

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

NONLINEAR ELECTRONICS (NOEL) PACKAGE 9RKF:
A SINGLE-STEP, VARIABLE STEP-SIZE INTEGRATE
ROUTINE FOR NON-STIFF ODES

by

Thomas S. Parker, Greg M. Bernstein, and L. 0. Chua

Memorandum No. UCB/ERL M86/28

28 March 1986

NONLINEAR ELECTRONICS (NOEL) PACKAGE 9 RKF:
A SINGLE-STEP, VARIABLE STEP-SIZE INTEGRATIO

ROUTINE FOR NON-STIFF ODES

by

Thomas S. Parker, Greg M. Bernstein, and L. 0. Chua

Memorandum No. UCB/ERL M86/28

28 March 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

NONLINEAR ELECTRONICS (NOEL) PACKAGE 9 RKF:
A SINGLE-STEP, VARIABLE STEP-SIZE INTEGRATION

ROUTINE FOR NON-STIFF ODES

by

Thomas S. Parker, Greg M. Bernstein, and L. 0. Chua

Memorandum No. UCB/ERL M86/28

28 March 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

RKF: A Single-Step, Variable Step-Size Integration Routine for
Non-Stiff ODEs

Thomas S. Parker, Greghi. Bernstein andL. 0. Chua

ABSTRACT

RKF is a set of C functions which implements the Runge-Kutta-Fehlberg
(4,5) formulas for integration of ordinary differential equations. Features
include variable step-size, reliable error control, stiffness detection, and a con
trol structure that is designed for interactive programs.

The Algorithm

The basic method used in RKF is the Runge-Kutta Fehlberg (4, 5) formula. However,
much more is involved in turning abasic integration formula into acomputer program than just
coding the formula. In [1] and [2] Shampine and Watts go into great detail describing what
constitutes a good Runge-Kutta algorithm and they explain in detail the design decisions and
workings of RKF45, the original FORTRAN code on which RKF is based.

Why use RKF? The fourth order Runge-Kutta integration formulas documented in every
basic differential equation book leave out one essential ingredient for practical implementation:
efficient error estimation. The typical method for error estimation using 4th-order Runge-Kutta
is a process of halving step-sizes which leads to inefficient code. The Fehlberg (4, 5) method
estimates the error by using a combination of 4th and 5th order formulas. This error estima
tion can be achieved using just six function evaluations and it gives a result accurate to the 5th
order. The halving technique can use as many as eight function evaluations to get a result
accurate to only the 4th order. This feature along with stiffness detection (see below) makes
RKF a useful integration package.

Single-step Versus Multi-step Solvers

The differential equation to be integrated has the following form:

y'=/(y, 0. y('o) = y<>

When the above equation is solved numerically, one obtains the approximation ?(/<,), y('i)» ...
KfJ to the true trajectory at the discrete time points t0, tlt ... tH. To obtain the solution at
time tm asingle-step solver makes use of the solution at the previous time point tH_lf along with
evaluations of/ and possibly its derivative. A multi-step solver makes use of the solution at a
number of previous time points, the function / evaluated at various time points, and possibly
the derivative off.

One of the advantages of a multi-step method is that it can be designed to use relatively
few function evaluations per step. Thus, if function evaluations are costly, amulti-step method
can be more economical. However, the increase in computational overhead due to keeping
track of the solution at a number of time points is the main disadvantage of multi-step
methods. So, if function evaluations are cheap, a single step method can be quicker.

Research sponsored by the Office of Naval REsearch under Contract N00014-76-
C-0572, and by the National Science Foundation under Grant ECS-8313278.

Stiffness in Single-Step Solvers

Stiffness can make adifferential equation unsolvable numerically; however, programs like
RKF with good error control will not give inaccurate answers but will become inefficient, some
times to the point of being worthless for solving a problem. For a readable account of what
stiffness means in differential equations and some all around good advice concerning solving
differential equations numerically, see [3] and [4].

How does one know whether the differential equation is stiff or just difficult to integrate
accurately? RKF contains an algorithm that detects whether the differential equation is looking
stiff with respect to the Fehlberg (4, 5) formulas. Hence, if the solver is becoming inefficient,
check what the stiffness detection algorithm says. Note that if the integration seems to be
proceeding at an acceptable pace and stiffness is detected, don't panic! There will not be a loss
of accuracy and the stiffness warning can be ignored. However, if stiffness is detected and is
causing the integration to become intractable, it is necessary to switch to another integration
package that is designed for stiff equations.

The theory behind the stiffness detection algorithm in RKF is well documented in [5] and
[6].

Interactive Programs

With the abundance of personal computers and work-stations, ease of use is becoming a
priority in software design. Most integration packages are written in FORTRAN by scientists.
The combination of these two factors does not always lead to good software design. RKF was
specifically created to allow interactive programs to be written easily and quickly.

The control structure of RKF is clean. Many integration packages have one function call
that does everything. It sets the initial condition, the error tolerances, the integration mode,
and returns the integration status. To make a simple call to move one step in the integration,
the programmer must supply ten or fifteen parameters. The approach in RKF is to group
parameters together and have many function calls. For example, there is a function that sets
the initial condition, one that sets the error tolerances, one that sets the integration mode, one
that returns the integration status, and one that performs the integration. This modularity
makes program writing easier and less error prone.

RKF is designed to be used in interactive programs. There is a facility for suspending the
integration, usually upon receipt of input from the console. The integration can be resumed
later with no loss in computation.

Another unusual feature of RKF is that it can integrate two or more equations at the
same time. The ODE interface of RKF is based on the standard file interface of C. ODEs are
opened and closed and just as more than one file can be accessed from a single C program,
more than one ODE can be integrated by a single RKF program.

3-

References

1. L. F. Shampine and H. A. Watts, "The Art of Writing a Runge-Kutta Code, Part I," in
Mathematical Software III, ed. J. R. Rice, pp. 257-275, Academic, New York, 1977.

2. Lawrence F. Shampine and Herman A. Watts, "The Art of Writing aRunge-Kutta Code.
II.," Applied Mathematics andComputation, pp. 93-121, 1979.

3. L. F. Shampine, "What Everyone Solving Differential Equations Numerically Should
Know," in Computational Techniques for Ordinary Differential Equations, ed. D. K. Sayers,
pp. 1-17, Academic Press, New York, 1980.

4. L. F. Shampine and C. W. Gear, "A User's View of Solving Stiff Ordinary Differential
Equations," SIAM Review, vol. 21, no. 1, January 1979.

5. L. F. Shampine, "Stiffness and Nonstiff Differential Equation Solvers, II: Detecting
Stiffness With Runge-Kutta Methods," ACM Transactions on Mathematical Software, vol
3, no. 1, March 1977.

6. L. F. Shampine and K. L. Hiebert, "Detecting Stiffness with the Fehlberg (4,5) Formu
las," Comp. &Maths. withAppls., vol. 3, pp. 41-46, 1977.

-4

Appendix I: Manual Pages for RKF

rkf_intro(3ML) RKF (LOCAL) rkf_intro(3ML)

NAME

rkfjntro - introduction to RKF integration package
SYNOPSIS

include < local/rkf.h>

DESCRIPTION

rkfintegrates a system of differential equations in state equation form. It is aC implementation
of the RKF45 subroutine originally written in FORTRAN by H. A. Watts and L. F. Shampine
of Sandia Laboratories Albuquerque, New Mexico, rkf is specially designed for use in interac
tive programs.

rkf uses the Runge-Kutta-Fehlberg (4,5) method of solving differential equations and for
estimating the local truncation error. The Fehlberg (4,5) method is a 5th-order Runge-Kutta
method that also calculates a 4th-order solution without any additional function evaluations.
From these two different solutions, an estimate of the local truncation error can be obtained.
This estimate of the local truncation error (i.e. the difference between the approximate solution
and the true solution, both starting from the same initial point, over one step) is the basis of
the variable stepsize algorithm.

Much as file functions in C operate on FILE pointers, the functions in rkf operate on RKF
pointers. Just as each file must be opened to associate it with a FILE pointer, each differential
equation must be opened to associate it with an RKF pointer.

Like files, more than one differential equation may be open at the same time. Furthermore,
the same differential equation may be simultaneously associated with more than one RKF
pointer (i.e. be open more than once at the same time). This allows the user great flexibility in
writing programs using this integration package.

A differential equation is opened by a call to rkfj>pen(3ML). Once the differential equation is
opened, rkf_error(3ML) and rkf_init(3ML) should be called to set up the error tolerances and
initial condition, respectively. The actual integration is performed by rkf(3ML). When the
integration is finished, the differential equation should be closed by a call to rkfjclose(3ML).

DIAGNOSTICS

rkf utilizes an error code denoting the status of the integration. The error codes are defined as
macros in < local/rkf.h> as follows:

OOK

Everything is okay.

1NEG_ERR0R
rel_err is not positive or absjerr is negative.

2 REL_LIM
rel_err is below its predefined minimum, that is rel_err < 2.0*m_eps + rejnin
where m_eps is a machine-dependent constant and rejnin = 1.0E-12 (default).
If this error occurs, rkf_error(3ML) will set reljsrr to its smallest allowed value
so you don't need to recall rkf_error(3ML).

3 FUNCJLIM
rkf is doing too much work, that is the number of function evaluations
exceeded maxjife = 3000 (default) (approximately 500 steps). If you wish to
continue the integration just recall rkf(3ML).

4 IO_LIM
rkf is becoming inefficient because of too much output, that is, the output is
restricting the natural stepsize. If you wish to continue the integration just
recall rkf(3ML).

5 ZERO_ABS
Vanishing solution needs a non-zero abs_err to continue the integration. A

Printed February, 1986 page i

rkfjntro(3ML) RKF (LOCAL) rkfjntro(3ML)

pure relative error test is impossible (and infeasible) due to a zero solution.
Before you resume integration, call rkf_error(3ML) with a non-zero value for
abs_err.

6 STEPJLIM
Requested accuracy cannot be achieved with the smallest allowed stepsize. This
flag probably indicates that the integration cannot go on, that is, the solution is
singular or has finite escape time. If you want to continue, reset either abs_err
or rel_err or both to a larger value by a call to rkf_error{3ML).

7 STIFF_EQN
The differential equation is stiff causing rkf to do too much work, that is, the
number of function evaluations has exceeded maxjife = 3000 (default). If
you wish to continue the integration just recall rkf(3ML).

8 FUNC_ERR
The state equation could not be evaluated at a point and time where rkf needed
it, that is, the function/O returned FALSE.

9 STDIN_RDY
Characters are ready to read at stdin. See stdin_chk(3ML).

10 ERR_SET
Error tolerances have not been properly set. Call rkfjrror(3ML) to set the
error tolerances.

11 INIT_SET
The initial condition has not been properly set. Call rkf_init(3ML) to set the
initial condition.

EXAMPLE

Integrate y' ° -y. Only minimal error checking is done in this example.

/*C program to integrate y'= -y, y(0) • 1.0 and get
solution at t = 1.0.*/

include < stdio.h>

include < local/ rkf.h>

define TRUE 1

define SYS_DIM 1
define NJNIT 1

main()

{
int neqn = 1;
double y[SYSJDIM);
double t« 0.0;
double tout = 1.0;
double rel_err = 1.0E-7;
double abs_err = 0.0;
int errjHag;
char *rkf_mess();
int test fQ;
RKF *dp, *rkf_open();

y[0]= 1.0;

Page 2 Printed February, 1986

rkfjntro(3ML) RKF (LOCAL) rkfjntro(3ML)

}

if ((dp = rkf open(test f, neqn)) = = NULL)
{

fprintf(stderr, "Cannot open RKF\n");
exit(l);

}
rkf_error(rel_err, abs_err);
rkfjnit(t, y);
err_flag = rkf(tout, &t, y, dp);
printfC t» %e", t);
printfCy[0]= %e ", y[0]);
printf(" status: %s\n", rkf_mess(err__flag));
rkf_close(dp);

test_f(z, x, t)
double z[], x[], t;

{
z[0]= -x[0];
return (TRUE);

}

LIBRARY

The functions reside in /usr/local/lib/librkf.a and may be loaded by specifying the -lrkf flag
to CC(J)OTld(l).

NOTE

The file < local/rkf.h> must be # included in any source file referencing functions in rkf.

FILES

< local/rkf.h>

/ usr/ local/ lib/ librkf.a

SEE ALSO

rkf(3ML), rkf open(3ML), rkf error(3ML), rkf_init(3ML), rkfmess(3ML), rkf cntrl(3ML),
rkfj-ead(3ML)~

BUGS

rkf almost invariably returns ST1FFJEQN after 3000 (maxjife) function calls.

We had problems in the PC-DOS version because it kept returning ZERO_ABS even when
abs_err was positive.

AUTHORS

Greg Bernstein
Tom Parker

Printed February, 1986 Page 3

Tkf(3ML) RKF (LOCAL) rkf(3ML)

NAME

rkf- perform RKF integration

SYNOPSIS

include < local/rkf.h>

int rkf(t_out, t, y, p)
double t out, *t, y[];
RKF *pj

DESCRIPTION

rkf performs the integration of the equation associated with *p. t_put is the desired output time.
Upon return, *t is the actual output time and y contains the output vector evaluated at */.

DIAGNOSTICS

rkfreturns the rkferror code (see rkfjntro(3ML)).
LIBRARY

The function resides in /usr/local/lib/librkf.a and may be loaded by specifying the -lrkf flag
to cc(l) or ld(l).

NOTES

rkf_ppen(3ML), rkfj>rror(3ML) and rkf_init(3ML) must be called before rkf.
*t will not be equal to t_out only when an error occurs (rkfdoes not return OK).
y should point to a buffer large enough to hold the result.

FILES

< local.rkf.h>

/ usr/local/lib/librkf.a

SEE ALSO '
rkf_intro(3ML), rkf_open(3ML), rkf init(3ML), rkf_error(3ML), rkf mess(3ML),
rkf_cntrl(3ML), rkf_read(3ML)

AUTHORS

Greg Bernstein
Tom Parker

Printed February, 1986 Page 1

rkf_cntrl(3ML) RKF (LOCAL) rkf_cntrl(3ML)

NAME

rkf_cntrl - miscellaneous functions which set RKF parameters
SYNOPSIS

include < stdio.h>

include < local/rkf.h>

rkf_mode(mode, p)
int mode;
RKF *p;

rkf_stdin(fp, p)
int (*fp)();
RKF *p;

rkfjife(max_nfe, p)
int maxnfe;
RKF *p;

rkf_kop(max_kop, p)
int maxkop;
RKF *p;

rkf_seq_Ien(seq_Ien, p)
int seq_len;
RKF *p;

rkfjre_min(re_min, p)
double remin;
RKF *p;

rkf_copy(dp, sp)
RKF *dp, *sp;

DESCRIPTION

rkfjnode sets the current integration mode of the integration associated with *p to mode, mode
is either ENDPT or SING_STEP. In END_PT mode, rkf(3ML) returns at the final time t_out.
In SING_STEP mode, rkf(3ML) returns after every step of the integration until it hits tj>ut. In
neither case is tj?ut ever passed. The default mode is END_PT.

rkfjtdin is used to set whether the STDIN_RDY error can occur. Iffp is NULL, no checking is
done; otherwise, fp is a pointer to a function which returns TRUE (= = 1) if input is ready and
FALSE (= = 0) otherwise. The default is no checking done.

rkfjnfe sets the maximum allowed number of function evaluations before the FUNCJLIM error
is returned by rkf(3ML). The default is 3000.

rkfjtop sets the maximum allowed number of output points which can impair the efficiency of
rkf[3ML) before the IO_LIM error is returned. The default is 100.

rkfjeqjen is used to set the maximum allowed sequence length (used by the stiffness test).
The default is 50.

rkfjejnin is used to set the minimum allowed error tolerance. This effects RELJLIM error
detection. The default is 1.0e-12.

rkfjcopy copies the RKF structure *sp to *dp. Both structures need to have been created by
calls to rkfj>pen(3ML).

Printed February, 1986 Page 1

rkf_cntrl(3ML) RKF (LOCAL) rkf_cntrl(3ML)

LIBRARY

These functions reside in /usr/local/lib/librkf.a and may be loaded by specifying the -Irkf flag
to cc(l) or ld(l).

NOTE

< stdio.h> should be # included to satisfy references to NULL.
BUGS

Too many functions on one manual page.

rkfjiopy does not really fit in here, but it is such a seldomly used function, it does not really
deserve a manual page of its own.

FILES

< local/rkf.h>

/ usr/ local/ lib/ librkf.a

SEE ALSO

rkf_intro(3ML), rkf(3ML), rkf_open(3ML), rkf error(3ML), rkf init(3ML), rkf mess(3ML),
rkf_read(3ML) ~ " ~

AUTHORS

Greg Bernstein
Tom Parker

Pa8e 2 Printed February, 1986

rkf_error(3ML) RKF (LOCAL) rkf_error(3ML)

NAME

rkf_error - set error tolerances for RKF integration

SYNOPSIS

include < local/rkf.h>

int rkf_error(rel_err, abs_err, p)
double rel err, abserr;
RKF *p; "

DESCRIPTION

rkfjerror sets the relative and absolute error tolerances associated with *p to rel_err and abs err,
respectively.

Accuracy
The local truncation error is controlled on an error-per-step basis, that is

|loc. trunc. err. |< = abs_err + reljzrr*fc\

where is the previous solution point.

Intuitively, it might seem that an error-per-unit-step criterion would be better for controlling
the global error. However, the literature does not seem to indicate this and, for differential
equations with discontinuities in their derivatives (e.g. piecewise linear models), an error-per-
unit-step criterion can cause an algorithm to blow up.

DIAGNOSTICS

rkfjsrror returns the rkf error code (see rkf intro(3ML)). The possible return values are OK,
NEG_ERROR, RELJLIM, ZERO_ABS and STEPJLIM.

If REL_LIM is returned, rkfjsrror will increase the relative error tolerance to the smallest
allowed amount. Use rkfjead(3ML) to get the new value for the relative error tolerance.

ZERO_ABS (STEP_L1M) will only be returned if ZERO_ABS (STEPJJM) is the error condi
tion when rkfjerror is called and then only if the new values of reljsrr and abs_err do not clear
the error condition. "

LIBRARY

The function resides in /usr/local/lib/librkf.a and may be loaded by specifying the -Irkf flag
to cc(l) or ld(l).

FILES

< local/rkf.h>

/usr/ local/ lib/ librkf.a

SEE ALSO

rkfJntro(3ML), rkf(3ML), rkf open(3ML), rkf init(3ML), rkf_mess(3ML), rkf cntrl(3ML),
rkf_read(3ML)

AUTHORS

Greg Bernstein
Tom Parker

Printed February, 1986 Page 1

rkfJnit(3ML) RKF (LOCAL) rkf_init(3ML)

NAME

rkfjnit - set initial condition for RKF integration

SYNOPSIS

include < local/rkf.h>

rkf_init(t, x, p)
double t, x[];
RKF *p;

DESCRIPTION

rkfjnit sets the initial time / and the initial state x for the state equation associated with *p.
LIBRARY

The function resides in /usr/local/lib/librkf.a and may be loaded by specifying the -Irkf flag
to cc(l) or ld(l).

FILES

< local/rkf.h>

/ usr/ local/ lib/ librkf.a

SEE ALSO

rkf_intro(3ML), rkf(3ML), rkf_open(3ML), rkf_error(3ML), rkf mess(3ML), rkf_cntrl(3ML),
rkf_read(3ML)

AUTHORS

Greg Bernstein
Tom Parker

Printed February, 1986 Page 1

rkfjness (3ML) RKF (LOCAL) rkfjness(3ML)

NAME

rkfjness - get text version of RKF error status

SYNOPSIS

include < local/rkf.h>

char *rkf_mess(err_flag)
int err_flag;

DESCRIPTION

rkfjness returns a pointer to a string containing a text version of the rkferror code represented
by errjlag.

EXAMPLE

char *rkfjness();

if (err_flag != OK)
printf("RKF error: %s\n", rkfjness(err_flag));

LIBRARY

The function resides in /usr/local/lib/librkf.a and may be loaded by specifying the -Irkf flag
to cc(l) or ld(l).

NOTES

Do not alter the contents of the returned string.

rkfjness must be declared as returning a character pointer for it to work properly.
FILES

< local/rkf.h>

/ usr/ local/ lib/ librkf.a

SEE ALSO

rkf_intro(3ML), rkf(3ML), rkf open(3ML), rkf init(3ML), rkf_error(3ML), rkf_cntrl(3ML),
rkf_read(3ML)

AUTHORS

Greg Bernstein
Tom Parker

Printed February, 1986 Page 1

rkf_open(3ML) RKF (LOCAL) rkfopen(3ML)

NAME

rkf_open, rkf_close - open and close equation for integration
SYNOPSIS

include < stdio.h>

include < local/rkf.h>

RKF *rkf open(f, n)
int (*f)()7n;

rkf_close(p)
RKF *p;

DESCRIPTION

rkfj)pen returns a pointer to an RKF structure associated with the n-dimensional state equation
specified by/.

rkfjcbse disposes of the RKF structure *p obtained byaprevious call to rkfj>pen.
DIAGNOSTICS

rkfjypen returns NULL if there is not enough memory to create an RKF structure or if n is not
positive.

LIBRARY

Both functions reside in /usr/local/lib/librkf.a and may be loaded by specifying the -Irkf flag
to cc(l) or ld(l).

NOTES

Ymust be in the form

double f(z, x, t)
double z[], x[], t;

{
}

and should set z to the value of the state equation evaulated at x and t.

rtfj>P*n must be declared as returning an RKF pointer for it to work properly.
< stdio.h> must be # included to satisfy references to NULL.

FILES

< local/ rkf.h>

/usr/local/lib/librkf.a

SEE ALSO

makef(lL)

rkfJntro(3ML), rkf(3ML), rkf_error(3ML), rkf_init(3ML), rkf mess(3ML), rkf cntrl(3ML),
rkfjead(3ML)

AUTHORS

Greg Bernstein
Tom Parker

Printed February, 1986 page i

rkfjead(3ML) RKF (LOCAL) rkfjead(3ML)

NAME

rkfjead - fetches various RKF parameters
SYNOPSIS

include < local/rkf.h>

char *rkf_read(code, result, p)
int code;
char *result;
RKF *p;

DESCRIPTION

rkfjead is used to read a variety of parameters associated with the RKF structure *p. code is a
macro indicating what information is wanted. The result is returned in *result. The result may
be an integer, a double or a pointer to a double.

The codes are # defined in < local/rkf.h> as follows:

*result is an integer:

ERROR_STATUS
^result set to current error status.

KOP

^result set to the current value of kop (indicates the amount of output which has
restricted the natural stepsize selection).

NUM_FE
*result set to the current value of the number of function evaluations.

EQN_STIFF
*result set to the current value of the stiff equation indicator.

ACCEPT

*result set TRUE (= - 1) if the last call to the state equation / resulted in an
integration step that was accepted. This is useful if/must do some updating or
initializing for each integration step.

MODE

*result set to current integration mode.

STDIN_CHK
*result set to current stdin check mode.

SEQ__LEN
*result set to current eqjen value.

MAXJJFE
*result set to the current maximum for number of function evaluations.

MAXJCOP
*result set to the current maximum for number of outputs which will cause an
IO_LIM error.

STEP_S1ZE
*result set to current stepsize.

*result is a double:

MINJREL
*result set to current minumum value of the (machine independent portion of
the) relative error tolerance.

REL_ERR
*result set to current value of relative error tolerance.

Printed February, 1986 Page j

rkf_read(3ML) RKF (LOCAL) rkfjead(3ML)

ABSJERR
^result set to current value of absolute error tolerance.

♦result is a pointer to a double:

Y_PRIME
*result set to a pointer to an array containing the state equation evaluated at the
last output point.

EXAMPLE

int i;
double x, *y;
RKF *p;

rkf_read(ERROR, (char *)&i, p);
rkf_read(STEP SIZE, (char *)&x, p);
rkf_read(Y_PRlME, (char *)&y, p);

LIBRARY

The function resides in /usr/local/lib/librkf.a and may be loaded by specifying the -Irkf flag
to cc(l) or ld(l).

NOTES

result should be cast into a character pointer as in the example.

Do not change anyof the values in the buffer returned by the YJPRIME code.
BUGS

To be more portable, result should be a pointer to a union, but that would make everything a
little more complicated.

Some of the parameters only make sense if you know the internal workings of rkf.
FILES

< local/rkf.h>

/usr/local/lib/librkf.a

SEE ALSO

rkf_intro(3ML), rkf(3ML), rkf open(3ML), rkf_init(3ML), rkf_error(3ML), rkf_mess(3ML),
rkf_cntrl(3ML)

AUTHORS

Greg Bernstein
Tom Parker

Page 2 Printed February, 1986

Appendix II: Source Code for RKF

Here we present the source code for RKF. There are two files:

rkf.h

rkf.c.

Dec 5 13:83 1985 rkf.h Page 1

typede-f char RKF;

ttdefi ne SING STEP 1

ttdefi ne ENDPT 2

ttdeti ne OK 8

ttdefi ne NEG ERROR 1

ttdefime REL LIM 2

#defjme FUNC LIM 3

ttdefi ne 10 lTm 4

ttdef] ne ZERO ABS 5

#def: ne STEP LIM 6

ttdefime STIFF EON 7

ttde-fiine FUNC ERR 8

#de*] ne STDIN RDY 9

ftdefi me ERR SET 18

#de*ime INIT.SET 11

*dei:me STEP SI2E 1

ttde-fi ne KOP 2
ttdefiine NUM FE 3
#de*2me EON STIFF 4

ttdef:ine Y PRIME 5
ttdefime ACCEPT 6
#def:me MODE 7
#de-fi ne STDIN CHK 8

#def] ne SEQ LEN 9

ttdefjme MAX NFE 18
*dei:ine MAX KOP 11

ttdef] ne MIN REL 12
«de*:ine REL ERR 13
ttdef]me ABS ERR 14
#def:ine ERROR STATUS 15

Jan 2 14:41 1986 rkf.c Page 1

/«**«*#***«*****«*»*«**«****«*««**«*«*«*««««*»#«««««««**«*«##«*««/
/*«*****«*«*##*******«♦«««*»«*«****#*«*«#«*»«#*#*#**«#****»##«*##/

/*This file contains rkf<)—a C86 version of the RKF45 differential
equation solving subroutine which was originally written by H. A. watts
and L. F. Shampine of Sandia Laboratories, Albuquerque New Mexico.

Uritten by: Greg Bernstein
Date started: 18/2/84

Update: 9/26Y85 TSP

Updated on 18/9/84 to add stiffness detection as described in the
references:

1) "Stiffness and Nonstiff Differential Equation Solvers, II:
Detecting Stiffness Uith Runge-Kutta Methods" L. F. Shampine,
ACM Transactions on Mathematical Software, Vol. 3, No. 1,
March 1977, Pages 44-53.

2) "Detecting stiffness with the Fehlberg <4,5) formulas" L. F.
Shampine and K. L. Hiebert, Comp. and Maths, with Appls.
Vol. 3, pp. 41-46. Pergamon Press 1977.

Updated on 18/11/84 to:

1) Make internal procedures static

2) Allocate working storage for each problem according to system
dimension this will also allow for simultaneous solutions of
differential equations as in the variational equation problem.
This was a major overhaul and involved adding procedures and
changing slightly how the user interfaces with the routines.

Updated on 18/12/84 to:

1) Get rid of redundant evaluations of yp. In the case of a stepsize
failure fl thru f5 must be reevaluated but yp can be used again.

Updated on 18/23/84 to:

1) take into account the possibility that the derivative function
might not exist at a point where it is to be evaluated. Note:
that this required a slight addition to the "standard function"
interface.

Updated on 11/19/84 to:

1) Add supplementary functions to give user: the stepsize h,
the number of function evaluations num_fe, the number of output
points that impact the stepsize kop, and the stiff equation flag
eqn_stiff.

Updated on 3/29/85:

Jan 2 14:41 1986 rkf.c Page 2

1) rkf_accept<), rkf_copy<), rkfjnessO added.

2) Cosmetic modifications and name changes to lower case.

3) stdin check added; also added h_failed to RKFJWS.

Updated on 4/18/85:

1) rkf_error<), rkf_init<), rkfjnodeO added and corresponding
arguments to rkfO deleted.

2) Also error checking was distributed to these functions as much
as possible.

3) Initialization modes were deleted (if initialization is

required, it is detected internally.

4) nfejnax, kopjnax, rejnin and seq_len added to RKFJWS structure.

Updated on 6/12/85:

1) Error fixed in rkfO where *t was used instead of ws->t.

2) rkf_copy<) fixed to copy init_set, err_set & stdin.chk.

3) calling rkf_init<> clears STEPJ.1M error.

Updated on 9/22/85:

1) Added user-supplied console status function constatO.
Deleted the stdin_chk flag. This alters rkf_stdin<>.

Updated on 9/26/85:

1) Added check in rkfO for ee
zero.

8.8 to avoid divide by

*/

/««»««**«#«****«***««*#*««««««*»««**««««*«««**«***«»«««««««««»«««/

♦♦include <stdio.h>

♦♦include "rkf.h"

/« Program Constants */

♦♦define NFE MAX 3888

♦♦define KOP MAX 1

/* The expense is controlled by restricting
the number of function evaluations to be

approximately NFE_MAX. As set this corre
sponds to about 588 steps. */

/* Maximum number of outputs, that can
impare the efficiency of the program, until
the program returns with a warning flag. */

Jan 2 14:41 1986 rkf.c Page 3

♦♦define RE MIN 1.8E-12

Mdefine TRUE 1

♦♦define FALSE 8

♦♦define SUBSEQJ.EN 58

typedef struct

unsigned n;
int <*f>Oj

int step_init;

double t;
double h;
double rel_err, abs_err;
double rejnin;
int mode;
int err_flag;
unsigned kop;
unsigned kopjnax;
unsigned num_fe;
unsigned nfejnax;
int eqn_stiff;
unsigned seq_count;
unsigned seq_len;
unsigned sucss_12;

int step_accept;

int h_failed;

int init_set;
int err_set;
int <*constat><>;
double *y;
double *yp, *fl, *f2, *f3,

*f4, *f5, *s;

> RKFJWS;

/* Relative error minimum, machine indepen
dent part. Attemps to obtain higher accur
acy with this algorithm are usually very
expensive and often unsuccessful. */

/* The standard boolean values. */

/* Subsequence length in stiffness test */

/* Dimension of system to be solved */
/* Pointer to the function to be

integrated. */
/* Indicates whether the step size has been
initialized. */

/* current time*/

/* The integration stepsize. */
/* error tolerances*/

/* Some sort of min for error tolerances*/

/* integration mode*/
/* Error indicator*/

/* Efficiency impaired by output counter */
/* Maximum for output counter*/
/* Number of function evaluations counter */

/* Maximum allowed function evaluations*/

/* Stiffness flag. */
/* Sequence counter for stiffness test. */
/* Maximum stiffness sequence length*/
/* Number of successes of the (1,2) step

in a sequence of length seq_len. used
in stiffness test. */

/♦TRUE if last evaluation of f<)

completed a successful integration step*/
/♦TRUE if stepsize has been reduced in
previous iteration*/
/* TRUE if init conds have been set*/

/* TRUE if errors have been set*/

/* function to call for console status */

/* current trajectory point */

/* Pointers to arrays for holding
intermediate calculations. */

/* Variables for machine epsilon calculation */
static double m_eps, u26; /* Machine epsilon and 26 times the unit

roundoff. */

/****************«**********************************^

RKF_WS *
rkf_open<f, n)

Jan 2 14:41 1986 rkf.c Page 4

int («f)();
unsigned n;

{

char *calloc();
RKFJWS *ws;

if (n < 1)

return(NULL);
if ((ws « (RKFJJS *)calloc(l, sizeof(RKF US))) ~ NULL)

return(NULL);

/* allocate working storage arrays based on n */
ws->y = (double *)ca11oc(n, sizeof(double));
ws->yp = (double *)ca11oc(n, sizeof(double));
ws-Ml = (double *)ca11oc(n, sizeof(double));
ws->f2 = (double *)ca11oc(n, sizeof(double));
ws->f3 s (double *)calloc(n, sizeof(double));
ws-)f4 = (double *)ca11oc(n, sizeof(double));
ws->f5 = (double *)ca11oc(n, sizeof(double));
ws->s = (double *)calloc(n, sizeof(double));

if (ws->y = NULL !! ws->yp = NULL !! ws->fl = NULL J!
ws->f 2 H8 NULL i! ws->f 3 =» NULL '• J ws->f4 •» NULL !!

ws->f5 = NULL !! ws->s = NULL)

{

rkf_close(ws);
return (NULL);

/* Initialize variables */

ws->n = n;
ws->f • f;
ws-)mode = ENDPT;
ws->step_init = FALSE;
ws->err_flag = OK;
ws->kop = 8;
ws->kopjnax • K0PJ1AX;
ws->num fe » 8;
ws->nfe"max = NFE_MAX;
ws->eqn_stiff » FALSE;
ws->seq_count = 8;
ws->seq_len = SUBSEQJ.EN;
ws->sucss_12 = 8;
ws->kop = 8;
ws->rel_err =8.8;
ws->abs_err =8.8;
ws->step_accept = TRUE;
ws-)h_failed » FALSE;
ws->init_set = FALSE;
ws->err_set = FALSE;
ws->constat = NULL;
ws->rejnin » RE_M1Nj

return(ws);

Jan 2 14:41 1986 rkf.c Page 5

/******«*«*«***#*******««#**«****«*«««**#«#*««*******«»***««*«***/

/***««*«*»***»«*♦***««**«««**»****«**««**«««»*«*«»««««*»*««»»»««#/

/♦Disposes of the working storage structure pointed to by ws. It
first disposes of the working storage arrays and then the entire
structure */

rkf_close(ws)

RKFJJS *ws;

if (ws->y != NULL)

free((char *)ws->y);
if (ws->yp != NULL)

free((char *)ws->yp);
if (ws->f1 != NULL)

free((char *)ws->fl);
if (ws->f2 !» NULL)

free((char *)ws->f2);
if (ws-)f3 != NULL)

free((char *)ws->f3);
if (ws->f4 != NULL)

free((char *)ws->f4);
if (ws->f5 != NULL)

free((char *)ws->f5);
if (ws->s != NULL)

free((char *)ws->s);
if (ws != NULL)

free((char *)ws);
return;

/•it**/
/**/

/♦Copies working storage structure s to d. d must be previously
allocated by a call to rkf_open(). The working vectors s->fl through
s->f5 and s->s are not copied.*/

rkf_copy(d, s)

RKFJJS *d, *s;

{

d->n = s->n;
d->f » s->f;
d->step init = s-)step init;
d->t - s->t;
d->h = s-)h;
d->rel_err * s->rel_err;
d->abs_err = s->abs_err;
d->rejnin = s->rejnin;
d-)mode = s->mode;
d->err_flag = s->err_flag;

Jan 2 14:41 1986 rkf.c Page 6

d->kop = s->kop;
d->kopjnax » s->kopjnax;
d->num_fe • s->num_fe;
d->nfejnax = s->nfejnax;
d->eqn_stiff = s->eqn_stiff;
d->seq—count • s->seq—count;
d->seq_len = s->seq_len;
d->sucss_12 » s->sucss_12;
d->step_accept » s-)step_accept;
d->h_failed • s->h_failed;
d->init_set * s->init_set;
d->err_set = s->err_set;
d-)constat = s->constat;
vec_copy(s->n, d->y, s->y);
vec_copy(s->n, d->yp, s->yp);

/♦♦♦♦♦♦*♦♦«♦♦♦♦♦**#»#»«*»»»»*«*«#«#*##***»*««#*«*««#««««««*««»«««/

/♦♦♦#♦♦♦**#*»#**#«#»**»»#*#**#»»*#*»»**##**#»##***»#»**«*#**#♦#*»/

/•Returns a string describing err.*/

char *

rkfjness(err)

int err\

<

switch (err)

<

case OK:

return ("integration successful");
case NEG_ERR0R:

return ("negative error tolerance");
case RELJ.IM:

return ("relative error tolerance too small");
case FUNCJ.IM:

return ("too many function evaluations");
case I0J.IM:

return ("too much output");
case 2ER0_ABS:

return ("nonzero absolute error required");
case STEPJ.IM:

return ("stepsize too small");
case STIFF_EQN:

return ("stiff equation");
case FUNC_ERR:

return ("function evaluation error");
case STDIN_RDY:

return ("character ready at stdin");
case ERR_SET:

return ("abs_err and rel err not properly initialized");
case INIT_SET:

return ("initial conditions not properly initialized");
default:

return ("Bad error code");

Jan 2 14:41 1986 rkf.c Page 7

/♦«♦♦♦♦♦♦*«♦♦«♦*«**«**«**««*«««*«««#«#««««*«*««««*««*««*««««*««««/

/*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*»»****♦♦*«#*»♦»»#**###«*#*♦♦#*#*##»*#♦####*#/

rkf_error(rel_err, abs_err, ws)

double rel err9 abs_err;
RKFJWS *wsT

<

ttifdef DEBUG

fprintf(stderr, "Entering rkf error()..An");
#endif

ws->err_set • TRUE;
if (ws->err_flag = 2ER0_ABS)
<

if (abs err) 8.8)

<

ws->abs_err = abs_err;
ws->err flag » OK;

>

}

else if (ws-)err flag « STEP LIM)
{

if (abs err > ws-)abs err)

<

ws-)abs_err = abs_err;
ws-)errjflag • OK;

>

if (rel err > ws-)rel err)

{

ws->rel_err » rel_err;
ws->err_flag « OK;

}

>

else

{

if (rel err < 8.8 S! abs err < 8.8)

{

ws->err_flag = NEG_ERRORj
ws->err_set = FALSE;

>

else if (rel err < 2.8*m_eps ♦ ws-)rejnin)
<

ws->rel_err = 2.8*m_eps ♦ ws-)rejnin;
ws->abs_err = abs_err;
ws->err_flag = REL_LIM;

>

else

i

ws->rel_err = rel_err;
ws->abs__err = abs_err;
ws->err_f lag = OK;

}

Jan 2 14:41 1986 rkf.c Page 8

}

#ifdef DEBUG

fprintf(stderr, "...leaving rkf_error()\n");
♦iendif

return (ws->err_flag);
}

/ft***/

/**/

rkf_init(t, x, ws)

double t, xH;
RKFJdS *ws;

(

ttifdef DEBUG

fprintf(stderr, "Entering rkf_init()..An");
ftendif

ws->t = t;
vec_copy(ws-)n, ws->y, x);
ws->step_init » FALSE; /*need to re-initialize*/
ws->init_set = TRUE;
if (ws->err_flag — INIT.SET !i ws-)err_flag «= STEPJ.IM)

ws->err flag « OK;
ttifdef DEBUG

fprintf(stderr, "...leaving rkf init()\n")j
#endif

>

/♦*♦♦♦♦♦♦♦♦♦♦♦♦♦*«*«*#«****#«««**«**#*«#♦»*«**«#***#*#*#«#«*«#»«»/

/*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦#«*»»»***»»#####*#»*»»##»♦«»«»«#»#♦***##*#««#**/

/♦the main routine, returns err_flag*/

rkf(tout, t, y, ws)

double tout, «t, yM;
RKFJWS *ws;

int k;
int soljjut;
double dt, scale, ae, hjnin;
double eeoet, et, temp_et, ee, esttol, h_scalej
double eeoet_12, ee_12, esttol_12; ""
double tempi, temp2, temp3;
double maxO, minO, signO, powO, fabsO;

flifdef DEBUG

fprintf (stderr, "Entering rkf()..An")j
ttendif

if (ra_eps = 8.8)
calc_eps();

if (!par_check(ws))
return (rkf_exit(t, y, ws-)err_flag, ws));

Jan 2 14:41 1986 rkf .c Page 9

if (tout = ws->t) /*no computation necessary*/
return (rkf exit(t, y, ws->err flag, ws));

if (!ws->step_init)
{

/* Evaluate yp if possible. */
if (!(*ws->f)(ws-)yp, ws->y, ws->t))

return (rkf_exit(t, y, FUNC_ERR, ws));
ws->num_fe+*;
init_step(ws, tout);
ws->step_init = TRUE;

}

dt * tout - ws->t;

/* "Efficiency impaired by too much output" check */
if (fabs(ws->h) >= 2.8*fabs(dt))

ws->kop+*;
if (ws-)kop >= ws-)kopjnax)

return (rkf_exit(t, y, I0J.1M, ws));

/* If "too close" to output extrapolate and return */
if (fabs(dt) <= u26*fabs(ws->t))

<

if (!(*ws->f)(ws->yp, ws->y, ws->t))
return (rkf_exit(t, y, FUNC_ERR, ws));

ws-)num_fe*+;
for (k = 8; k < ws-)n; k++)

ws-)yCk3 4= dt*ws->ypCk]j
return (rkf_exit(t, y, OK, ws));

}

sol_out = FALSE; /* initialize solution output indicator */

/* to avoid premature under flow in the error tolerance function
scale the error tolerances */

scale » 2.8/ws->rel_err;
ae = scale*ws->abs_err;

do /* Step by step integration loop */
<

hjnin • u26 * fabs(ws-)t); /* init smallest allowed step */

/* Adjust stepsize if necessary to hit the output point. Look ahead
two steps to avoid drastic changes in the stepsize and thus lessen
the impact of output points on the code. */

dt = tout - ws-)t;
if (fabs(dt) < 2.8 * fabs(ws-)h))

i
if (fabs(dt) <= fabs(ws-)h))

<

sol_out = TRUE;
ws->h « dt;

>

else

ws->h « 8.5*dt;

Jan 2 14:41 1986 rkf.c Page 18

do /* Stepsize adjustment and error checking loop */
<

if (ws-)constat != NULL *& (*ws->constat)())

return (rkf_exit(t, y, STDIN_RDY, ws));
if (ws->num_fe > ws->nfe max)
{

if (ws->eqn_stiff)
return (rkf_exit(t, y, STIFF_EQN, ws));

else

return (rkf exit(t, y, FUNCJ.1M, ws))j
>

/* Advance an approximate solution over one step of length h */
ws->step_accept = FALSE;
if (!fehl45(ws->f, ws->n, ws->y, ws->t,

ws->h, ws->yp, ws-)fl, ws->f2,
ws->f3, ws->f4, ws->f5, ws->s))

return (rkf_exit(t, y, FUNC_ERR, ws));
ws-)num_fe ♦= 5;

/* Compute and test allowable tolerances versus local error
estimates and remove scaling of tolerances. Note that
relative error is measured with respect to the average of
the magnitudes of the solution at the beginning and end
of the step. The error estimate formula has been
grouped to control loss of significance.*/

/* Do this also for the imbedded (1,2) formula as part of
the stiffness test */

eeoet = eeoet_12 • 8.8; /«Used in stiffness test*/
for (k = 8; k (ws->n; k*+)
<

temp_et • fabs(ws->y[k3) 4 fabs(ws->stk3);
et = ae ♦ temp_et;
if (et <= 8.8) /inappropriate error tolerance*/

return (rkf_exit(t, y, ZERO_ABS, ws))j

/* Group terms to avoid loss of signifigance */
tempi » (21978.8*ws->f3Ck3 - 15848.8*ws->f4£k3);
temp2 a (-2898.8*ws-)yp[kl 4 tempi);
temp3 = (22528.8*ws->f2tk] - 27368.8*ws->f5Ck3);
ee a fabs(temp2 4 temp3);

/* Stiffness testing */
if (!ws->eqn_stiff &&

(w5->seq_count - ws-)sucss 12 (« ws-)seq len/2))
<

ee_12 a fabs(8.855455*ws->ypCk3 -
8.835493*ws->flCk3 - 8.836571*ws->f2Ck3 4
8.823187*ws->f3Ck3 - 8.889515*ws->f4Ck3 4
8.883817*ws->f5Ck3);

/*Here we need to avoid a divide-by-zero. This can
happen if all the f?Ck3 are zero which can happen
if the state equation returns 8.8 for the kth
entry. I assume that if ee » 8.8 then ee 12 as

Jan 2 14:41 1986 rkf.c Page 11

8.8 and eeoet_12 does not need to be updated.*/
if (ee != 8.8)

eeoet_12 a max(eeoet_12, ee_12/ee);

eeoet a max(eeoet, ee/et);
}

esttol a fabs<ws->h)♦eeoet♦scale/752498.8j

/* Stiffness testing */
if (!ws->eqn_stiff &&

(ws->seq_count - ws->sucss_12 <a ws-)seq_len/2))
esttol_12 a fabs(ws->h)*eeoet_72*scale;

if (esttol > 1.8)

<

/♦Unsuccessful step: reduce the stepsize and try
again. The stepsize decrease is limited to a factor of
ten. Practical limits on the change in the stepsize
are enforced to smooth the stepsize selection process
and to avoid excessive chattering on problems having
discontinuities. */

ws->h failed a TRUE;
sol_out = FALSE;
h scale = 8.1;
if (esttol < 59849.8)

h_scale a 8.9/pow(esttol, 8.28);
/* To prevent unnecessary failures the code uses 9/18
the stepsize it estimates will succeed. */

ws->h *a h_sca1e;
if (fabs(ws->h) <a hjnin)

return (rkf_exit(t, y, STEPJ.IM, ws));
)

}

while (esttol > 1.8);

/* Successful step: store solution at t+h */
ws-)step_accept = TRUE;
if (!(*ws->f)(ws->fl, ws->s, ws->t 4 ws->h))

return (rkf_exit(t, y, FUNC_ERR, ws));
ws-)num_fe4+;
ws-)t 4= ws-)h;
vec_copy(ws->n, ws->y, ws->s);
vec_copy(ws->n, ws-)yp, ws->fl);

/* choose next stepsize: the increase is limited to a factor of
5. If a step failure has just occurred, the next stepsize is not
allowed to increase. This makes the code more efficient on

problems with discontinuities. */
h_scale =5.0;
if (esttol > 1.889568E-4)

h_scale a 8.9/pow(esttol, 8.2);
/♦don't increase stepsize if step failure in last iteration*/
if (ws->h_fai1ed)

h_scale a min(h_sca!e, 1.8);
ws->h a sign(ws->h)*max(h_sca1e*fabs(ws->h), hjnin);

Jan 2 14:41 1986 rkf.c Page 12

/* Stiffness testing */
if (!ws->eqn_stiff)
<

if (ws->seq_count44 - ws-)sucss_12 <a ws->seq_len/2)
i

if (esttol_12 >a 1.8)
WS->SUCSS_1244;

if (ws->sucss_12)a ws->seq_len/2)
ws->eqn_stiff a TRUE;

>

if (ws-)seq_count > ws->seq_len Si ws->eqn_stiff)
ws->seq_count = ws->sucss 12 ° 0;

}

ws->h_failed a FALSE; /*reinit step failure*/
} while (!sol_out && ws->mode !a SING_STEP);

if (so1_out)
ws->t a tout;

return (rkf_exit(t, y, OK, ws));

/♦♦♦♦♦♦♦♦♦»♦♦*♦**#**«*«#***#««««#*#*««»*««*#*««#*«»«**##»*#«»#»#»/

/**♦♦««♦♦*♦♦«*«*««**«*«**«**«#*«««««»»#**«#«#*#♦«♦«♦♦***♦♦♦*♦«**♦/

/♦checks parameter values in ws*/

static

par_check(ws)

RKFJWS *ws;

{

flifdef DEBUG

fprintf(stderr, "Entering par checkO .. An");
flendif

switch (ws-)err flag)
<

case OK:

case RELJ.IM:
case FUNC_ERR:
case STDIN_RDY:

ws->err_flag a OK;
break;

case FUNCJ.IM:
ws->num_fe a 8;
ws->err_flag a OK;
break;

case I0_LIM:
ws->kop a 8;
ws->err_flag a OK;
break;

case STIFF_EQN:
ws-)num_fe a ws-)seq_count a ws->sucss_12 a 8;
ws->eqn_stiff a 8; ~
ws->err_flag a QK;

Jan 2 14:41 1986 rkf.c Page 13

break;
defau11:

return (FALSE); /uncorrected error*/
}

if (!ws->err_set)
<

ws-)err_flag a ERR_SET;
return (FALSE);

}

if (!ws->init_set)
{

ws-)err_flag a IN1T_SET;
return (FALSE);

>

♦lifdef DEBUG

fprintf(stderr, "...leaving par_check()\n">;
#endif

return (TRUE);
}

/****************«*******«**«***««**«***««♦♦«*********#«*********/

/♦♦**««********♦♦«*********♦*************************************/

/♦Initializes the stepsize h.*/

static

init_step(ws, tout)

RKFJWS *ws;
double tout;

{

int k;
double ypk, toln, tol, dt;
double powO, maxO, signO, fabsO;

ttifdef DEBUG

fprintf(stderr, "Entering init_step()..An");
ttendif

dt a tOUt - WS->tj
ws->h a fabs(dt);
toln a 8.8;

for (ka 8; k < ws->n; k4+)
{

tol a ws->rel_err * fabs(ws-)yCkl) 4 ws->abs_err;
if (tol > 8.8)

<

toln a tolJ
ypk a fabs(ws->yp£k3);
if (ypk * pow(ws-)h, 5.8)) tol)

ws->h a pow(tol/ypk, 8.28);
}

>

if (toln (a 8.8)

Jan 2 14:41 1986 rkf.c Page 14

ws->h a o,8;
ws->h a max(ws->h, u26*max(fabs(ws->t), fabs(dt)));
ws->h *= sign(dt);

ilifdef DEBUG

fprintf (stderr, "...leaving init stepONn");
ttendif

>

/***************««*««*♦♦*♦*«*«****«***«**♦«♦«***««*****«*«******«/

/#♦#*#*****»#*«»#***####*#*♦##*##*###**##»»**♦*#»»*«»###*#*♦♦♦#♦♦/

/♦exit routine for rkfO*/

static

rkf_exit(t, y, err_code, ws)

int err_code;
double *t, y[3;
RKFJ4S *ws;

{

*t a WS->tj
vec_copy(ws->n, y, ws->y);

ttifdef DEBUG

fprintf(stderr, "...leaving rkf()\n")j
ttendif

return (ws->err_flag a err_code);

/♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦***#*«*##«#«#««»«*»«iHHHHHH(^HHHHHHf9HHHHHHHHHHt/

/********«*****************«**«*****ftft#**tt**«**«**^^

/* The Fehlberg 4,5 formulas as implemented by Watts and Shampine. The
terms have been grouped to avoid loss of signifigance. feh145() assumes
that the derivative at time t, yp, is given. If derivative function
cannot be evaluated fehl45() returns FALSE, otherwise it returns TRUE. */

static

fehl45(f, n, y, t, h, yp, fl, f2, f3, f4, f5, s)

int (*f)();
unsigned n;
double yC3, t, h, ypC3, fU3, f2£3, f3C3, f4C3, f5C3, s[3;

{

unsigned k;
double ch, tempi, temp2, temp3, temp4;

ttifdef DEBUG

fprintf(stderr, "Entering fehl45()..An");
ttendif

ch = h/4.8;
for (k a 8; k < n; k4+)

sCk3 a yfk] 4 ch * ypCk3j
if (!(*f)(fl, s, t 4 ch))

return(FALSE);

Jan 2 14:41 1986 rkf.c Page 15

ch a 3.8*h/32.8;
for (k = 8; k < n; k44)
{

tempi a yp[k] 4 3.8 * flCk3;
sCk3 a ytk3 4 ch * tempi;

>

if (!(*f)(f2, s, t 4 3.8*h/8.8))
return(FALSE);

ch a h/2197.8;
for (k a e; k < n; k44)
{

tempi = (7296.8*f2Ck3 - 7288.8*fUk3);
temp2 a (I932.8*yp[k3 4 tempi);
sCk3 a y[|<] 4 ch * temp2j

>

if (!(*f)(f3, s, t 4 12.8*h/13.8))
return(FALSE);

ch a h/4184.8;
for (k a 8; k < n; k44)
<

tempi = (8341.8*yp[k3 - 845.8*f3[k3);
temp2 a (29448.8*f2Ck3 - 32832.8*fUk3>;
temp3 a (tempi 4 temp2);
sCk] a y{U1 4 ch * temp3;

}

if (!(*f)(f4, s, t 4 h))
return(FALSE);

ch a h/28528.8;
for (k a 8; k (n; k44)
<

tempi a (9295.8*f3Ck3 -5643.8*f4Ck3);
temp2 a (41848.8*fHk3 - 28352.8*f2Ck3);
temp3 a (-6888.8*yp[k3 4 tempi);
temp4 a (temp3 4 temp2);
stk3 a y[k] 4 ch * temp4;

}

if (!(*f)(f5, s, t 4 h/2.8))
return(FALSE);

/* compute approximate solution at t+h. */
ch a h/7618858.8;
for (k a 8; k < n; k44)
<

tempi > (3855735.8*f3Ck3 - 1371249.8*f4£k3);
temp2 a (982888.8*ypCk3 4 tempi);
temp3 a (3953664.8*f2Ck3 4 277828.8*f5Ck3);
temp4 a (temp2 4 temp3);
sCk3 a y[k3 4 ch * temp4;

>

ttifdef DEBUG

fprintf(stderr, "...leaving fehl45()\n");
ttendif

Jan 2 14:41 1986 rkf.c Page 16

return (TRUE);

/♦♦♦♦♦♦♦»♦*♦*##***♦♦♦♦*****««♦««*«««*«*#»»»»*#********«#***#«#»*#/

/♦♦#***#«*##»»#*****»»*#♦***#*#»#»*«*»####*#*#*«♦»»♦#««**#####**♦/

/* These functions allow the user to alter the default values for
rkfO "constants".*/

rkf_mode(mode, ws)

int mode;
RKFJWS *ws;

{

if (mode ass SING STEP)

ws->mode = sTnG_STEP;
else

ws->mode a ENDPT;
)

rkf_stdin(constat, ws)

int (*constat)();
RKFJWS *ws;

<

ws->constat = constat;
}

rkf_nfe(n, ws)

unsigned n;
RKFJWS *ws;

<

ws->nfejnax a n;
>

rkf_kop(n, ws)

unsigned n;
RKFJJS *ws;

i

ws->kop_max a n;
>

rkf_seq_len(n, ws)

unsigned n;
RKFJJS ♦ws;

<

ws->seq lens n;
}

Jan 2 14:41 1986 rkf.c Page 17

rkf_re_min(x, ws)

double x;
RKFJ4S *ws;

{

if (x > 8.8)
ws->re min a X;

>

/*♦♦♦♦♦♦*♦♦♦♦♦♦#»*#*«#*#♦»#*»****#**#«##*«****»#***♦*«**#*«*»♦*»♦/

/*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦«***«*#*#**«««*««♦«««#«*#«##»««»«««#»*#«**#««»/

typedef union read_ptr
<

char *cp;
int *ip;
double ♦dp;

double ♦♦ddpp;

>;

rkf_read(code, p, ws)

char *p;
int code;
RKFJWS *ws;

<

union read_ptr rp;

rp.cp = p;

switch (code)

{

case STEP_S1ZE:
♦pp.dp a uis->h;
break;

case KOP:

♦rp.ip a ws->kop;
break;

case NUM_FE:
♦rp.ip a ws-)num_fe;
break;

case EQN_STIFF:
♦rp.ip a ws->eqn_stiff;
break;

case Y_PRIME:
♦rp.ddpp a uis->yp;
break;

case ACCEPT:

♦rp.ip a ws->step_accept;
break;

case MODE:

♦rp.ip as ws->mode;
, break;

case STDIN CHK:

Jan 2 14:41 1986 rkf.c Page 18

♦rp.ip a ws->constat != NULL;
break;

case SEQ_LEN:
♦rp.ip a ws->seq_len;
break;

case MAX.NFE:
♦rp.ip a ws->nfejnax;
break;

case MAX.KOP:
♦rp.ip a ws->kopjnax;
break;

case MIN.REL:
♦rp.dp a ws->rejnin;
break;

case RELJERR:
♦rp.dp a ws-)re1_err;
break;

case ABS_ERR:
♦rp.dp a ws->abs_err;
break;

case ERRQR_STATUS:
♦rp.ip a ws-)err_flag;
break;

}

/♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦******************/

/♦*******♦♦♦♦♦♦♦♦♦♦♦***/

/♦Calculates the machine epsilon and 26 times the unit roundoff.*/

static

calc_eps()

double sum =2.8; /♦used because of 8887. Uithout it, m_eps would
represent the internal (88 bit) accuracy
of the 8887, not the external (64 bit)
accuracy of the double representation.*/

for (m_eps = \.9\ sum) 1.8 ; sum a i,8 4 m_eps)
m_eps /a 2.8;

u26 a 26.8*m_eps;

/♦«♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦«♦♦*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*******/

/*♦«*♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦*♦♦♦♦♦♦♦♦♦♦**************************/

/♦The standard sign function: +1 if argument greater than or equal to
zero, -1 otherwise.♦/

static double

sign(x)

double x;

	Copyright notice1986
	ERL-86-28

