for the roots. However, if the order

of the Eqn. (2.24) is higher than 3, the Newton-Raphson iteration method is necessary

[24,26]. The Newton-Raphson method for one equation in one unknown is shown in Eqn.

(2.25).

A*+l = A*-

,where A* is the kth iteration value of A. It is well known that, if the initial guess A0 is

sufficiently close to a correct solution A*ofEqn. (2.24), then the Newton-Raphson algorithm

will always converge to A* and its rate of convergence is asymptotically quadratic. A

geometrical interpretation of the algorithm may be found in reference [24]. However, since it

is difficult to obtain /' (A) form Eqn. (2.24) explicitly, the Newton-Raphson algorithm can be

approximated by the discretized one as follows :

39

«A* A* />) (226)
/(A*)-/(A*-AA)

Eqn. (2.26) is used to obtain the transition time, h, when the order of Eqn. (2.24) is higher

than 3.

2.10.2. ELogic-2 Algorithm

Eqn. (2.26) requires the evaluation of /(A) at two different values of A for each

Newton-Raphson iteration. Either Backward Euler method or Trapezoidal method can be

used to model the grounded capacitor at strongly coupled fanin nodes so that they can be

solved together with node j which is being solved. But ELogic-2 (ELogic-3) uses Trapezoidal

integration which is a second-order method rather than Backward Euler which is a first-order

method, for better accuracy.

The following algorithm is used in ELogic-2 to model the grounded capacitor and to

compute the transition time. The other algorithms are the same as those of ELogic-1. Note

that if all fanin nodes are modeled by a constant voltage source, ELogic-1 can be used to

solve for the transition time.

getjtime(y) {
linearized the circuit for ELogic-2;
decide the direction of voltage change at j;
modelC_2 (y); /* model C */

/* calculate the transition time */
if (# of fanin nodes modeled by TZ = 0)

use ELogic-1 algorithm;
else if (# of fanin nodes modeled by TZ < 2)

use the root-formula to solve quadratic(cubic) equation;
else

use the discretized Newton-Raphson;
}

modelC_2(y) {
forall(fanin nodes t of j) {
if (t helps the voltage change at y)

model by a constant Vtg Src;
else

model by Trapezoidal;
}

}

40

2.11. Bi-Directional Pass Transistor

Since ELogic does not have uni-directional pass transistor models, the pass transistor

always implies a bi-directional pass transistor throughout the report. The pass transistor can

introduce strong coupling into a circuit. Consider a pass transistor which follows an NMOS

inverter. Usually, the load transistor of an NMOS inverter has higher resistance than the

driver so that VOL can be kept low. However the size of the pass transistor is comparable to

that of the driver. If the driver of the NMOS inverter is off, the pass transistor couples its

drain and source nodes much more tightly than the depletion load transistor does. If a small

voltage step (in practice, not larger than 0.25 V) is defined for ELogic, then ELogic-1 is

sufficient to solve circuits with pass transistors. However, if a large voltage step is desired,

ELogic-2 must be used.

Recall the small-signal model of Figure 2.5(a) for pass transistors. Since the model con

tains either a dc current source (Iq) or a dc voltage source (Vq), this dc source sometimes

helps ELogic to determine correctly whether or not the node under analysis can transfer to

next state. However, occasionally, it may prevent a transfer when one should be made. An

example of the latter case is illustrated in Figure 2.17(a), where a capacitor Gx is charged

through a pass transistor Ml. The small-signal model for the source of Ml is shown in Figure

2.17(b). The equivalent circuit using the small-signal model is also shown in Figure 2.17(c).

Since the dc voltage source of the small-signal model is negative (Vq < 0), it makes the

Thevenin equivalent voltage, VTHEV of Figure 2.17(c), lower than 5V (VTHEV < 5). Let

Vs(0) be 0 V. Then, if the voltage step is larger than (2VTffEV), ELogic incorrectly determines

that node S can not transfer. If ELogic performs ITA-like iterations, Vs will be updated to a

new voltage value and the pass transistor will be reevaluated. Then after some iterations,

+5V

D

X
i

+5V

Ml

(a)

41

Cl4=vcl(0)=0V

Vq< 0

•Zr =^=Vcl(0)=OV
+5VT CI

(c)

Fig. 2.17 (a) Pass TR Example (b) Small-signal Model for the Source of Ml
(c) Equivalent Circuit

42

ELogic will determine that node S will transfer to next state. However ELogic belongs to the

class of timing simulators and does not allow iterations.

The effect of the dc voltage source of the small-signal model is dependent of the dc

parameters of MOS transistors and the way that terminals are connected to each other. The

effect is summarized in Table 2.3, for various terminal connections for NMOS and PMOS,

where HELP means it helps and HINDER means it hinders ELogic from making a correct

decision on whether or not a node can transfer to next state.

As indicated in Table 2.3, if a large voltage step is desired in ELogic, the line-thru-

origin model is more adequate than the small-signal model for the pass transistors. Both

models can be used for NMOS driver, NMOS load and PMOS driver regardless of the value of

the voltage step. However, since the small-signal model provides a more accurate waveform

than the line-thru-origin model, it is better to use it for those transistors. ELogic-2 provides

both models so that the user can choose the appropriate one, depending on the value of the

voltage step and the terminal connections.

2.12. Floating Capacitor

A floating capacitor is defined as a capacitor such that neither of its terminals are con

nected to a reference node. It is only allowed in the circuit description of ELogic-3. The

MOS Terminal State Evaluated Behavior
Type Connection Change at

NMOS PassTR Up Source HINDER
PassTR Down Drain HELP

Driver Down Drain HELP
G-D tied Down Drain HINDER

Load G-S tied Up Source HELP
(NMOS)
PMOS PassTR Down Source HINDER

PassTR Up Drain HELP
G-S tied Up Drain HINDER

Table 2.3 Effect of Small-Signal Models in ELogic State Transition

43

floating capacitor can also create strong coupling between two nodes. When the nodal

analysis equations of Eqn. (2.9) are formulated, the conductance which represents a floating

capacitor appears as an off-diagonal element of A, as well as a diagonal element of A. As a

result, a floating capacitor reduces the diagonal dominance of A, while a grounded capacitor

improves it. Therefore floating capacitors have limited the application of timing simulators.

In early timing simulators, floating capacitors were not allowed in the circuit description,

mstead, the user approximated the effect of a floating capacitor by altering the values of the

grounded capacitors at the appropriate nodes [30]. Recently, a number of studies have been

made to allow floating capacitors in timing simulations, for example, the symmetric displace

ment technique [36] and the Implicit-Implicit-Explicit method [37,38].

A floating capacitor in ELogic adds some complexity to the algorithm. One example

which requires special attention in calculating a transition time is illustrated in Figure 2.18.

In this circuit, the voltage change at node 1 directly affects the voltage at node 2 without any

time delay, according to the following equation.

Fig. 2.18 C-C example

44

AV*=^-or+o; (227)

A more detailed description of ELogic-3 algorithm will be presented in Chapter 3.

2.13. Area of Future Work

A lot of work has been performed to fully develop the ELogic technique and resolve

many of critical issues. In this section, some suggestions for future work are described.

Since only one of the discrete voltage states can be defined as the voltage at a node in

the steady state, the node-voltage may alternate between two adjacent states without being

triggered by any other nodes. This is called self-oscillation and it may occur when the exact

solution of a node-voltage, VEXACT, is not sufficiently close to the one of the voltage states.

Let Vthresh be the threshold voltage between two states Vx and V2. If VEXAcr lies between

vthresh and V2 (V^), it is rounded off to V2 (Vx). Assume that the present voltage state of

node t is V2 and VEXACT calculated by ELogic is between VTHRESH and Vx. Then node i is

scheduled to make a transition from V2 to V{. When the voltage at node i reaches Vlf

vexact is computed again. If the new VEXAct is between VTHRESH and Vlt the voltage state

of node t remains at Vx unless there is an external trigger by fanin nodes. Under these condi

tions, the self-oscillation does not occur. However, sometimes the new VEXAcr may be

between V2 and VThresh- This may happen because one of the input voltage states used to

evaluate MOS transistors changes from V2 to Vv In this case, node i would be scheduled to

make a transition back to V2. As a result, node t alternates between V\ and V2. One way

to solve this problem is to introduce hysteresis by defining two different threshold voltages,

one for rising up (THUP) and the otherfor falling down (THDOwn) of fcbe node voltage, where

THUP = VTHRESH + \8\ , THDown = Vtbbbsh - \6\ (2.28)

The 181 in the above equation must be small enough so that the normal transitions can not

be affected. Another solution is to implement a cycle detector, which prevents the node i

45

from making a transition when the direction of the transition reverses before its fanin node

forces it to do so. The latter method is employed in ELogic, although both methods work

quite well in practice.

A similar output oscillation may occur due to the interaction of a node and its fanin

nodes. This is called interactive-oscillation. Preventing such interactive-oscillations is very

important, since it costs unnecessary CPU-time and it may affect the accuracy of the

waveform. The interactive-oscillation can be illustrated using the circuit in Figure 2.19(a).

Under certain conditions, node A and B may repeatedly exchange their voltage states with

each other as shown in Fig. 2.19(b). Let VA = IV, VB = OV, GA = GB and the voltage

step be IV. At t = 0, both nodes are processed. Node A is scheduled to make a transition

to 0V, while node B is scheduled to make a transition to IV. Since the time constants of two

nodes are same, they are scheduled at the same future time point(say, tx). At tu they simply

exchange their voltage states and everything else remains same. The same sequence is then

repeated over and over. The resulting output waveform is shown in Figure 2.19(b). Since

ELogic regards the fanin nodes as the voltage sources, the dual threshold scheme can not

solve the problem. For example, at t = 0, node A believes that VEXACT is 0V which is the

voltage at B at that time. Similarly, node B believes that VEXACT is IV which is the voltage

at A at that time. A cycle detector is not easy to implement successfully either, since the

nodes are scheduled by the fanin node as well as by itself. The interactive-oscillation can

occur between one state and any other voltage rather than between two voltage states only.

Let VA(tx) = 3V, VB(tx) = 2.2V, GA = CB and the voltage step be IV. Even though ELo

gic does not allow 2.2V as a voltage state and does not use it for self-scheduling, it may be

used for fanout-adjustments. Assume that node A reaches 3V at tlt while node B is rising up

from 2V to 3V. Then, node B possesses 2.2V which is the node-voltage at B at tlt and the

pending event for B is canceled. After that, node A is processed and scheduled at 2V (self-

scheduling) and node B is processed and scheduled at 3V (fanout-adjustment). Since the time

constants of two nodes are the same, node A reaches 2.2V when node B reaches 3V. The

R
B

C — Cg

^^ time

0 tl

(a) (b)

time

(e) (d)

Fig. 2.19 (a) Example of interactive-oscillation (b) Example 1
(c) Example 2 (d) Example 3

46

time

47

procedures are then repeated and their waveforms are shown in Figure 2.19(c). When the

value of Gx is different from that of G2) the time constants of two nodes are not same. But,

if the values of the capacitors are comparable, the interactive-oscillation still may occur. The

corresponding waveform is shown in Figure 2.19(d), where the magnitude of the slope of two

waveforms are different. Similarly, if each node of pass-transistor chain are electrically simi

lar in nature, the interactive-oscillation may occur. The interactive-oscillation finally dies

out, but possibly after a long sequence of the node processes. This costs unnecessary CPU-

time and sometimes degrades the waveform accuracy. Therefore, proper handling of

interactive-oscillation is one of the most important remaining issues in ELogic.

Another area of future work is to incorporate submatrix methods in the ELogic algo

rithms, as used in other relaxation-based methods like SPLICE [39,40] and RELAX [6,40].

The use of subcircuits improves the convergence speed of the relaxation-based methods in the

presence of strong coupling. The subcircuits can be determined either manually or, better,

automatically using partitioning heuristics such as [12,41]. ELogic may dynamically derive

the I-G tables for tightly-coupled subcircuits by partitioning and performing subcircuit

analysis using direct methods. That is, rather than using static I-G tables, as for common

ELogic components, for complex and thus less-often-used subcircuits, the I-G state values

would be computed dynamically. Although the submatrix method may be expensive, it

solves most problems which arise from the presence of strong coupling, specifically the

incorrect decisions of ELogic-1 on transitions and unwanted oscillations due to local coupling.

Therefore, the development of a proper submatrix method for the ELogic technique, which

can maintain a reasonably low cost, is another important area of research.

2.14. Summary of ELogic Algorithms

So far, the details of three ELogic algorithms have been described. Their basic

differences are summarized in Table 2.4.

Algorithm MOS Model Floating Cap. Cap. Model

ELogic-1 Small-Signal Not Allowed Const. Vtg. Src.
andFE

ELogic-2 Small-Signal
Line-Thru-Origin

Not Allowed Const. Vtg. Src.
andTZ

ELogic-3 Small-Signal
Line-Thru-0rigin

Allowed Const. Vtg. Src,
and TZ

48

Table 2.4 Summary of ELogic Algorithms

One may wonder which algorithm is the best. The answer depends on the application

for which it is to be used. Factors such as accuracy, simulation speed and the limitation of

the algorithms must be considered before deciding which algorithm is appropriate for a partic

ular application. The algorithms shown in Table 2.4 are only three examples of the many

possible ELogic algorithms. For example, one may use a modified version of ELogic-1 as fol

lows : As indicated earlier, ELogic-1 is the simplest and most efficient algorithm in terms of

CPU-time. However, if a node is strongly coupled to another, ELogic may decide that the

node does not make a transition for a given voltage step, even though the node can actually

make a transition in the circuit. Therefore, if ELogic-1 determines that a node does not make

a transition, the voltage step may be reduced temporarily for that particular node. If

ELogic-1 consistently claims that the node does not transfer until the voltage step reaches the

lower limit, it can be regarded that the node does not transfer in the circuit either. The lower

limit of voltage step may be obtained from practical circuits by experiments and it can be

stored in the program. By doing so, ELogic-1 can make the correct decision on the transition

of the nodes without using the expensive Newton-Raphson iteration.

49

Another example is a mixed application of two algorithms. One may use ELogic-1 until

it determines that a node does not make a transition. Then ELogic-2 may be used to obtain a'

correct decision on the transition of the node. This algorithm is used in the application to

timing verification (Chapter 4).

50

CHAPTER 3

APPLICATION TO SIMULATION

3.1. Introduction

In this chapter, the ELogic-3 algorithm is described in detail. ELogic-3 is the most

expensive of the three algorithms. However, it is also the most general and floating capacitors

are allowed in the circuit description. The output waveforms of ELogic are compared with

those of electrical simulation, using NMOS and CMOS, and digital and analog test circuits.

The CPU-time is also compared for large examples.

3.2. ELogic-3 Algorithm

The stand-alone ELogic-3 program builds two kinds of signal flow graphs, using a linked

data structure, as the circuit is read. The first one is a node-signal flow graph which was

shown earlier in Figure 2.11. It spreads from node i to its fanout nodes in-the structure. This

flow graph is used for selective trace technique. The fanin node and the fanout node were

defined for the MOS transistor in Figure 2.10. In the case of the resistor and the capacitor,

both terminals are fanin as well as fanout nodes of the other. The other signal flow graph

which ELogic-3 builds spreads from node j to its fanin nodes which have a direct path to

node y. This flow graph is used to obtain the Norton equivalent associated with the node

being processed. Not all fanin nodes of node j have a direct path to node j. For example,

the gate of the MOS transistor is a fanin node of the source, but there is no direct path

between two nodes. Therefore, the gate of the MOS transistor is not linked to the source in

the flow graph, unless there is another element which provides a direct path between two

nodes. The following is the pseudo-code flow of the general ELogic-3 algorithm for simula

tion.

ELogic_3()
{
/* initialization of hashtables for models and elements */

hashtable();
/* read the circuit and construct data structure */

setup();
/* initialize the time queue */

init();
/* process for entire simulation period */

proc();
}

setup ()
{

while(there is input line left) {
read();
if(ELEMENT) {

store in the hashtable(ELEMENT);
construct two kinds of signal flow graphs();

else if(MODEL)
store in the hashtable(MODEL);

else if(OPTION) set option variable();
else if(SUPPLY) store the value at the node,
else if(EMPUTJPULSE) store waveform as a linked structure();
else /* COMMENT */ do_nothing();

/* setup a voltage-state table */
MakeVtgTable(vtgstep);

/* setup table look-up MOS models */
MakeMosTable();

}

/* process all nodes at t=0 */
init()
{

forall (net j) {
if(PLOT) plot(;);
if (nodejbype == SIGNAL) {

if (getjbime(y) == TRUE)
schedule(y);

else continue;

}
else if (nodejtype == INPUT)

schedule j for entire simulation period();
else do_nothing();

}
}

procQ

51

{
whilefqueue is not empty) {

get node j from the queue;
/* check C-C circuit, refer to Fig. 2.18 */

if(checkC_C(y) == TRUE) {
unget(y);

continue;

}
if(PLOT) plot();
if(node_type == SIGNAL) {

/* Try self-schedule */
if(get_time(y) == TRUE) {

/* checkingself-oscillation */
if(self-oscillation(y) == FALSE) schedule(y);

}
/* fanout-adjustment */
forall(fanout nodes i of f) {

if (i is active) {
delete t from the queue;
if (getjtime(t) == TRUE) schedule^);

else {
if (getjbime(i) == TRUE) /* activated */

schedule(t);
}

}

/* check whether or not there are C-C circuits(Fig. 2.19) */
checkC_C(y)
{

CFLAG = FALSE;
if(there is C-C circuits) {

forall(fanout nodes i of ;) {
calculate the voltage change;

if(t crosses the voltage state) {
schedule(«);
CFLAG = TRUE;

}
}

}
return(CFLAG);

}

schedule(y)

t.
insert ,; in the proper position of time queue;

}

52

getjtime(y)
{

if(there is no floating capacitor connected to j) {
use ELogic-2 to calculate transition time;
retiirnQ;

}

obtain-the direction of voltage change at j;
model_capacitors(); /* calculate the transition time */

if (# of fanin nodes and floating cap., modeled by TZ =» 0)
use ELogic-1 algorithm;

else if(# of fanin nodes and floating cap., modeled by TZ'< 2){
use the root-formula to solve quadratic(cubic) equation;
if (solution exists) return(TRUE);
else return(FALSE);

else { /* use the discretized Newton-Raphson */

NEWTONJIAPHSON :

/* get Norton pairs for Tlt Ti+ AT */
WortonU ,&Il,&Gl,8I2,&G2);

/* discretized N-R */
ti*cJtR(Ii,GuI2lG2);
if(CONVERGENT) goto NEWTON-RAPHSON ;
else if(CONVERGED) return(TRUE);
else return(FALSE);

}}

53

3.3. Analog Circuit Examples

In general, there is relatively little latency in analog circuits. Since latency exploitation

is one of the major factors which accounts for the fast simulation speed ofELogic, it has less

of a speed advantage over classical simulators for analog circuits than it does for large digital

circuits. Most analog circuits usually contain large feedback paths and high gain. Therefore

the voltage step must be smaller for analog circuits than for digital circuits, to maintain the

same waveform accuracy.

54

+ 10V

lOfF

Fig. 3.1(a) Single-Stage NMOS Amplifier with Voltage-Shunt Feedback

I5DN
Fig. 3.1(b) Output Waveform of NMOS Single-Stage Amplifier

55

Four analog circuits, including a single-stage NMOS amplifier, an NMOS ring oscillator,

an RC network, and a large industrial NMOS sense amplifier, were chosen to illustrate the

capability of the ELogic technique when simulating analog circuits.

3.3.1. Single-Stage NMOS Amplifier

The Single-stage NMOS amplifier with voltage-shunt feedback is shown in Figure 3.1(a).

The circuit was simulated using ELogic-3 and small-signal models for MOS transistors with a

0.1V voltage step. The output waveform of ELogic-3 is compared with that of SPICE2 in

Figure 3.1(b). The same initial conditions were used by both programs. As the figure indi

cates, the results are in good agreement.

3.3.2. NMOS Ring Oscillator

The ring oscillator which consists of three NMOS inverters is illustrated in Figure

3.2(a). This circuit has a strong feedback loop. Instead of using external trigger, different ini

tial conditions were assumed at each node to obtain oscillations, as follows.

^i(O) = 0, V2(0) = 5, Vz(0) = 2.5

The output waveform of the last inverter from ELogic-3 is compared to SPICE2 in Figure

3.2(b), for the simulation period of200 NSec. The waveform ofELogic-3 was produced using

the small-signal model for MOS transistors and a 0.1V voltage step. The relative error toler-

SPICE2
ELOGIC

0.05V 0.1V 0.2V

Time for 10

cycles (NSec)
157.03 156.721 156.136 155.147

Error - -0.2% -0.57% -1.12%

SPICE2 used le-5 as a value of RELTOL

Table 3.1 Timing Comparison of ELogic-3 and SPICE2
for Ring Oscillator (10 Cycles)

+5V

Fig. 3.2(a) NMOS Ring Oscillator

200N

Fig. 3.2(b) The Output Waveform Comparison of Ring Oscillator
ELogic:Solid line SPICE2:Dotted line

ELogic exhibits 0.57% of timing error using O.lV step

56

57

ance (RELTOL) of SPICE2 was set to lE-5. The two programs produced almost identical

output waveforms, in the presence of the strong feedback. The timing error in the output

waveform of ELogic decreases further, if smaller voltage is used. To show the dependency of

the timing error of ELogic on the voltage step used, the time period of 10 cycles are com

pared to that of SPICE2 in Table 3.1, for the voltage steps of 0.2V, O.lV and 0.05V. As the

voltage step gets smaller, so does the timing error.

3.3.3. Floating Capacitor Example

An example which contains floating capacitors is illustrated in Figure 3.3. The initial

voltages of nodes 2 and 3 are 0V, i.e.,

V2(0) = V3(0) = o

The waveforms at nodes 2 and 3 using ELogic-3 and SPICE2 are illustrated in Figure 3.4,

where ELogic-3 used 0.25V step. The solid lines are ELogic-3 output waveforms and the dot

ted lines are SPICE2 output waveforms. For the node 2, the waveform of SPICE2 and

ELogic-3 are in good agreement. This suggests that ELogic-3 handles the floating capacitor

successfully. Remember that one of the major drawbacks of standard timing simulators is

their inability to handle floating capacitors. In the case of node 3, the waveform of ELogic

falls behind that of SPICE2 in the beginning. This is because in ELogic, node 3 starts to

make a transition only after node 2 makes its transition. This is not due to the floating capa

citor but rather it comes from the fact that ELogic uses the information at present time point

to calculate the next time point. ELogic also produces a similar time delay error for an RC

chain and pass-transistor chain circuits. The error certainly depends on the voltage step used

and the depth of nodes from the input source. The smaller the voltage step is, the smaller

will be the error. And, the nearer to inputs the node is, the smaller will be the error. Even

though this is a major drawback of the ELogic technique, the voltage error dies out at steady

state except for the usual discretization voltage error. Figure 3.4(b) indicates that there is

only the discretization voltage error at node 3 after lONSec. Most large digital circuits

5V

10V

20fF

1 112

20fF

Ui
AW

50K

100K,

l_L 50K l_L50K

30fF 50K,

Fig. 3.3 RC Network with Floating Capacitor

ELOGIC

SPICEE

[a]

1
Cb 3

ELOGIC

SPICE2

30fF

SON

SON

Fig. 3.4 Waveform of ELogic-3 and SPICE2 (a)at node 2 (b)at node 3
ELogic-3 used 0.25V step.

58

59

employ a lot of regenerative circuits such as latches and flip-flops. Therefore the delay error

does not accumulate while signal propagates from the input node to the output node, in prac

tice.

3.3.4. Industrial Sense Amplifier

An industrial sense amplifier which contains 723 NMOS transistors and 401 nodes was

simulated for 1000 N sec on VAX1 11/780-5 running UNIX2, by four programs including

SPICE2, SPLICE2 [2], ELogic-1, and ELogic-2 to compare output waveforms and CPU-time.

Figure 3.5 illustrates the output waveforms of the four programs for two active nodes (node

14 and 41). ELogic-1 and ELogic-2 used 0.2 V step and the small-signal model. Both

ELogic-1 and ELogic-2 produced acceptable output waveforms for all nodes. However, it was

observed that ELogic-2 presented a slightly better output waveform at node 14 than ELogic-

1. The CPU-time is compared in Table 3.2. The stand-alone ELogic-1 and ELogic-2 pro

grams are 188.3 times and 75.8 times faster than SPICE2, using 0.2V step, respectively.

Program CPU-time(Sec) Speed
(Normalized to SPICE2)

SPICE2

SPLICE2

ELogic-1
ELogic-2

9542.6

1067

50.68

124.61

1

9

188.3

75.8

Table 3.2 CPU-time Comparison for NMOS Sense Amplifier

1VAX is a trademark of Digital Equipment Corporation

2 UNIX is a trademark of Bell Laboratories.

\f hAAAAi
IDDDN I0D0N

V HAAAAi
IDDDN IOQQN

[b]

V ; HAAAA,
IDDDN IDDQN

ID

V . riAAAA
IDDQN IDDDN

Id]

Fig. 3.5 Waveforms of NMOS Sense Amp. (Node 14 (Left).Node 41(Right))
(a) SPICE2 (b) SPLICE2 (c) ELogic-l(0.2V step) (d) ELogic-2(0.2V step)

60

61

3.4. Digital Circuit Examples

3.4.1. NMOS Inverter Chain

The 3-stage NMOS inverter chain is shown in Figure 3.6. The inverter chain was simu

lated by ELogic-3 using a small-signal model for two voltage steps : 5V and 0.25V. Figure

3.7 illustrates ELogic output waveforms at each node, where ELogic used 5V voltage step.

Since only two voltage states, 0V and 5V, are allowed, the output waveforms look similar to

the output waveforms of a logic simulator. Note that the output of each inverter starts to

change only when its input waveform achieves either 0V or 5V. Figure 3.8 illustrates how the

precision of the ELogic model affects the accuracy of ELogic waveform, by comparing its

waveform at node 4 to that of SPICE2, for two voltage steps of 0.25V and 5V. In the figure,

0.25V step presents a much closer output waveform to that of SPICE2 than 5V step. How

ever, it certainly costs more than the 5V step case. Therefore, the voltage step must be

+5V

lOfF

Fig. 3.6 NMOS Inverter Chain

B

D

/ V

/

/

/

Fig. 3.7 ELogic output waveforms using 5V step
(A) input (B) node 2 (C) node 3 (D) node 4

sv

EQN

Fig. 3.8 Waveform Comparison between ELogic and SPICE2
(A) ELogic(0.25V step) (B) ELogic(5V step) (C) SPICE2

62

63

chosen appropriately for the purpose of the application, in terms of accuracy and speed.

3.4.2. CMOS Static RAM Cell

As a CMOS circuit example, a commonly used CMOS static RAM cell is illustrated in

Figure 3.9. The cell employs a pair of crossed-coupled CMOS inverters as the storage flip-

flop. The row select line R is held low except when the cell is to be accessed for writing or

reading. The C and C lines are biased at approximately 3V, initially. Writing and reading

are performed through the column lines, C and C, and transistors MZ and A/4. The data is

read when M3 and M4 are turned on by keeping the row select line R high. For fast read-

response, the small voltage change at C and C is amplified by sense amplifiers(not shown).

Writing is accomplished by forcing either C or C low through buffer, depending on the data

Fig. 3.9 CMOS Static RAM Cell

era

ra

cid

era

Fig. 3.10 Waveforms whenWriting CMOS Static RAM Cell (Node R,C,1, and 2)
ELogic(0.25Vstep):Solid Line SPICE2:Dotted Line

64

to be stored. In Figure 3.10, the writingwaveforms are compared using SPICE2 and ELogic-

3, when C is forced to ground from 3V. In the test, ELogic-3 used a voltage step of 0.25V

and modeled MZ and A/4 by the line-thru-origin model and other transistors by the small-

signal model. In Figure 3.10, the output waveforms of ELogic-3 is very close to that of

SPICE2,and the waveforms are almost indistinguishable.

3.4.3. ALU of CMOS SOAR (Smalltalk On A RISC)

As an example of a large digital circuit, the ALU of the CMOS SOAR (Smalltalk On A

RISC) chip [46] was simulated on VAX 7800 running UNIX using SPLICE2, ELogic-1, and

ELogic-2 for 300 N Sec, to compare output waveforms and CPU-time. For the analysis

parameters, ELogic used the small-signal model and a 0.2 V step. The circuit is designed

NDDEIE f

NODE34

NDDE193 ll

NDDEIE

NDDE34

NDDE 133

NDDEIE I

NDDE34

NDDEE3

r

1

H

lb]

[D
Fig. 3.11 Output Waveforms of SOAR ALU

(a) SPLICE2 (b) ELogic-1 (c) ELogic-2

65

r

66

using Domino logic and contains 1692 transistors and 1050 nodes. Waveforms at some output

nodes are illustrated in Figure 3.11. It is observed that both stand-alone ELogic programs

produced acceptable waveforms. The CPU-time are given in Table 3.3.

Program CPU-time

(Sec)
Speed

(Normalized to SPLICE2)

SPLICE2

ELogic-1
ELogic-2

1131

346.6

512

1

3.26

2.2

Table 3.3 CPU-time Comparison for CMOS SOAR ALU

For this particular example, ELogic-1 and ELogic-2 do not present much speed improvement

over SPLICE2 as they did for NMOS sense amplifier (Refer to Table 3.2). It is because the

scheduling scheme implemented in the stand-alone programs always searches from the first

point of the queue and not suitable for the circuit with a large number of nodes. The fanin-

oscillation (refer Section 2.13) also increased the cost of the ELogic simulation.

3.5. Conclusion

In this chapter, the flow of the ELogic-3 algorithm has been described in detail. The

algorithm successfully solves a circuit which contains floating capacitors. Experimental

results indicate that ELogic can successfully simulate both analog circuits and digital circuits.

It suggests that ELogic can be used to simulate a circuit which contains both digital and ana

log parts by using different voltage steps for each part depending on the circuit nature. For

analog circuits, small voltage steps are necessary to maintain accuracy in the waveforms, due

to the presence of strong feedback and high gain. For digital circuits, much larger voltage

steps may be used. Since the ELogic techniques were implemented to illustrate their capabil

ity of simulation in the stand-alone programs, it is possible to improve the speed of the ELo

gic programs by further optimization.

CHAPTER 4

APPLICATION TO TIMING VERIFICATION

67

4.1. Introduction

Digital circuits are designed in the form of either asynchronous systems or synchronous

systems. For asynchronous systems, great care must be exercised to avoid potential timing

errors due to any difference in state sequencing under arbitrary differential delays of signals

through the paths in the circuit, during the design process. The synchronous system fits into

the clocking scheme and implementation functions correctly only if the clock period is

sufficiently longer compared to the delays in the circuit. Therefore, the speed of the circuit is

determined by the slowest of all possible signal paths, which is called critical-path. On the

other hand, unnecessarily fast sections of the circuit consume extra power. Designers attempt

to verify the timing of the circuit and correct timing errors in the circuit while optimizing

speed-power product. This is becoming a more and more difficult task as circuit size and

complexity increase and the growing competition for high performance circuits makes circuit

ever more critical. Simulation is a very inefficient technique for this purpose. Furthermore,

pathological conditions may not be detected by simulation, unless particular inputs are fed.

Therefore, timing verification has played a very important role in designing the digital

integrated circuit and in optimizing its performance [43,44,48,49].

There are two approaches in timing verification [42], called path enumeration and

critical-path analysis. Path enumeration [47] checks all possible paths in the circuit for timing

problems', while in the critical-path analysis the search is pruned and only the slowest paths

are detected. Path enumeration is conceptually simple, but it may suffer from rather long

CPU-times due to the potentially large number of possible paths. Even though the major

difficulty of the critical-path analysis is its implementation complexity, it has been success

fully implemented and applied to MOS switch-level circuits in programs such as Crystal [43]

and TV [44]. In this report, ELogic is used in conjuction with the critical-path analysis

approach.

Unlike simulation, the critical-path analysis is value-independent. This means that, for

example, if a changing signal comes into a NAND gate, its effect is always propagated to the

output node, regardless of the signal states at the other input terminals. In simulation, the

changing signal propagates to the output of the NAND gate, if and only if the signal states at

the other input terminals support the propagation. Both the strength and weakness of

critical-path analysis comes from the value-independence. It enables the critical-path analysis

to avoid checking for all possible input vectors, which grows exponentially with the number

of input nodes. As a result, the critical-path analysis can save much CPU-time, compared to

simulation. However, since the critical-path analysis ignores specific signal values, it may

report critical paths which can never occur under real operating conditions, which are called

false paths. The false paths tend to hide the real critical paths in the circuits under test. In

this case, a mechanism called case analysis, which fixes the node value, may be used. How

ever, it must be used with caution so that critical path can not be overlooked. In general,

case analysis must be run several times to make sure, with different values each run.

While some timing verification programs [48] model the circuit at gate-level, switch-

level timing verifiers [43,44] represent each nonlinear transistor by a linear resistor in series

with a switch. Then they calculate the delay time using one of a number of different RC

approaches. The RC approaches use RC time constants for computing delays, rather than

performing simulation. These RC approaches are very efficient in terms of CPU-time, but

they have following weakness. They assume that there is only one direct path from a refer

ence node (power supply or ground) to the signal-nodes of the circuit. For example, in the

case of NMOS inverter, if the driver is on, only the driver is considered for delay time esti

mates, and the load is ignored even though it is on too. While some of the RC approaches

incorporate information about input waveform shape and load condition in order to obtain

69

more accurate delay estimates, they use the ratio approach which was first suggested by Pil

ling and Skalnik [45]. In the ratio approach, factors such as the input rise time, the output

load, and transistor size are combined into single ratio, called rise-time ratio. This value is

then used to determine the effective resistance of a transistor. The ratio approach improves

the accuracy of the delay estimates significantly with small amount of work for most circuits,

it may still result in large error. The RC approaches do not provide an accuracy-speed

trade-off either.

In this chapter, the implementation of ELogic as a delay modeler in the switch-level

timing verification program Crystal [19,20,43] is described. Crystal provides the designer

with information about the time required for the output nodes to settle and the worst-case

paths leading from the input to those nodes. The experimental results are also included.

4.2. Path Analysis and Delay Modeler

In general, timing verification programs are partitioned into two sections called the

path-analysis section and the delay modeler, as illustrated in Figure 4.1. Most timing verifiers

represent a circuit by a node-signal flow graph as shown previously in Figure 2.11. The

path-analysis section extracts part of the circuit systematically using the signal flow graph

and transfers it to a delay modeler so that the delay modeler can compute its delay. Using

the delay information obtained from the delay modeler, the timing verifier locates the critical

paths of the circuit.

Crystal decouples the circuit into chains of transistors called stages. Since a single

transistor can participate in many different stages during a single timing verification run, Cry

stal extracts all the stages triggered by a change at a node dynamically during timing

verification, and passes each stage to a delay modeler. Delay modeler computes how long it

will take for the output of the stage to change value, by using an RC approach. Once the

stage has been processed, it is discarded. Crystal uses a depth-first search to trace out stages

Path

Analysis

Vj Delay

Modelerk.

Timing Verifier

Fig. 4.1 Partition of Program Structure of Timing Verifier

70

and locate the critical paths.1 Crystal stores in each node the slowest delay time to that node

that has been found so far. When a node appears as the output of a stage, the new delay

time from the stage is compared to the time stored in the node. Then the slower time is

stored in the node. Since delay modeler is separate from the path analysis section in the tim

ing verification program, ELogic can be used to calculate the delay time of the stages. While

the RC approaches have been used successfully in designing large digital MOS circuits, ELo

gic can provide more accurate delay estimates. In addition, ELogic provides a continuous

accuracy-speed trade-off which is one of the major features of its applications.

1 Jouppi's TV program (44) uses a breadth-first search.

71

4.3. Implementation of ELogic Model in Crystal

Crystal is written in "C" programming language. The stand-alone ELogic delay

modeler was added in Crystal with emphasis on consistency of the program structure and

minimum modification of the existing code rather than performance optimization. Since ELo

gic is a simulation technique, a pointer was added into the data structure for the stage to

store the waveform segment of its output node. Note that Crystal assumes each gate of the

transistors in a stage, except an input node, can take only one of two states, i.e., Vdd or

ground. Since the version of Crystal employing ELogic modeler uses the same structure, the

simulation is not ideal.

When Crystal calls the delay modeler, it transfers information about the stage to the

delay modeler. Since each stage is a chain of transistors from the signal source to a gate or

output node, the stage, as is, may not be the correct subcircuit to simulate using the ELogic

technique. In this case, a signal source is any strong source of a logic 0 or 1. For example, if

Input of Figure 4.2 turns on, the following four stages are created for delay evaluation : M2-

M3-M4, M2-M3-M5, M1-M3-M4 and M1-M3-M5. It is observed that either Ml or M2 is miss

ing for the stages. Therefore, a function called StageSetupf) was implemented to complete the

stage by tracing out missing parts from input file, if there are any.

The definition of the delay was slightly modified from the conventional definition of the

propagation delay. The propagation time is the time difference between 50% points of the

input and output pulse waveforms. However, the delay time used by Crystal is based on the

typical logic threshold voltage, Viw), at which the input voltage is equal to the output voltage

of the inverter. Once the output waveform segment is obtained for a stage, the segment is

stored in the output node i. Later, the stored output waveform segment is used as an input

waveform segment for the stage whose input node is t. The simulation using ELogic is per

formed until the output waveform reaches a steady state.

72

+Vdd

Fig. 4.2 Circuit Fragment

The ELogic modeler was implemented using a mixed algorithm of ELogic-1 and

ELogic-2 (Mixed-ELogic). When it evaluates the delay time, ELogic-1 is used first for each

transition. If a node fails to make that transition for some reasons, perhaps due to the use of

large voltage steps, the algorithm switches from ELogic-1 to ELogic-2 which guarantees that

the node will make a transition, if appropriate. The high-level pseudo-code algorithm is as

follows.

/* evaluate the delay by ELogic technique */
ELogicDelay(stage)
{
/* complete the stage for ELogic */

StageSetup(stage);

/* process all nodes at beginning */
init(stage);

/* obtain the waveform at output node */
while(the queue is not empty OR output node is not in steady state) {

get next node / form the queue;
node_proc(y);
forall(fanout nodes t of j)

node_proc(»);
}
return(delay);

}

node_proc(y)
{

use ELogic-l();
if (; made a transition)

return();
else

use ELogic-2();
}

73

4.4. Examples and Results

The ELogic model was evaluated using a CMOS microprocessor SOAR (Smalltalk On A

RISC) chip[46] and its ALU (Arithmetic Logic Unit).

4.4.1. ALU of CMOS SOAR(Smalltalk On A RISC)

To observe the effect the effect of voltage step change of ELogic and the difference

between ELogic-1 and Mixed-ELogic, the ALU part of SOAR was extensively evaluated. The

circuit had been used as an example for the application of ELogic to simulation, in Chapter 3.

Crystal with each delay model was run on the circuit to extract 15 critical paths.

Figures 4.3 and 4.4 illustrate the comparison between the Mixed-ELogic model of 10

states(0.5V step), the Mixed-ELogic model of 25 states(0.2V step), and the Crystal distributed

slope model to SPICE2. In the figures, the X and Y axes represent the delay estimates by

SPICE2 and by delay modeler (Mixed-ELogic or distributed slope model), respectively. The

straight line illustrates the delay estimates comparison between distributed slope model and

SPICE2. The dotted line compares between Mixed-ELogic and SPICE2. Each line of the

figures corresponds to one critical path. Each segment of the line corresponds to a stage in

the path. The breakpoint represents the delay estimates up to that stage. If delay estimates

ISDN

•

f
m

o

*Jm%Bfw

Jf#

•

Fig. 4.3 Delay Estimates Comparison on SOAR ALU using
SPICE2(X-axis) and Delay modelerfY-axis)

Solid line : SPICE2 and Distributed Slope Model
Dotted line : SPICE2 and Mixed-ELogic (0.5V step)

ISDN

74

EQN

Fig. 4.4 Delay Estimates Comparison on SOAR ALU using
SPICE2(X-axis) and Delay modeler(Y-axis)

Solid line : SPICE2 and Distributed Slope Model
Dotted line : SPICE2 and Mbced-ELogic (0.2V step)

75

IEDN

76

of a path by the delay modeler is exactly the same as those by SPICE2, it appears as a 45°

line from left bottom to right top corner. The results for the ALU are summarized in Table

4.1. In this table, the."Overall Error" is an error of total delay estimates obtained for all crit

ical paths by delay modeler compared to that of SPICE2. The "Avg. Stage Error" is the

average of the absolute error for stages, compared to SPICE2. Similarly, "Avg. Path Error"

is the average of the absolute error in estimating total delays in the critical paths up to each

stage. The last two columns of the table illustrate the CPU-time required by using each

modeler, on VAX 8600. "Delay Eval." is the CPU-time required only to evaluate the delay

through paths, and "total CPU-time" includes all other work such as reading the input file

and constructing data structures.

From Figures 4.3 and 4.4, and Table 4.1, it is observed that ELogic provides more accu

rate delay estimates than the distributed slope model. It is also observed that the accuracy

and CPU-time depend on the algorithm and the voltage step used. Even though Mixed-

ELogic is more expensive than ELogic-1, for same voltage step, it is more accurate too. For

example, Mixed-ELogic with 0.2V step used almost same CPU-time as ELogic-1 with O.lV

Model
Overall

Error(%)

Avg. Stage

Error(%)

1

Avg. Path

Error(%)

CPU-Time Sec)

Delav Eval. Total

Distributed

Slope Model
5.5 8.5 7.2 0.7 3.5

ELogic-1
(O.lV step)

-1.0 2.3 1.2 225 238

ELogic-1
f0.2V step)

1.2 4.9 3.9 106 110

Mixed-ELogic
(O.lV step)

0.78 1.1 0.5 541 544

Mixed-ELogic
(0.2V step)

-0.45 1.3 2.0 243 247

Mixed-ELogic
(0.5V step)

1.0 1.8 3.5 159 163

Mixed-ELogic is a mixed algorithm of ELogic-1 and ELogic-2

Table 4.1 Delay estimates and CPU-time Comparison on SOAR ALU

77

step, but it provided more accurate delay estimates.

4.4.2. SOAR Chip

12 critical paths of the SOAR chip were extracted by using Crystal. Delays through

these paths were estimated by using Mixed-ELogic, the distributed slope model, and SPICE2.

The results are given in Table 4.2 as well as Figure 4.5.

Model
Overall

Error(%)
Avg. Stage
Error(%)

Avg. Path
Error(%)

CPU-Time

(Sec)

Distributed

Slope Model
-19.3 34.5 46.4 0.028

Mixed-ELogic
(O.lV step) -1.2 19.6 1.6 14.47

Mixed-ELogic
(0.2V step)

0.45 20.7 4.2 7.51

SPICE2 - - - 170.85

Mixed-ELogic is a mixed algorithm of ELogic-1 and ELogic-2

Table 4.2 Delay estimates and CPU-time Comparison on SOAR

Notice that the path "A" in Figure 4.5, which is an actual critical path by SPICE2,

may be hidden by other paths by using distributed slope model. Since ELogic is more accu

rate, it can reduce the chance of hiding the critical path, as illustrated.

4.5. Conclusion

It has been verified experimentally that ELogic can be used successfully as a delay

modeler in timing verification. The experimental results also illustrate that the accuracy of

the delay estimates was much improved over other existing techniques.

Crystal uses a depth-first analysis, which has an advantage in handling circuits with

cycles in a natural way. However, the modeler may be applied to each node more than once.

Since the delay modeler employed by the original Crystal is very fast, it was not a significant

issue. If the ELogic modeler had been implemented in breadth-first analysis and the stage

5DDN

4

« •

• e
* #

f^
• • .*• 0 .*

• • •* •
* " • .*

/^ ^ A

m • •• .

J*
•

78

5DDN

Fig. 4.5 Delay Estimates Comparison on SOAR using
SPICE2(X-axis) and Delay modeler(Y-axis)

Solid line : SPICE2 and Distributed Slope Model
Dotted line : SPICE2 and Mixed-ELogic (0.2V step)

79

information had been extracted more suitably for an ELogic model, the delay modeler may

have been applied only once for each node and the total run time could have been reduced

significantly. The basic concept of timing analysis as a value-independent approach was not

modified and some Umitations of the approach remain, such as a possible reporting of false

critical path. The study of the new approach which can avoid the false critical path automat

ically, by taking an advantage of that ELogic is a simulation technique, would be worthwhile.

80

CHAPTER 5

CONCLUSIONS

Electrical-Logic simulation (ELogic) is a new relaxation-based switch-level simulation

technique, which solves for the time required for a node to make a certain voltage change

rather than solving for a nodevoltage at a given time point. Since the number and/or values

of the voltage states that can be specified may vary, ELogic provides for a continuous

accuracy-speed trade-off. Three ELogic algorithms, ELogic-1, ELogic-2, and ELogic-3, have

been described in detail so that an appropriate algorithm can be chosen and modified as

necessary, depending on the application. Factors such as accuracy, simulation speed and the

limitation of the algorithms must be considered.

The comparison of output waveforms of ELogic to existing electrical simulators showed

that ELogic can simulate both analog and digital MOS circuits quite accurately. ELogic also

provided a speed improvement. In addition to its application to simulation, It was shown

that ELogic can be used as an accurate delay modeler of switch-level timing verifier.

82

REFERENCES

1. A. R. Newton, "TimingJLogic and Mixed-Mode Simulation for Large MOS IC," NATO

Advanced Study Institute on CAD for VLSI Circuits, University of California, Berkeley,

(June - Aug 1980).

2. J. E. Kleckner, "Advanced Mixed-Mode Simulation Techniques," UCB/ERL M84/48,

University of California, Berkeley, (June 1984). Ph.D. Dissertation

3. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits,"

UCB/ERL M75/520, University of California, Berkeley, (May 1975). PhJ}. Disserta

tion

4. , "Advanced statistical analysis program (ASTAP)," Pub. No. SH20-1118-0, IBM Corp.

Data Proc. Div., White Plains, NY ().

5. Resve A. Saleh, "Iterated Timing Analysis and SPLICEl," UCB/ERL M84/2, Univer

sity of California, Berkeley, (Jan 1984).

6. J. White and A. Sangiovanni-Vincentelli, "RELAX2: A New Waveform Relaxation

Approach for the Analysis of LSI MOS Circuits," Proc. 198S Int. Symp on Circ. and

Sys., (May 1983).

7. F. Yamamoto and S. Takahashi, "A Vectorized LU Decomposition Algorithm for Large

Scale Circuit Simulation," Digest 1984 Int. Conf. on CAD, (Nov 1984).

8. A. Vladimirescu and D.O. Pederson, "Circuit Simulation on Vector Processors," Proc.

ICCC 82, (19S2).

9. Beyers, J.W., "A 32-bit VLSI CPU Chip," ISSCC Digest of Technical Papers, pp. 104-

105 (Feb 1981).

10. J. E. Kleckner, R. A. Saleh , and A. R. Newton, "Electrical Consistency in Schematic

Simulation," Proc. IEEEInt. Conf. on Circ. and Comp., pp. 30-34 (October 1982).

83

11. A. R. Newton and D. O. Pederson, "Analysis Time,Accuracy and Memory Requirement

Tradeoffs in SPICE2," Proc. Asilomar Conference, (1978).

12. J. White and A. Sangiovanni-Vincentelli, "Partitioning Algorithms and Parallel Imple

mentations of Waveform Relaxation Algorithms for Circuit Simulation," Proc. 1985 Int.

Sym. of Circuits and Systems, (June 1985).

13. Resve A. Saleh, James E. Kleckner, and A. Richard Newton, "Iterated Timing Analysis

in SPLICEl," Digest 1983 Int. Conf. on CAD, IEEE, (Sept 1983).

14. R.E. Bryant, "An Algorithm for MOS Logic Simulation," LAMBDA, pp. 46-53 (4th

Quarter 1980).

15. Young Hwan Kim, J. E. Kleckner, Resve A. Saleh, and A. R. Newton, "Electrical-Logic

Simulation," Digest 1984 Int. Conf. on CAD, IEEE, (Nov 1984).

16. , LOGIS: User's Manual Version 4, ISD Corporation (1980).

17. F. Jenkins, ILOGS: User's Manual, Simutec (1982).

18. CM. Baker and C. Terman, "Tools for Verifying Integrated Circuit Designs ,"

LAMBDA, (4th Quarter 1980).

19. J. K. Ousterhout, A Switch-Level Timing Verifier for Digital MOS VLSI, University of

California, Berkeley (Feb 20, 1985).

20. J. K. Ousterhout, Using Crystal for Timing Analysis, University of California, Berkeley

(Sept 12, 1983).

21. DeMan, Arnout, and P. Reynaert, "Mixed-Mode Circuit Simulation Techniques and

their Implementation in DIANA," NATO Advanced Study Institute on CAD for VLSI

Circuits, (July 1980).

22. K.A.Sakallah, "Mixed Simulation of Electronic Integrated Circuits," DRC-02-07-81,

Carnegie Mellon University, (Nov 1981).

84

23. H. Schichman and DA. Hodges, ''Modeling and Simulation of Insulated Gate Field-

Effect Transistor Switching Circuits," IEEE Journ. on Solid State Circuits Vol. SC-

3 pp. 285-289 (Sept. 1968).

24. L.O. Chua and P.M. Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms &

Computational Techniques, Prentice-Hall, Inc., Englewood Cliffs, N.J. (1975).

25. J.L. Burns, A.R. Newton, and D.O. Pederson, "Active Device Table Look-up Models

For Circuit Simulation," Proc. 1988Int. Symp. on Circ and Sys., (May 1983).

26. Jiri Vlach and Kishore Singhal, Computer Methods for Circuit Analysis and Design, Van

Nostrand Reinhold Publishing, New York, N.Y. (1983).

27. JM. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several

Variables, Academic Press, New York (1970).

28. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University

Press, Baltimore, Maryland (1983).

29. A.R. Newton and A.L. Sangiovanni-Vincentelli, "Relaxation-Based Electrical Simula

tion," IEEE Trans, on Electron Devices, pp. 1184-1207 (Sept. 1983).

30. B.R. Chawla, H.K. Gummel , and P. Kozak, "MOTIS - An MOS timing simulator,"

IEEE Trans, on Circ. andSys. CAS-22 pp. 901-909 (Dec. 1975).

31. AJt. Newton, "The Simulation of Large-Scale Integrated Circuits," Memo UCB/ERL

M78/52, University of California, (July 1978). Ph.D. Dissertation.

32. J. White, "RELAX2 : A Modified Waveform Relaxation Approach To The Simulation

of MOS Digital Circuits," Memo UCB/ERL M84/21, University of California, (22 Feb

1984).

33. J. White, F. Odeh, A. S. Vincentelli, and A. Ruehli, Waveform Relaxation: Theory and

Practice.

85

34. A. R. Newton and A. S. Vincentelli, EECS 244 Lecture Notes, University of California

(SP/1985).

35. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Problems,

Prentice-Hall, Inc. Englewood Cliffs, NJ (1971).

36. G. Micheli, Ait. Newton, and A. S. Vincentelli, "Symmetric Displacement Algorithms

for the Timing Analysis of Large Scale Circuits," IEEE. Trans, on CAD, Vol. CAD-2,

No.S, (July 1983).

37. A.R. Newton, "The Analysis of Floating Capacitors for Timing Simulation," Proc. 13th

AsUomar Conference on Circuits Systems and Computers, (November 1979).

38. Tammy Huang, Generalization of the Implicit-Implicit-Explicit method for Floating Capa

citors, University of California, Berkeley (1983).

39. A. Richard Newton, "Techniques for the Simulation of Large-Scale Integrated Cir

cuits," IEEE Trans, on Circ. and Sys. CAS-28, NO. 9 pp. 741-749 (Sept. 1979).

40. Jacob White, Resve A. Saleh, A. Sangiovanni-Vincentelli, and A. R. Richard Newton,

"Accelerating Relaxation Algorithms for Circuit Simulation," Digest 1985 Int. Conf. on

CAD, IEEE, (Nov 1985).

41. Guy Marong and A. Sangiovanni-Vincentelli, "Waveform Relaxation and Dynamic Par

tition for the Transient Simulation of Large Scale Bipolar Circuits," Digest 1985 Int.

Conf. on CAD, IEEE, (Nov 1985).

42. Hitchcock, "Timing Verification and the Timing Analysis Program," 19th Design Auto

mation ConferenceJEEE, pp. 594-604 (June 1982).

43. J.K. Ousterhout, "Crystals Timing Analyzer for NMOS VLSI Circuits," Proceeding of

the third Caltech VLSI Conference, pp. 57-59 (1983).

44. N. P. Jouppi, "Timing Analysis for NMOS VLSI," Proceedings ofthe 20th Design Auto

mation Conference, pp. 411-418 (1983).

86

45. D. J. Pilling and J. C. Skalnik, "A Circuit Model for Predicting Transient Delays in LSI

Logic Systems," Proc. 6th Asilomar Conference on Circuit and Systems, pp. 424-428

(1972).

46. Christopher C. Marino, Smalltalk on a RISC - CMOS Implementation, University of Cal

ifornia, Berkeley (May). M.S. Report

47. Pauline Ng, Wolfram Glauert, and Robert Kirk, "A Timing Verification System Based

on Extracted MOS/VLSI Circuit Parameters," 18th Design Automation

Confcrcnce,IEEE, pp. 288-192 (June 1981).

48. McWilliams, T.M., "Verification of Timing Constraints on Large Digital Systems," 17th

Design Automation ConferenceJEEE, pp. 139-147 (1980).

49. TJ. Kirkpatrick and N.R. Clark, "PERT as an Aid to Logic Design," IBM Jour, of

Research and Development, pp. 135-141 (1966).

	Copyright notice1986
	ERL-86-2

