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ABSTRACT

The paper presents a general stability proof for continuous time adap

tive control, with very general assumptions on the identifier and controller.

Applications of the proof to pole placement design and design based on the

factorization approach are discussed.
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1 Introduction

A popular technique of adaptive control is the so-called indirect technique: a non-

adaptive controller is designed parametrically i.e. the controller parameters are written as

a function of plant parameters. This scheme is made adaptive by replacing the plant

parameters in the design calculation by their estimates at time t. obtained from an on-line

identifier. Reasons for the popularity of indirect adaptive controllers stem from the con

siderable flexibility in choice of both the controller and identifier. Global stability of

indirect schemes have been shown in the discrete time case (Goodwin&Sin [5] ,

Anderson&Johnstone [l] Polak.Salcudean&Mayne [ll]) but less so in the continuous time

context. A recent paper of Elliot et al [4] uses random sampling to establish convergence

results in the continuous time case. Other papers have assumed that the plant parameters

lie in a convex set in which no unstable pole-zero cancellations occur.

In this paper (section 2). we discuss a general, indirect adaptive control scheme for

SISO continuous time systems using an identifier in conjunction with a stabilizing con

troller. We show that when the reference input to the closed loop system is rich enough

(in the sense of having sufficient frequency content) then the signal input to the identifier

is persistently exciting so as to cause parameter convergence. In turn the controller is

updated only when adequate information has been obtained for a ' meaningful' update.

Thus, roughly speaking, the adaptive system consists of a fast parameter identification

loop and a slow controller update loop. A sufficient richness condition on the exogenous

reference input is used to give an insightful global stability proof with no restrictions the
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on parameter estimate lying in a convex set or lack of unstable pole-zero cancellation in

the identifier.

In section 3, we show the specialization of our general scheme to a pole placement

type adaptive controller.

The second contribution of this paper is the application of our techniques (in section

4 ) to the adaptive stabilization of a SISO system using the factorization approach (factori

zation over the ring of stable, proper rational functions) that has proved to be a useful and

elegant tool (see [12]. [13]) for the study of robust multivariable design. Since it is known

[12] that when the stable coprime factorization approach is used, a plant with unstable

unmodeled dynamics is really no different from a plant with stable unmodeled dynamics

as far as the effect of the unmodeled dynamics of the robustness of the system concerned.

We feel that our techniques lay the groundwork for obtaining an adaptive version of H°°

optimal controller design by the factorization approach. In this context our work has con

tact with a recent paper of Ma&Vidyasagar [9]. In this paper, we only discuss SISO con

tinuous time case, the extension to the discrete time case is trivial. We feel that our result

could be extended to MIMO case as well, if a good MIMO identifier structure is obtained.

2 Basic Structure of the Identifier and Controller

The basic structure of the adaptive controller is shown in Fig.2.1
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2.1 Basic Indirect Adaptive Controller Structure

The unknown plant is assumed to be described by

P0(s)=nAs)/ dpCs)=.
' ' "' 5n+/31jn-1+...+)3n

where P0GP(s ) is a strictly proper transfer function. The proper nth order compensator is

defined by

alsa~1+...+a„

C(s)=nAs)/ dc(s)=
aoSm+...+ari

b0sm+...+bn

(2.1)

(2.2)

The adaptive scheme proceeds as follows: the identifier gets an estimate of the plant

parameters. The compensator design (pole placement, model reference....) is performed

assuming that the plant parameter estimate corresponds to the true parameter value. We

will assume that there exists a unique choice of compensator C (s ) of the form (2.2) for

the estimate plant P0 . The hope is that as t -»oo the identifier identifies the plant correctly

and that the compensator converges asymptotically to the desired one. In this section, we

discuss indirect adaptive control abstractly without restricting attention to any specific

control scheme—pole placement, model reference, etc. In later sections, we specialize to a
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pole-placement type controller and a controller derived using the factorization approach.

Basically the most important element of the adaptive loop is the convergence of the

identifier. We design an identifier which uses the input and output of the not necessarily

stable plant as follows: the equation (2.1) relating the transform of the input and output

of the plant can be written (with initial condition terms unspecified) as

say(t)=9'Tv(t) (2.3)

where s denotes the differentiation and

e*r=(-/31....-^.alt....a„)

vr(t )=(5n"Va )....,V(r ).sn~lu(t ) uU ))

Since the signal v(t) involves differentiation of the input and output of the plant, we

filter both side of (2.3) by the transfer function 1/ (s +a)n , a> 0. to get

•v(t)=9'Tw(t) (2.4)
(f +a)n

where

wr(t)=( f""' y(r) -r-i-^-y(t)./"'* u(t) , \u{t))
(s+a)n (s+ay (s+aY (s+a)n

Note that the signal vector w(t) may be obtained by proper, stable filtering of the input

and output of the plant. The equation error for identification of 9' is developed as fol

lows: let 0(r) be the estimate of the parameter 0* at time t. Then, define the equation

error to be

e(f)=e(f)rw(t)- s\ v(r) (2.5)

If <f>U ) denotes the parameter error (0 (f )—9 *). then it follows that, upto exponen

tially decaying terms, we have

e(O=0r(*MO (2.6)

As is standard in the literature, we will in future drop the exponentially decaying terms.

The interested reader may wish to confirm that the presence of such terms do not change
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any of the proofs (or conclusions) that follow.

The identification technique used is of the least squares type with resetting, given by

§(O=0U )=-PU )w(t)e(t) (2.7a)

PU)=-PU)w(t)wrQ)P(t) i>(r/)=37 >0 (2.7b)

where {t,)= {0.r j—} will be specified shortly. It is easy to verify (using the Lyapunov

function <f>TP~l<b ) that the parameter error <f> is bounded even though y(t) may not be

and further <f>(t )-0 asymptotically, if w(t) is persistently exciting, i.e. there exist a.S > 0

such that

t+b

J w(t)w7\r)dt ^al for all t
i

It has further been shown [2] that under the condition that np , dp are coprime poly

nomials, that w is persistent exciting if u is rich enough i.e. the support of the spectrum of

u has greater than 2n points ( assuming that u(t) is stationary).

The design of the compensator is based on the plant parameter estimate namely 9 (t).

It is would appear to be intuitive that if as t -*oo, 9 (t )-*9' that the time varying compen

sator would converge to the true compensator and that the closed loop system would be

asymptotically stable. In this section, we do not deal with a specific compensator design,

however the system of Fig.2-1 can be understood to be a time varying linear system which

is asymptotically time invariant and stable. Such systems are themselves stable: more pre

cisely, we have (using standard Lyapunov function arguments).

Lemma 2.1 Consider the time varying system

i=(A+AAU))x (2.8)

where A is a constant matrix and AA {t) is time varying. Assume that I ILA (r ) I i is

bounded and converges to a sufficient small ball as t -*aa. Suppose that o(A )CC°-. then

(2.8) is asymptotically stable. Furthermore . there exist TM X X) such that the state

transition matrix $(f ,t) of the equation (2.8) satisfies

I l<K* .t)I l<Afexp(-\(*-r)) foraUt>r>T
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2.2 Update Law

Though the update law (2.7a) (2.7b) for the identifier is easily shown to be asymp

totically convergent when w is persistent exciting, it is of practical importance to limit the

update of the controller to instants when sufficient new information has been obtained.

The amount of information is measured through the 'information matrix*

t+b

J w(r)wT(T)dT

Thus given y >0 . we choose update time {r,-}. a sequence by t0=0 and ti+i=t, +8/. where

8/ satisfies

8,:= 6A JwwTdT>yI (2.9)

The compensator C is constant between tt and ti+1. Further, we assume that the compen

sator parameters are continuous function of 9*.

Remark: (1) The idea of updating the controller only when new data becomes available

was first proposed by [ll] for the discrete time case. A similar idea was proposed by Elliot,

et al [4]. but they use a sequence of independent random variables to generate the update

sequence.

(2) The update times are based on a monitoring of the excitation contained in the signal w.

We may state the following lemma relating the richness of the reference signal r(t) in

the scheme of Fig.2-1 to the convergence of the identifier.

Lemma 2.2 (Convergence of The Identifier)

Consider the system of Fig. 2-1 with identifier described in equation (2.7) and reset

ting times Ui) given by (2.9). Further assume that there is a unique choice of controller

for each estimate of the plant and that the controller is updated only at {t, }. If the input

r(t) is bounded and stationary and the supports of the spectrum of r has greater than

3n+m points, then the identifier parameter error converges to zero exponentially as t -*oo.

More precisely, there exists 0 <p <1 such that

110(^)11^1 10(0)11 (2.10)
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and {5; =£,+]—t,,) is a bounded sequence.

Proof: By lemma A3, it is enough to show that {8;} is an bounded sequence. Suppose, for

the sake of contradiction that {8,} is an unbounded sequence, then one of the two follow

ing possibilities occurs

(i) There exist i < cosuch that 8, =oo, or

(ii) {8,} -*ooas i-*oo.

Consider the scenario of (i) first. If (i) happens, then the system becomes time invari

ant after time *,-, since the controller is not updated. Consequently one can get the

transfer function (not necessarily stable) from r to u to be

dc (t: )nD
H«r= - r \!/, < ^nld (2'12)npncKXi)+dpdc\Xt)

where dc(tj) and fic (t-t) are numerator and denominator of controller at time tl. Using

(2.12). we may write the transfer function from r to w to be

H (s )= n (sn~ln n sn~ldP d Y
(s+ardrd

Since the degree of n is (n+m). so that roughly speaking, no more than (n+m) of the spec

tral lines of the input can correspond to zeros of the numerator polynomial. Assuming

that (n+m) of the special lines do. in fact, coincide with the zeros of n. we can see that

under the assumption of np . dp being coprime. w is persistently exciting. The proof of

this for the stable case was given by Boyd and Sastry [3]. For the unstable case, the idea is

that we have a minimal state space realization of Hwr is ) as

x =Ax +br

Vf—CX

where A €Rkxk (k ^3n +m). Then, the persistency of excitation of x(t) follows from the

hypothesis of the input r(t) and the fact that (A.b) is controllable (see. Nordstrom [10]).

Further, notice that the rows of Hwr (s ) are linearly independent and

Hwr(s)=c(sI-A)-lb

we see that c has full row rank i.e.
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cc1 ^ocl for some a X)

Thus.

Jwwl dt —c J xxrcTdt ^yccT ^yal

where

fxxrdt >yl

This implies that w(t) is persistently exciting. This fact however contradicts the assump

tion that 8/=oql

Now consider scenario (ii). First notice that when the plant parameters are known,

then the closed loop system is time invariant and stable, so that we may write the follow

ing equation relating input r(t) to signal w0(t) (w0(r ) means w(t) in the case of <f>U )s0).

Zo=Az0+br

w()=cz0

where A is a constant stable matrix. For the adaptive control situation, the plant parame

ters are unknown, i.e. parameter error <f>U )^0. However, we may write the following

equation relating r(t) to w(t)

z {t )=(A +AA (r ))z U )+(b +A3 {t ))r

w=(c+Ac(f ))r

where AA Q ).Ac(f ) and hb(t) are continuous functions of 6(t ) and AA (f ) . A£> {t ) and

Ac U )-»0 as <f>(t )-0. Now if scenario (ii) happens, we still have that 0(f )-*0 as i -*oo from

lemma A3. It follows from lemma Al that w0(t ) and w (t) are arbitrarily close when t is

large enough. Then the persistency of excitation of w(t) follows as a consequence of the

result of lemma A2 and the fact the wQU ) is persistently exciting. This however contrad

icts the assumption that 8,- -»ooas i -*oq.

We are now in a position to prove the following theorem.

Theorem 2.1 (Stability of the Closed Loop System)
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Consider the system of Fig. 2-1. Assume that the plant and compensator are

described as in lemma 2.2. Suppose that input r(t) is bounded and stationary and the sup

port of its spectrum has greater than 3n+m points, then the overall system is asymptoti

cally time invariant and stable.

Proof: Follows from lemma 2.1 and lemma 2.2.

3 Adaptive Pole Placement

In this section, we consider an indirect, adaptive pole placement scheme. Pole place

ment is easily described in the context of the Fig.2-1. Given a plant P0 of the form npl dp

as in (2.2). find a compensator C so that the closed loop poles lie at the zeros of a given

characteristic polynomial d' (s ) of order (2n-l). i.e. find nc . dc to satisfy

ncnp+dcdp=d' (3.1)

Where the plant P0 is unknown, the 'adaptive* pole placement scheme is mechanised

by using the estimates hp(tj) and dp{tt) of the numerator and denominator polynomials

respectively. It is easy to verify (see lemma A4) that if np(tt) and dpU,) are coprime then

there exist hc(t-t) and dc(t-t) of the order n-1 such that

he {ti )hp Ui )+dc (tt )dp Ui )=d" (3.2)

The estimates for hp it,) and dp it,) follow from the plant parameter estimates 9{t) of

section 2 (the estimates of the coefficients of the denominator followed by those of the

numerator). In analogy to the plant parameter vector 9' , we have the parameter vector of

the compensator

Oc=(b0 6n_i,a0. • • • ,an-i) (3.3)

Recall from equation (2.2) that the compensator is given by

a0sa-i+...+an.1
C=-

6(^""1+...+^-i

Further, to guarantee that hp {t-t) and dp (*,-) are coprime at tt. we need to modify the

definition of the update times as follows:
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ti+l=ti+T (3.4)

where t is the smallest real number satisfying

(t) f w(t)wT(t)dt>yI (3.5)

and

(ii ) n^Uj+r) and dp(tj+T) are coprime. (3.6)

More precisely so that the smallest singular value of the matrix (A.11) (see appendix)

measuring the extent of coprimeness exceeds a number o> 0. Then, we have

Theorem 3.1 (Convergence of the Pole Placement Scheme)

Consider the adaptive pole placement law (3.2) applied to the system of (2.2). along

with the least squares identifier of (2.7) and the update sequence t, defined by (3.4-3.6).

Now. if the input r(t) is stationary with spectral support not concentrated on less than

4n-l points, then all signals in the loop are bounded and the characteristic polynomial of

the closed loop system tends to d *(s ). Moreover

I 19c{ti )—0 0 I I—* 0 exponentially

Proof: The first half of the theorem is a direct consequence of lemmas 2.1 and 2.2. For the

second half, note from (A.ll) that

A{9{tt))9c{t,)^d. (3.7)

with d* the vector of coefficients of d'.

It is easy to see from (A.ll) that there is an Mi>0 such that

IIA(0(*,))-A(0")l I <jl#ill8(r,)-0*ll (3.8)

Now.

A(0')0c=d. (3.9)

Subtracting (3.9) from (3.7) we get

-(A (0 (*, ))-A (0 *))0C (ti )=A (0* )(0 c(*, )-0c)
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Using the estimate

I I0C(*,.)-0C I I < | \A-K9(t,)\ I I IA(0(*,-))-A(0¥)l I I I0c(fx)l I

Noting that 0C (f,-) is bounded (see equation (3.6) and the remark following it), weget

I l0c(*;)-04. I I ^M2\ \9(ti)-9' I I for some M2 >0 (3.10)

Since 0(r(-) converges to 0* exponentially, it follows that 0cit,) -• 0c exponentially.

4 Adaptive Stabilization Using The Factorization Approach to Controller Design

4.1 The Factorization Approach to Controller Design—the Non-adaptive Version

We consider the linear time-invariant system shown in Fig 4-1

Fig. 4-1

The plant Pq(s) is defined as in equation (2.1) and the compensator C(s) as in (2.2)

with m=n. The equations relating e\ ,e2tou1 ,u2 are

*2

g 1 [l -*oC
1+P0C f 1 "2

(4.1)

The system (4.1) is BIBO stable if and only if each of the four elements in (4.1) is

stable. i.e. belongs to R the ring of proper, stable rational functions. The ring R is a more
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convenient ring than the ring of polynomials for the study of robust control systems,

since a plant with unstable unmodeled dynamics is really no different from a plant with

stable unmodeled dynamics. Thus, we assume that P0 and C are factored coprimely in R

(not uniquely!).

P0(s)=dp-Ks)np(s)

C»(s)=dc-Hs)nc(s) (4.2)

From (4.1) it follows that (for details see [12] ) the system of Figure 4.1 is BIBO

stable if and only if (np nc +dp dc)~le R, or equivalently np nc +dp dc is a unimodular ele

ment of the ring R. Without loss of generality, then, we can state that a compensator sta

bilizes the system of Figure 4.1 if and only if

npnc+dpdc=l (4.3)

Equation 4.3 parametrizes all stabilizing compensators. Let (A . B. C) be a controll

able canonical realization of P.> i.e

with

A =

Po(s)=c(sI-A)-lb

0 1 0 0
0 0

b =
•

i 6
-«! -a2 -<*n i

c=(0i, . >-.fim )

(4.4)

(4.5)

If / T€Sn and / €Rn are chosen so that Af =A -bf and A-Ic=A, are stable( such

a choice is possible by the minimality of the realization of (4.4) and (4.5) ). then it is

shown [12. pg.83] that all the solutions of ( 4.3 ) can be written in the form

np=c(sl—At) lb

dp^l-cisI-AtTH

dc=l+c(sI-Af )-H-q(s)c(sI-Af )~xb

nc =/ {sI-Af TH+q (s )(1-/ (sI-Af )^b)

March 12. 1986

(4.6)

(4.7)

(4.8)

(4.9)



- 13-

with q(s ) an arbitrary element of R which is chosen to meet other performance criteria

(for instance, minimization of the disturbance to output map . obtaining the desired closed

loop transfer function, optimal desensitization to unmodeled dynamics, etc.).

The optimal choice of q(s ) depends on the plant parameters. However, such a choice

of q(s) may not be unique or depend continuously on plant parameters. This may give rise

to difficulties in applying the method discussed in section 2. since the design of the com

pensator may not be unique as required by the assumptions of the scheme. We defer this

to further investigation. However, if our only concern is the problem of adaptive stabili

zation of the unknown plant, then any fixed q(s)€ R will do. For simplicity, we fix

q (s )=0 in what follows.

4.2 Adaptive Stabilization Using Factorization Approach

Given a plant P0 with unknown parameters as described in equation (2.1). and a

feedback controller configuration as shown in Fig. 4.1. The objective is to design a compen

sator C adaptively. i.e. based on the estimate 0 of plant parameters, using the factorization

approach, so that the closed loop system is asymptotically stable with all signals are

bounded. In what follows, we assume that u2(t )=0.

The identifier and compensator update time {t;} are defined as in (2.7 ) and (3.4-3.6)

respectively. The first difficulty in choosing the compensator is the choice of Z(r,) and

/ (t,) at time t; ( see equations (4.8) and (4.9) ). From linear system theory, we have that

for the controllable canonical realization of plant P0(s ).

x =Ax +bu

y=cx

there is a nonsingular matrix A/-1, such that by the coordinate change x=Mx . we get the

observable canonical form of P0(s ). i.e

x -MAM ~lx +Mbu =Ax +bu

y=cM~1x=cx (4.10)

with
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0 o -<*i |3i
1

6 ;
b =

•

6 1 -otn ft,

c=(0 0.1)

Then for (any) given Hurwitz polynomial

p(s)=sn+p]s"-1+ • • -+pn

there exists a vector

I =(Zi. . . . ,Z„ )=(^i, . . . ,p„)-(oti, an)

Such that the matrix

0 O-Pi

A-lc =

0 1 -Pn

(4.11)

is stable and has a characteristic polynomial p(s). Define

l=M~lT

With this definition, it is easy to see that (A-lc) is stable and has characteristic poly

nomial p(s).

Now the controller design procedure can be stated as follow:

(Stepl)

At time t,. the parameter estimate 0 (tt) generated by identifier is used to obtain the

estimates A (t, ).b (tt ). and c (t,).

(Step2)

By calculation, we obtain M~Kt,) as described in (4.10). Define

/ (ri)=Fa;)=(;1 pn M«i(f,) dn (t,)) (4.12)

with (/>i, ...,/>„) as defined in (4.11) and

l(ti)=M-Kti)T(ti) (4.13)
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We see now that the matrices

A,(ti)=AUi)-atl)cUi)

and

A, U,)=AU,)-M*; )/(*;)

are stable with characteristic polynomial p(s). Furthermore. / U,) and lit,) converge to

some constant vectors as i -*oq.

(Step3)

Choose the compensator C it, )=nc it, )dc_1(f,) as follows

nc it, )=/ it, )isI-Af it, )YH(t;) (4.14)

dc it, )=1+cit, )isI-Af it, ))~Hit-,) (4.15)

This compensator can be easily implemented. Then, as expected, we have

Theorem 4.1 (Convergence of the Overall System)

Assume that the identifier and controller update described above are applied to the

plant P0is). Suppose that the input r(t) is stationary and bounded and that the spectral

support of r(t) is not concentrated on k ^An points. Then, the closed loop system is

asymptotically stable and all signals are bounded.

5 Concluding Remarks

This paper has presented a proof of global stability for indirect adaptive control. In

the paper, only two applications (pole placement and factorization approach ) have been

discussed, however the results are applicable to several kinds of controller design metho

dologies. The key assumption is a richness condition on the reference input. To our

knowledge, this is the first verification of the persistency of excitation of the regressor sig

nal in the closed loop (which is time varying) without using artificial random sampling

signal (see [4]) for the continuous time case. We show persistence of excitation without

preassuming the boundedness of the signals. Boundedness of all signals and the conver

gence of the compensator in turn follow from the convergence of the identifier, which is a
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direct consequence of the persistency of excitation of the signal in identification loop.

The scheme presented here offers a great deal of flexibility in the controller design

and allows for very general richness conditions on the reference input. The results of this

paper are easily extended to the discrete time case.
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7 Appendix

In this appendix, we prove some lemmas of use in the main body of the paper.

Lemma Al

Consider the following linear systems

z0=Az0+br (Al)

z=iA+AAit))z+ib+Lbit))r (A2)

with A stable and LA . Lb both bounded and converging to zero as t -*ml Assume that the

input r(t) is bounded. Then given € > 0, there exists k > 0 (k is independent of the choice

e) and a Tie) such that

I \zit)-znit)\ \^£k for alltZT (A3)

Proof: From lemma 2.1. it follows that (A2) is asymptotically stable and that there exists

7"i such that the state transition matrix of (A2) satisfies

I l<Kr.r)l I^Wexp-xa-r)

for some MX >0 and for all t >r>Ti. Using this estimate it is easy to show that z(t) is

bounded. Defining the error e it ):=z it )—z0it ) we see that

e =Ae +LAz +Lbr

Using the facts that LA .Lb-Oast -w. that z.r are bounded and A is stable, it is easy to

establish (A3).

Lemma A2

Suppose that w0it )€Rn is persistently exciting.i.e there exist 8.a >0 such that

s+b

J WqWq dt ^olI
s

Then any signal w £Rn satisfying

Wwit)-w0(t)\\«x/i8)1'2
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is also persistently exciting.

Proof: Can be found in [2].

Lemma A3

Consider the least squares identification algorithm described by (2.7) with resetting

sequence {Ox lff 2.—}. that is

<J>=-PwwT<t> (A4)

and

p~l=wyvT t;*0,tl,t2.... (A5)

p-liti+)=al t=0.tlx2,... (A6)

If w is persistently exciting, that is

'/+i

f wwTdt >yl for all t, (A7)
*/

Then, there exist 1 >p X) such that

I 10(4)1 I3>'I 10(0)1 I (A8)

Proof: Note that for t ^ {0.r j....}.

dt

Thus

P~1itr)<f>iti)=P-1iti.1+)(f>iti.1)

so that

0ai)=ai>(r(-)0ai-i)

and we get

||0(r;)||^ " ^l^..,)!! (A9)
a+y

In last step we use equation (A7). Recursion on (A9) yields the conclusion (A8).
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Lemma A4

Consider two coprime polynomials dp monic of order n and np of order n-1. Then

given an arbitrary polynomial d of order 2n-l. there exist unique polynomials nc and dc

of order n-1 so thai

nc n„ +<fcdj —d (A10)

Proof: Is a standard result from algebra (see [5] ). It is useful for the proof of theorem 3.1

to note that if

d,=s«+hsm-l+...+fiH

n„=a1j''~1+...+a„

i.e.

nc=alJ"-l+...+an

dc=b1sn~1+...+bn

Then, the linear equation relating the coefficients of nc . dc to those of d' is

1 0 o
0i 1 o
02 01 1

0/i 0n-l

0 0" A
0 o 0«

o

6 6 6

o ° o
<*i 0

C*2 Qti

1 .

01 <*„ <*„-l
• 0 an
. 0 o

0

Oil

0„ 0 0 <*,

A(9')9. =d.
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=

a2

<*„
d2

n

(All)


	Copyright notice1986
	ERL-86-20

