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Abstract

We present an adaptive version of the computed torque method for the con
trol of manipulators with rigid links. The algorithm estimates parameters
on-line which appear in the non-linear dynamic model of the manipulator,
such as load and link mass parameters and friction parameters, and uses the
latest estimates in the computed torque servo. We present what we believe is
the lirst golbally convergent, rigorous proof of the stability of such a scheme
in its nou-I'mcar setting, as well as its asymptotic properties and conditions
for parameter convergence. We illustrate the theory with some simulation
results.
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1. Introduction

The so-called "computed torque" servo litis been suggested as a method of
using the dynamic model of a manipulator in a control law formulation [[],
[2j. Such a control formulation yields a controller which suppresses distur
bances and tracks desired trajectories uniformly in .ill configurations of the
manipulator. However, this desirable performance is contingent on two as
sumptions which have made implementations of the computed torque servo
less than ideal. First, the dynamic model of the manipulator must be com
putet! quickly enough so that discretization effects do not degrade perfor
mance relative to the continuous-time, zero-delay ideal. Second, the values
of parameters appearing in the dynamic model in the control law must match
the parameters of the actual system if the beneficial decoupling and lineariz
ing effects of the computed torque servo are to be realized.

Some recent work in formulating efficient computational algorithms for ma
nipulator dynamics, along with the increase in the performance/price ratio
of computing hardware, have caused the (irst difficulty of employing the com
puted torque servo to diminish [3], [4], [5j. The work reported here is intended



to address the second difficulty, that of imprecise knowledge of manipulator
parameters.

A manipulator dynamic model might be considered as partitioned into two
portions: a known part, in which parameters are known, and an unknown
part in which structure is known but parameters are not. For example, a typ
ical partitioning is that link inertia terms are included in the known model,
while joint friction effects and inertial effects of the load form the unknown
portion. Not only are effects such as friction and load often unknown, they
also usually change in time.

This paper presents an adaptive scheme of manipulator control which takes
full advantage of the known portion of the dynamics while estimating the
parameters appearing in the unknown portion. The overall adaptive control
system maintains the structure of the computed torque servo, but in addition
has an adaptive element. After sufficient on-line learning, the control algo
rithm decouples and linearizes the manipulator so that each joint behaves as
an independent second order system with fixed dynamics.

2. Comparison with Previous Work

We review briefly some of the literature. While not completely exhaustive,
the following papers arc representative of the "state of the art". IClliott ct al
[6] discrctizc the equations of the robot manipulators usinga simple difference
approximation for derivative. The adaptive control scheme is a variant of a
method given in Goodwin and Sin [7|, with a least square type update law.
Unfortunately the proof of stability is incomplete (even for the two link case)
.and sample time issues arc neglected. Dubowsky and DcsForges |8[ use linear
decoupled models for the links in their approach. Consequently, the under
lying theory is valid only if the non-linear terms are negligible and unknown
parameters vary slowly. Horowitz and Tomizuka [i)| use a modified version
of Landau's scheme for model reference adaptive control. The approach is
based on treating position dependent quantities in the dynamic equations as
unknown constants which then must be assumed "slowly varying". Nicosia
and Tomci [10] explicitly demonstrate the non-linear, time-varying aspects
of the dynamics, however the algorithm and .assumption needed to make the
scheme convergent (the positive definitcucss ot certain unknown matrices)
arc non-intuitive and difficult to verify. Koivo and Guo [i l] totally ignore



non-linear and time-varying aspects of the dynamics, which are assumed to
be linear. The proof of stability of the scheme holds only if the unknown
parameters are constant. We believe our method is the first globally con
vergent, non-linear adaptive control law which uses essentially well known
adaptive control theory as summarized in [12].

3. The Dynamic Model of a Manipulator

The manipulator is modelled as a set of n rigid bodies connected in a serial
chain with friction acting at the joints. The vector equation of motion of
such a device can be written in the compact form

r = M(e)e + Q(e,e), (1)

where r is the n x 1 vector of joint torques supplied by the actuators, and
0 is the n x 1 vector of joint positions. Note that these joints may be
revolutc or prismatic. The matrix, M(0), is an n x n, symmetric, positive
definite matrix sometimes called the manipulator mass matrix. The vector
Q(0,0) represents torques arising from centrifugal, Coriolis, gravity, and
friction forces.

The j-th element of (1) can. be written in the sum of products form

T> =£ rnnf^e, e) +J2 qit^(e, e), (2)

where the m3, and qj{ arc parameters which arc formed by products of such
quantities as link masses, link inertia tensor elements, lengths (e.g. locat
ing a center of mass), friction coefficients, and the gravitational acceleration
constant. The /it(0,0) and the ^,(0,0) are functions which embody the
dynamic structure of the manipulator. In this paper we assume that the
structure of these paramters and dynamic functions arc known, but the nu
merical values of some or all of the parameters m^ and q}i are unknown.
We will, however, assume that bounds on the parameter values are known,
although these bounds can be extremely loose,f This is equivalent to the

t In Tact, the only information we need to know in terms of bounds arc that
certain parameters represent moments of inertia, and hence must be positive.
However, we'll assume bounds on all parameters are known.



situation of knowing the kinematic stucture of a manipulator and having
parametric models of joint friction effects, but knowing only some, or per
haps none, of the dynamic parameters such as mass distribution of the links
and friction coefficients.

4. Use of the Dynamic Equation in the Control Law

To control the manipulator, we propose the control law

r = M(0)0* + Q(0,0), (3)

where M(0) and Q(0,0) are estimates of M(0) and Q(0,0), and

e* = ed + KvE + KpE. (4)

In (4), the servo error, E —[e1e2 ... e„] is defined as

E = ed-e, (5)

and Kv and Kp are nxn constant, diagonal gain matrices with kOJ- and kpj on
the diagonals. Equation (3) is sometimes referred to as the computed torque
method of manipulator control [l]. The desired trajectory of the manipulator
is assumed known as time functions of joint positions, velocities, and accel
erations, 0,f(£)>®«iM an<l ®<i(0- Such a trajectory may be preplanned by
several well known schemes.

The j'-th element of (3) can be written in the sum of products form

* =E *aM&> e*) +£ *i<fc<(e, 0), (e)
t-i t=i

where the mJt- and q^ arc estimates of the parameters appearing in (2).

The control law, (3), is chosen because in the favorable situation of perfect
knowledge of parameter values, and no disturbances, the j-th joint has closed
loop dynamics given by the error equation

ij + fcwie, + k^ej = 0. (7)
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Figure 1 Structure of the Controller with Adaptive Element.

Hence in this ideal situation, the kVJ- and kvt may be chosen to place closed
loop poles of each joint, and disturbance rejection will be uniform over the
entire workspace of the manipulator.

Figure 1 is a block diagram indicating the structure of the controller which
makes use or a dynamic model of the manipulator. An adaptive element
is also indicated. This adaptive element observes servo errors and adjusts
the parameters which appear in the control law (3). The remainder of this
paper is concerned with the design of this adaptive element, proof of global
stability of the design, and other related issues.

5. The Error Equation

When estimates of parameters do not match the true parameter values, the
closed loop system will not perform as indicated by (7). By equating (1) and
(3) we obtain

E + KVE + KVE = M '(0) M(0)0 + Q(0,0) (8)



where M(0) = M(0) -.uid Q(0,0) = Q(0,0) - 0(0,0), represent
ing errors in the dynami'l used in the controller arising from errors in
the parameters of the m

In a given application, v know some of the parameters mJt- and q^.
Of the Uj and Vj pciramopearing in the dynamic equation of the j-th
joint, let Tj and Sj of tl unknown, with r3- < Uj and s3- < Vj for all
j. Re-index the unknowmcters (if necessary) and note that the j-th
component of the expres the square brackets in (8) can be written

^• =^(e,0) +X;i^(^^), (9)

where

are parameter errors.

ij{ = rriji - rriji

hi ~ <tji - fa

The error equation give") relates errors in the parameter estimates
to servo errors. The dis prccccding (9) tells how to arbitrarily par
tition the dynamics into and unknown portions. This partitioning
will allow us to construcaptivc scheme which makes full use of known
parameters, and only adie estimates of the unknown parameters. For
example, we may know rtial properties of the manipulator, but not
the friction coefficients, nay know the parameters of some links but
not others, etc.

We will write the error o (8) in the form

E + K.JS : M '(0) W(0,0,0) *, (U)

where $ is an r x 1 vecttining the parameter errors for all the unique
parameters in the systeil<V(0,0,0) is an n x r matrix of functions.
For brevity, the argumdV/ l and W will be dropped in the sequel.
The number of system pjrs is

n

<£(>•,• +*;)• («)



These r system parameters, which are the mJt and the q3i either alone or in
combination, will now be called P =• [pi p2 ••• Vr\ and their estimates are
P —[pi p2 —' Pr\ >so that

$ = P-P. (13)

For uniformity, W and P can be defined so that each element of P is positive.

For the j-th joint an error equation may be written as

lj + kvjkj + kpjej = [M lW$)jy (14)

where (•)_,- means the j-th clement of the n x 1 vector, M lW$. Thus, in
general, a parameter error for any parameter in the system will give rise to
errors on the j-th joint.

In the following analysis it will be important that the product M W re
main bounded at all times. Since W is composed of bounded functions of
manipulator trajectory, W will remain bounded if the trajectory of the ma
nipulator remains bounded. The matrix M(0) will remain positive definite
and invcrtiblc if we insure that till parameters rriji remain positive. With this
as motivation, we will restrict our estimates of the parameters to lie within
bounds, such that

li-6 <pi <hi-\-8 (15)

where we know that the actual value, pit lies between /t and /it, and where 6
is positive and chosen such that M l remains bounded as long as (15) holds.
For example, if p{ is a mass parameter, /, - 6 is chosen positive so that the
estimate of this mass never becomes negative. In this way, we can insure
that JV/(0) is .always positive definite.

6. The Adaptation Algorithm

The adaptive law will compute how to change parameter estimates as a
function of a filtered servo error signal. The filtered servo error for the j-th
joint is

«iiW = («+Oj)«jWi (16)
where the a0 arc positive constants. Hence,

El=E + aE, - (17)



where a = diag(.. an). Note that for m«mipulators which are instru
mented with poid velocity sensors, the value Ei can be- computed
simply from senings and the filter need not be implemented as. such.

The ctj are chosithat transfer function

S + Qj

S + Kvj3 -j- kpj
(18)

is strictly positn3PR).t Then, by the positive real lemma [13] we are
assured of the ex>f the positive definite matrices Pj and Qj such that

where the matri^, and C3 are the matrices of a minimal state space
realization of thl error equation of the j-th joint

i/^AjXj + BAti lW*),
eij —Cjxji

Twhere the state ?x3- = [e3 e3\

The filtered crrdon of the entire system in state space form is given
by

X-AX + BM lWS>

E^CX, (2l)
where A, /J, andll block diagonal (with /!.,, BJt and Cj on the diago
nals, respective!^ = \xv x* ... xn\ . Forming the 2n x 'In matrices
P - dituj(Pl Pi and Q -. di<uj(Ql Q2 ... Qn) we have that P > 0,
Q > 0, and

ATP + PA = -Q , x

w =c, (22)

We now use Lyaieory to derive an adaptation law [14]. The function

i(X,*) = XTPX + <f>Tr-l$ (23)

f A rational SPRi, T(s)> is one which is analytic in the closed right
half plane and t{jcj)) > 0 Vw.



with T = diag(~ti 72 ... 7r) and 7,- > 0 is non-negative in both servo and
parameter errors. Differentiation with respect to time leads to

•wpr,*) =-xtqx +2$t (w^jfir-1^ +r-1*). (24)
If we choose

£ = -TWTM lEu (25)
we have

v{X^)=z-XTQX (26)

which is non-positive because Q is positive definite. Since $ = P — P, we

have $ = —P, and from (25) we have the adaptation law

P = TWTM 'E^ (27)

Equations (23) and (26) imply that X and $ arc bounded. The basic update
law is given by (27), however, in order to restrict the parameter estimates to
lie within the bounds given in (15), we augment the update law for parameter
Pi with the reset conditions

fp,(i')=*,-, ifft(0 <(,-*; ,„*
\ft('')=A<. if Mt) >ht+S; [™>

Thus if an estimate moves outside its known bound by an amount £, it is
reset to its bound. This parameter reselling causes a step change in <f> in
(21). This cannot cause an instantaneous change in X and so we can write
the value of the Lyapunov function before and after the reset of p, to its
lower bound at time I, as

v&) -^xtpx +J2 -+1 +-(Pi - ti+sy
... Tf*'

Therefore the change in v due to the resetting of pt at time t3 is

6, =v(tj )- „(<,) =-(2(p,. - M- *)(f) (30)
IX

(29)



where e, is negative with magnitude lower bounded by —. Similarly, if
resetting p, to its upper bound at time t3 we have

«i =»('/)-*to) =(a(ft-M-*)(£) ' (3i)
where e3- is negative with magnitude lower bounded by —. Hence the addition
of parameter resetting maintains the non-positiveness of v(X, $) and hence
the system is stable in the sense of Lyapunov with X and <& bounded.

Since X, $, M \ and W are bounded, we see from (21) that X is bounded
as well. Thus, X is uniformly continuous, and so is v(X, $). From (23) and
(26) we have

Iiinv(X, *) = «• (32)
t •OO

exists, with

ti' - v(X{)1 *„) = f°° v(Xy 4)dt +£ €, (33)
^ ii

where q parameter rcsettings take place. Since the left hand side is known
to be finite, and both terms on the right hand side have the same sign, wc
know that each term on the*right hand side must be finite. Hence at most a
finite number,. </, of parameter resets take place.

We know [I5| that since v(X, <t>) is non-positive, uniformly continuous, find
has a finite integral that

Urn v{X,*)~0, (34)
t >oo

and thus
lim E = 0

(35)
lim £7=0.
t- »oo

Hence the adaptive scheme is stable (in the sense that all signals remain
bounded) and trajectory tracking errors, E aud E converge to zero. As
concerns convergence of the parameter errors, note that if the trajectory is
not persistently exciting wc can say only

lim
t >oo

H$ =v/u\ , (36)



Note that 0, the actual acceleration of the manipulator, appears in the adap
tation law of any parameter representing an inertia. Manipulators do not
usually have acceleration sensors. However, the integrating action of the pa
rameter update law reduces the necessity for good acceleration information.

7« Parameter Error Convergence

In the absence of parameter resetting, wc may write the equations describing
the complete system (i.e. (21) and (25)) as

X A BM lW

-TWTM'lC 0

X
(37)

Several researchers have studied the asymptotic stability of (37). In [16] and
[17] it is shown that (37) is uniformly asymptotically stable (u.a.s.) iif the
earlier SPIl condition is met and if M lW satisfies the persistent excitation
condition

<*T< f \m lW)T{M lW)dt<pI (38)
J H

for all s, where a, /?, and p are all positive. Further, since M l is uniformly
positive definite and bounded, it can be shown that (38) will be satisfied if

al <<-f.
n i $»

WTWdt < 0[ (39)

is satisfied. In the proceeding section we determined that there will be at
most a finite number of parameter resets when a parameter estimate moves
outside its bounds. Hence, after a finite amount of time, the system will be
described by (37) and hence, condition (39) is the condition to meet in order
to insure that parameter estimate .errors converge to zero.

Finally, since we have shown (independent of pcrsisitcnt excitation) that
the servo error converges to zero under this control scheme, the persistent
excitation condition of (39) will be met if the desired trajectory satisfies

otl

a+p

-I. WjW,,dt < 0[. (40)

Where Wd is the W function evaluated along the desired rather than the
actual trajectory of the manipulator. Hence we have derived a condition



on the desired trajectory such that all parameters will be identified after a
sufficient learning interval.

8. Simulation Results

A simple two degree of freedom manipulator (as shown in figure 2) was
simulated to test the adaptive algorithm. The manipulator was modelled
as two rigid links (of lengths llt l2) with point masses at the distal ends of
the links (m,, m2).. It moves is a vertical plane with gravity acting. Both
viscous (v, coefficients) and Coulomb friction (A;t coefficients) are simulated
at the joints. Such a manipulator, although quite simple, is subject to joint
torques due to incrtial, centrifugal, Coriolis, gravity, and frictional effects.

1
^•^ **4 *4 *4 **.

******4 *4 **4
********4 **4
***********4
********4 **4
********4 **4
***********4
********4 **4
********4 **4
***********4
***********4
***********4
************
***********i
********* **4
***********i

*********4 -^^^Mi^^^^^^^^^^^^^^^^^^^^^^^^B X «••]
***********i • ••••••••••••••••••••••••••••• * ^^
***********4
***********4S^^^HI***********i
***********4
***********4
***********4
***********4
***********4
************
************

^^^^^^|
Figure 2 Two link manipulator used in simulations.



The equations of motion for this device are [2]:

rL = moij^i -f- 02) + m2liUc2(2b{ + 02) + (m, + m>i)l2lOl - rn2lil2s20\

—2m2/i/2s20102 + rn2l2gSi2 + (mt 4- m2)li_g$i + ViPi 4- kiSgn(0i)

T2 = m2lil2C20i + m2lil2S2B\ "T" W^/jf/a^ "T" fM2/2(^l ~l" ^2) "T" ^2^2

+ k2sgn(02)
(41)

Where cx =- cos{Q^), s12 = ffin(0i + 02), etc. These equations are in the
sum of products form of (2), with uY = 3, vx = 6, u2 = 2, and u2 = 4.
Wc assumed that the values of the link lengths, /, and U, and the value of
the gravitational constant, g, arc known. Even these parameters could be
unknown, but in most realistic situations they are known quite well. Since
the /, and g do not appear as independent parameters, wc have r3- = u3 and
Sj = v3 in (9). Writing the system's error equation in the form given in (11)
results in a total of 6 system parameters (r —6 in (12)). The parameters
are:

and the W matrix is:

W =

Pi = mi

p2 - m2

Pz - A;i

Pa = Vi

Pb = k2

Pa = *>2

wn wl2 ™13 wu 0 0

0 w22 0 0 W2r0 w2t}

(42)

(43)



where:

wn --lldi + ligsi
wia =W + ll +2lil2c2)Si + (fj + lil2c2)02

+ l\Q8i + la<7*12 —^1^52^2 ~ ^ * lil2S20id2
wlz =sgn(9i)

wu =$i

w22 ={l\ +/Wac,)^ + /J0a +VaM? + fa0*M
t«25 =s0n(02)

tw2o =#2.

The parameter update law is then as given in (27) and (28).

Parameters used in the simulation were chosen to be realistic, and process
noise was added in the form of random perturbations at the torque output
of the actuators. The desired trajectory had the form:

Out = ai + bi(sin(t) -f sin(2t))
0*d =a2 +62(cos(4i) -f- cos(6*)) ^

Figures 3 through 8 show the results of a typical simulation. In this case,
all parameters initially had substantial errors which were corrected by the
adpativc controller over the first several seconds of operation.

Figure 3 shows rrij starting from an initial value of 3 Kg and adapting to
the true value of 4 Kg. Figure 4 shows m2 changing from an initial guess of
2 Kg to a true value of 4 Kg. Figures 5 and 6 show similar results for the
Coulomb friction coefficients, A;, and k2, as they move from initial guesses of
0.0 to true values of 2 NtM and I NtM respectively.

Similar results were obtained for the viscous friction coefficients.

Figures 7 and 8 show the servo error diminishing as the system tunes itself.
In tuned steady state, the remaining errors tire due to the noise added to
the simulation to test robustness. The magnitude of these servo error per
turbations is consistent with the value of the noise amplitude divided by the
closed loop position gain. The derivative of servo error, E, was equally well
behaved.

(44)
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Figure 3 Esthnate of the mass of link I (Kg).

The time scale on simulations such as these can be misleading. It would
have been possible to adjust the 7, so that the adaptation was much more
rapid, but an attempt was made lo use numbers that were felt to be reason
able. Issues such as speed of adaptation need to be experimentally verified
with an actual mechanical system which contains all the realities ignored in
simaf&tions.

9._.Conel.i isions

A globally stable adaptive control scheme for a complex nou-linear system
has been designed. The adaptation process can be added to the model-based
control formulation for robot manipulators (sometimes called the computed
torque method) without otherwise altering the controller structure.

Using the results in section 7, trajectories especially well suited to identifi
cation of parameters could be pre-planned, however, most real world trajec
tories carried out by industrial robots are sufficiently exciting, and so the
scheme could be used as an on-line controller.



Figure 4 Estimate of the mass of link 2 (Kg).

This method could be directly applied to a C'artesian based control scheme
such as the one reported in [I8|. The method might also be extended to
include an active force control servo, where some identified parameters are
associated with properties of the task surfaces rather than strictly with the
manipulator itself.

Implementation of the adaptive controller for an actual manipulator is un
derway. These results will be reported in a future paper.
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