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Abstract

We propose in this paper a novel treatment to the dynamics of satellites with flexible multi-
body components. Our formulation makes essential use of the property of invariance under
superposed rigid body motion of fully nonlinear structural theories. This property enables us to
refer the dynamics of the satellite directly to the inertial frame. In addition, geometric instability
effects are automatically accounted for in the formulation. To avoid numerical ill-conditioning,
the dynamics of the far field and of the near field are treated separately by introducing a floating
frame which is a parallel translate to the inertial frame with origin placed at the center of mass of
the satellite. Constraint conditions that are typically used in standard treatments to determine
the orientation of the floating frame are thus entirely by-passed. The proposed formulation can
accommodate an unrestricted class of maneuvers under the action of follower actuator forces and

gravity force, and is particularly well suited for the dynamics of flexible multibody systems under
going a broad range of structural deformations.

1. Introduction

The configuration of earth-orbiting satellites has evolved markedly from
rigid vehicles (spinners, dual spinners), hybrid rigid-elastic systems (dual spinners
with flexible appendages), towards future generation of flexible large space struc
tures (space antennae, solar power satellites); see Kline [1979]. The size of space
antennae may vary from 50 to 300 meters, to even one kilometer in diameter.
The projected solar power satellite, for instance, measures 5 kilometers in width
by 10 kilometers in length. Spacecrafts of this size, constructed using light
weight materials, are therefore highly flexible.

Satellite dynamics: Floating frames. Current approaches to the dynam
ics of flexible structures in orbit are largely based on the assumption of small
deformation, and rely on the use of a floating reference frame to describe the
structural displacements. To prevent rigid body motions relative to the floating
frame, one imposes constraints on the displacement field of the entire body.
There are typically five types of floating reference frame: (1) locally attached
frame, (2) principal axis frame, (3) Tisserand frame, (4) Buckens frame, and (5)
rigid body mode frame (Canavin & Likins [1977]). When the structure has a cen
tral rigid body with flexible appendages around, the frame is attached to the rigid
body (the locally attached frame) and no constraint equation is needed. For
structures with distributed flexibility, other types of floating frame should be
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used. In these frames, the origin is fixed at the center of mass of the deformed
structure, i.e., one seeks to annihilate the linear momentum relative to the float
ing frame. Its orientation is then defined by adding constraints concerning the
relative angular momentum. When small structural deformation is assumed, the
Buckens frame is the most widely used since one can either use the free-free elas
tic modes to eliminate these (holonomic) constraints from the equations of motion
(Canavin & Likins [1977]), or apply the Gram-Schmidt orthogonalization pro
cedure on an independent basis functions to eliminate the Buckens constraints
(Benson & Hallquist [1985]).

For the type of highly flexible large space structures described above there is
no guarantee that deformations remain small. Hence, traditional approaches
employing the small strain assumption would yield only a first order approxima
tion. In addition, for fast rotating flexible structures, linearized theories can yield
grossly inaccurate results, Simo & Vu-Quoc [1986c]. Our methodology, on the
other hand, represents a departure from traditional approaches in that, by
employing fully properly invariant nonlinear structural theories, the dynamics of
the structure is directly referred to the inertial frame; thus completely by-passed
the need for a floating reference frame. Clearly, proper invariance with respect to
superposed rigid body motions is a property that plays a essential role. Within
the proposed framework, the inertia term of the translation part becomes linear,
simply mass times acceleration, whereas the inertia term associated with the rota
tion part has identical structure as in the equations of motion of a rigid body
(Simo & Vu-Quoc [1985,86a]).

Theoretically, we have presented in Simo & Vu-Quoc [1985-86a] equations of
motion that completely describe the dynamics of a free-free fully nonlinear beam
subject to three-dimensional large overall motions, together with detailed numeri
cal treatment. For flexible satellites, however, since structural deformations are
extremely small compared to the distance separating the center of the earth and
the satellite, numerical ill-condition would result if the dynamics of the satellite
were referred directly to an inertial frame. We propose to avoid this numerical
ill-conditioning simply by expressing the dynamics of flexible satellites relative to
a parallel translate of the inertial frame, with origin at the center of mass of the
satellite. The procedure to integrate the resulting equations of motion are dis
cussed in detail. Further, the action of configuration dependent actuator control
forces can be conveniently accounted for in the formulation (Simo & Vu-Quoc
[1986a-b]).

Multibody dynamics. Satellite configurations with modules of different
degrees of flexibility furnish an example of an important class of flexible multi-
body systems. A robot manipulator arm consisting of human-like links connected
by joints is another example of a multibody system. Today's commercial robots
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are often, designed to be rigid because of the limitation of currently available
analytical tools — mainly in the active control of these mechanical systems
(Dubowsky [1985]).

There exists a vast body of literature on multibody dynamics starting with
the pioneering work by Hooker & Margulies [1965] and Roberson & Wittenburg
[1967]. Although most of the research in this area is focused on systems of rigid
bodies, recently, attention has been directed to the study of flexible multibody
systems. An overview of several approaches to the dynamics of n-body systems
can be found in Jerkovsky [1977]. An extensive reference list is contained in Hus
ton [1981]. Ho & Herber [1985] classifies multibody systems into several
categories in the order of increasing difficulty in the formulation as follows: (1)
two-rigid-body system, (2) all-rigid topological tree multibody system,! (3) cluster
of flexible appendages around a central rigid body, (4) topological tree multibody
system with rigid interconnected bodies and flexible terminal bodies, (5) all-
flexible chain system, and (6) all-flexible topological tree multibody system.
Treatment of the flexible chain system (5) may be found for example in Hughes
[1979] with some restriction in the speed of motion of the angles at the joints,
while treatment of the more complex topological tree multibody system is
explored in Huston [1981]. In general, with the presence of closed-loops, addi
tional non-holonomic constraints have to be included in the equations of motion
(e.g., Kane & Levinson [1983]), and thus require special care in the numerical
integration procedure.

It is emphasized that as a direct by-product of our formulation, one can
easily analyze flexible multibody configurations of classes (5) and (6) of the Ho
Herber classification, and even with the presence of closed loops. This is achieved
without alteration of the formulation and without any additional constraints
since hinge conditions are accounted for in a straightforward manner using the
spatial Galerkin finite element discretization of the equations of motion. In Simo
& Vu-Quoc [1985], we presented several examples that involve flexible chains
undergoing large overall motions. Further, owing to the full nonlinearity of our
formulation, should the chain be made more flexible, large deformations in these
links would be obtained. Also, no limitation on the speed of evolution of the sys
tem is imposed. We shall illustrate this feature by an example of a flexible
closed-loop chain subjected to large overall motions and undergoing large defor
mation.

Although the proposed methodology is applicable to a large class of struc
tural elements, — rods, plates, shells, 3-D continua — we shall limit our

t That is a set of (n+1) bodies interconnected by n points, each of which is common to
two bodies. The tree topology thus implies the absence of closed loops.
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discussion to the case of a flexible satellites composed of beam elements. An out
line of the paper is as follows. In Section 2, we summarize the fully nonlinear
theory of rod formulated in Simo [1985], and introduce some notation that will be
extensively used in the paper. In section 3 attention is focussed on the dynamics
of flexible satellites: the decomposition of the deformation map into the far field
and the near field, the concept of rotationally-fixed floating frame, and loading
conditions of particular interest in satellite application. Computational pro
cedures to treat the coupled far-field/near-field dynamics are addressed in Section
4. Finally, numerical examples are given in Section 5.

2. A finite-strain rod model: Summary and notation

Kinematic description. (See Figure 3.1)

Figure 2.1. Kinematic description of the rod. Material frame {Ev E2, E3}
and cross-section frame {ev e2, e3}.

Consider a (fixed) material orthonormal reference frame {0;EV E2, E3}, with base
point O€ R3 and associated Cartesian coordinate system (Xly -X"2, S). A beam of
length L and cross section OCR2 occupies the domain B := ftx[0, L] C R3 in
its undeformed (reference) configuration. For simplicity, we assume that the
beam is prismatic, initially straight, such that the point O is the centroid of the
cross section at 5=0; (E^ E2) coincide with the principal axes of inertia of the
cross section. Let {0;eh e^, e3} denote the inertial frame such that
ek 5 Ek , for £=1,2,3. Consider the deformation map 0:£-+R3 which maps a
point X€ B with coordinates (Xv X2, S) into a point a?= #(X) € R3. Let X0
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denote a material point on the undeformed centroidal line with coordinates
(0, 0, 5) and x0 its image by <j>.

Let {tj(£,*)}{!„! 2)3} represent the orthonormal basis vector of a moving
frame attached to a typical cross section with t £ R+ being a time parameter.
The origin of the moving frame is fixed at the centroid x0 of the cross-section.
The basis vector t3 remains normal to the section at all times. Further, initially
at t = 0, let tj(5,0) = Ej for I = 1,2,3. The basic kinematic assumption is based
on the following relation for the position vector of x, denoted by x,

x = x, + Xx tit (2.1a)

with x9 denotes the position vector of point x0. Let us introduce the map
^:[0, L]-»R3 and the orthogonal transformation map A:R3-*R3 with the follow
ing definition. A material frame {X0;Eh E2, E3} is mapped into the frame
{*(,;ti, t2, t3} such that

x. := USA - USA «., (2.1b)

%&SA = MSA Ei = Ai/LSA e,', (/- 1,2,3) , (2.1c)

where Aty are components of A viewed as a two-point tensor

A(SA = HSA e,- 0 B/. (2.1d)

Accordingly, any possible configurations of the rod is defined by a map
S£[0, L] -*• f(S) := (+0(S), A(S)). Before summarizing the formulation of our rod
model, we introduce some notation that will be extensively used in what follows.

Notation. Recall that physically, each orthogonal transformation A defines
a finite rotation about the eigenvector $ associated the only real eigenvalue 1 :
A 0 = 0 — the trivial case where A = 13, the identity, is excluded. The magni
tude of the rotation angle is ||0||. A can be parametrized either in terms of Euler
angles or in terms of quaternion parameters. In what follows, we shall often use
the notation 1* := Diag[l,...,l] to denote the unit matrix in R*x*.

A skew-symmetric matrix has either a single eigenvalue equal to zero or all
three eigenvalues each equal to zero. Eliminating the trivial case where all three
eigenvalues are zero (the zero rotation), physically any skew-symmetric matrix 0
represents an infinitesimal rotation about the eigenvector § € R3 associated with
the only zero eigenvalue such that 0 0 = 0. In coordinates, relative to a basis
{e,} in R3, we have 9 = 0,y e,® e; and 9 = 0,- e, such that

p«i -

0

h
-ft.

h H h

0 -03 • W = 02

ex o .H.

t Summation convention on repeated indices is implied.

(2.2)
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Further, in relation with the cross product, we recall that 0 h = 0 X h, for any
h e R3. We shall often use the notation [9 X|sJ where 06 R3 is called the
axial vector of the skew-symmetric matrix 0.

Finally, infinitesimal rotations are linearized finite rotations about the iden
tity. We recall that given A orthogonal, there exists a skew-symmetric matrix 0
such that A= exp[ S]. One has the following explicit formula (e.g., Argyris
[1082])

«PM 1.+ m *+2 OT/2)2 (2.3)

which, in vector form, is often credited to Rodrigues (Goldstein [1980], p. 165).

Partial differential equations of motion. The local form of the equa
tions governing the dynamics of our rod model is summarized in BOX 1 below

BOX 1. Partial differential equations of motion.

-^M =i(SA MSA, ?MM =w(s,t) MSA

r=Ar£*a.-E3)
as

n = Ar U

^ . dtfts, r, n)
dr

m
_ a dii>(s, r, n)
~A da

dn . _
S +«-^«ds

j>T-0

dm. &Yo —. . • r* i

The function ip(S, r, ft) corresponds to the constitutive law relating the strain
measures r and ft to the internal forces n and m. We often assume in practice

^p,o)-i{5).o{5), (2.4)

with

C := Diag[GAh GA2, EA, EIh EI2, GJ\ , (2.5)

where GAX and GA2 denote respectively the shear stiffness along tj and t2, EA
the axial stiffness, EIX and EI2 the principal bending stiffness relative to axes tj
and t2, respectively, in Box 1, Ap := fp0 dfl, is the mass per unit length of the

o

beam, where p0 denotes the mass density. Let IL = I ijE|0 Ej be the inertia
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dyadic (constant with respect to time) of the cross section in the reference
configuration given by

H,(S) := M5) Vafi h ~E«® Bjl , Mfl := / USi Xa Xfi At (2.6)
0(5)

Further, introduce the time dependent spatial tensor Ip = lo^ea0 e^ such that
i,(5,o - MSA *JLS) at(sa-

3. Dynamics of flexible satellites

Mathematically, the system of partial differential equations summarized in
Box 1 completely describes the dynamics of a flexible satellite constituted of
beam elements. However, from the computational standpoint, such formulation
becomes numerically ill-conditioned when the dynamics is referred directly to the
inertial frame. The reason of this ill-conditioning becomes clear when comparing
the magnitude of structural deformations with the distance from the satellite to
the center of the earth. Owing to the property of invariance with respect to
superposed rigid body motion of the proposed rod model, we can refer the
dynamics of the satellite to a parallel translate of the inertial frame, which
describes properly the structural deformation when its origin is placed in the
neighborhood of the satellite.

3.1. Rotationally-fixed floating frame

We introduce the frame {Z;al5 s^, a3}, as shown in Figure 3.1, with base
point Z 6 R3 whose position relative to origin O of the inertial frame is given by
the position vector

Z(t) = Z,{t) e,-, (3.1)

and such that the orthonormal basis vectors {a,} have constant components rela
tive to the inertial basis {e,}. This frame is thus rotationally-fixed with respect
to the inertial frame, and will be henceforth referred to as the rotationally-fixed
floating frame. For convenience, we choose a* s e* =2 E*, which makes
{Z;eh e2, e3} to be simply a parallel translate of the inertial frame {0;e1? e2, e3}.
Let #f:[0, L]-*HZ denote the deformation map of the line of centroids of the
beam relative to this frame. The position vector xd in (2.1b) can now be restated
in terms of ^f as

x, - usa=z(o+*?(s,t) = \m+*um «.• (3-2)

f Subscripts in greek letters take values in {1,2}, while subscripts in roman letters take
values in {1,2,3}.
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•••£«•&«

&*"&* i

&fft»

Figure 3.1. Rotationally-fixed floating frame: parallel translate of inertial
frame.

Note that the relation (2.1c) for the rotation field remains unchanged for the
rotationally-fixed floating frame. We shall refer to the map t-+Z(t) as the far-
field dynamics which will be used later to describe the position of the satellite
relative to the inertial frame. By the dynamics of the near field, we refer to the
map t-*+z0(S,t) which describes the structural deformation.

3.2. Loading conditions and far-field dynamics

Loading conditions. Three types of loading are considered. The simplest
loading is the spatially fixed type with (possibly time varying) components rela
tive to the inertial basis vectors given by n'(f) = nf(0 et*. Most relevant to flexi
ble satellites is loading which is dependent on the deformation of the structures,
such as actuator control force — coming, for example, from gaz jets or ion thrus-
ters — used for the pointing maneuver and vibration suppression. The actuator
control force considered herein falls into the category of follower loading of the
circulatory type — that is, loading which is not derivable from a potential and
not explicitly dependent on time — defined as follows

ff*(f) := Nftt) trf*). (3.3a)

The applied load in (3.3a) thus follows the change in orientation of the cross sec
tion, represented by the basis {tj}, and may have time varying magnitude. By
virtue of (2.1c), relation (3.3a) can be rewritten as

n^A) = A,-/ Nf e,-, (3.3b)

thus explicating the dependence of the actuator loading on the configuration.
Finally, gravity loading derived from spherical potential applied to a material
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point of mass Ap located at a distance +0 from the source, here the origin 0, of
the form

•VJ —4r£" CM
I*

|3
ol

is also configuration dependent. In (3.4), p denotes the gravitational constant.
For the rod model, using (3.4) implies the reasonable assumption that the mass of
the rod is concentrated on the line of centroids. Although more complex models
of the gravitation field could be considered, our purpose here is to show how the
formulation could accommodate configuration dependent loading. For this rea
son, within the scope of this paper, we shall consider only the following type of
loading

n^n'+n^ + n^,) (3.5)

Far-field dynamics. To determine the far field dynamics t -*> Z(l), we
shall employ the following equation which defines the motion of the center of
mass of the satellite,

2(*) = f(Z. A) := •££• +± / W+SXA)]dS, (3.6a)
l|Z|l2 M(o,l|

where p is the unit vector defined as p := "jr^r, and M the total mass of the

satellite,

M:= J AAS) dS (3.6b)
Ml

The first term on the right-hand side of (3.6a) gives the acceleration due to the
gravitational field, whereas the second term represents the acceleration produced
by the spatially fixed and actuator follower forces applied on the satellite.

3.3. Near-field dynamics and weak formulation

Near-field dynamics. In treating the dynamics of the near field one can
always assume that the far field t —• Z(t) is known. The equations of motion for
the near field are in fact valid for any known function Z(t). Noting that
d+ d<j>z0
-—-£• s ~-J- and using the decomposition (3.2), i.e., +0(S,t) = Z(t) H- ^f(S,f), we
dS OS

obtain

j±+[iit+i?(A) +5>(Z,*2)-A,Z\=Ap%
dm. ®90 _ • • r* i-q<? + -0£- Xn + m= I,w + w X [I,w]
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The strain measure r is now evaluated by

as
-e3 (3.7b)

It is noted that equations concerning the dynamics of the rotation field of the rod
and its curvature in BOX 1 remain identically the same in above formulation.

In all applications of interest, the origin Z of the rotationally-fixed floating
frame, with position vector Z(t)t is located in a small neighborhood of the center

lufii
PI „

conditioning of the gravitational force field n*(Z, ^j), one employs the following
standard Taylor series expansion that retains terms up to order 0(e2)

of mass. For this situation we have € := « 1. To avoid numerical ill-

B»(Z, +*> - - A, It
ll*?+Z||! IIZII3

l|Z||2
1-

l|Z||

II*fll2
l|Z||! ♦*

1-
3p«#

l|Z||

(Z » tff

IIZII4
+ 0(£3). (3.8)

Remark 3.1. It should be noted that the far-field dynamics and the near-
field dynamics are coupled through the presence of follower actuator force n%A),
dependent on the rotation field A of the rod, in equation (3.6) and the presence of
the forcing term Ap Zas well as the gravity force n*(Z, $% which depends on
the far field Z(t)t in equation (3.7). Q

Dynamic weak-form of the near field. The weak formulation (virtual
work statement) of the local equations (3.7) governing the dynamics of the near
field is the corner stone of the finite element numerical solution procedure dis
cussed in the next section. Consider a configuration of the satellite defined by
US, 0 = Z(0 + *?($ t) and A(S, t). We shall denote by S-+ q(S)
:= (tf0(5), i*(S)) an admissible variation of the configuration ^ := (^f, A). Phy
sically, S -+ q0(S) represents a superposed infinitesimal displacement field, and
S —• ffr(S) a superposed infinitesimal rotation field onto the satellite. By multiply
ing (3.7) by q(S) and integrating over [0, L] we obtain, after integration by parts,
the following dynamic weak form

GdVu(+,l)-= I H?f-if. + [I,w + wX(I,w)].^}rf5-C?(^i|)(3.9a)

Here, G(4, q) denotes the static weak form of equilibrium given by

dS dS as
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where Geg£4, 9) is the weak form of the externally applied loading; that is

G.J(#.?):- /{[nMU^AM^^ +S'^. (3.10)

It is noted that in £3.10), the far field Z(t) is assumed to be known, and the
acceleration term ApZ is regarded as an additional forcing term.

4. Computational solution strategy

In this section, we shall state the coupled problem to be solved and discuss
in detail the numerical integration procedure. The proposed treatment relies on
an essential property of our formulation: The motion of the rotationally-fixed
floating frame relative to the satellite (the map t -* Z(t)), in strict mathematical
consideration, has absolutely no influence on the mechanical behavior of the
satellite (the deformation map t -+ 4f(5,t)). Its role in the formulation can be
thought of simply as a "zooming device," and serves the sole practical purpose of
avoiding numerical ill-conditioning resulting from the large difference in magni
tude between the structural deformation and the distance from the satellite to

the center of the earth. This ill-conditioning of course arises only when gravita
tional force is taken into account in the formulation.

Conceptually, the coupled problem to be solved may be stated as

FindZ(t), #|(5, t), andA(S, *) such that:
Z=f(Z,A), and

Gdyn(+> *) = °> for anV n admissible,

where # := (#0, A), and #0 = Z + #f. The single-step solution procedure can
be summarized as follows:

Assume that at time t= tw the solution is known, i.e., we have solvedfor
{Z(Q, #f(5,y, A(S,tn)}. Find the solution at time tn+1 = tn + h denoted
by {Z(tn+l), #f(S,ftt+1), A{S,tn+l)}, where h represents the time step size,
based only on the known solution at time tn.

We propose a single-step explicit/implicit transient algorithm to solve the above
coupled far-field/near-field satellite dynamics problem. Consider the time inter
val of interest [0, J] to be discretized into subintervals such that
[0, 1\ = U [*», tn+l], where tn+l := tn + h, and h is the time-step size. The fol-

n>0

lowing steps are performed over the interval [fn, tn+l]:

(i) Solve the initial value problem Z = j(Z, A), with initial condition
Z(tn) = Zn, by assuming that A remains unchanged within this time interval,
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i.e., A(S,t)^MS, /J, for t£ [tn, tn+1\. The numerical integration is per
formed by an explicit integration method,

(ii) Solve the nonlinear structural dynamic problem G^Jd, j|) = 0 by a general
ized Newmark implicit time-stepping algorithm and the spatial Galerkin
finite element method. This discretization procedure results in a system of
nonlinear algebraic equations that can be solved by Newton's method.

We shall first discuss in Section 4.1 the temporal discretization in steps (i)
and (ii), followed by the spatial Galerkin finite element discretization of the weak
form for the near-field in Section 4.2.

4.1. Temporal discretization

In line with standard usage, we employ the subscript n to denote the tem
poral discrete approximate of a time-varying quantity at time tn; thus for the far
field ZB = Z(y, for the near field dB(5) = **(S,tn), vft(S) = #(S,U,
*n{S) = ff{S,tn), and for the rotation field An(S) = A(S,tn), wB(S)=w(S,y,
an(S) = w(5,fn). Also denote the configuration at time ta as 4n(S)
:= (d„(S), A„(S)).

Far-field dynamics: Explicit scheme. The ordinary differential equation
(ODE) describing the motion of the center of mass of the satellite given in (3.8) is
easily solved by employing any of the classical explicit single-step algorithms for
ODE's (e.g., Gear [1971]) if the function f(Z, A) is explicitly known. However,
the dynamics of the rotation field t -* A(S,t) for t > tn is not known until we
have solved the equations of motion (3.7). Hence, to solve for Zn+1, with known
solution {Zn, An(S)}, we assume that A(S,t) = An(S), for all time t in the interval
[ttt, tn+l]. In the implementation, we employ the explicit Runge-Kutta 4th order
method.

Remark 4.1. A wide choice of numerical algorithms for ODE's — explicit
or implicit, single-step or multi-step — could be used to solve for the far field
with the above assumption. In general, due to structural vibration, the time step
size of the whole numerical integration scheme is rather governed by the near-
field dynamics. •

Remark 4.2. Numerical integration of the far-field dynamics is only neces
sary when external forces from other than the (spherical) gravitational field are
applied on the satellite. In the absence of these applied forces, one can use well-
known analytical solutions in orbital mechanics (the two-body problem) to obtain
directly the solution for the far field Z(t). Q

Remark 4.3. Because of the assumption that follower load remains con
stant in the interval [tn, tn+l] for the integration of the far-field, the origin Z of
the rotationally-fixed floating frame will not exactly follow the path of the center
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of mass of the satellite, and could gradually drift away from the latter. We note
that the assumption of piecewise constant applied follower loading used in the
integration of the far field is closely related to the rectangular integration rule.
This assumption can be viewed as a convenient interpolation of the follower
actuator load; the role of this interpolation is to allow a decoupling in the numer
ical treatment of the coupled far field/near field problem. However, first due to
the small time step size to accommodate structural vibration, the drift of origin Z
from the center of mass would be insignificant. Second, since one could always
arbitrarily reposition the floating frame relative to the satellite as will be shown
later, the drift of Z from the center of mass is therefore inconsequential as far as
the structural response of the satellite is concerned. Q

Near-field dynamics: Implicit scheme. The basic problem concerning
the discrete time-stepping algorithm for the near field may be formulated as fol
lows. With Zn+1 known from solving the far-field dynamics as described above,
and given the configuration $n := (dn, An) at time tn, its associated linear and
angular velocities, (vn, wn), and linear and angular accelerations (an, an), obtain
the configuration #n+1 := (dn+1, An+1) at time ttt+l, the associated linear and
angular velocities (vn+1, wn+1), and the linear and angular acceleration
(an+1, an+l), in a manner that is (a) consistent and (b) stable f with the dynamic
weak form Gdyn(+, j).

To this end, we proposed the generalized implicit Newmark algorithm sum
marized in Box 2 below. Note that the algorithm for the translational part of the
configuration, that is (S, t) —• #f(5, t) £R3, is the classical Newmark algorithm of
nonlinear elastodynamics (see, e.g., Belytschko & Hughes [1083]). The proposed
algorithm for the rotational part (5, t) —• A(S, t) G SO{S), in its material version,
furnishes the canonical extension of the Newmark formulas to the group of
orthogonal matrices describing the rotation field of the rod. In Box 2, /? and r are

the Newmark parameters, and correspond to the trapezoidal rule when /? = —

and r = •—. Detailed discussion of the above algorithm is lengthy and falls out

of the scope of the present paper. We refer to Simo & Vu-Quoc [1086a] for a
geometric interpretation, the error analysis as well as the incremental form of this
algorithm.

Remark 4.4. The accuracy of the implicit integration scheme for the near
field is independent from the accuracy of the integration scheme for the far field

f The notion of stability corresponds essentially to well-posedness of the semi-discrete
problem. In the nonlinear case the appropriate concept of stability-remains unsettled,
and several notions of stability have been proposed (A-stability, spectral stability, stabili
ty in the energy sense, stiffly-stable methods, etc...). See, e.g., Hughes [1976], or Be
lytschko & Hughes [1983].
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BOX 2. Generalized implicit Newmark algorithm

Momentum Balance at f^i

Gdytl+trti* «l) =• 0 f for all q admissible

Translation Rotation

&TH-1 ;s= <*» + u» A.h-1 := An exp[ A^„kn ]
utt:= hVn+l? l(j-0)*n + P*»+l] J.:-AJ.+ tf|±-0i.+i*J,«]

v»+i :=v„+&[(l-r)afl+raj w.,+1 := wB + h[(1 •- r)in+r i^J

in the sense that we shall always obtain the structural displacement and rotation
fields of the rod up to second order accuracy (see the analysis in Simo & Vu-Quoc
[1986a]) regardless of the choice of integration scheme for the far field. •

We shall now proceed to the spatial discretization procedure of

4.2. Linearization and spatial discretization

We recall that as a result of introducing the generalized Newmark time step
ping algorithm outlined above, the weak form Gdyn(+n+l, q) = 0 governing the
dynamics of near field becomes a nonlinear functional depending on
4n+i{S) •= (d„+i(S), An+1(5)). In what follows, we shall be concerned with the
spatial discretization of this nonlinear functional by a Galerkin procedure. First,
we provide some detail concerning the linearization of the loading term involving
the gravity load.

Tangent gravity load stiffness operator. The solution of the nonlinear
variational problem Gdyn(jn+l, q) = 0 by Newton's method — step (ii) of the
solution strategy outlined above — involves the solution of a sequence of linear
ized problems, denoted by L[ G(4§+lt q) ] = 0 where the superscript (t) desig
nates the iteration number. These linear problems are obtained by consistent
linearization of Gdyn($, q) = 0, at the current configuration S-• 4$+i(S)
:= (d&i(5), A$.!(5)), in the direction of an incremental field S-* A+$+l(S)
:= (AuS&xfS), A0J2.i(5)) according to the directional derivative formula

H <V*(«U 1) 1:= <V*(»U t) + de
<V(*&i +<a*&„ n) =(a-i)

e—0

A detailed account of the linearization process for the static weak form
G(j$+l, q) defined in (3.9b) that includes consideration of follower loading is
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contained in Simo & Vu-Quoc [1985b]. Extension of this methodology to the
dynamic problem governed by Givn{4^\, 9) in (3.9a) is given in Simo &Vu-
Quoc [1086a]. Thus, within the present context, it only remains to address the
linearization of the contribution to GegJ(4>nlv 9) defined by (3.10) of the gravity
force field. This contribution will be denoted by G*9A$n+v 9) m wnat follows.
By making use of the Taylor series expansion (3.8) in (3.10), use of the directional
derivative formula yields the expression

GU#fti+€A#fti. 9) = " / 13<-o [o,i| ||Z„+1 •I1—exH P»+I • P*+I
A M« Ax *P»H**ftOP-. •-». +[! p^if-l Anil, dS (4.2)

Note that the above tangent gravity load stiffness operator is non-symmetric and
involves only the translational degrees of freedom. This result will be used in the
computation of the load stiffness matrix upon introducing the spatial discretiza
tion.

Spatial discretization: Galerkin finite element method. We begin by
introducing a partition of the interval [0, L] into non-overlapping subintervals

N-l

according to [0, L] = U [«%, Sk+l], where 0 s St < S2 < • • • < SN s L.
jfc=i

Consider the following approximation for the translational field

d»+i(5) = £ NM d»+i,l, where dtt+u := dfl+1(^) . (4.3a)
1-1

Here, N^S) is a set of global functions which are either prescribed or constructed
from local finite element approximations in the standard manner. An interpola
tion for the rotation field S —• An+1(«S) is constructed by noting that
&n+i(S) = exp [Xn+i(3)]> where x(5) is the skew-symmetric matrix associated
with the rotation vector x- We then consider the approximation for the rotation
field

N

Xn+i(S) = E Ni(S) X»+i,i, where x»+i,i := X»+i(<Si),

and Att+1(S) S exp [Xft+1(5)] . <43b)
Note that the approximation scheme for the rotation field preserves exactly the
orthogonality property of A. By substitution of the interpolation in (4.3a-b) into
the the weak form £<fo,i(^n+i> 9) = 0> an(* assuming that the incremental dis
placement field A^|| := (Au^, A0$.j) and the admissible variations
q := (q0J fp) are approximated in the same manner according to
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A#&i(S) = E *i(S) A^0+1 with A^tUi = ±+&i(Si) , (4.3c)
Io»l

9(5) = E WS) m with in = 9(^), (4.3d)
I-i

after application of standard results in variational calculus, we arrive at a system
of nonlinear algebraic equations, for the unknown 4$.i> whose linearized form is
given by

PlWfti) + E Kij(A,p *£U) A#&i,j - O , (4.4a)
J-i

for I=1,...,JV. In (4.4a), Pj represents the residual force, and Kw the dynamic
tangent stiffness matrix obtained from

+ LfMAfJi,) + LfMZ„+1) d&,). (4.4b)

Expressions for the tangent inertia matrix Mjj, the material tangent stiffness
matrix Sjj, the tangent geometric stiffness matrix Gjj, and the tangent follower
load stiffness Lfj have been obtained in Simo & Vu-Quoc [1086a-b], and are sum
marized in the Appendix. The expression for the tangent gravity load stiffness
results from the introduction of the approximations (4.3a,c) into (4.2),

5p»+t*<j{:Us)i
'n+ll

L6(za+1, diy =- / ^A£-
[o,iiiiz»+iir I1—li^TTii—!*•«•*•«

Pn+l <» •WiW + ji ||z ••l|Z„+i|| "" " "" ' I ||Z.+1I

The incremental displacement and rotation A^$.j can be obtained easily by solv
ing (4.4a). The update procedure to obtain the solution jf£$ afc iteration (t+1)
such that the solution always remains in the configuration manifold is, however,
non-trivial; we refer to Simo & Vu-Quoc [1986a,b] for the detailed discussion.

4.3. Repositioning of the rotationally-fixed floating frame

One of the salient features of our formulation is that the rotationally-fixed
floating frame could be arbitrarily repositioned and its velocity in the inertial
frame reset at any time. Thus in case of a drift of the origin Z of the floating
frame from the center of mass, one could easily reposition the floating frame to
the center of mass by first computing the current position of the center of mass
relative to Z, denoted by r,

r(t) = 4? / AW *%SA dS (4.5a)

Nj{S) Nj(S) <a.4c)
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with velocity and acceleration relative to the floating frame given by,

*M = Tf J AJL$ ftSA dS, (4.5b)
M 10,11

i(0 = i J Ap(S) %(S,t) dS. (4.5b)

Only when ||Z|| and ||r|| are of comparable magnitude, so that loss of precision on
the structural deformation may occur due to round-off error, repositioning pro
cedure need be performed. In this case, if we wish to reposition the floating
frame at time t = T, we simply restart the integration of the far-field dynamics
with initial conditions reset as follows:

z(tj - [z(ij + t(T) ]
z(T)~[Z(1) +m (46a)

Also the near-field dynamics is reset according to

m -1 m - *<3 ]

It is clear that the above repositioning procedure leaves strictly unchanged the
value at time Fof j0(T) = Z(lj + ^f(*J, and hence the values of the velocity +JJ),
and acceleration fjjj. Further, this repositioning procedure is most conveniently
employed when a single-step integration algorithm for ODE's is used to solve for
the far field.

5* Numerical examples

We shall now give some numerical examples that involve the dynamics of
flexible multibody system, the concept of rotationally-fixed frame, and the
dynamics of earth-orbiting satellite to demonstrate the effectiveness and general
ity of the proposed formulation. All figures of the deformed shapes reported
herein are given at the same scale as the geometry of the structure: There is no
artificial magnification of the structural deformation for visualization purpose.

Example 5.1. Flying closed-loop chain. To demonstrate the capability of
the present approach to model the dynamics of flexible multibody systems, we
consider a closed-loop chain constituted of 4 flexible links interconnected by
hinges as shown in Figure 5.1a. It is emphasized that this problem can be
treated as a direct application of the proposed approach to the dynamics of flexi
ble beams interconnected by hinges without alteration in the formulation. This
is possible since the hinge conditions can be easily accounted for in the finite ele
ment formulation by simply identifying the displacement degrees of freedom of
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the hinged ends, leaving free the rotational degrees of freedom. One of the links
is 500 times stiffer than the other three: Link AB in Figure 5.1a has a bending
stiffness of EI= 105, while the remaining links have a bending stiffness of
EI= 200. The other material properties are chosen to be identical for the four
links, and are listed in Figure 5.1a. Initially, the closed-loop chain forms a square
of length 10 for each side. The whole system has no prescribed displacement
boundary condition. To create a forward motion, a force is applied at end A of
the stiff link AB; the overall tumbling motion of the chain is induced by a torque
applied at the same end as shown together with the time history of their magni
tude in Figure 5.1a. Figure 5.16 depicts the entire sequence of motion with three
close-ups given in Figures S.lc-e. A time step size of h = 0.1 is used throughout
the analysis.

Example 5.2. Flying flexible beam in 3-D motion. We consider a free-free
flexible beam initially placed at an inclined position and subject to applied force
and torques at the lower free end as shown in Figure 5.2a. This example has
been previously analyzed in Simo & Vu-Quoc [1086b] using the time-stepping
algorithm partly summarized in Box 2, together with the Galerkin finite element
method to solve the system of PDE's given in Box 1. Our purpose here is to
show how the concept of decomposition of the deformation map into the far field
and the near field could be employed in a simple manner. The overall transla
tional motion of the beam results from the applied force along the axis e1?
whereas the forward tumbling motion results from the torque about axis e3, and
the out-of-plane motion from the applied torque about axis e2. These applied
force and torque, of the spatially fixed type mentioned earlier, induce the free-free
beam into a "kayak-rowing" motion with the early tumbling stage depicted in
Figure 5.26. In this Figure, finite deformation is clearly discernible. The entire
sequence of motion as projected onto the plane (et, e^) is given in Figure 5.2c;
the projection onto the plane (e^, e3) in Figure 5.2a*. Figure 5.2c shows the com
plete sequence of motion in perspective together with the trace of the upper end.

Since gravitational field is not considered in this example, and since only
spatially fixed load is applied on the beam, the dynamics of the far field and the
dynamics of the near field are completely decoupled:

Z=±fsf(S)dS, (5.1)
M(o,i|

2± +l*-AJ]-A#. (5.2)

Substitution of (5.1) into (5.2) yields the equation of motion for the near field

|L +[a>-:^ fn!(S)ds\=Al)%. (5.3)



On the Dynamics of Flexible Satellites 20

Thus, in this example, one does not need to solve for the far field if only the
near-field dynamics is of prime interest. The result is shown in Figure 5.2/with a
clear physical meaning: The motion given in Figure 5.2c as perceived by an iner
tial observer is now seen by an observer, attached to the rotationally-fixed float
ing frame and moving with the center of mass. A time step size of h = 0.1 is
used in both analyses (with and without rotationally-fixed floating frame). A
justification of the time step size chosen can be found in Simo & Vu-Quoc
[1085a].

Example 5.3. Satellite dynamics: Libration and orbit transfer. Example 5.1
demonstrates how systems with flexible components connected through hinges
can be analyzed with no extra effort in accounting for the constraints that arise
in traditional approaches to multibody dynamics. While the analysis of the
closed-loop chain in Example 5.1 is performed for the plane motion, our formula
tion can accommodate fully three-dimensional motion of the beam subjected to a
possible state of finite deformation as shown in Example 5.2. The latter example
also serves to illustrate the effectiveness of the concept of rotationally-fixed float
ing frame. Both of these examples, on the other hand, do not take into account
the effect of gravitational load.

To illustrate the proposed methodology for solving the coupled far-
field/near-field problem in the presence of gravitational force, we consider in this
last example a beam of length 100>/2 completely contained in the plane {eh e^
and placed at 45* with respect to axis et. The center of mass of the beam is ini
tially located at a distance of 7X106 from the center of the earth, i.e.,
Z(0) = 7X10Jev For the center of mass to describe a circular orbit, an initial
velocity of Z = 7544.1557 e^ is chosen; the gravitational constant being
ft = 3.984X1014. We are interested in capturing the librational motion resulting
from the effect of gravity gradient of the orbiting satellite when the geometric
configuration of the latter departs from spherical symmetry. Hence, for simpli
city we choose the initial conditions for the near field to be ^f(£,0) = 4%(S,0)
= £J(5,0) = 0. For the rotation field of the beam, A(5,0) = 13,
w(S,0) = a(S,0) = 0. Let X be the (libration) angle between the beam and the

unit vector p := -r=rr known as the local vertical, see Figure 5.3a. The dynam

ics of libration of a uniform bar on circular orbit (||Z|| = constant) is governed by
the differential equation

i - 3f sinf (5.4)
2 l|Z||3

The initial conditions for (5.4) that correspond to the above chosen initial condi-

tions for the far field and the near field are given by X(0) = — and
4
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£(0) = - L{ . Figure 5.36 shows the evolution of the libration angle Xas
obtained from the proposed approach to finite deformation satellite dynamics and
from using the 4th order Runge-Kutta method to integrate (5.4); both curves are
obtained with a time step size of h = 100 which in fact covers a complete circu
lar orbit in about 60 steps — the orbital period for the above initial conditions of
the far field is 5830 sec. With a smaller time step size, for example h = 10, we
can exactly achieve the result as obtained from solving (5.4). In addition to the
second order accuracy of the algorithm summarized in Box 2 as compared to the
fourth order accuracy in the integration of (5.4), we note that the need for a
smaller step size stems from the fact that the semi-discrete equations (ODE's) of
the PDE's in Box 1 are actually much stiffer than (5.4).

Next, to demonstrate how a combination of loading given by (3.5) could be
applied on the satellite, we consider an orbit transfer from the current circular
orbit to a higher circular orbit by passing through an intermediate elliptic orbit.
This orbit transfer is achieved by activating the satellite thrusters under the form
of impulsive loading in two stages. First, when the satellite completes the first
revolution in the low circular orbit, impulse loading with resultant in the direc
tion of axis e2 is applied to induce an increase in magnitude of the velocity Z,
and thus put the satellite into a transitory elliptic orbit as depicted in Figure
5.3c. The time history of the libration angle (in degree) is given in Figure 5.34
Next, when the satellite reaches the apogee of this transitory orbit, impulsive
thruster force, with resultant in the negative direction of axis e^, is again applied
to put the satellite on a higher circular orbit with radius being the distance from
O, the center of the earth, to the apogee of the elliptic orbit. Since the satellite
tumbles on the transitory orbit, as can be seen from Figure 5.3d, an impulsive
couple is also applied at the same time to stop the tumbling and therefore subse
quently induces the satellite into a librational motion in the higher circular orbit.
The radius of the higher orbit is about 1.643X107 with an amplitude of libration
about 70° over a half librational period of about 0610sec. This result can be
easily verified using (5.4).

6. Closure

We have presented a new approach to the dynamic analysis of earth-orbiting
flexible satellites. The formulation relies essentially on the property of invariance
with respect to superposed rigid body motions of finite-strain structural theories,
leading to considerable simplification in the inertia operator of the equations of
motion whereby the dynamics is referred to the inertial frame. When gravita
tional load is considered, this property further allows an additive decomposition
of the deformation map into the far field and the near field, from which the con
cept of rotationally-fixed floating frame is introduced. An efficient integration
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procedure was then proposed to integrate the coupled far-field/near-field dynam
ics. In addition, one can account for the action of follower actuator control
forces, a type of configuration dependent loading of particular interest in satellite
dynamics. Further, the dynamics of multibody systems composed of flexible
structures interconnected through hinges constitutes a class of problems solvable
by the proposed methodology. Finally, we recall that large deformations in the
structures are automatically accounted for in the formulation, and there is abso
lutely no restriction on the speed of evolution of the systems: all physically
relevant phenomena are properly, represented.
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Appendix: Finite element matrices
We summarize in this Appendix the expressions for the tangent matrices

appeared in equations (4.4a-b).
Residual force.

Pi(*&i) = / MS)h]
Ml

+ / {H(*a,)[^s)i8]}

ik°*i«&i+wfiUxPi8*il

).(4

m<4. -WW

dS

dS, (A.la)
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where the differential operator H is defined as

!#/ xl
B(*) :=

24

d_
dS
-2-1

> «d-3c *s = ^"^I-T?. "3c. ^-lb)rfS rfS' rfS'

Tangent inertia matrix. The tangent inertia matrix has the following
structure

'•&») o
O m^A,, A<?+1)VklK, Afti) = € R8X8, (A.2a)

with

B'2»(A„ Aftj :=. / [- (A(0+1{V(Ai +W&iXH,W&i»<]

(A.2b)

m

+iAft1{I(r*PI,waiXl+falWj{tiXliy AfUlftOAKfl^aj^tA-le)

with A = Ar o, W = Arw, and the operator T denned as follows

T(D := ifil + •1/2 ri •$• , -

[o,4
where the operator T and the matrix B are defined as

— It O O
dS z

Tr:=

||*||2 ' tan(||tf||/2)

Tangent material stiffness matrix*

Su(*&i) = / «#&,) [JWd^MAftd B(^t) [iVj(5)lJ } rfS,
Ml

(A.3)

where e(#&i) := ll(A^+l) C nr(AQ.j), and 11(A) := Diag\A, A] GR6xa is a
block diagonal matrix.

Tangent geometric stiffness matrix.

GuW&i) = / (T [i^fl)lJ}r{B(#ai) T Mtf)l«l >ds

±1Is1*

1*1

n+) ~

O O [-nX]
O O [-mX]

[nX] O [n®*/ -(*•♦/ )13]

Tangent follower load stiffness.

" O AKflJiVjtSJlBKlStJx]
o oLfJ(A&!) = J

[0,1]

(A.2d)

(A.4a)

(A.4b)

(A.4c)

dS •• (A.5)
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Figure Captions
Figure 5.1a. Flying closed-loop chain. Problem data.
Figure 5.1b. Flying closed-loop chain. Entire sequence of motion.
Figure 5.1c. Flying closed-loop chain. Deformed shape at time t = 4.8.
Figure 5.1d. Flying closed-loop chain. Deformed shape at time t = 0.6.
Figure 5.1e. Flying closed-loop chain. Deformed shape at time t = 14.4.
Figure 5.2a. Flying flexible beam in 3-D motion. Problem data.
Figure 5.2b. Flyingflexible beam in 3-D motion. Early tumbling stage.
Figure 5.2c. Flying flexible beam in 3-D motion. Entire sequence of

motion projected on plane (elf 62).
Figure 5.2d. Flying flexible beam in 3-D motion. Entire sequence of

motion projected on plane (e2, e3).

Figure 5.2e. Flying flexible beam in 3-D motion. Perspective view of
entire sequence of motion from an observer fixed in the inertial frame.

Figure 5.2f. Flying flexible beam in 3-D motion. Perspective view of
entire sequence of motion, from an observer fixed in the parallel translate of
inertial frame.

Figure 6.3a. Satellite dynamics: Libration and orbit transfer.
Figure 5.3b. Satellite dynamics: Libration and orbit transfer. Evolution

of the libration angle Xon lower circular orbit.
Figure 5.3c. Satellite dynamics: Libration and orbit transfer. Transition

from lower to higher circular orbits.
Figure 5.3d. Satellite dynamics: Libration and orbit transfer. Complete

time history of the libration angle.
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Figure 5.1b. Flying closed-loop chain.
Entire sequence of motion.
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B

B

Figure 5.1e. Flying closed-loop chain.
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Figure 5.2a. Flying flexible beam in 3-D
motion. Problem data.
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Figure 5.2b. Flying flexible beam in 3-D
motion. Early tumbling stage.



t=0N /t=2

t=3.8

*3(i>

t=9 t=!1

t = 5 t=7- t=10 1=12.5

Figure 5.2c. Flying flexible beam in 3-D
motion. Entire sequence of motion projected on
plane (eb e2).



Figure 5.2d. Flying flexible beam in 3-D
motion. Entire sequence of motion projected on
plane (e2, e3).
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Figure 5.2e. Flying flexible beam in 3-D
motion. Perspective view of ^entire sequence of
motion from an observer fixed in the inertial
frame.
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Figure 5.2f. Flying flexible beam in 3-D
motion. Perspective view of entire sequence of
motion, from an observer fixed in the parallel
translate of inertial frame.



Figure 5.3a. Satellite dynamics: Libration
and orbit transfer.
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Figure 5.3b. Satellite dynamics: Libration
and orbit transfer. Evolution of the libration
angle X on lower circular orbit.
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Figure 5.3c. Satellite dynamics: Libration
and orbit transfer. Transition from lower to
higher circular orbits.
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Figure 5.3d. Satellite dynamics: Libration
and orbit transfer. Complete time history of the
libration angle.
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