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1. Introduction.

Fully automated layout of VLSI circuits has been demonstrated as an effective method for designing
custom digital signal processing circuits for a variety of audio applications. This works well for audio
applications where one basic architecture can be used as a framework for many different tasks. For video
rate applications, with sample rates around 5 to 10 MHz, a different architecture may be needed for each
job, to take advantage of parallel processing. As a result, video rate processors are often assembled largely
by hand. The purpose of this paper is to describe an attempt to design a video rate processor with minimal
manual layout effort, using tools in LAGER, an automated layout system developed for audio DSP applica-

tions [5].

For audio applications, using LAGER can be compared to using an off the shelf DSP chip. Both
have ROM and RAM for programs and data, and each has a pipelined ALU. To use them, a machine-
Ianguage program can be written, assembled and debugged on a host system. For an off the shelf part, this
program is then loaded into the chip, and the application is tested. LAGER, however, allows the user to
specify characteristics of the architecture, such as the size of RAM and ROM, or whether a sub-program
counter is needed. In both cases, a single ALU is used to perform all of the computations. With audio
sample rates from 8 KHz to 40 KHz, and a clock rate of 2 MHz, the processor can perform from 50 to over
200 instructions 'per sample. Thus a single basic architecture can be used for many audio applications.

Video digital signal processing circuits cannot take advantage of sequential processing like their
audio counterparts, since the clock rate often equals the sample rate. In this case, the user needs to be able
to program the architecture of the system. Since this often means redesigning the chip from scratch, some
may criticize that it is easier and faster to design and manually assemble the chip. However, if a sufficient
hardware description is given, basic circuit modifications can be made as fast as one might change the pro-
gram for an audio DSP chip. In the case of manual layout, such a change may take several days instead of
a matter of minuté, and is more likely to be error prone.

This paper will begin by discussing the Video Histogrammer application in section 2, describing the
desired features of the circuit. In section 3, the specialized architecture will be described, discussing how

the design was chosen from a variety of alternatives. In section 4, the relationship between the heirarchy of
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the CAD tools and the heirarchy of the histogrammer is discussed. A variety of resulting circuits are then

shown in section 5.



2. What is a Video Histogrammer?

2.1, The Histogram.

Many image processing techniques use statistical information about an image to improve the quality
or contrast of an image. One of the more commonly used statistics is the histogram, which is an estimation
of the pixel intensity distribution over a selected portion of an image.

Consider a discrete-time system with finite length signal S (1), where 0 < 2 SN, and the value of

S (n) is one of I discrete values, S(n) € {0, ..../-1}. Then, the histogram H (i ) of the signal S (n) can be

calculated as follows:
H(i)="§ 1:5()=i 0si<I @1
#2b |0 : otherwise
The histogram of a signal can be thought of as an estimate of the probability density function p (i ) of
the signal,
p) = Prob{S(n)=i} = L H() 0<i<I, 22
0sn <N

The calculation of the histogram can be thought of as selectively incrementing one of / counters,
H (0) through H(I -1). All of the counters are reset to zero before the frame of video data starts. When a
pixel of intensity i is received, the counter H (i) is incremented. When the frame has been completely
scanned, the values stored in the counters represent the histogram of the signal.

A minimal implementation of of a histogram processor should be able to calculate and download the
histogram of an image, once per frame, or every other frame if the image is interlaced. Also, circuitry
should be included to support Histogram Equalization for image contrast enhancement, discussed in the

following section.

2.2. Histogram Equalization

Histogram equalization or histogram flattening is a method for improving image contrast by chang-

ing the pixel intensities of an image to result in a roughly equal distribution of all intensity levels [1].
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Ideally, this means that the probability density function, pgg (i), of the equalized signal should be constant.

To generate the equalized video signal Sgg(n) starting from the image S (n), the histogram is first
evaluated. Then, the probability density function p (i) is generated by scaling the histogram coefficients as
described in the previous section. From p(i), an approximation of the probability distribution function
(PDF) P (i) can be found:

i
P(i)=§p(j) 0si </ @3)

Now, the function P(i) is applied to each value of S(n), to generate a new image,
Seg(n)=P(S(n)). This signal, Sgg(n), has the desired property that its histogram is flattened, resulting in
an equalized distribution of pixel intensities.

In a system with discrete intensities, the histogram of Sgp(n) will rarely be perfectly flat, for reasons
to be mentioned later. To show how the equalization comes about, consider a continuous system, where
the image S (n) is represented by the random process S, with non-discrete pixel intensities. Similarly, let
Sgp represent the equalized signal Sgp(n). Let P (i) and Pgp(i') be represented respectively by the con-

tinuous PDF’s P g(s ) and P §,,(5), which are defined below:

Ps(s)=Prob(S < s} 24
Ps_(s)=Prob{Sg < s} 0ss <1 @5)
The range of s in the second equation is restricted since 0 € Ps(s) < 1 for any real s by the definition of a
PDF. As in the discrete case, the PDF Pg(s) is applied to the original signal S to generate the equalized
signal, Sgp = Ps(S). Substituting for Sgp in equation 2.5, the density function of the equalized curve can

be expressed in terms of the original signal, S:

Ps(s)=Prob{P(S) < s} 0<s <1 2.6)

To simplify further, assume that P s(s) is a continuous function, with a one-to-one mapping from the real

line to the real line, with a well-defined inverse, P&/ (.):

=Prob (S < P§ (s)} 0Ss<1 .7
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Substituting the definition of P s(¢) from equation 2.4, we get:

Ps,(9)=Ps(P¢ (s)) (282)
=s 0sSs <1 (2.8b)

The probability density of the equalized signal, in equation 2.9, is constant, since Pg_ is linear. This is

analogous to a perfectly flat histogram.

Ps(s)=1 0<s <1 (29)

In the discrete quantization case, deviations from the ideally flattened histogram are caused by
discontinuous nature of the estimated PDF. In the derivation above, P s(.) was assumed to be a one-to-one
function, to justify the relationship P s(P§!(s)) =s. In the discrete case, this equality will only be approxi-
mate. Two artifacts result from this non-unique mapping. When two or more adjacent intensity quantiza-
tion levels are mapped to one level, some information is lost. In the opposite case, two adjacent intensities
can be mapped to well-separated intensity levels. This results in contouring in the image. Contouring is
visually distracting, and introduces edges into an image which can confuse attempts to find and trace the
desired edges in an image. Nevertheless, histogram equalization is useful for visually enhancing the con-

trast of an image.

2.3. Other Applications of the Histogram.

The histogram of an image, by itself, has several applications in image processing. In an environ-
ment where lighting conditions may vary, the histogram provides lighting information for a scene. This
information can be used to adjust external lighting, or it can be used to adjust the dynamic range of the

camera. This can enhance the quality of other recognition schemes.

If the histogram can be taken over arbitrary regions of an image, the results can aid the process of
image segmentation [2]. A segment in an image can represent a single object, or part of an object. If the
histogram of a region has a well-defined isolated peak, the pixels with intensities around that peak can
identify one or more segments. By repeatedly subdividing regions of an image and thresholding, the seg-

ments of an image can be identified with more detail.
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A histogram processor should be able to perform all of the above tasks, without extensive external
support. One objective of this project is to perform the histogram equalization function with two chips,
with one chip generating the mapping function, and another performing the remapping of the data. A
future possibility is to put both circuits on one chip. The histogram processor should also be designed so

that signals other than video data can be processed.



3. Architecture

As the idea for the video histogramming processor took shape, several architectures were reviewed.
Power consumption, die area, NMOS or CMOS technology, flexibility and reliability were among the

many factors considered before the final design was chosen.

3.1. The Video Signal

Before developing the histogram processor, the nature of the video signal must be defined. The
video digitizing test station includes a color camera operating with standard NTSC video timing. In one
case, the digitized image consists of 512 columns by 480 rows, requiring a sample rate of 10 MHz. In this
case, since the video data is interlaced, the processor must accumulate the histogram during each of the
interlaced images or frames, without clearing during the vertical blank period. Alternatively, the interlace
can be disabled, and a new histogram can be calculated during each frame. In this case, the number of rows
is reduced to 240, while the sample rate remains 10 MHz. The test system can also digitize 256 samples
per row, with a reduced sample rate of S MHz, in either the interlaced or non-interlaced mode. The histo-
gram processor has access to 8 bit digitized video samples, and must synchronize to the provided horizon-
tal and vertical blank signals.

3.2. Desired Features

Two separate tasks must be performed by the histogram processor. The primary task is the evalua-
tion of the histogram as the video data is received. As mentioned before when the histogram was defined,

this can be thought of as selectively incrementing one of several counters, according to the value of each

video sample.

The second task is to process the histogram data. This postprocessing may only involve reading the
histogram data into another processor. The internal registers of the histogram processor can be refreshed at
this time, or they n;ay be reset, to prepare for a subsequent histogram calculation.

For histogram equalization, the data must be accumulated and normalized, to calculate the probabil-
ity distribution function P(i) discussed earlier. The result is then loaded into a look-up table. If the video

signal is applied to this LUT, the resulting signal is the histogram equalized version of the original signal.



Since the LUT was developed separately, the histogram processor must be able to program the existing
LUT with the calculated values.

33. Implementation of the Histogram Processor

There are several different architectures which can accumulate a histogram. For purposes of com-
parison, consider an interlaced video image with a total of 512* 512 or 2!8 pixels. Assume that eight bits
of digitized video data are available, with 28 or 256 possible quantization levels. Also, assume that the

video sample rate is 10MHz, allowing 100 ns for the processing of each pixel.

One of the most intuitive structures for calculating the histogram is an array of counters, one counter
for each quantized intensity level in the digital video signal, as suggested in figure 3.1. For the image
described above, each counter would require 18 bits, since the screen may have a constant intensity level 1;n
the worst case. 256 of these counters would be required, one for each level. An advantage of using such

an array of counters is that the layout could be straightforward, with simple timing requirements.

N loadable counters

Shift Histogram
0 oﬁt
2

in= N-1—+:unt COUNTER loa+—<-
. in = N-; +ount COUNTER lo
video

data |
(0-N-1) S : ®

in= 0—+ount COUNTER loﬂﬂ—'

- \/
v v
Histogram Accumulated Histogram

Figure 3.1: Histogramming with Several Counters
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If a CMOS 3 process is used, roughly 128 18 bit counters could be put on a 900CiLx 9000w chip,
including support logic and control. The CMOS technology is often preferred since it ideally has no static
power consumption. At 10 MHz, however, the dynamic power consumption becomes more significant.
Consider as an example a CMOS half adder cell with storage, using a 10 transistor exclusive-nor gate, an
eight transistor delay cell, and six transistors for a carry logic AND gate. The total capacitance of the
transistor gates is:

Cow = 256counters x 18bits x 2Agates x 32u%/gate x 0.5fF ip? > 1700pF
Assume in the worst case that one fourth of these transistor gates change at a time, which can occur when
data is shifted out of the counter array. If a 5V power supply is used, then the dynamic power consumption
with a 10 MHz clock rate will be:

Piymamic = %’-V‘f

=400pF X 25V2 x 107Hz

= 100mwW

If the counter array was implemented in a 3u NMOS process, the circuit would use slightly less area,

but would require substantial power. If each counter cell included 4 load devices, then the counter array
would consist of 128x18x4 =9216 loads. For a typical 2x4 load, which may draw 50p4, the average
power consumption might be 5011Ax 5000 =250mA . Furthe::more, two of these chips would be required
for 8 bit video data. Also, over 2000 latches must be clocked. The requirement of driving a large number
of gates with a reliable, non-overlapping two phase 10 MHz clock presents a problem for 3 NMOS tech-
nology, since a fast enough buffer cannot be made efficiently. Other video rate signal processing chips [3],
can effectively use an off-chip bipolar clock driver, if the number of clocked gates is not exceedingly large.
If off chip clock drivers are used, the major problem is skewing, which may result in non-overlapping
clocks. Hence the number of clocked devices is restricted by the complexity of layout. RC delays must be
minimized in the clock traces to reduce skewing problems. Given these restrictions, the array of counters

is likely to fail, due to the excessive number of clocked circuits.

Comparing 3 p processes, NMOS would draw over 1W compared to the 200mW CMOS power con-

sumption. The CMOS version, however, would require a larger chip area. Ultimately, other
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considerations, such as the availability and turn-around time of each process will become more important

when choosing the technology.

A second approach to the histogram calculation is to use a RAM with an incrementer, as in figure
32. For each sample, the digitized video data is used as an address to 2 RAM bank. The accumulation at

that address is incremented and written back into the bank for each video sample.

through all
M V.
A e e cougter [—————pddress RAM
Video RAM = =3
- I
T 1 N
1 Increment Clear locati
-} are
N | -
Increment
v
Accumulated Histogram Histogram
Acquiring the Histogram Histogram Output

Figure 3.2: Histogram Calculation with RAM and an Incrementer.

The timing for this scheme is critical, since the circuit must run at 10 MHz. During each 100 ns sam-
ple period, the selected RAM location must be read, then incremented, and finally the result must be stored
back into the RAM. For the above video signal, the processor has a total of 100 ns to read the RAM, incre-
ment the value with an 18 bit half adder, and store the‘data again before the next address is received. Todo
this with 3 NMOS is difficult, since the half adder alone will take about 80 ns to ripple the carry signal
through all 18 bits in the worst case. A look-ahead carry could be used, although the gain in speed would
not be enough, since the RAM access time has not yet been considered. The counter could be split in

halves or thirds, by pipelining the carry, but the RAM addressing logic would then become more compli-
cated. |

The read-increment-write approach requires fast RAMS. One way to speed up the RAM access time
is to use smaller banks. In the above example, a 256 x 18 bit RAM is needed. If this is broken into four 64
x 18 bit RAMS, each one with its own half-adder, then each bank can operate faster than the original full
size version. If this approach were chosen, the amount of control and glue logic would increase dramati-

cally.
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Notice that the preceding suggestions for speed improvements are compromises between the counter
array and RAM-incrementer approaches. The counter array is merely a collection of 1 x 18 bit RAM and
half adder pairs. The amount of RAM storage is constant, while the number of incrementers varies.
Another alternative architecture involves designing two histogrammers which can operate at half the
required speed, say with a 200 ns sample period. Then the two processors can alternately accept video data
samples. When the frame of data has completed, the two histograms can be added, and the result is the
same as with one histogrammer. This requires roughly twice as much memory, since each processor must
now have a 256 x 17 bit RAM. Again, chip size limitations rule out this method, since a single chip imple-
mentation is desired.

The choice of technology is still not clear cut, since a power versus area compromise must be made.
As a result, the NMOS process was chosen for this project largely for historical reasons. Some of the CAD
tools, such as the datapath compiler which will be discussed later, only support NMOS libraries to date.
Also, several image processing circuits have already been made successfully using the 3y and 44 NMOS
processes. This track record, and access to cell libraries with proven cells, resulted in choosing the NMOS

technology for fabricating the histogram processor.

3.4. The Chosen Architecture: A Pipelined RAM-Incrementer

In most digital signal processing systems, higher speeds can be obtained from inherently slow cir-
cuits by pipelining the system. This method also can be used in the histogrammer. Consider a RAM which
can simultaneously write and read different locations within the 100 ns sample period. Also, assume that
an adder is available which can settle in less than 100 ns. Then, these two blocks can be connected
together, with a delay in between each one. Then, while the current value is being read, the preceding

address is incremented, and the address before that one is being updated.

If the video data never contains consecutive equal samples, then this scheme will work well. When two
equal samples are separated by one different sample, the RAM can read out the incremented value as it is
written, and the results will remain consistent. If, however, two equal samples immediately follow one
another, then the corresponding RAM location will not be properly updated with an incremented value

before it is re-read for the second sample. As a result, the count will be off by one for each consecutive
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pair of values. If the video signal is constant, the histogrammer will have counted only one half of the pix-
els.

To adjust for this miscount, the processor can effectively predict when a duplication occurs, and
correct for it. Then, if a duplication occurs, the second sample can be incremented by two, accounting for
the unincremented value in the corresponding RAM location. Since there are two pipeline delays, the

value in the RAM cannot be off by more than one, hence this correction by prediction is sufficient.

The overall block diagram of the pipelined histogram processor is shown in figure 3.3. The delay
blocks are roughly time-aligned from left to right, to illustrate the signal flow. The left half of the circuit
includes the control logic and address datapath, which together control the RAM banks and the incrementer

on the right. Each block is discussed in more detail in the following sections.

Timiog Syac Baak Select

i [EHB ats r—1Zh

?‘ Column Logic
Low 5 mg &4 | Ll )

counter —E couater Dec | & |£l Z

Accumulatios Datapath
Figure 3.3: Pipeline Structure of the Histogram Processor.

3.4.1. RAM Design

Using the pipelining scheme, the processor must be able to read from one RAM location while writ-
ing to another, independently. This led to the choice of a 3 transistor RAM cell, with separate read and
write lines, shown in figure 3.4,

To implement the simultaneous read and write, the RAM row drivers include several delays. The

write strobe is generated two clock cycles after the corresponding read occurred, to account for the two
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Figure 3.4: Three Transistor RAM Cell.
delays through the incrementer. The timing for a RAM row decoder is shown in figure 3.5, in the case

when one address is accessed twice, with a one cycle delay between accesses.

o I I I
- LN n

select

read s 232 |

- [ L

Figure 3.5: RAM Read and Write Select Timing.

Notice that the value written after the first access is available for the second read. If two consecutive
accesses occur, both will read the same value, causing an error which can be comected by the prediction

scheme suggested above.
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To allow simultaneous reading and writing with a 100 ns cycle, the row decode logic includes
several pipeline delays. Figure 3.6 shows the transistor level schematic of the row driver. Each row driver
includes a full pipeline register immediately following the decode logic, to insure a stable row select. This
signal is buffered to generate the row read strobe. The unbuffered read signal is then delayed one and a
half more times, and is gated with the clock phase 2, to generate the write strobe. At any one time, only

one read select and one write strobe can occur on all of the RAM rows.

R 4x16 4x16 4x16 4x16 4x16 4x16
ax: x4 x4 X 4x
decoder T axd | xd| T axd | 8x4 8x4
out
¥ o+ % iy Ly
bank 6x4 16x4
e Yo =
axsr—] [[24x4 axs—{ [ 4xs :
read select write select
l -|_|
IL&x4

16x4 7 24x4

Figure 3.6: Row Driver Circuitry.
The schematic of the column driver is given in figure 3.7. The write drivers for the columns of the
RAM are superbuffers, preceded by a nor gate to selectively clear a RAM location. The read driver simply
uses an inverter to sense the column data, followed by a superbuffer to drive the data read bus. A pass gate

is then used to select which bank is to be read.

3.4.2. Incrementer Datapath Design

The simplest incrementer for histogram processing is an adder which can selectively add 1 or 2 to the
value read from RAM, and store the result. To pipeline the circuit, a delay must be placed before and after
the incrementer. Also, depen&ing on the layout, buffers may be used on the input and output, since the data
bus lines can get long for the larger circuits. This incrementer is sufficient for collecting the histogram, yet

itis not useful as is for the post processing stage.

Post processing, which can mean reading out the histogram or integrating it, was originally
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Datapath Output Driver Column Write Driver
Figure 3.7: Column Driver Circuitry.

envisioned to require a separate datapath. The prediction scheme, however, requires a full adder so that
increments by one or two are possible. Hence, the histogramming datapath already has most of the ele-
ments required for the post processing operation. To read out the histogram data, zero can be added to the
data read from RAM. Integration of the histogram data requires feedback from the delayed output of the
adder back into one of the inputs. One adder input can come from the RAM as before, and the other input
can be selected from an input constant or from feedback data. To zero the adder input, a separate zero

forcing circuit can be used.

The post processing operation can be much slower than the histogram calculation, allowing adequate
time to load the data into a look up table, or temporary memory. Since the same datapath is used for both
fast and slow operati(':ns. intermediate results for slow operations must be held until they can be used. The
alternative of ghanging the clock speed is not desirable, since the reliability of the clocks is already a criti-
cal factor. To store the intermediate results, an additional selector is added after the adder, to maintain the
current output value in the output delay register. Also, a zero may be forced into this register, to reset the

output register before accurnulating a histogram.
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3.43. Post Processor Timing

When a histogram has been calculated, LUT address and data information is to be generated, with
proper control signals to program an existing LUT. For the 8 bit LUT, four registers are loaded with con-
secutive LUT entries, and a fifth register must be loaded with the 6 most significant bits of the address
where these four values will be stored in the table. A 2.4 ps cycle is required to load one register, with an
800 ns valid data strobe. To load the entire LUT, 64 groups of § register load cycles must be generated,
entirely during the vertical blank period.

The basic 800 ns interval is generated with a programmable 3-bit counter. If the system clock is 10
MHz, the counter will divide the clock by 8; whereas if the clock is 5 MHz, it is divided by four. This is
done by designing the counter to Joad a preset value of zero or four when the MSB generates a carry. An

external signal is required, to select between the two clock rates.

One counter is used to generate five 2.4 s clock cycles. A total of 15 of the basic 800 ns strobe
periods are required to load four LUT values. A modulo 3 and modulo S counter could be used, but this
requires two specialized counter modules. For the sake of simplicity, a 4 bit counter is used, and the first
800 ns interval is ignored. The outputs are then decoded with a PLA, to generate the register addresses and
the valid data strobe. The PLA module, called the ‘timingpla’, is described in figure 3.8.

One more counter is required to generate the 6 most significant bits of the LUT address. A six bit
binary counter is sufficient. Notice that a total of 13 bits of counter cells are required for the three
counters. The 13 bits of.ripple carry may not be fast enough at the 10 MHz clock rate, since there are two
gate delays introduced into the carry chain by each counter cell. To introduce a margin of safety, a delay is
inserted between the four bit and the six bit counter, pipelining the carry. To counteract this delay, the
PLA decoded output from the previous stages is also delayed. This pipelining also serves to guarantee a

reliable output from the PLA.

3.4.4. Address Datapath

When the histogram is being calculated, the RAM bank receives its address from the input stream of

video data. During the post-processing stage, however, the RAM address is generated by the counters
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Figure 3.8: Timing derivation PLA.
described above, to step through the memory sequentially. A simple multiplexer is needed to select the

address source, which can be generated as a bit sliced datapath.

Recall that the pipelined incrementer datapath requires a predictor for successively equal address
values. The previous sample is made available by introducing a pipeline delay in the address datapath,
before the select logic. A comparator, consisting of a collection of exclusive-NOR gates driving an OR
gate, can be included in the datapath to determine when duplication occurs. The comparison output is also

followed by a pipeline delay, before it is forwarded to the control logic.

3.4.5. Synchronization and Control Finite State Machine

Control logic must be provided to synchronize the two datapaths, 3 counters and at least twvo RAM
banks with the extemal video system. Several control signals will be made available to the circuit. The
Vertical Blank (VBLANK) signal is used to determine whether the circuit is calculating the histogram, or

postprocessing the result. The Horizontal Blank (HBLANK) input indicates when valid data is on the
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video input bus. The Field signal, usually generated for interlaced images to indicate whether the current
data is in the even or odd field, is used to select whether the RAM is cleared or refreshed during a vertical
blank period. Also during post-processing, the histogram can be read out, or incremented, according to the
READ signal.

For each line, the first valid sample of video data is available when HBLANK goes false. At this
time, the incrementer must be prevented from incrementing by two, since an invalid duplication might
occur. The duplication signal, EQUAL, from the address datapath can be gated with the delayed
HBLANK signal, HBLANK], to avoid errors. Also, since the carry input to the incrementer’s adder is
used to select between an increment by one or two, this signal must be zeroed during the post-processing
stage, by gating EQUAL with the VBLANK signal. The resulting signal, EQUAL1, must then be delayed
by the number of pipeline stages in the RAM read and increment circuitry. Hence, the adder will incre-
ment by two only when the current value read from RAM is from the same address as the previous value.

Figure 3.9 shows the part of the ‘fsmsync’ PLA which synchronizes with the input data.

Histogram ALU Controller
Ioput Plane Output Plane
READ °“HOLD VBLANK HBLANK H! EQUAL | HI* INCIOR2 °-“HOLDMl1 READMI

X X 0 1 1 1 1 1

X X 0 1 0 X 1 0

X X 0 0 X X 0 0

X X 1 X X X 0 0

X X 0 1 1 0 1 0

X 0 X X X X 1

X 1 0 X X X 1

X 1 1 X X X 0 .
X X 0 X X X 1
0 X 1 X X X 0
1 X 1 X X X 1

Figure 3.10

The RAM bank select logic which is included with the synchronization logic is in figure 3.11. When
the histogram is calculated, the least significant bits of the video input data are used to select the bank.
During the vertical blank, the address is available from the PLA which decodes the counter chain. Thus,
the control logic can both select the address source and decode the address. Since the RAM bank was

designed such that a write always follows a read, the bank select must be gated with the HBLANK1 signal
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to allow RAM access when video data is read. Also, when reading the data during post processing, each
location can be read only once if the memory is being cleared. The counter PLA provides a signal,
HOLD?®*, to indicate when data should be stored in the incrementer, or read from RAM. When HOLD* is
true, the addressed RAM location should be read. By additionally gating the RAM bank select with the
HOLD* signal, the select logic is complete.

RAM Bank Select Logic
Input Plane Output Plane
VBLANK H1 FIELD ADDRO ADDR! | "SELO0 °“SEL1 °-SEL2 °“SEL3 CLEAR
X 1 X 0 0 0 1 1 1
X 1 X 0 1 1 0 1 1
X 1 X 1 0 1 1 0 1
X 1 X 1 1 1 1 1 0
X 0 0 0 0 0 1 1 1
X 0 o 0 1 1 0 1 1
X 0 0 1 0 1 1 0 1
X 0 0 1 1 1 1 1 0
0 X 1 X X 0
1 X 1 X X 1
X X 0 X X 0
Figure 3.11

The HOLD* signal also controls the incrementer datapath. When HOLD* is false, the output of the
pipeline register following the adder shall be fed back into the register’s input, to store the current value.
To make sure that this happens only during the vertical blank period, the HOLD* signal is gated with
VBLANK. The resulting control signal, HOLDM1*, is delayed to synchronize with the pipeline delays,
before it is applied to the incrementer datapath.

Just as the HOLD* signal was gated with VBLANK, so must the FIELD and READ signais. During
the vertical blank period, the CLEAR signal is applied to the RAM banks if the input FIELD is true. Like-
wise, the READM1 signal programs the incrementer datapath to read out the RAM data, or accumulate it,
depending on the value of the READ signal. When VBLANK is false, and the image is being scanned, the
RAM should not be cleared, and the datapath must not try to accumulate the values. These signals are con-

stant during the vertical blank period, hence no delays need to be added to correct for the pipelining in the

system.



The remaining control task is to start and stop the counters which generate the post processor timing
and addresses. A four-state finite state méchine is used to control this process. Figure 3.12 shows the PLA
implementation of this FSM, where S1 and COUNT are the state variables. When the vertical blank first
becomes true, the carry input to the counters, COUNT, must be set false, to commence the count. The
counting will continue until a carry out from the counter, STOP*, is received. The count cannot commence
again until VBLANK toggles false then true again. Along with the counter control, two reset signals are
generated by the state machine, The incrementing datapath has an RS flipflop which is set when the adder
ov;tﬂows, to effectively saturate the accumulation. At the beginning of each post-processing cycle, this

flipflop must be reset, so that the accumulation can start over. Also, the pipeline register following the
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adder must be reset to zero, so that accumnulations will be initialized properly.

Postprocessing Timing Control
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Figure 3.12
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4. CAD Hierarchy

The architecture selected for the implementation of the histogram processor can be broken down to
12 macrocells which must be interconnected. Three sets of pads are needed, for data input, data output and
control inputs. The overall timing and control can be generated cleanly with two finite state machine
macrocells and two counter macrocells. For the 8 bit video system, two RAM macrocells are needed, each
with two banks. One datapath is needed for the incrementing and accumulation logic, and another is used
for selecting and monitoring the addresses. A macrocell oontahing delays of various lengths is also
needed, to synchronize the pipeline stages.

Three methods are available for generating macrocells. A module generator, Modgen, can be used to
tile several manually designed leaf cells to form a complete macrocell. In this case, no routing is done
within the macrocell, requiring that all interconnections must be within the leaf cells. A bit-sliced datapath
compiler, Compile, is also available, allowing flexible routing within a slice. Leaf cells can be chosen from
a library, and assémbled in arbitrary order. The third method is to use the LAGER floorplanning tool,
Flint, to assemble a macrocell out of other macrocells. Flint can be used to group macrocells, whereas

Modgen and Compile are used to generate the basic macrocells.

To pull the module generator CAD tools together, the ‘Connect’ program was developed. Connect
supports the system level description for a full chip. This description groups macrocells together, and pro-

vides a high level net-list style interface to the LAGER system.

4.1. Modgen

Most of the basic circuits of the histogram processor can be generated using the tiling module gen-
erator, Modgen. To Eompletely define a macrocell or module, the designer must describe all applicable
leaf cells, and a C program must be written to describe how the leaf cells are to be tiled. Modgen reads a
parameter description language (PDL) file, specifying such features as the size of a RAM, or the number of
bits in a counter. Modgen then calls the C routine for the requested macrocell, which uses the PDL infor-
mation to control the tiling c;t' the macrocell. This procedure is defined in more detail in the Modgen docu-

mentation.



4.1.1. The Delay Macrocell

The delay module generator will generate a selectable number of delays, each with an arbitrary
length. To help with the understanding of Modgen, the PDL file for the delay block used in the histogram

processor is given below:

(module (name delay1) (type delay) (length 3) (width 4)
(design (array
DDDD
xDxx
DDxx
»

)
(term (name in{0]) (ret 71) (cable pricontrolifsmsync) )
(term...

The PDL file begins with a description of the desired macrocell. In this case, four delays are desired, z-2,
273,271, and 2-1, in order. The parameter "name" specifies the name of the layout file to be generated. The
"type" selects which C routine is called to generate this macrocell. Several macrocells of a given type can
be generated, as long as the names are unique. For this example, the maximum delay length is z-3, hence
the "length” is set to 3. The "width” specifies the number of delay chains requested. The array "design”
consists of symbols to define the macrocell floorplan, where each column represents a delay chain. A z-!
delay is generated for each symbol D’ in the array.

The req\ainder of the PDL file defines how the terminals on the macrocell boundary connect to other
macrocells. The "name” refers to the terminal name defined in the leafcell descriptor file for the requested
module type. When a leafcell with a terminal is used more than once, each reference to that terminal is
given an index by Modgen, thereby permitting flexible bus widths. The "net” number is an integer used
throughout the design to refer 1 a specific signal. The "cable” gives the name of another macrocell which
is attached to this net. The terminal parameters depend on the overall system design, and are generated

automatically by the Connect program, which is discussed later.

4.12. The Counter Macrocells

Two types of counters can be generated by the "counter” module generator. The firstis a presettable

counter, which loads a given value when the carry from the most significant bit overflows. This type of
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counter is chosen by specifying the parameter "(loadable)" in the PDL file, and defining the load value with
"value". The value is a string of 0's, 1’s or x’s, to specify a constant or variable input. The three bit
counter in the control logic, called "counterl”, is loadable, with the value "x00", which means that it can be
selectively loaded with the value "000" or "100", to select modulo 4 or modulo 8 counting. The terminal

"load[0]" defines source of the most significant bit.

The four-bit and six-bit counters in the control logic are grouped together, including the delayed

carry. These counters are not presettable. The PDL description is given below:

(module
(name counter2)

(type counter)
(notloadable)

(design
(count 4)
(elay)
(count 6)

)

If two separate counters and a delay block were used, space would be wasted for redundant power, ground

and clock connections, as well as the space required for routing the carry signals.

4.13. Finite State Machine Generator

The module type "fsmpr” is used to generate finite state machines or PLA's. The PDL description
defines the number of input signals, minterms, and clocked or unclocked outputs. The input and output
planes are defined with arrays of 1's, 0’s and x’s. Also, if the "minimize" parameter is specified, the pro-

gram espresso will be used to optimize the PLA.

Two PLA’s are generated for the histogram processor by using "fsmpr”. A PLA named "timingpla”
is defined to decode the four-bit counter to generate post-processing timing signals. All other synchroniza-
tion and decoding is done in a second PLA, including the RAM bank select logic, incrementer control, and
post-processing synchronization. These could have been included into one PLA, however, its area would

be roughly double that of the two put together, since few signals are common to both.



4.14. The RAM Bank

The module generator "ramhist” generates a RAM with two banks mirrored around the row select
logic. The amount of storage and the size of the data word are parameters. The histogram processor uses

two of these modules, "ram1” and "ram2", each with 64 pairs of 18 bit words, to store a total of 256 words.

4.1.5. Pad Generator

A variety of pads can be generated by specifying the module type "padclk”. The parameter "(input
#)" will specify a number of clocked input pads, and "(output #)" will generate output pads. These pads
contain one half of a delay element; the input pads are clocked on phase 2, whereas the output pads are
clocked on phase 1. The designer can also specify "(power)", "(ground)”, or "(clock)", to generate a

power, ground, or a two phase clock pair macrocell, respectively. Only one type can be specified at a time.

The histogram processor has three groups of pads, other than the power, ground and clock pads. The
"inpads” accept the video data. The "outpads” program the look up table. The "ctrlpads” provide the syn-

chronization and mode control signals, as well as the output scaling factor for normalization.

4.2. The Bit-Sliced Datapath Compiler

To generate bit-sliced datapaths using a variety of functional blocks, the program "compile” written
by Peter Reutz, has been modified to run in the LAGER environment. A text description of the desired
datapath block diagram is prepared manually, describing the interconnection of an individual slice. The
compile program then follows this description to place and route the slice. The leafcells are placed in the

order of their specification, and they are interconnected with a channel router.

Several features of a given datapath must be defined to completely describe it. Signals entering and
leaving the datapath are assigned to terminals on the macrocell boundary. The organization is then
specified, to direct the placement of adjacent slices. Finally, the placement and interconnection of the indi-
vidual slices is described, with one description for all types of slices.

The datapath description begins with the placement of external terminals on the macrocell bounding
box. By convention, the data flow in a datapath is from left to right, and the least significant bit slice is on

the bottom. Five terminal lists are given: CONTROL, RIGHT, LEFT, TOP and BOTTOM. The control
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signals, usually Vdd, ground and clocks, are listed under the CONTROL heading. Data signals must be in
the LEFT or RIGHT lists, and one terminal definition refers to all slices. Signals common to all slices,
such as carrys and selects, are on the TOP or BOTTOM of the macrocell. Each terminal has an associated
net number and other interconnection information, both of which are generated from the global intercon-

nection description to be discussed later.

The placement of the slices is described under the heading "ORGANIZATION™. The slice names
follow, listing the slices as they are stacked from bottom to top. Slices can have arbitrary names, and there
are two types of slices. NODATA slices provide the control and power signals, and DATA slices contain
the desired functional blocks. In the current library of functional blocks, several naming conventions are
used. Power is provided in the CNT slice, and ground and clocks are in the GND slice, both of which are
NODATA slices. The slice CELL is used when most or all functional slices are identical, or if the
requested slice is undefined. EVEN and ODD slices can be used if adjacent cells in a functional block
have different designs, such as in an adder with a fast ripple carry. Also, the MSB and LSB slices can be
used if the corresponding slices have special designs.

The final section, "SLICE", defines the interconnection and placement of each slice. A list of quoted
net names and unquoted block names delimited by ’>’ describes the placement of the blocks. Each block
has a generic input and output, which are by default connected in sequence. If a net is given instead of a
block, the preceding output or following input is attached to that net. Other connections can be made to a
block by following the name with a list of terminal-net pairs, surrounded by parentheses. The block termi-
nals are defined in the library, and a net name can have several terminals associated with it. The name of a
terminal defined on the boundary of a macrocell is also its net name. This description is used to assemble

all DATA slices, and the NODATA slices are expanded to abut with the DATA slices.

42.1. The Histogram Incrementer Datapath

The datapath compiler is well suited to generate the incrementer datapath. If Modgen were used for
this application, special cells would have to be designed for nearly every block to route the feedback sig-
nals within the leaf cells. With the datapath compiler, features can be easily modified and added to the

incrementer.
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To implement the incrementer datapath, it must be organized into a one-dimensional collection of

functional blocks. For reference, the schematic of the overall datapath is repeated below:

read accumulate hold reset accumulator
| | 1
1 Select
0

| + | setect v Do—»%%’é
RAM '1 0 daa

.o Z
—q LUT

lor2 lord lorlé 1lorlé LUT source

Histogram Main Datapath
The datapath can then be reorganized into the form of a one-dimensional slice which can be duplicated for
each bit
Mo oM 9P e B
B < | I
RAM > invert [—] detay | 1 | MUX || 2m0 ADD [— MUX || 2er0 aa.y—-nma—l

12 14 1,16 1,16 Overflow Output

Histogram Datapath Slice Organization
The datapath consists of two sections. The first section includes the increment and accumulate logic with

the associated two pipeline delays. This circuitry runs at the 10 MHz clock rate.
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The data read from the RAM is delayed, and routed to one input of the adder. To generate the
second adder input, a selector was designed to choose between an input value or the constant 1. A zero
block, consisting of a pull-down transistor, follows the selector to selectively prevent accumulation of the
RAM data. The full adder requires different even and odd slices so that each bit of the adder adds only one
gate delay to the ripple carry. With the 18 bit example mentioned earlier, the ripple carry becomes the crit-
ical path between the pipeline stages.

‘When the adder overflows, this condition is stored to force a saturated output. The synchronization
FSM could have been used to keep track of the overflow, however, more delays would have been intro-
duced into the system. As a result, an RS flip flop is used in the control slice to store this condition. The
flip flop must be reset at the start of both the histogram calculation and the post-processing cycle, to prevent

false overflow indications from the preceding cycle.

Following the adder, a multiplexer selects the source of the second pipeline register. The input
comes from the adder during the histogram computation and accumulation. To temporarily store an accu-
mulation, the register output can be fed back into the input. At the beginning of the accumulation post pro-
cessing cycle, this register must be reset to zero, hence another zero block is placed between the multi-

plexer and the delay. The result is then driven by an inverting super-buffer to write to the RAM.

The second half of the datapath scales and saturates the datapath output, and selects whether this data
or the address is sent to the output. This part of the circuit is asynchronous and slower than the first half,
and provides meaningful data only during the slower post processing cycle.

Four shifter stages are used to scale the datapath output. The first stage shifts left zero or 1 bit, the
second shifts by zero or 2, and the last two shift left zero or 4 bits. By selecting appropriate shifters, the
accumulation result can be shifted left from zero to 11 positions, corresponding to output scaling by powers
of two from 29=1 through 2!!. The control slice of each shifter stage will sense if the shifted value

overflows, allowiﬂg the output to be clipped later.

The shifters are followed by a saturation register. If the adder or the shifters overflow, the output
will be forced to all ones, corresponding to the maximum unsigned value (2!%-1 in the 18 bit case).

Without the saturation, meaningless results would result if the adder or shifters overflowed.
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The last stage in the datapath is the selection of the output data. The look up table is loaded with
four accumulation values, followed by the most significant six bits of the address for those values. To sim-

plify routing, this selection is included within the incrementer datapath.

422, The Address Datapath

The datapath compiler is well suited to generate the address datapath. All of the data slices in this
macrocell are identical. Although much simpler than the incrementer datapath, the routing within the slice

makes it unsuitable as a Modgen macrocell. Below is the slice interconnection:

duplication
] ¥ > i
external 51 delay equal delay = select buffer —> RAM
ter .
counter 3,
Address Datapath Organization

After the address is delayed, the current and previous addresses are compared, to recognize succes-
sively equal video samples. The result is delayed again to adjust for pipeline delays. A selector can then
choose to send this address through a buffer to the RAM banks. During post processing, the address is
chosen from the timing counter chain. The delayed address data is also routed to the synchronization logic,
where the RAM bank selection is decoded.
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43. Interconnection and Hierarchy Specification: Connect

Now that all of the macrocells have been defined, the remaining layout task is to assemble the
blocks. Connections between macrocells must be completely defined. Once the connections are specified,
the macrocells must be positioned in a floorplan to indicate the relative placement, after which the actual

connections can be made.

The program Connect is used to define the interconnection of the macrocells. The connections to a
given macrocell are called terminals, which are located on the cell’s boundary. Terminal names generated
by Modgen are defined in the individual leaf cells which compose the macrocell, and are fixed for a given
type of cell. The datapath compiler allows the designer to specify unique terminal names on the boundary

of a macrocell. Several macrocells can share the same terminal names.

To connect several terminals together, they are associated with a common net name. A given termi-
nal or net can be one conductor or a bus of any width. Since terminals and nets can have arbitrary width,
they can be parameterized, so that one terminal-net list is sufficient to describe a variety of designs with
different sized data and address busses.

If a chip is made up of 10 or more macrocells, the floorplanning effort can become difficult, since all
channels and routing must be redefined when the placement of a cell is changed. By grouping macrocells
together to form another larger macrocell, hierarchy can be introduced into the floorplanning effort. In this

case, a small block can be reorganized without affecting the higher level placement.

The histogram processor can be neatly broken up into groups. The timing and control logic, consist-
ing of two PLAs and two counters, is grouped into the macrocell 'control’. This new macrocell is then
included in a larger macrocell containing the RAMs, the datapaths, and the delay block, to form the proces-
sor (pr) macrocell. Finally, the full chip consists of the pads surrounding the processor. Each group in the
hierarchy can also be debugged separately.

The description of the histogram processor begins by defining parameters, Two basic parameters are
needed to specify the processar. The parameter "width’, referring to the number of bits of video data,
determines the width of the address datapath and busses, as well as the total number of RAM rows. The

parameter ’size’ indicates the log base 2 of the number of pixels in an image. This sets the width of the



incrementer datapath, and the RAM word size.

After the parameters are defined, the actual hierarchy of the processor is described in the 'design’
block. Macrocells can contain cable references if they are generated by Modgen or Compile, or they can
list other macrocells for assembly by Flint. The description of a *narrow’ processor is listed below, with

cable references and net lists removed:

design (narrow) |
macrocell (pr) {
macrocell (histdata, datapath) { }
macrocell (raml) { )
macrocell (ram2) { )}
macrocell (addrdata, datapath) { }
macrocell (delayl) { }
macrocell (control) (
macrocell (fsmsync) ( }
macrocell (timingpla) { }
macrocell (counterl) ( )
macrocell (counter2) { }
}
}
macrocell (inpads) ( }
macrocell (outpads) { }
macrocell (ctrlpads) { )
macrocell (powerS) { }
macrocell (ground) { }
macrocell (clocks) { }

}
Now that the hierarchy has been established, the interconnections must be given. All macrocells which do
not contain other macrocells will have a list of cables, except for power and clock macrocells. A cable,
which refers to a bundle of wires running between two macrocells, is designated by the name of the desti-
nation macrocell. The definition of the connections for the "outpads” illustrates this:

macrocell (outpads) {

cable (histdata) {
in[0, 7)=outdata(0,7];

in[9]=saturated;

}
cable (delayl)
in[8]=loadml;
}

The output pads connect to an eight bit data bus and a status signal from the histogram datapath, "histdata”.

Also, a control signal comes from the "delay1” macrocell.
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The complete description of the system is given in the appendices, listing how all of the signals come
together. For more details about the Connect program, refer to the Connect User’s Manual in the appen-
dices.

At this point in the design, the electrical connections of the histogram processor have been com-
pletely specified, with no explicit information regarding the silicon layout of the processor. Neither the
design rules nor the technology have been formally enforced in the Modgen, Compile or Connect input

description files, allowing for future changes.

After the Connect program has been run with a given set of parameters, the libraries of leaf cells for
the two module generators must be selected. Modgen expects to find a .lib file in the directory from which
it is run, or in the user’s home directory, with a complete path name to a directory containing the subdirec-
tory ‘descriptModgen’. This directory contains ‘descriptor files’, which provide all of the information
required by Modgen to assemble leaf cells and correctly identify terminals on the macrocell boundary. A

different technology can be chosen by naming a functionally identical set of descriptors in the lib file.

The datapath compiler, Compile, is not quite as flexible, since it was designed for NMOS macrocell
generation. The restriction is most evident in that routing can be done in diffusion, between leaf cells. If
this layer were ignéred. then CMOS datapaths could be assembled given a functionally equivalent library
of leaf cells. Minor modifications might be required in the datapath compiler so that it would recognize the
different metal and polysilicon layer names. All of the leaf cells are defined in one file, ‘celldesc’, which is
generated automatically by reading the leaf cell layout files with the ‘parse’ utility. An extensive library of
tested NMOS macrocells has grown over the last few years for this datapath compiler, providing much of

the incentive for using NMOS rather than CMOS for the histogram processor design.

4.4. Floorplanning and Routing with Flint

Once the macrocells have been generated, the designer must provide a floorplan for the final chip
layout. The floorplan is symbolically specified with a floorplan description language (FDL), and a given
design can have several FDL layouts. The first purpose of the FDL is to indicate the relative placement of

the macrocells. Also, the designer includes the routing strategy in the FDL file.
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To support flexibility, the FDL uses minimal information to indicate the relative placement of the
macrocells. Each side of a macrocell can be connected to one of several features. If nothing is attached to
a side, it is called a ‘NULL'’ side. A single channel can be adjacent to the side of a macrocell, permitting
signal routing from that side. Also, a collection of macrocells and channels can be grouped into a rec-

tangular module, introducing hierarchy into the floorplan.

Once the macrocells and channels are in place, the routing strategy must be planned. The routing is
controlled by referring to the cables specified in the Connect input description. Since a cable is associated
with a pair of macrocells, there is no need to refer to explicit terminal locations and interconnection nets in
the floorplan description. For each side of a channel, all cables passing through that side are labeled with a
list of macrocell pairs. Power, ground and clocks are routed in a similar manner, although there is no cable

in this case. The details of the FDL format are described in the FDL documentation.

The interactive floorplanning too!l, Flint, both generates and processes the FDL files. After running
the Connect program and generating the macrocells, Flint is used to generate the FDL files for a chip.
Once a floorplan has been designed, the same floorplan can often be used for different versions of the same
chip. This flexibility means fast turn-around when changing chip size parameters.

The first step for designing a new floorplan in Flint is to place the macrocells relative to one another.
Each macrocell can be moved, rotated and mirrored, in attempt to reduce routing complexity. The cables

are drawn as lines between macrocells to give a visual estimate of the routing density for a given place-

ment.

Once the macrocells are in place, Flint is switched to channel mode, at which time the routing chan-
nels are placed to fill the space between macrocells. Each macrocell side which has terminals must come
in contact with a channel, and the channels must abut to provide a complete path for all routing, Flint
automatically expands each rectangular channel to the sides of adjacent macrocells.

With the channels in place, the user must then route the cables between macrocells. A cable is
interactively selected by pointing to the sides of two macrocells. Then the designer points sequentially to
the abutting channels which are to carry that cable. This is repeated for all cables, after which the signal

routing is completed. At this stage, the designer can choose to route the signals, and view the result. If
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desired, the first steps can be repeated to try other floorplans.

When the signal routing is satisfactory, Flint is switched to Power mode, allowing interactive place-
ment of power, ground and clocks. This has no direct effect on the signal routing. With the histogram
chip, the circuit was simulated initially without power and clock connections, until the final signal routing

strategy was settled upon.

When the full-scale histogram processor was made, the floorplan for the smaller version was reused.
To use an existing floorplan within Flint, the Library mode can be selected, and the desired floorplan can be
chosen. The new layout is then generated by issuing the Route command, which uses the FDL information
along with the database set up by the Connect program. Within seconds, the new layout is ready for test-

ing, and fabrication,

4.4.1. The Floorplan for the Histogram Processor

The ﬁoorplan for the histogrammer, which can be used for several parameterized versions, has been
chosen to reduce the amount of unused silicon area. To simplify the design effort, the floorplanning was
broken into three stages, where each stage required the assembly of a group of macrocells into another
macrocell by using Flint. Earlier, the Connect input file described which macrocells were to be grouped

together, leaving the actual placement up to Flint.

The first element which is assembled is the ‘control’ macrocell. This macrocell contains the two
counters and two programmable logic arrays (PLA’s). The control logic is assembled separately since
there is a great deal of feedback and routing within this group. This block is then treated as a black box
which generates the timing and control signals for the rest of the system. The symbolic floorplan shown in
figure 4.1 places the @nm and PLAs around a central routing channel, which contains most of the inter-

connections.

After the control macrocell is generated, it is included in the main processor macrocell, ‘pr’, shown
in figure 4.2. This macrocell is divided in half by the channel connecting the two RAM banks to the histo-
gram datapath. For the full size histogram processor with an 18 bit datapath, this channel carries 36 bus

lines for RAM read and write data, plus the address lines and several control wires. The RAM banks
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Figure 4.1: The floorplan of the control block, ‘control’.
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occupy roughly one-half of the chip area. On the other side of the main channel, the histogram incrementer
datapath is accompanied by the address datapath, the control macrocell, and extraneous delay circuits.

The highest level macrocell, “histchip’, contains all other macrocells, and has no external terminals,
since it contains all of tlie pads. The main processor macrocell ‘pr’ is surrounded by the pads, as seen in
figure 4.3. The power connections are here, and the pads are routed to ‘pr’ through channels surrounding
the main processor.

The histogram processor is unusual compared to the audio DSP chips generated by the LAGER sys-
tem, in that more than two levels of calls are made to Flint for floorplanning macrocells. Most DSP chips
have a processor which contains macrocells from Modgen, and one or more of these processors are assem-
bled by Flint into a complete chip. The histogram processor has an additional level, in that the control

logic is also assembled by Flint.



Nk

o x\\\\\\
\\\mww .m.

\\\\\\\\\_

Ceatral Routicg Chaonel
roces. main

MK




-36-

§. Resulting Circuits and Simulations

Two versions of the histogram processor were generated by giving different parameters to the Con-
nect program. To simplify and speed up the testing and debugging procedure, a small histogrammer was
generated. The video data bus is only four bits wide, and a ten bit incrementer datapath accumulates up to
a 1024 pixel field. Although this is insufficient for practical video signals, it serves well for testing pur-
poses.

Once the smaller processor was debugged, the full size version was generated. The steps for gen-
erating the larger chip after the smaller one was designed are straight forward, requiring minimal editing.
The Connect input file for the smaller chip, called ‘narrow.ch’, is edited, and the parameters size and width
are changed to size = 8 and width = 18, The design name is changed to design (histogram) to save the old
design, and the new file histogram.ch is saved. Then the Connect program is run from the directory con-

taining the template files and the histogram.ch file:

Connect histogram.ch

The Connect program has generated the input description files for the module generators. The next step is
to run Modgen and Compile on the appropriate files, to generate the hardware description language (HDL)
files and the layout files. This is currently done manually using a C Shell script, although this task will
eventually be done by Flint.

Once the HDL files are generated, the floorplan files can be copied from the narrow directory tree to
the newly generated histogram tree. Now, all of the files are ready for Flint. The Flint interactive floor-
planner is then called for each level in the hierarchy, starting with the innermost macrocells of the directory

tree.

Flint is first used to generate the control macrocell. From Flint, the control macrocell is selected,
and the control.pr- processor floorplan file is selected by using the library mode. Once the floorplan is
loaded, the route command is selected, and the resulting routing is displayed. Then this layout is dumped
by selecting the Flint store command, generating the control layout file, and the control.hdl description of

this macrocell.



-137-

The same procedure is repeated for the pr macrocell, and finally for the narrow macrocell, which is
in fact the complete chip. The layout files are now distributed throughout the histogram directory tree.
Rather than listing the paths to each of these directories so that the KIC or Magic layout editors can find the -
layouts, the next step is to link to all of these files from one directory. The Connect program provides a

utility for doing this automatically:

Connect -£f histogram.ch

This ‘flattening’ option generates the directory histogram/Layout, which links to all layout files. Now, the
Magic or KIC startup files can be copied from the similar narrow/Layout directory, with no changes.
Finally, the Caltech Intermediate Format (CIF) file can be generated from the Magic or KIC files, preparing

the circuit for simulation and ransmission to the fabrication facility.

5.1. Histogram Processor Pin Descriptions

Before discussing simulations, the pinouts of the histogram processor must be defined. The pads can
be broken into four groups. The power, ground and clock pad group is self-explanatory. The input pads
accept the S or 10 MHz video input stream, which is four bits wide for the test chip, and is 8 bits wide for
the full scale chip. The output pads consist of 8 owtdata pads for loading the look-up table, and three bits

of LUT register selection address, addr 0-addr 2, with the load signal for strobing the registers.

The remaining group of pads are the control pads, which serve to synchronize the processor with the
video circuitry, and to program features of the processor. The vertical and horizontal blank signals, vblank
is FALSE and hblank is TRUE during the visible portions of the video signal. Whenever vblank is
FALSE, hblank is used to enable the histogram accumulation, to prevent histogramming the video data
which is presented during the horizontal retrace. When vblank is TRUE, the postprocessing cycle com-
mences, reading and refreshing the histogram if the input read is FALSE, or integrating the histogram if
read is TRUE. Al:;o during post processing, the field input selects that the histogram is to be cleared as it
is read out, if field is FALSE. If the video data is interlaced, the memory will be alternately refreshed and

accumulated, if histogram equalization is being performed.
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When a histogram equalization curve is being calculated, the result of the integration must be nor-
malized, or scaled. Four scaling factors can be selected externally to the chip, where each scale factor is
applied in sequence. The accumulator output can first be multiplied by 1 or 2, then by 1 or 4, according to
the shift 1 and shift2 signals respectively. Two selectable 4 bit shifters follow, each one multiplying by 1
or 16, according to shift4 and shift4a. By selecting a combination of these, any power of two from 1 to
2!! can be used to normalize the output data. Unsigned, saturating shifters are used, to prevent unpredict-

able overflow errors.

The remaining control pin, fivemeg, selects the clock speed. If a 10 MHz clock is used, fivemeg
should be low. This signal ensures that the postprocessing cycle generates 2.4j.s LUT programming cycles

for both a 5 and 10 MHz video sample rates.

§.2, Simulations of the Histogram Processor

Now that the histogram processor layout has been completely generated, simulations are run to ver-
ify that the circuit is functional. By extracting the circuit directly from the CIF file rather than from
schematics, the simulation will also verify that the layout is sound. The CAD utility ‘mextra’ is used to
extract the circuit from the layout. Transistor features and capacitances are represented in the resulting cir-
cuit.

The extracted circuit is passed as input to the switch level circuit simulator, ‘esim’. Test vectors are
then applied to the system, to check out the circuitry. First, the RAM is cleared, then a sample of video

data is applied. Finally, the data is read out, to verify the RAM contents.

The RAM is cleared during the post-processing cycle, when vblank is high. By forcing the field
input low, the RAM will be cleared as it is read out. The small test chip, ‘narrow’, has 4 bits of video input
data, and hence contains 16 locations which must be cleared. The processor outputs and clears 4 locations
every 800ns X 16=12.8us. The 16 locations are then cleared over 12.8us x4 =512us. If a 5 MHz
video sample rate is used, then at least 51.2jLs X SMHz =256 clock periods are required during the vertical
blank period to clear the memory. For the simulation, 270 cycles were given to clear the memory. The

results of the histogram calculation will verify that the RAM has been cleared.
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Now that the RAM has been initialized, the video data can be read in. As long as the vblank input is
low, the histogram will be calculated on the video input stream. The Ablank input is used to gate the video
data, histogramming input data only when hblank is high. For this test, one line of data is read in, consist-
ing of triplets of samples 0, 1, 2, 3, 0, 1, in order, as shown at the top of figure 5.1. A sliding time scale is
given for reference, representing 18 clock cycles at the video sample rate. The numbers in this scale

represent the video sample values.

The RAM bank selects, sel0 through sel 3, are delayed by three clock cycles from the corresponding
input. The RAM is actually read a cycle later, with the complementary outputs ramout [0-2]. Two cycles
later, the incrementer outputs complemented data to be written into the RAM. Notice that the histogram

datapath increments by two when the video data and hence the RAM address is repeated.

The histogram data can be observed during simulation on the outputs from the histogrammer, one
period after it has been written to the RAM. During actual use, this data will not be reliable, since the out-

put circuitry is intended for much slower operation.

After the video stream has been processed, the result can be read during the next post-processing
cycle. For the above example, the video intensities O and 1 occurred six times, and the values 2 and 3

occurred 3 times. The result of reading the video data is shown in figure 5.2,

The data can be read out of the RAM only once if the RAM is being cleared at the same time. As a
result, valid data is available from the RAM every 12th cycle at a § MHz sample rate, or every 24th sample
interval at the 10 MHz sample rate. The histogram incrementer datapath stores the current value after read-
ing or accumulating, so that it is stable for the slower output circuitry, including the scaling and saturating
logic.

The look-up table expects to receive four consecutive LUT values, followed by the address of these
four in the table. jl‘he signals addrO, addr 1, and outsrc¢ indicate which of these values is loaded at one
time. If oussrc is high, the address signals indicate which LUT register is to be loaded with the data on
outdata [0~7). If outsrc is low, outdata [0—5) provide the most significant six bits of the LUT addresses to
be loaded. In either case, the data is valid on the rising edge of the load signal.' The full cycle for down-

loading four values is repeated until all values are loaded into the LUT.
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Figure 5.1: Histogram Calculation Simulations
The timing diagrams in figures 5.1 and 5.2 were generated automatically from the simulator results,
and indicate the acmal functioning of the circuit. Since the circuit simulates as desired, it is ready for fabri-

cation, after design rule checks verify the integrity of the layout.
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6. Conclusion

Designing the Histogram processor with silicon compiler CAD tools offered many advantages over
the alternative of manual layout. The ability to parameterize a design is a big win, compared to redesigning
the layout of a similar circuit by hand. Also, fundamental changes can be made to a circuit with a fast wr-
naround. Debugging can also be simplified by first building a small test circuit for tracking down prob-
lems, and then merely specifying new parameters to generate the full size project. In addition, different

architectural changes can be evaluated, often with minimal modification of existing descriptions.

The overall design of the histogram processor, including CAD tool development, was often criticized
for taking longer than the design time for manual layout of similar circuits. Since new macrocells had to be
added to the library to support the circuit, some manual design and layout was required anyway. The
design effort for the histogram processor was in fact similar to that for other video chips, in that the same
module generators, Compile and Modgen, were used to make many of the macrocells. The difference
appeared at the system level, when the blocks were pulled together. The "manually” designed video chips
were assembled and routed by hand. For the histogram processor, a symbolic description at the system
level was used to generate the macrocells, and to connect them together. Most of the design time attributed
to the histogram processor was spent trying to adapt the CAD tools so that they could work together at the
system level. Writing the Connect program to unite Modgen, Compile and Flint proved to be a substantial
part of the project, since the latter three were originally written independently. Future projects promise to
have much more favorable design times.

On the whole, the histogram processor project demonstrated the advantages of using a silicon com-
piler for designing high speed digital circuits. The flexibility offered by the modified LAGER silicon com-
piler can be compared to that of a wire-wrap board, by offering a straightforward means for the designer to

change a circuit.
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Appendix A: Connect User’s Manual

Motivation

Over the last few years at Berkeley, several CAD tools were designed, aimed at automated layout.
The LAGER system, intended as a digital signal processor design tool, resulted in a variety of useful pro-
grams. Modgen, a tiling module generator, can assemble a large variety of macrocells from a simple
description. Flint, an interactive floorplanner, allows the designer to try a variety of floorplans. Flint uses a
symbolic description of the chip, and can handle the entire place and route task up to the final layout.

Another program, ‘compile’, is a flexible tool for generating bit sliced datapaths. Each slice of the
datapath can contain a list of functional blocks, which will be routed together as specified by the user.
Although not originally intended for use with the automatic floorplanner, ‘compile’ has evolved to fit in
with the system.

Simulation programs, such as ‘esim’, can be used to test a layout after it has been generated. Labels
in the layout file can be used to identify inputs and outputs in the circuit. To prevent confusion, the labels
should be meaningful, and consistent throughout the layout. The individual programs, however, had their
own conventions, occasionally resulting in naming conflicts, or assigning two names to one signal.

The objective of the Connect program is to take full advantage of the individual CAD tools, while
pulling them together into a generalized silicon compiler. Any macrocell oriented design should be able to
fit into the framework. Also, once a chip has been designed, a similar chip with different data sizes should

be realizable with minimal effort.

Terminology

To describe a chip symbolically, a variety of definitions should be clarified. The basic building
blocks of a system are the macrocells or modules. In general, macrocells contain other cells or macrocells.

To simplify the definition, all macrocells have rectangular boundaries.

The external connections to a macrocell are defined as "terminals”, which must be located on the
bounding box. The name of a terminal is defined when the macrocell is designed, and does not change

between different designs, aithough the number of terminals might vary. If a terminal occurs more than
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once in a given macrocell, it will be given an integer index, thereby supporting variable bus widths. Termi-
nals to be connected together are also given a common net number, which is usually assigned by a higher
level program. At least one destination macrocell is specified, assigning the net to a “cable”, defined
below. The macrocell generating programs also specify the exact location of the terminal on the macrocell
boundary. The terminals completely define the circuit interconnections while remaining independent of the
floor plan.

Routing between macrocells is constrained to rectangular channels. A macrocell can have only one
channel touching each side, whereas a channel can have several channels and macrocells adjacent to it.
Once the macrocells are placed on the floor plan, the channels are inserted to fill the space in between to

provide paths for all terminal interconnections.

Often, there are many possible paths for routing between macrocells, where a path is a series of abut-
ting channels. Rather than specify the path for each interconnection separately, nets are grouped together
into "cables”. Since a cable is defined by the macrocells at either end, the designer can specify where the
routing is to be done without reference to the terminal or net names. This helps reduce the confusion when

a designer is interactively floorplanning with Flint.

The Netlist Language for Connect

The file for defining the interconnections and hierarchy of a desired architecture uses a syntax like
that of the C programming language, however, it is not a C program. To allow parameterization, integer
variables with limited C style expression handling are supported, excluding arrays and pointers. The sup-
ported expressions are given in figure A.1, listed in the order of precedence.

These operations can be applied to integer constants or variables denoted by the "symbol” syntax. A sym-
bol is an unquoted character string of alphanumeric symbols, or a quoted string of any symbols, where

backslash * can escape the following symbol. Parentheses can be used to change the order of precedence.
The description of a chip begins with an optional header of parameter definitions. Values can be

assigned to variables at this time, and other parameters can be calculated. The syntax of this definition sec-

tion is shown in figure A.2. Once the parameters have been defined, the netlist can be specified. The direc-
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Figure A.1: Precedence of Operators.

parameter:
<symbol> = <expr> ;
| <symbol> ; Verify that the symbol is defined.

| { parameter_list }

parameter_list:
parameter
| parameter parameter list

Figure A.2: Parameter Definitions.

tory containing the Flint database is named in the argument to ‘design’. The hierarchy of a design is

described by the syntax in figure A.3.

design:
‘design’ ( <Flint hierarchy> ) statement

statement_list:
statement
| statement statement_list

statement:
{ statement_list )}
<symbol> = <expr> ;
<symbol> ;
Vif’ ( <expr> ) statement
‘if’ ( <expr> ) statement ‘else’ statement
. macrocell ( <Modgen-macrocell-name> ) cable
macrocell ( <Datapath-macrocell-name> , ‘datapath’ ) cable
macrocell ( <Flint-macrocell-name> ) statement

Figure A.3: Design Hierarchy Syntax.

By using either form of the "if" statement, entire sections of a design can be removed. For example, if
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RAM storage in a design is small enough.'a designer can choose not to use a second RAM macrocell. The
syntax definition of the statement illustrates the three types of macrocells, from the datapath compiler,
Modgen and Flint.

The Flint database requires the assignment of net numbers to the terminals of all macrocells. Rather
than specify net numbers, the designer can use the cable syntax to assign a net name to a terminal. This net
name can be the global signal name on a schematic, for example. The syntax, in figure A.4, goes further to
allow busses to be referenced by a single name. This allows parameterization of the bus widths, since

integer expressions can be used to index parts of a bus.

cable:
‘cable’ ‘(’ <Destination-macrocell-name> ‘)’ term net

| ‘{’ cable_list ‘}’
l ‘(’ \}l
term_net_list:

term_net
| term net term net_list
term _net:

<terminal-name> range ‘=’ <net-name> range ‘;’
| ‘{’ term_net_list ‘}’
range:

/* no range */
| ‘ [I <expr> \]I
| ‘[ <expr> V,’ <expr> ‘]’

Figure A4: Cable and Netlist Syntax.

The argument to ‘cable’, the terminal name and the net name are of the type "symbol” discussed earlier.

Notice that there are three forms for a terminal or net range. If no range is specified, this is the same
as the range "[0,0]". This is used for most one-bit signals. The range "[value]” is the same as
*[value,value]", and is used to attach one-bit terminals to a bus. If two values are given, both the terminal
and the net must have double ranges, and the difference between the ranges must be the same. For exam-
ple, the netlist assignment term_a({3,6] = net_g(4,7) is valid, whereas
term_a[3,6]=net_g[3,8] is ambiguous. The order that nets are assigned to terminals can also be

reversed. For example, the assignment
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counter_out {0,2])=int_address(5,3];

is the same as specifying

counter_out = int address[5]:;
counter_out{1l] = int_address([4];
counter_out (2] = int_address(3]:

Since the ranges can contain expressions, the program Connect will repart range inconsistencies, to
help identify mistakes in the netlist.
At this point, the designer can parameterize the net-list, and conditionally include macrocells. The

major task remaining is to pass parameters to the macrocell generators.

Flexible Macrocell Generation

The input files for the datapath compiler and for Modgen specify parameters for macrocell genera-
tion, but a different file must be generated for each type of macrocell. Hence a method must be devised to

generate the input files without losing the flexibility of each program.

The Connect program uses modified Modgen or datapath compiler input files, called template files,
to define all macrocells in a design. A template file is identical to a regular input file to either macrocell
generator, except for a variety of substitution commands. After reading and processing the netlist descrip-
tion file, the Compile program filters the template files and generates proper input files for the desired
macrocells. Aside from filtering the files, Compile moves the resulting input file to the correct location in'
the Flint directory tree. This means that all of the template files and the netlist file can reside in the same

directory, and several resulting Flint directory trees can start in the same directory.

Modgen Template Commands

To generate a macrocell with Modgen, a processor description language (PDL) file must be gen-
erated as input to Modgen. The PDL has a LISP-like format to define module and terminal features. Con-

sider this description of a RAM bank:



{module
(name raml)
(type ram hist)
(width 10)
(words 4)
)
(term (name din{[0]) (net 11) (cable prihistdata) )
(texrm . . .

Figure A.S

This PDL file describes a RAM which is to be called "ram1”, generated by using the "ram_hist” module
geflerator. This file explicitly specifies a word width of 10, an address of 4 bits. The module description is
followed by terminal information, all of which is completely dependent on the netlist data. Now, compare

the PDL file above to the corresponding template file:

#delimiter &
(module
(name raml)
(type ram hist)
(width &widthé&)
{(words &wordsé&)
)
#pdlterm
Figure A.6
Assume that the variables "width" and "words" have been defined in the header of the netlist file (see the
previous section). Then, the Connect program will substitute an ascii integer for "&width&" and
"&words&". Then, the substitution command "#pditerm” will be replaced by all of the terminals which are
defined in the netlist. The netlist file contains sufficient information so that Connect can fill in the terminal
entries completely. Hence, all features of Modgen can be used without requiring that the designer keep

track of the confusing terminal information.

Datapath Compiler Template Commands

The datapath' compiler has an input specification which is analogous to the PDL file used by Modgen.
The first part of the file defines the terminal information, much like the second half of the PDL file. Con-

sider the following excerpt from a datapath description:
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LEFT
extaddr 58 inpads
countaddr 62 prlcontrol|counter2

RIGHT
ramaddr 21 prlhistdata

Figure A.7
For each side of the macrocell, the terminals are listed with relevant information. All datapath slices will

have terminals on the right and left with the same name and different indices, corresponding to a data bus.
The signals on the top and bottom of the macrocell are not duplicated, since they are usually control sig-
nals. The terminal name is followed by the net number of the first terminal of that name. Then an
expanded cable path is given. All of this information can be generated automatically, and the template file
would look like this:

o o o

LEFT
#term extaddr
#term countaddr

RIGHT
#term ramaddr

Figure A.8

Again, the Connect program fills in the details. The remaining problem is to parameterize the width of a
datapath. The designer defines the width by listing the slices which are to be assembled, rather than by giv-
ing a number. To handle this, one more command has been added to conditionally include a template line
in the datapath description file. This is illustrated in figure A.9.
The #if command copies the following template line to the destination datapath description file if the
expression is true. The expression can only compare variables or constants, and the six arithmetic com-
parison operators épply (‘==’, ‘I=’, ‘<’, *>’, ‘>=’ and ‘<="). Figure A.10 shows the result of reading this
template file if "size" is set to 6 in the header of the netlist file.

Since the datapath compiler was not originally designed as part of the LAGER system, some net

assignment inconsistencies can result. When the datapath compiler assigns nets to terminals, it assumes



ORGANIZATION
CNT NODATA
CELLDATA
CELLDATA
CELLDATA
CELLDATA

#if size > 4
CELLDATA

#if size > 5
CELLDATA

#if size > 6
CELLDATA

#if size > 7
CELLDATA
GND NODATA

Figure A.9: Datapath Width Parameterization.
ORGANIZATION

CNT NODATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

GND NODATA

Figure A.10

that the nets for a given terminal name are numbered sequentially. In general, this may not be true, and can
cause fatal wiring mistakes. To solve this problem, the Connect program can be used to read the hardware
description language (HDL) file which results from running the datapath compiler. The HDL file is the
complete macrocell layout description. By reading the terminal name in the HDL file, the Connect pro-
gram can determine the correct net number, and fix the file if necessary. Aside from fixing the net number,
this filter mode will also substitute the net number for the terminal name, in the form "net_##", for debug-
ging purposes. This filter is included in a shell script, "Compile”, which runs the datapath compiler ‘com-
pile’, and fixes up the output. The final result from the datapath compiler is then virtually indistinguishable

from the output of Modgen.
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Using the Connect Program

After the netlist file and the templates have been prepared, the Connect program is ready to go. The
following command should be run in the directory containing the template files and the nedlist file
netlist.ch:

Connect netlist.ch
If no efrors occur, the subdirectory named by the parameter ‘design’ should exist in the current directory.
The PDL and datapath (*.dp) files should be in the desired places. The next step is to run Modgen and
Compile on the appropriate files, to generate the HDL files. At this point, this must be done manually, or in
a shell script. This is not done by Connect since a proposal was once made to do tlné in Flint. Once the

module generators have been run, the Flint interactive floorplanner can be run, and the design is complete.

After the chip has been successfully generated by Flint, the actual layout is distributed through
several subdirectories in the Flint hierarchy. To flatten out this information, Connect can find the layout

files, and place a symbolic link to each of them in the directory <design>/Layout:

Connect -f netlist.ch

If the layout files are in the KIC format, then the .KIC file only needs to include the datapath and Modgen
CELL libraries in its search path. This command is usually needed only once, since the links to the layout

files remain whenever Connect or Flint are rerun.

Debugging Aids

The module generators Compile and Modgen place labels in the layout files indicating the location of
nets or signals. A circuit extractor, such as ‘mextra’ will use these labels where possible to identify nodes
in the extracted circuit. As a convention, Modgen generates labels of the form "net_##", placing the
integer net number in the name. Net numbers are used instead of terminal names, since macrocells can
share common terminal names. This can cause one circuit node to have two names, and also two circuit
nodes might share the same name. Both cases could confuse a circuit extractor, and could cause unpredict-
able results when simulating a circuit using an existing set of test vectors. The ‘compile’ program normally

places the terminal names in the layout file, and the Compile script corrects for this by using the Connect



program to filter the layouts.

Since net numbers have no obvious relationship to the circuit schematic, the Connect program can

generate a list of the net names associated with the net numbers:

Connect =n netlist.ch > netlist.alias

The resulting list is suitable as input the the ‘esim’ or ‘mosim’ simulators:

This assigns the actual net or signal name to a node, allowing the designer to refer to actual signal names

when simulating the circuit. Simulator command files with test vectors can be similar for several different

net_1 ramout[0]
net_2 ramout[1]
net_9 ramout [8]
net_10 histout[0]
net_11 histout[1]
net_42 saturated
net_43 readml

versions of a given circuit.
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Appendix B
The Connect Program: Internal Representation

Data Structures

The Connect program uses several internal data structures to organize the data from the Connect
input database, detailed in the Connect User’'s Manual. Modules, macrocell terminals, cables and nets each

have associated data structures. Figure B.1 illustrates the relationship between the structures.

[moDULE ) MODULE
next module /

child module (Child)

name a"A"

gext net

name ="A_TO_B"
min index =2

max index =9

start net =135

siep o+l

g
135
136
137
138 Macrocel
139 B
140
141
142

Net: "A_TO_B"

Macrocell

Figure B.1: Internal Data Structures in Connect.

Modules, or macrocells, are stored in a tree data structure, to support the nested hierarchy of macro-
cells. Modules which share a single floorplan are siblings in the tree. Siblings are organized in a linked
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list, with each referring to the ‘next’ one. Similarly, the child pointer points to a list of children. In the his-
togram processor, the ‘control’ block has the children ‘counterl’, ‘counter2’, ‘timingpla’ and ‘fsmsync’,
and has several siblings, including the RAM and two datapaths. The module name is also recorded so that
cable paths can be built up later. The cable entry points to an entry in a list of cables, which is filled in
after the Connect input file has been read. Also, to identify which module generator is to be used, the
‘type’ of macrocell is stored as a choice between Modgen, Compile or Flint.

A linked list containing terminal information, ‘terminal list’, is stored for each module which has no
ch;ldren. In general, a terminal on the edge of a macrocell can be a single signal or a bus of several sig-
nals. The elements of each bus are indexed so that they can be referenced individually, or in groups. The
purpose of each terminal structure in the linked list is to index all or part of such a macrocell terminal, and
several such structures may refer to sections of the same terminal. Each structure contains the name of a
terminal and 2 minimum and maximum index range.

To attach two or more terminals together, they are assigned to a common net name, which is stored
in the structure ‘net’. Each terminal structure can refer to only one net, where a net, like a macrocell termi-
nal, can be a signal or a bus. In general, a terminal can connect to any consecutive elements of a net, in the

following form:

term name (a,b] = net_name[c,d];
Since the named net may have a larger range than that indicated in the square brackets, the terminal struc-
ture must also store the start of the net range, as ‘start index’. In the above example, the start index is set to
the smaller of c and Q If the terminal and net ranges are in the opposite order from one another, the ter-
minal will be connected to the net in reverse order, a condition stored as a ‘step’ direction of -1 in the ter-

minal data structure.

The net structure is similar in form to the terminal data structure. The name and index range of the
net are stored. Since several terminals may refer to the same net, the minimum and maximum range index
values must be adjusted to include all ranges given for the named net. Once all of the nets have been
assigned, integer net numbers are generated, one for each indexed signal. The lowest net number for each

net structure is stored in ‘start net’. The last feature in the net structure is the ‘use’ flag, which indicates



-57-

whether or not a net is of interest at run time. For example, when debugging, the designer may wish to list
only those nets attached to a selected group of macrocells (see the -g option for the Connect program).
This is done by marking the desired nets as they are referenced, and then reading the ‘use’ flag to decide

whether or not a net is to be listed.

Cables

The Flint floorplanner uses a mechanism called a ‘cable’ to refer to macrocell interconnections at a
high level. To route the cable of all wires which connect from a side of one macrocell to a side of another,
the designer can interactively select the two sides, and then sequentially select the channels through which

to route the cable.

In the Connect input file, cables are defined by giving the macrocell names at each end of a net.
Flint, however, requires more than the macrocell names; the path to a macrocell is also needed, since each
macrocell has a different directory in the Flint design file hierarchy. The path to a macrocell starts at the
root of the Flint directory tree for a given design, and a vertical bar, [’, delimits the list of directories which

must be traversed to find a desired macrocell.

After the module data structures have been initialized, the tree of modules is traversed. The cable
paths are built up at this time, and stored in the cable structure ‘path’ element. Once the paths are set up,

Connect uses these paths to generate input files for the module generators.

For each macrocell which does not contain other macrocells, the Connect program generates
Modgen or Compile input files. For each terminal in a macrocell, at least one destination macrocell must
be named, to completely specify a cable. For the current versions of Flint, several rules must be followed

to avoid erroneous cable designations.

If the path to a destination module is too long, connections between two blocks can become unneces-
sarily complicated. Consider, for example, the cable between the macrocells pr{control|counterl
and pricontrol|timingpla. Although this cable can be entirely within the control floorplan, the
paths include the processor macrocell, ‘pr’. As a result, Flint may not actually connect them together

within the “‘control’ macrocell, and will route this signal to the boundary of the control macrocell. By elim-
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inating ‘pr’ from the path of each macrocell, these macrocells will be routed together within the floorplan
of ‘control’. This problem can be solved in general by removing the path which is common to both macro-

cells, with the exception of the parent containing both.

If a path is too long, a cable may not be generated. The two macrocells ctrlpads and
prlcontrol|timingpla illustrate this problem. When routing the full chip, Flint recognizes ‘pr’ as a
black box containing ‘control’, and knows nothing about the ‘timingpla’. Hence, it rejects the cable
between these two blocks. To solve this problem, the ‘timingpla’ is removed from the path, thereby satis-
fying Flint.

The cable path restrictions, which are adjusted by the Connect program, come about since Flint was
originally designed to support two levels of design hierarchy. The procedure for generating a proper path
to a destination requires comparing the full source and destination paths. First, the common part of a path

name is eliminated, and the result is truncated to two macrocell names if more than two remain in the path.

This cable generation scheme prevents cables from being routed outside of the lowest macrocell con-
taining both the source and destination. If a signal which connects two macrocells together is also to be
routed beyond the parent of those macrocells, one of the macrocells within the parent must refer 0 a
macrocell beyond the parent, otherwise no connection will be made.

Normally, each cable will be described twice, once at each end. If more than two terminals are to be
interconnected, some cables may be referenced only once, which presents no problem, as long as the cable

connects to a sibling macrocell.
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Appendix C. Listings of the Connect Program

The input script for the UNIX ‘make’ program, for automatic compilation of the
Connect program.

Definitions of the internal data structures and global variables for the Connect
program.

Definitions of variables common to several of the Connect routines.

This is the main C program for Connect, where command line parsing is handled.
Once a database describing a chip has been read in, this code generates the Flint
directory tree.

This code filters PDL and datapath input description templates, and generates
Modgen .pdl and datapath compiler .dp input files. Variable and terminal infor-
mation substitutions, as well as conditional line exclusion are implemented here,
to support parameterization of a design.

This file provides the routines for handling the macrocell, cable, terminal, net and
numeric variable data lists.

These routines traverse a Flint directory tree, and link all layout files to the sub-
directory Layout. This simplifies the testing, debugging and fabrication stages in
the development of a circuit.

C routines for operating on lists are included here. Functions for appending and
sorting lists are provided.

These filters written in C use the database read from the input description for a
design to comrect inconsistencies in the KIC layout files, and the hardware
description language (HDL) files.

This file is input for the lexical analyzer compiler, LEX, which produces C code
for characterizing input data.

This file describes the syntax of the design input file, and is compiled by YACC
to generate a syntactic analyzer in C. The result is used in conjunction with the
LEX output to parse the design input file.
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Appendix D. Listings of Template Definitions for the Histogram Processor.

addrdata.tem

clocks.tem
counterl.tem

counter2.tem

ctripads.tem
delayl.tem
fsmsync.tem
histdata.tem
inpads.tem
outpads.tem

power5.tem
raml.tem
ram2.tem
timingpla.tem

The address datapath detects repetmons of video samples, and selects the source

for the RAM bank address.

This template describes the pair of unbuffered clock pads.

This counter generates the postprocessing timing by dividing the sample clock by
four or eight.

This macrocell includes two counters separated by a delay in the carry line. The
first counter selects the bank of the RAM for postprocessing, while the second
counter indicates the address within each bank. These counters are only used
during the post-processing cycle.

This group of pads provides synchronization and programming signals for the his-
togram processor.

This delay block provides four delays for aligning the control signals with the
pipelined datapaths.

This PLA macrocell controls the synchronization of the histogram processor with
the external circuitry. RAM bank decoding is also handled here.

This datapath performs the incrementing when the histogram is being calculated.
During post-processing, the data can be accumulated, and the result can be scaled

by a power of two using barrel shifters.

The video rate intensity data enters the processor through these pads.

These pads program a look-up table, providing internally generated data, address
and control signals.

This pad provides Vdd to the chip.

These are the RAM banks in which the histogram calculation is stored.

The outputs of counterl are decoded by this PLA, to generate post-processing
timing signals.
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addrdata.tem

*
Histogram processor address datapath
Input: Off~chip RAM address
On—chip RAM address from counters
Output:  Selected RAM address
Indication of equal consecutive addresses

10123 185

*/

CONTROL

- Vdd 0 vdd

GND 0 GND
phl O phil
ph2 O phi2

LEFT

#term extaddr

fiterm countaddr

RIGHT
fiterm ramaddr
#term extdelayed

BOTTOM
#iterm equal
TOP
fiterm selsrc
ORGANIZATION
CNT NODATA
CELL DATA
CELL DATA
CELL DATA
CELL DATA
#if size > 4
CELL DATA
#if size > § .
CELL DATA
#if size > 6
CELL DATA
#if size > 7
CELL DATA
#Mif size > 8
CELL DATA
#if size > 9
CELL DATA
GND NODATA
SLICE

'é
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* Flint pads */
> sideleft (ind=countaddr,out4=countaddrT,out=extaddrT)

I* delay the address */
> delay (‘in’="extaddrT")

I* compare consecutive addresses */
> equal (“inb’="extaddrT",B /‘equal’=‘equalundel’)

r* Delay the data and the comparison result. */
> delay (out=extdelayedT,B /in‘="equalundel’,B /‘out’="equal”)

* select input source */
select (‘in2’=extdelayedT, in"="countaddrT’, T /’sel = "selsrc”)

r* drive the address outputs */

> buffer
> sideright (out=ramaddr,in2=extdelayedT,out2=extdelayed)
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clocks.tem

(module (name clocks) (type padclk) (clock))
#pditerm



counterl.tem

counterl.tem

{(module
(name counterl)
(type counter)
(loadable)
(value x00)
(design

)

(count 3)

#pditerm
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counterl.tem
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counter2.tem
(module
(name counter2)
(type counter)
(notloadable)
(design
(count 4)
(delay)

(count $counter3width$)

)
#pditerm
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ctrlpads.tem

(module (name ctripads) (type padclk) (input 9))
#pditerm
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delayl.tem

(module (name delayl) (type delay) (length 3) (width 4)
(design (array
DDDD
xDxx
DDxx

)
#pditerm

delayl.tem
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fsmsync.tem

(module

(name fsmsync)
(type fsm_pr)

(in 15)

(out 13)
(numclocked 14)
(minterm 29)
(minimize)
(input—plane (array

)]

010XXXXXXXXXXXX
01 I XXXXXXXXXXXX
0011xxxxxxxxxx0
0011xxxxxXXXXX 1
X010XXXXXXXXXXX
X00XXXXXXXXXXXX
101 IXXXXXXXXXXX
11 1XXXXXXXXXXXX
110XXXXXXXXXXXX
xx0xx 10xxXXXXXX
xX0xX0XXXXXXXXX
XXIXXXXXXXXXXXX
xx0xx110xxxxxXX
XX0X I XXXXXXXXXX
XXXX0XXXXXXXXXX
xxxxxx1xxxxx00x
xxxxxx1xxxxx10x
xxxxxx1xxxxx01x
Xxxxxx]xxxxxl1x
xxxxxx0x000xxxx
xxxxxx0x010xxxx
xxxxxx0x001xxxx
xxxxxx0x011xxxx
XXOXXXXXXXXXXXX
xx1xxxxxxxx0xxx
Xx1xxxxxxxx1xxx
XX0XXXXXXXXXXXX
xxIxxxxx0xxxxxX
XX 1XXXXX 1 XXXXXX

(output-plane (array

1000000000010
1100000000010
0100000000001
1100000000010
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/* negative logic outputs */

fsmsync.tem



fsmsync.tem

#pditerm

)

0001000000000
0000100000000
0000100000000
0000010000000
0000001000000
0000000100000
0000000010000
0000010000000
0000001000000
0000000100000
0000000010000

0000000000100

0000000001000
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fsmsync.tem
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ground.tem

(module (name ground) (type padclk) (ground))
f#ipditerm
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histdata.tem
,t
Histogram datapath

Input: RAM data
Output: to RAM and output circuitry

9/23 185

*

CONTROL
Vdd 0 vdd
GND 0 GND
phl 0 phil
ph2 0 phi2

RIGHT

fiterm Shifted

LEFT

{iterm Inl

fiterm Out

#fterm Address

BOTTOM
fiterm Zero
#term hold
#iterm outsel
#term shsat
fiterm resetc
#term zeroaccum
TOP
fiterm shiftl
#term shifi2
#term shift4
#term shift4a
#term cin
fiterm accum
ORGANIZATION

CNT NODATA
#if width > 16

ODD DATA
#if width > 16

EVEN DATA
#if width > 14

ODD DATA
#if width > 14

EVEN DATA
#if width > 12

ODD DATA
#if width > 12

EVEN DATA
#if width > 10

histdata.tem
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ODD DATA
#if width > 10

EVEN DATA
#if width > 8

ODD DATA
#if width > 8

EVEN DATA
#if width > 6

OoDD DATA
#if width > 6

EVEN DATA
#if width > 4

ODD DATA
#if width > 4

EVEN DATA
#if width > 2

ODD DATA
#if width > 2

EVEN DATA

ODD DATA

LSB DATA

GND NODATA

SLICE
I* delay the RAM output */
Inl’

histdata.tem

> sideleft (in2=Out,out2=0ut,in3=Address,out3=address)

> minusl

> delay

> ‘addin’

“selin’

> selectl (T /“sel’="accum)

> zero (B/‘zerobar’="2zer0")

* RAM data is inverted */
{* delay the RAM data, */
/* and send it to the adder */

I* select the adder input */
* zero it if desired */

r* Add RAM data & selected data */

> uadder (‘inb"="addin",T /"cin“="cin’,B /‘pof "= "addsat")

> mux2tol (“inb’="selin’,B /‘in_to_out’="hold")
> zero (B /‘zerobar’="zeroaccum’)

> delay  (“out’=’selin’,B /‘in"="addsat")

> driver (“out’=‘out’,B /reset=resetc)

‘selin”

> shift01 (T /’shiftl’=shift1")
> shift02 (T /°shift2’="shift2")
> shift04 (T /’shift4‘="shift4")

r* hold output value */

> shiftQ4 (T /°shift4°="shift4da’,B /"satoutb’="shsat")

> usatregister (“out’="shout”)

mux2tol (“in“="shout’,’inb’="address’,B /“in_to_out"="outsel")

> sideright (out=Shifted)
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inpads.tem.

(module (name inpads) (type padclk) (input $size$))
#pditerm
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outpads.tem

{module (name outpads) (type padclk) (output 13))
#pditerm
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powerS.tem

(module (name powerS) (type padclk) (power))
#pditerm
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raml.tem

#idelimiter &
(module (name raml) (type ram_hist) (width &width&) (words &words&) )
#pditerm
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ram2.tem

(module (name ram2) (type ram_hist) (width $width$) (words $words$) )
#pditerm )



timingpla.tem

timingpla.tem

(moduie

#pditerm

(name timingpla)

(type fsm_pr)
(numclocked 7)

(in 8)
(out 7)

(minterm 18)

(minimize)

(input—plane (array

)

0010xxxx
0101xxxx
1000xxxx
1011xxxx
1110xxxx
00xxxxxX
0111xxxx
100xxxxx
111xxxxx
11x1xxxx
010xxxxx
01x0xxxx
0001100x
0100100x
0111100x
1010100x
0000111x
XXXXxxx1

(output—plane (array

1000000
1000000

- 1000000

»

1000000
1000000
0110000
0100000
0100000
0111000
0111000
0010000
0010000
0000100
0000100
0000100
0000100
0000010
0000001
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timingpla.tem



-125 -

Appendix E. Net Lists for the Histogram Processor.

histogram.ch
{I‘ Description of the Histogrammer macrocells and blocks */

width = 18;
size = 8;
wmax = width-1;
smax = size -1;
banks = 4;
bankbits = 2;
words = (1 << size) / banks;
y counter3width = size — bankbits;

/* The Histogram processor */ .
design(histogramB)P{’ histogram8
macrocell(pr) {
macrocell(histdata,datapath) {
cable(raml) {
In1{wmax,0]=ramout[0,wmax];
Out{wmax,0]=histout[0,wmax];

}
cable(addrdata) {
Address[smax,0]=ramaddr{0,smax];
Address{width—1,size] =
histdataNULLO[0, width—size-1];
accums=vblank;

}

cable(outpads) {
Shifted{width-1,8])=histdataNULL1[0,width-9];
Shifted(7,0]=outdataf0,7];
shsat=saturated;

}

cable(fsmsync) {
2eroa; H
cin=inclor2ml;
resetceresetcarry;
Zeroaccumeresetaccum;

}
cable(delayl) {
hold=holdm2;

}

cable(ctrlpads) {
shiftl=shiftl;
shift2=shift2;
shiftd=shiftd;
shift4a=shiftda;

}
cable(timingpla) {
; outsel=outsrc;

}
macrocell(raml) (
cable(histdata) {

din[wmax,0]=histout[0,wmax];
dout[wmax,0]=ramout[0,wmax];
din[width, width+wmax]=histout[0,wmax];
dout[width,width+wmax]=ramout{0,wmax];
address[0,smax—2)=ramaddr{2,smax];

}
cable(fsmsync) {
¢ y?elauselo;
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selb=sell;
clear{O]=clear;
clear{1]=clear;
}
macrocell(ram2) {
eable(hnstdata) {
din[wmax,0]=histout[0,wmax];

dout{wmax,0]=ramout{0,wmax];
din[width,width+wmax]=histout[0Q,wmax];
dout[width,width+wmax]=ramout[0,wmax];
address[0,smax—2]=ramaddr{2,smax];

}

cable(fsmsync) {
sela=sel2;
selb=sel3;
clear[O]=clear;
clear[1]=clear;

}
macrocell(addrdata, datapath) {
cable(inpads) {

extaddr[0,smax]=extaddr[0,smax];

}
cable(counter?) {

countaddr{0,1] = addrdataNULL[O,1];
countaddr{2,smax]=count3{0,smax—2];

Z:able(histdata)

ramaddr[0,smax]=ramaddr{0,smax];

cable(fsmsync) {
y::ualnequal

extdelayed{0, l]aextaddrlsb[o 1);

extdelayed[2,smax] =

}
cable(ctrlpads)
selsrcavblank;

}
macrocell(delayl) {
cable(fsmsync) {
in[O}=holdm1;
in[1)=inclor2;

}

cable(timingpla)
in(2]=load;

cable(ctripads)
in[3)=hblank;

cable(histdata) {
out[0]=holdm2;

out(1]=inclor2mi;

}
cable(outpads)
out[2]=loadml;
cable(timingpla)
; out[3}=hblankm1;
macrocell(control) {
macrocell(fsmsync) {
cable(fsmsync) {

cable(addrdata)
cable(counter2)
cable(ctrlpads)
cable(delay1)

cable(fsmsync)

dataNULL{[2,smax];

fsmin[0]=s1;
fsmin[1}=count; }
fsmin([2]=vblank;
fsmin[3]=stop;
fsmin[4]=field;
fsmin{S]=hblankm];
fsmin[6]=h1;
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cable(addrdata)
cable(timingpla) {

cable(ctlpads)
cable(addrdata)
cable(timingpla)
cable(fsmsync) {

cable(histdata)
cable(raml)
cable(raml) {

cable(ram2) {
cable(delayl)

cable(histdata)
cable(histdata) {

}
macrocell(timingpla) {

cable(counter?)

fsmin[0,3]=count2[3,0];

cable(counterl)

fsmin[4,6]=count1{2,0];

cable(timingfpla)
smin[7])=outsrc;
cable(delay1)
out[O)=load;
cable(outpads) {
out[1]=addr0;
out[2]=addr1;

iable(histdata)
bl (fsmsynog;B{]‘omm;
cable
out[4]=hold;
out[5]=reset;

}
cable(outpads)
out[6]=addr2;

macrocell(counterl) {
cable(ctrlpads)
load=fivemeg;
cable(fsmsync)
‘cin*‘=count;
cable(timingpla)
out[0,2]=count1[0,2];
cable(counter2
cout=coutl;

macrocell(counter2) {
cable(counterl)
‘cin*“=coutl;
cable(timingpla)
out[0,3]=count2[0,3];
cable(addrdata)

histogram.ch

fsmin[7]=equal;
fsmin[8]=hold;
fsmin[9]=addr0;
fsmin[10]=addri;}
fsmin[11]=read;
fsmin[12,13]=extaddrlsb[0,1];
fsmin[14])=reset;
out[0)=s1;

out[1]=count;

out[2]=h1; }
out{3)=inclor2;
out{4]=clear;

out[5])=selQ;

out[6)=sell; }
out[7]=sel2;

out[8]=sel3; }
out{9]=holdm1l;
out{10]=readm]l;
out[11]=resetcarry;
out[12]=resetaccum; }

out[4,4+counter3width-1] =
count3[0,counter3width-1];

cable(fsmsync)
couts=stop;



histogram.ch - 128 - histogram.ch

}
/* Input pads *!
macrocell(inpads)
cable(addrdata)
out[0,smax] = extaddr[0,smax];
I* Output pads */
macrocell(outpads) {
cable(histdata) {
in[0,7])=outdataf0,7];
; in[12]=saturated;
cable(delay1)
in[8)=loadm1;
cable(timingpla) {
in[9]= 5
in[10)=addrl;
in[11)=addr2;

}
/* Control pads */
macrocell(ctrlpads) {
cable(histdata) {

out[Q)=shiftl;
out[1]=shift2;
out[2]=shift4;
out[3]=shift4a;

}

cable(addrdata)
out[4]=vblank;

cable(delayl)
out{5]=hblank;

cable(fsmsync) {
out[6]=field;
out[7])=read;

zzable(counterl)

) out[8]=fivemeg;

1* Power, ground, clocks */
macrocell(powerS) { )
macrocell(ground) { }
macrocell(clocks) { }
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Appendix F. Layout Examples of the Histogram Processor

The incrementing and accumulating datapath of the histogram processor. The histogram
and post-processing calculations are handled in this macrocell, which includes the output
scaling and saturation logic.

The address source select logic. External or internally generated addresses are directed
to the RAM banks and the control logic from this macrocell.

One of two RAM banks. Each RAM bank includes the simultaneous read-write logic.
Each macrocell contains two mirrored banks, sharing the row select logic.

The control macrocell, generated by Flint, consists of two PLA’s and two counter
macrocells. The timing for the sample rate histogram calculation, and the slower post-
processing operations is generated in this section.

The complete histogram processor, with pads. This version can calculate the histogram
of an image with 512 x 512 pixels, with 256 intensity quantization levels (eight bits) per
pixel.
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The ‘control’ block, with two PLA’s and two counters.
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The Complete Histogram Processor, for a 512 x 512, 8 bit pixel image.
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