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1. Introduction.

Fully automated layoutof VLSI circuits has beendemonstrated as aneffective method fordesigning

custom digital signal processing circuits for a variety of audio applications. This works well for audio

applications where one basic architecture can be used as a framework for many different tasks. Forvideo

rate applications, with sample rates around 5 to 10 MHz, a differentarchitecture may be needed foreach

job, to take advantage of parallel processing. As aresult videorate processors are often assembled largely

by hand. The purpose of this paper is to describe anattemptto designa video rateprocessor with minimal

manuallayout effort using tools in LAGER, anautomated layout system developed for audioDSP applica

tions [5].

For audio applications, using LAGER can be compared to using an off the shelf DSP chip. Both

have ROM and RAM for programs and data, and each has a pipelined ALU. To use them, a machine-

language program can be written, assembledand debuggedon a host system. For an off the shelf part this

program is then loaded into the chip, and the application is tested. LAGER, however, allows the user to

specify characteristics of the architecture, such as the size of RAM and ROM, or whether a sub-program

counter is needed. In both cases, a single ALU is used to perform all of the computations. With audio

sample rates from 8 KHz to 40 KHz, and a clock rateof 2 MHz, the processorcan perform from 50 to over

200 instructions per sample. Thus a single basic architecture can be used for many audio applications.

Video digital signal processing circuits cannot take advantage of sequential processing like their

audio counterparts, since the clock rate often equals the sample rate. In this case, the user needs to be able

to programthe architecture of the system. Since this often means redesigning the chip from scratch,some

may criticize that it is easier and faster to design andmanually assemble the chip. However, if a sufficient

hardwaredescription is given, basic circuit modificationscan be made as fast as one might change the pro

gram foran audio DSPchip. In thecaseof manual layout such a change may takeseveral daysinstead of

a matter of minutes, and is more likely to be error prone.

This paper will begin by discussing the Video Histogrammer application in section2, describing the

desired features of the circuit In section 3, the specialized architecture will be described, discussing how

the design waschosen from avariety of alternatives. In section 4, therelationship between theheirarchy of



the CAD tools and the heirarchy of the histogrammer is discussed. A vanety of resulting circuits arethen

shown in section 5.
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2. What is a Video Histogrammer?

2.1. The Histogram.

Manyimage processing techniques usestatistical information aboutan image to improve the quality

or contrastof an image. Oneof the morecommonly usedstatistics is the histogram, whichis an estimation

of the pixel intensity distribution over a selected portion of an image.

Consider a discrete-time system with finite length signal 5(n), where 0<n £N, and the value of

5(n) is one of/ discrete values,S(n)e {0 1-I}. Then, the histogramH(i) of the signal S(n) can be

calculated as follows:

»5bM): otherwist

The histogram of a signalcan be thoughtof as an estimateof the probabilitydensityfunction p (i) of

the signal,

p(i) =Prob{S{n) =i) = jjHii) 0£i </, (12)
Q£n<N

The calculation of the histogram can be thought of as selectively incrementing one of / counters,

//(0) through //(/-l). All of the counters are reset to zero before the frame of video data starts. When a

pixel of intensity i is received, the counter H(i) is incremented. When the frame has been completely

scanned, the valuesstored in the countersrepresent the histogramof the signal.

A minimal implementation of of a histogram processorshould be able to calculate and downloadthe

histogram of an image, once per frame, or every other frame if the image is interlaced. Also, circuitry

should be included to support HistogramEqualization for image contrast enhancement discussed in the

following section.

12. Histogram Equalization

Histogram equalization or histogram flattening is a method for improving image contrast by chang

ing the pixel intensities of an image to result in a roughly equal distribution of all intensity levels [1].



Ideally, this means that the probability density function, peqV), of the equalized signal should be constant

To generate the equalized video signal 5£C(n) starting from the image 5(n), the histogram is first

evaluated. Then, the probability density function p(i)is generated by scaling the histogram coefficients as

described in the previous section. From p(i), an approximation of the probability distribution function

(PDF) P (i) can be found:

i

P(i)=^p(j) 0£i<I (2.3)

Now, the function P(i) is applied to each value of S(n), to generate a new image,

Seq(.i )= P(S(n)). This signal, 5fC(n), has the desired property that itshistogram is flattened, resulting in

an equalizeddistribution of pixel intensities.

In a systemwithdiscrete intensities, thehistogram of SEQ(n) willrarely be perfectly flat for reasons

to be mentioned later. To show how theequalization comes about consider a continuous system, where

the image S(n) is represented by the random process S, withnon-discrete pixel intensities. Similarly, let

Seq represent the equalized signal Seq(/i). LetP(i) and PeqV) berepresented respectively by the con

tinuous PDF's Ps(s)and PSjb(j), which are defined below:

Ps(s)=Prob{S<s} (2.4)

Ps^s)^Prob{SEQ <s) Q£s<\ (IS)

The range of s in the second equation is restricted since 0 £ Ps(s) < 1 for any real s by the definition of a

PDF. As in the discrete case, the PDF Ps(s)is applied to the original signal S to generate the equalized

signal, Seq = Ps(S). Substituting for Seq in equation 2J, thedensity function of theequalized curve can

be expressed in termsof theoriginal signal, S:

Ps(s)=Prob{Ps(S)<s} OZs <1 (2.6)

To simplify further, assume that Ps(?) is a continuous function, with a one-to-one mapping from the real

line to the real line, with a well-defined inverse,P s7 (.):

= Prob{S<P&{s)} Q£s<l (2.7)



Substituting the definition ofP s(/) fromequation 2.4,we get:

Ps„(s)=Ps(P$?(s)) (2.8a)
= s 0£s<l (2.8b)

The probability density of the equalized signal, in equation 2.9, is constant since Ps„ is linear. This is

analogous to a perfectly flathistogram.

psjs)=l OZs <1 (2.9)

In the discrete quantization case, deviations from the ideally flattened histogram are caused by

discontinuous nature of the estimated PDF. In the derivation above, />$(•) was assumed to be a one-to-one

function, to justify the relationship Ps(P&(s))=s. In the discrete case,this equalitywill only be approxi

mate. Two artifacts result from this non-unique mapping. When two or more adjacent intensityquantiza

tion levels are mapped to one level, some informationis lost In the opposite case, two adjacentintensities

can be mapped to well-separated intensity levels. This results in contouring in the image. Contouring is

visually distracting, and introduces edges into an image which can confuse attempts to find and trace the

desired edges in an image. Nevertheless, histogramequalization is useful for visually enhancing the con

trastof an image.

13, Other Applications of the Histogram.

The histogram of an image, by itself, has several applications in image processing. In an environ

ment where lighting conditions may vary, the histogram provides lighting information for a scene. This

informationcan be used to adjust external lighting, or it can be used to adjust the dynamic rangeof the

camera. This can enhance the quality ofother recognition schemes.

If the histogram can be taken over arbitrary regions of an image, the results can aid the process of

image segmentation [2]. A segment in an image can represent a single object or part of anobject If the

histogram of a region has a well-defined isolated peak, the pixels with intensities around that peak can

identify one or more segments. By repeatedly subdividing regions of an image andthresholding, the seg

ments of an image can be identified with more detail.
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A histogram processor should be able to perform all of the above tasks, without extensive external

support One objective of this project is to perform the histogram equalization function with two chips,

with one chip generating the mapping function, and another performing die remapping of the data. A

future possibility is to put bothcircuits on one chip. The histogram processor should also be designed so

thatsignals otherthanvideodata canbe processed.



3. Architecture

As the idea for the video histogramming processor took shape, several architectures werereviewed.

Power consumption, die area, NMOS or CMOS technology, flexibility and reliability were among the

many factors considered before the final design was chosen.

3.1. The Video Signal

Before developing the histogram processor, the nature of the video signal must be defined. The

video digitizing test station includes a color camera operating with standard NTSC video timing. In one

case, the digitized image consists of 512 columns by 480 rows, requiring a sample rateof 10 MHz. In this

case, since the video data is interlaced, the processor must accumulate the histogram during each of the

interlaced images or frames, without clearing during the vertical blank period. Alternatively, the interlace

canbe disabled, anda new histogram canbe calculated during each frame. In this case,the numberofrows

is reduced to 240, while the sample rate remains 10MHz. The test systemcan also digitize 256 samples

per row, with a reduced sample rate of 5 MHz, in either the interlacedor non-interlaced mode. The histo

gram processor has access to 8 bit digitized videosamples, andmust synchronize to the provided horizon

tal andvertical blank signals.

3.2. Desired Features

Two separate tasks must be performed by the histogram processor. The primary task is the evalua

tion of the histogram as thevideo data is received. As mentioned before whenthehistogram was defined,

thiscanbe thought of as selectively incrementing oneof several counters, according to the value of each

video sample.

The second taskis to process the histogram data. This postprocessing may only involvereading the

histogram data intoanother processor. The internal registers of thehistogram processor can berefreshed at

this time, ortheymaybereset, to prepare for asubsequent histogram calculation.

Forhistogram equalization, the data must be accumulated andnormalized, to calculate the probabil

ity distribution function P(i) discussed earlier. The result is then loaded intoa look-up table. If thevideo

signal is applied to this LUT, the resulting signal is thehistogram equalized version of the original signal.
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Since the LUT was developed separately, the histogram processor must be able to program the existing

LUT with the calculated values.

3J. Implementation of the Histogram Processor

There are several different architectures which can accumulate a histogram. For purposes of com

parison, consider an interlaced video image with a total of 512* 512 or 218 pixels. Assume thateightbits

of digitized video data are available, with 28 or 256 possible quantization levels. Also, assume that the

video sample rate is 10MHz, allowing 100 ns for the processingofeach pixel.

One of the most intuitive structures for calculating the histogramis an arrayof counters,one counter

for each quantized intensity level in the digital video signal, as suggested in figure 3.1. For the image

described above, each counter wouldrequire 18bits, since thescreen may haveaconstant intensity level in

the worst case. 256 of these counters wouldbe required, one for eachlevel An advantage of usingsuch

an array of countersis that the layoutcouldbe straightforward, with simple timing requirements.

N loadable counters

Shift Histogram
0 out
*

video

data

(0-N-1)

in-N- * :ount COUNTER load *

in-N-2 > »unt COUNTER load *

»in

SELECT

in - C > :ount COUNTER load*

N/

Histogram Accumulated Histogram

Figure 3.1: Histogramming with Several Counters
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If a CMOS 3|i process is used, roughly 128 18 bit counters couldbe put on a 9000px9000|i chip,

including support logicandcontrol. The CMOS technology is often preferred sinceit ideally hasno static

power consumption. At 10 MHz, however, the dynamic power consumption becomes more significant

Consider as an example a CMOS half adder cell with storage, using a 10 transistor exclusive-norgate, an

eight transistor delay cell, and six transistors for a carry logic AND gate. The total capacitance of the

transistor gates is:

Cunat = 2S6counters x ISbits x TAgates x 37^i2/gate x Q5fFI\L2 > 17O0pF

Assume in the wont case that one fourth of these transistor gates change at a time, which can occur when

data is shifted out of the counter array. If a 5V power supply is used, then the dynamic power consumption

with a 10 MHz clock rate will be:

p. . - ^*m y*f'dynamic — 4 * J

=400pFx25V2xl07//z

= 100mW

If the counter array was implemented in a 3ji NMOS process, the circuit would use slightly less area,

but would require substantial power. If each counter cell included 4 load devices, then the counter array

would consist of 12&c 18x4 = 9216 loads. For a typical 2x4 load, which may draw 50jiA, the average

power consumption might be 50}iAx5000 = 250mA. Furthermore, two of these chips would be required

for 8 bit video data. Also, over 2000 latchesmust be clocked. The requirementof driving a largenumber

of gateswith a reliable, non-overlapping two phase 10 MHz clock presents a problem for 3ii NMOS tech

nology, since a fastenough buffer cannotbe madeefficiently. Othervideo rate signalprocessing chips [3],

can effectively use an off-chip bipolarclock driver, if the numberof clocked gates is not exceedingly large.

If off chip clock driven are used, the major problem is skewing, which may result in non-overlapping

clocks. Hence thenumber of clocked devices is restricted by thecomplexity of layout RC delays mustbe

minimized in the clock traces to reduce skewing problems. Given these restrictions, the array of counters

is likely to fail, due to the excessive number of clocked circuits.

Comparing 3 ji processes, NMOS would draw over 1W compared to the 200mW CMOS powercon

sumption. The CMOS version, however, would require a larger chip area. Ultimately, other



10

considerations, such as the availability and turn-around timeof each process will become more important

when choosing the technology.

A second approach to the histogram calculation is to use a RAM with an incrementer, as in figure

3.2. For each sample, the digitized video data isused as an address toaRAM bank. The accumulation at

that address is incremented and written back into the bank for each video sample.

Video

Fpr.cachaarnple,
md*i9cre!nc2il"Wnt6

Step through i
input vafijca

dear locations
as they are read

Krrou

Accurailatod Histogram Histogram

Acquiring the Histogram Histogram Output
Figure 32: Histogram Calculation with RAM andanIncrementer.

The timing for this scheme is critical, since thecircuit mustrun at10MHz. During each 100 ns sam

ple period, the selected RAM location must beread, then incremented, and finally the result must bestored

backinto the RAM. For theabove video signal, theprocessor has atotal of 100 ns to read theRAM, incre

ment the valuewith an 18 bit halfadder, and store thedata again before thenext address is received. To do

this widi Z\i NMOS is difficult since the half adder alone will take about 80 ns toripple the carry signal

through all 18 bits in the wont case. A look-ahead carry could be used, although the gain inspeed would

not be enough, since the RAM access time has not yet been considered. Hie counter could be split in

halves or thirds, by pipelining the carry, but the RAM addressing logic would then become more compli

cated.

The read-increment-write approach requires fast RAMS. One way tospeed up the RAM access time

istouse smaller banks. In the above example, a256 x 18 bit RAM isneeded. If this isbroken into four 64

x 18 bitRAMS, each one with its own half-adder, then each bank can operate faster than the original full

size version. If this approach were chosen, the amount ofcontrol and glue logic would increase dramati

cally.
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Noticethatthe preceding suggestions for speed improvements are compromises between thecounter

array and RAM-incrementer approaches. The counter array is merely a collectionof 1 x 18 bit RAM and

half adder pairs. The amount of RAM storage is constant, while the number of incrementen varies.

Another alternative architecture involves designing two histogrammen which can operate at half the

required speed, say with a 200 ns sanmle period. Then the two processors can alternately accept video data

samples. When the frame of data has completed, the two histograms can be added, and the result is the

same as with one histogrammer. This requiresroughly twice as much memory, since each processor must

now have a 256 x 17 bit RAM. Again, chip size limitations rule out this method, since a single chip imple

mentation is desired.

The choice of technologyis still not clearcut, since a power versus areacompromise must be made.

As a result the NMOS process was chosen for this project largelyfor historical reasons. Some of the CAD

tools, such as the datapath compiler which will be discussed later, only support NMOS libraries to date.

Also, several image processing circuits have already been made successfully usingthe 3|i and4u> NMOS

processes. This trackrecord, andaccess to cell libraries with provencells, resultedin choosingthe NMOS

technology for fabricating the histogram processor.

3.4. The Chosen Architecture: A PipelinedRAM-Incrementer

In most digital signal processing systems, higher speeds can be obtained from inherently slow cir

cuits by pipelining thesystem. Thismethod also can beusedin thehistogrammer. Consider aRAM which

can simultaneously write and read different locations within the 100 ns sample period. Also, assume that

an adder is available which can settle in less than 100 ns. Then, these two blocks can be connected

together, with a delay in between each one. Then, while the current value is being read, the preceding

address is incremented, and theaddress before that oneis being updated.

If the video data never contains consecutive equal samples, then this scheme will work well. When two

equal samples areseparated by one different sample, the RAM can readout the incremented value as it is

written, and the results will remain consistent If, however, two equal samples immediately follow one

another, then the corresponding RAM location will not be properly updated with an incremented value

before it is re-read for the second sample. As a result die count will be off by one for each consecutive
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pair ofvalues. If the video signal isconstant the histogrammer will have counted only one halfof the pix

els.

To adjust for this miscount the processor can effectively predict when a duplication occun, and

correct for it Then, if aduplication occun, the second sample can beincremented by two, accounting for

the unincremented value in the corresponding RAM location. Since there are two pipeline delays, the

value in theRAM cannot beoffby more than one, hence this correction by prediction is sufficient

The overall blockdiagram of the pipelined histogram processor is shown in figure 33. The delay

blocks are roughly time-aligned from left to right to illustrate the signal flow. The left half of the circuit

includes the control logicandaddress datapath, whichtogether control theRAM banks and theincrementer

on the right Eachblock is discussed in moredetail in the following sections.

Timing

FLA

/4

—>&:$
Sync

FSM

High
Address
counter

U

•7*-

/6

^T&r®
>T21sb

6csb

Select

Address Datapath

CQM>—fFl equal Sync

FSM •a

BankSelect

*

6:64

Dec

llh

Column Logic

/64 ,'64

Read tel Write id
RAM BANK

Read data Write data

M
tel «

,'18
Z^

IP
Amrrmilatfon Datapath

Figure 3.3: Pipeline Structure of the Histogram Processor.

3.4.1. RAM Design

Using the pipelining scheme, the processor must be able to read fromone RAM location whilewrit

ing to another, independendy. This led to the choice of a 3 transistor RAM cell, with separate read and

write lines, shown in figure 3.4.

To implement the simultaneous read and write, the RAM row driven include several delays. The

write strobe is generated two clock cycles after the corresponding read occurred, to account for the two
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•&a>—v./

aa>—v/

Figure 3.4: Three Transistor RAM Cell,

delays through the incrementer. The timing for a RAM row decoder is shown in figure 3.5, in the case

when one address is accessedtwice,witha one cycle delay betweenaccesses.

phil

phi2

row

decode

read

•elect

read**-3'2

write

select

Figure 3.5: RAM Read and Write Select Timing.

Notice that the value written after the fint access is available for the second read. If two consecutive

accesses occur, both will read the same value, causing an error which can be corrected by the prediction

scheme suggested above.
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To allow simultaneous reading and writing with a 100 ns cycle, the row decode logic includes

severalpipelinedelays. Figure 3.6 shows the transistor level schematic of the row driver. Eachrow driver

includes a full pipelineregister immediately following the decodelogic, to insurea stablerow select This

signal is buffered to generate die row read strobe. The unbuffered read signal is then delayed one and a

half more times, and is gated with the clock phase 2, to generate the write strobe. At any one time, only

one read select and one write strobe can occur on all of the RAM rows.

write select

Figure 3.6: Row Driver Circuitry.

The schematic of the column driver is given in figure 3.7. The write driven for the columnsof the

RAM aresuperbuffen, preceded by a norgateto selectivelyclearaRAM location. The readdriversimply

uses an inverterto sense the column data, followedby a superbuffer to drive the datareadbus. A passgate

is then used to select which bank is to be read.

3.4.2. Incrementer Datapath Design

Thesimplest incrementer for histogram processing isan adder which can selectively add 1or2 tothe

value read from RAM,and store the result To pipeline the circuit, adelay must beplaced before and after

the incrementer. Also, depending onthe layout, buffers may beused onthe input and output since the data

buslines can getlong for thelarger circuits. This incrementer is sufficient for collecting thehistogram, yet

it is not useful as is for the post processing stage.

Post processing, which can mean reading out the histogram or integrating it was originally
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DatapathOutput Driver Column Write Driver

Figure3.7: Column Driver Circuitry.

envisioned to require a separate datapath. The prediction scheme, however, requires a full adderso mat

increments by one or two are possible. Hence, the histogramming datapath already has most of the ele

ments required for the post processing operation. To read out the histogram data, zerocanbe added to the

data read from RAM. Integration of the histogram data requires feedback from the delayed output of the

adder backintooneof the inputs. Oneadder input can come from theRAM asbefore, and theother input

can be selected from an inputconstant or from feedback data. To zero the adder input a separate zero

forcing circuit can be used.

The postprocessing operation canbe much slower than the histogram calculation, allowing adequate

time to loadthe data into a look up table, or temporary memory. Since the same datapath is used forboth

fast andslowoperations, intermediate results for slowoperations mustbe helduntil they canbe used. The

alternative of changing the clock speed is not desirable, since the reliabilityof the clocks is already a criti

cal factor. To store the intermediate results, an additional selector is added after the adder, to maintain the

current output value in the output delayregister. Also, a zero may be forced into this register, to reset the

output registerbefore accumulating a histogram.
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3.43. Post Processor Timing

When a histogram has been calculated, LUT address and data information is to be generated, with

proper control signals to program anexisting LUT. For the 8 bit LUT, fourregisters are loaded with con

secutive LUT entries, and a fiftti register must be loaded with the 6 most significantbits of the address

where these four values will be stored in the table. A 2.4 us cycle is required to load one register, with an

800 ns valid data strobe. To load the entire LUT, 64 groups of 5 register load cycles must be generated,

entirely during the vertical blank period.

The basic 800 ns interval is generated with a programmable 3-bit counter. If the system clock is 10

MHz, the counter will divide the clock by 8; whereas if the clock is 5 MHz, it is divided by four. This is

done by designing the counter to load a preset value of zero or four when the MSB generates a carry. An

external signal is required, to select between the two clock rates.

One counter is used to generate five 2.4 us clock cycles. A total of 15 of the basic 800 ns strobe

periods are required to load four LUT values. A modulo 3 and modulo 5 counter could be used, but this

requires two specialized countermodules. Forthe sake of simplicity,a 4 bit counteris used, and the fint

800 ns interval is ignored. The outputsarethen decoded with a FLA, to generate the registeraddresses and

the valid data strobe. The FLA module, called the 'timingpla', is described in figure 3.8.

One more counter is required to generate the 6 mostsignificant bits of the LUT address. A six bit

binary counter is sufficient Notice that a total of 13 bits of counter cells are required for the three

counters. The 13bitsof ripple carry maynot be fast enough at the 10MHz clockrate, sincethere are two

gate delays introduced into thecarry chain byeach counter cell. To introduce amargin of safety, adelay is

inserted between the four bit and the six bit counter, pipelining the carry. To counteract this delay, the

PLA decoded output from the previous stages is also delayed. This pipelining also serves to guarantee a

reliableoutput from the PLA.

3.4.4. Address Datapath

When the histogram isbeing calculated, the RAM bank receives itsaddress from the input stream of

video data. During the post-processing stage, however, the RAM address is generated by the counten
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Tuning derivation PLA

Input Plane Output Plane

S8 S4 S2 SI P4 P2 PI LOADLUT ADDR1 ADDRO OUTSRC HOLD RESET

0 0 0 0 X X X 1 0 0 1

0 0 0 1 X X X 1 0 0 1

0 0 1 0 X X X 0 0 0 1

0 0 1 1 X X X 1 0 0 1

0 1 0 0 X X X 1 0 1 1

0 1 0 1 X X X 0 0 1 1

0 1 1 0 X X X 1 0 1 1

0 1 1 1 X X X 0 1

0 0 0 X X X 0 1 0 1

0 0 1 X X X 0 1

0 1 0 X X X 1 1

0 1 1 X X X 0 1 1

1 0 0 X X X 1

1 0 1 X X X 1 0

1 1 0 X X X 0 1 1 0

1 1 1 X X X 1 1 1 0

0 0 0 1 1 0 0 . . , 0 1

0 1 0 0 1 0 0 . . 0 1

0 1 1 1 1 0 0 . . . 0 1

1 0 1 0 1 0 0 . . 0 1

0 0 0 0 1 1 1 . . . 1 0

Other Combinations
• •

1 1

Figure 3.8: Timing derivation PLA.

described above, to step through the memory sequentially. A simple multiplexer is needed to select the

address source, which canbe generated asa bit sliceddatapath.

Recall that the pipelined incrementer datapath requires a predictor for successively equal address

values. The previous sample is made available by introducing a pipeline delay in the address datapath,

before the select logic. A comparator, consisting of a collection of exclusive-NOR gates driving an OR

gate, can be included in the datapath to determinewhen duplication occun. The comparisonoutput is also

followed by a pipeline delay, before it is forwarded to the controllogic.

3.43. Synchronization and Control Finite State Machine

Control logic must be provided to synchronize the two datapaths, 3 counten and at least two RAM

banks with the external video system. Several control signals will be made available to die circuit The

Vertical Blank (VBLANK) signal is used to determine whether the circuit is calculating the histogram,or

postprocessing the result The Horizontal Blank (HBLANK) input indicates when valid data is on the
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video inputbus. The Field signal, usually generated forinterlaced images to indicate whether the current

data is in the even or odd field, is used to selectwhether the RAM is cleared or refreshed during a vertical

blankperiod. Also during post-processing, thehistogram canbe read out or incremented, according to the

READ signal

For each line, the fint valid sample of video data is available when HBLANK goes false. At this

time, the incrementer must be prevented from incrementing by two, since an invalid duplication might

occur. The duplication signal, EQUAL, from the address datapath can be gated with the delayed

HBLANK signal, HBLANK1, to avoid errors. Also, since the carry input to the incrementer's adder is

used to select between an increment by one or two, this signal must be zeroed during the post-processing

stage, by gating EQUAL with the VBLANK signal The resulting signal, EQUALl, must then be delayed

by the number of pipeline stages in the RAM read and incrementcircuitry. Hence, the adder will incre

ment by two only when the current value read from RAM is from the same address as die previous value.

Figure 3.9 shows the partof the 'fsmsync' PLA which synchronizes with the input data.

HistogramALU Controller

Input Plane Output Plane

READ "HOLD VBLANK HBLANK HI EQUAL HI* INC10R2 "HOLDMl READM1

X X 0 111 1 1

X X 0 1 0 X 1 0

X X 0 0 X X 0 0

X X 1 XXX 0 0

X X 0 110 1 0

X 0 X XXX 1

X 1 0 XXX 1

X 1 1 XXX 0

X X 0 XXX . 1

0 X 1 XXX . 0

1 X 1 XXX •
1

Figure 3.10

The RAM bank select logic which is included withthesynchronization logic is in figure 3.11. When

the histogram is calculated, the least significant bits of the video input data are used to select the bank.

During the vertical blank, theaddress is available from the PLAwhich decodes thecounter chain. Thus,

the control logic can both select the address source and decode die address. Since the RAM bank was

designed such that awrite always follows aread, the bank select must begated with the HBLANK1 signal



-19

to allow RAM access when video data is read. Also, when reading the data during post processing, each

location can be read only once if the memory is being cleared. The counter PLA provides a signal,

HOLD*, to indicate when data should be stored in the incrementer, or read from RAM. When HOLD* is

true, the addressed RAM location should be read. By additionally gating the RAM bank select with the

HOLD* signal,the select logic is complete.

RAM Bank Select Logic

Input Plane Output Plane

VBLANK HI FIELD ADDRO ADDR1 -SEL0 •SEL1 -SEL2 *SEL3 CLEAR

X 1 X 0 0 0 1 1 1

X 1 X 0 1 1 0 1 1

X 1 X 1 0 1 1 0 1

X 1 X 1 1 1 1 1 0

X 0 0 0 0 0 1 1 1

X 0 0 0 1 1 0 1 1

X 0 0 1 0 1 1 0 1

X 0 0 1 1 1 1 1 0

0 X 1 X X . . . . 0

1 X 1 X X . . . 1

X X 0 X X
• • •

0

Figure 3.11

The HOLD* signal also controls the incrementer datapath. When HOLD* is false, the outputof the

pipeline register following the adder shall be fed backinto the register's input to store the current value.

To make sure that this happens only during the vertical blank period, the HOLD* signal is gated with

VBLANK. The resulting control signal, HOLDM1*, is delayed to synchronize with the pipeline delays,

beforeit is applied to the incrementer datapath.

Justas theHOLD* signal was gated withVBLANK, so musttheFIELD andREAD signals. During

the vertical blankperiod, the CLEAR signal is applied to theRAM banks if the inputFIELD is true. Like

wise, the READM1 signal programs the incrementer datapath to read out the RAM data, or accumulate it

depending on the valueof the READ signal. When VBLANK is false, andtheimageis beingscanned, the

RAM shouldnot be cleared, andthe datapath mustnot try to accumulate thevalues. These signals are con

stant during the vertical blank period, hence no delays need to be added to correct for the pipeliningin the

system.
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The remaining control task is to start andstop the counten which generate die post processor timing

and addresses. A four-state finite statemachineis used to controlthis process. Figure 3.12 shows the PLA

implementation of this FSM, where SI and COUNT are the state variables. When the vertical blank fint

becomes true, the carry input to the counten, COUNT, must be set false, to commence the count The

countingwill continueuntil a carry out fromthe counter, STOP*, is received. The countcannotcommence

again until VBLANK toggles false then true again. Along widi die countercontrol, two reset signals are

generatedby the state machine. The incrementing datapath has an RS flipflop which is set when the adder

overflows, to effectively saturate the accumulation. At the beginning of each post-processing cycle, this

flipflop must be reset so that the accumulation can start over. Also, the pipeline register following the

adder must be reset to zero, so thataccumulations will be initialized properly.

Postprocessing Timing Control

Input Plane Output Plane

SI COUNT VBLANK STOP* RESET SI* COUNT RESETC RSTACC

0 1 0 X X 0 1 0

0 1 1 X X 0 0 0

0 0 1 1 0 1 0 1 0

0 0 1 1 1 0 0 0

X 0 1 0 X 1 1 0

X 0 0 X X 1 1 0

1 0 1 I X 1 0 0

1 1 1 X X 1 1 0

1 1 0 X X 0 1 0

Figure 3.12
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4. CAD Hierarchy

The architecture selected for the implementation of the histogram processor can be broken down to

12macrocells whichmustbe interconnected. Three sets of pads are needed, fordata input data outputand

control inputs. The overall timing and control can be generated cleanly widi two finite state machine

macrocells and two countermacrocells. Forthe 8 bit video system, two RAM macrocells areneeded,each

with twobanks. Onedatapath is needed for theincrementing and accumulation logic, and another is used

for selecting and monitoring the addresses. A macrocell containing delays of various lengths is also

needed, to synchronize the pipeline stages.

Three methodsareavailable forgenerating macrocells. A modulegenerator, Modgen,can be used to

tile several manually designed leaf cells to form a complete macrocell. In this case, no routing is done

withinthe macrocell, requiring thatallinterconnections mustbe within the leafcells. A bit-sliced datapath

compiler, Compile, is also available, allowing flexible routing within aslice. Leaf cellscanbechosen from

a library, and assembled in arbitrary order. The third method is to use the LAGER floorplanning tool,

Flint to assemble a macrocell out of other macrocells. Flint can be used to group macrocells, whereas

Modgen and Compile are used to generate the basic macrocells.

To pull the module generator CADtools together, the 'Connect' program was developed. Connect

supports the systemleveldescription fora full chip. Thisdescription groups macrocells together, andpro

vides a high level net-list style interfaceto the LAGER system.

4.1. Modgen

Most of the basic circuits of the histogram processor can be generated using the tiling module gen

erator, Modgen. To completely define a macrocell or module, the designer mustdescribe all applicable

leafcells, and a C program must be written to describe howtheleafcells are to be tiled. Modgen reads a

parameter description language (PDL) file, specifying such features as the size of aRAM,orthe number of

bits inacounter. Modgen then calls the Croutine for the requested macrocell, which uses the PDL infor

mation to control thetiling of themacrocell. This procedure is defined in more detail in theModgen docu

mentation.
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4.1.1. The Delay Macrocell

The delay module generator will generate a selectable number of delays, each with an arbitrary

length. To help with the undentanding of Modgen, the PDL file for the delay block used in the histogram

processor is given below:

(module (name delay1) (type delay) (length 3) (width 4)
(design (array

DDDD

xDxx

DDxx

))
)
(term (name in[0]) (net 71) (cable pr|control|fsmsync))
(term...

The PDL file begins with a description of thedesired macrocell. In this case, four delays are desired, 2~2,

z"3,z-1, andz-1, in order. The parameter "name" specifies thenameof thelayoutfile to be generated. The

"type" selects which C routine is called to generate this macrocell. Several macrocells of a given type can

be generated, as longas thenames are unique. For thisexample, the maximumdelay length is z~3, hence

the "length" is set to 3. The "width" specifies the number of delay chains requested. The array "design"

consists of symbols to define the macrocell floorplan, where each column represents a delay chain. A z_1

delay is generated for each symbol 'D' in the array.

The remainder of the PDL file defines how the terminals on the macrocell boundary connect to other

macrocells. The "name" refen to the terminal name defined in the leafcell descriptor file for the requested

module type. When a leafcell with a terminal is used more than once, each reference to that terminal is

given an index by Modgen, thereby permitting flexible bus widths. The "net" number is an integer used

throughout thedesign to refer to a specific signal. The "cable" gives thename of another macrocell which

is attached to this net The terminal parameters depend on the overall systemdesign, and are generated

automatically by the Connect program,which is discussed later.

4.12. The Counter Macrocells

Twotypes of counten can begenerated bythe "counter" module generator. The fint isapresettable

counter, which loads a given value when the carry from the most significant bitoverflows. This type of
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counter is chosen byspecifying the parameter "(loadable)" in the PDL file, and defining the load value with

"value". The value is a string of O's, l's or x's, to specify a constant or variable input The three bit

counter in thecontrol logic, called "counterl", is loadable, withthevalue "xOO", which means that it can be

selectively loaded with the value "000" or"100", to select modulo 4 ormodulo 8 counting. The terminal

"load[0]n defines source of the most significant bit

The four-bit and six-bit counten in the control logic are grouped together, including the delayed

carry. These counten arenot presettable. The PDL description is given below:

(module
(name counter2)
(type counter)
(nodoadable)
(design

(count 4)
(delay)
(count 6)

)
)

If two separate counten and a delay block were used, space would be wasted for redundant power, ground

and clock connections, as well as the spacerequired forroutingthe carry signals.

4.13. Finite State Machine Generator

The module type "fsmpr" is used to generate finite state machines or PLA's. The PDL description

defines the number of input signals, minterms, and clocked or unclocked outputs. The input and output

planes are defined with arrays of l's, O's and x's. Also, if the "minimize" parameteris specified, the pro

gram espresso will be used to optimize the PLA.

Two PLA's are generated for the histogramprocessor by using "fsmpr". A PLA named "timingpla"

is defined to decode the four-bitcounterto generate post-processing timing signals. All other synchroniza

tion and decoding is done in a secondPLA, including the RAM bank select logic, incrementer control, and

post-processing synchronization. These could have been included into one PLA, however, its area would

be roughly double that of the two put together,since few signals arecommon to both.
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4.1.4. The RAM Bank

The module generator "ramhist" generates a RAM with two banks mirrored around the row select

logic. The amount of storage and the sizeof thedata word are parameten. The histogram processor uses

two of these modules, "rami" and "ram2", each with64pain of 18bitwords, to store atotal of 256words.

4.1.5. Pad Generator

A variety of pads can be generated by specifying the module type "padclk". The parameter "(input

#)" will specify a number of clocked input pads, and"(output#)" will generate output pads. These pads

contain one half of a delay element; the input pads are clocked on phase 2, whereas the output pads are

clocked on phase 1. The designer can also specify "(power)", "(ground)", or "(clock)", to generate a

power, ground,or a two phaseclock pairmacrocell, respectively. Only one type can be specified at a time.

The histogram processorhas three groupsof pads,other than the power, ground and clock pads. The

"inpads" accept the video data. The "outpads" programthe look up table. The "ctrlpads" provide the syn

chronization and mode control signals,as well as the output scaling factor for normalization.

42. The Bit-Sliced Datapath Compiler

To generate bit-sliced datapaths using a variety of functional blocks, the program"compile" written

by Peter Reutz, has been modified to run in the LAGER environment A text description of the desired

datapath block diagram is prepared manually, describing the interconnection of an individual slice. The

compile program then follows this description to placeand route the slice. The leafcells are placed in the

orderof their specification,and they areinterconnected with a channel router.

Several features of a given datapath must be definedto completelydescribe it Signalsentering and

leaving the datapath are assigned to terminals on die macrocell boundary. The organization is then

specified, to direct the placement of adjacent slices. Finally, the placement and interconnection of theindi

vidual slices is described, with one description for all types of slices.

The datapath description begins with theplacement of external terminals on the macrocell bounding

box. By convention, the data flow in a datapath is from left to right and the least significant bit slice is on

the bottom. Five terminal lists are given: CONTROL, RIGHT, LEFT,TOP and BOTTOM. The control
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signals, usually Vdd, ground and clocks, are listed under the CONTROL heading. Data signals must be in

the LEFT or RIGHT lists, andone terminal definition refen to all slices. Signals common to all slices,

such as carrys and selects, are onthe TOP orBOTTOM of the macrocell. Each terminal has an associated

net number andother interconnection information, both of which are generated from the global intercon

nection description to be discussedlater.

The placement of the slices is described under the heading "ORGANIZATION". The slice names

follow, listing the slices as they are stacked from bottom totop. Slices can have arbitrary names, and there

are two types of slices. NODATA slices provide the control and power signals, and DATA slices contain

the desired functional blocks. In the current library of functional blocks, several naming conventions are

used. Power is provided in the CNT slice, and ground and clocks are in the GND slice, both of which are

NODATA slices. The slice CELL is used when most or all functional slices are identical, or if the

requested slice is undefined. EVEN and ODD slices can be used if adjacent cells in a functional block

have different designs, such as in an adder witha fast ripple carry. Also,the MSB and LSB slices can be

used if the corresponding slices have specialdesigns.

The final section, "SLICE", defines the interconnection andplacement of each slice. A list of quoted

net names and unquoted block names delimited by V describes theplacement of theblocks. Each block

has a generic input and outputwhich are by default connected in sequence. If anet is given instead of a

block, die preceding output or following input is attached to that net Other connections can be made to a

block by following the name with alistof terminal-net pairs, surrounded by parentheses. Theblock termi

nals are defined in thelibrary, and anetname can have several terminals associated withit Thename of a

terminal defined on theboundary of a macrocell is also itsnetname. This description is usedto assemble

allDATA slices, andtheNODATA slices are expanded to abut with theDATA slices.

4.2.1. The Histogram Incrementer Datapath

The datapath compiler iswell suited to generate the incrementer datapath. If Modgen were used for

this application, special cells would have to be designed for nearly every block to route the feedback sig

nals within the leaf cells. With the datapath compiler, features can be easily modified and added to the

incrementer.
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To implement the incrementer datapath, it mustbe organized intoa one-dimensional collection of

functional blocks. Forreference, the schematic of the overalldatapath is repeatedbelow:

RAM,
read .
4gf2

read accumulate hold reset accumulator

OutputScaleFactor

XKXhH X )-X X

lor 2 lor 4 lor 16 lor 16

address

Select

LUT source

Histogram Main Datapath
The datapath can then be reorganized into theform of a one-dimensional slice which can beduplicated for

each bit:
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HistogramDatapath Slice Organization

The datapath consists of two sections. The fint section includes the increment and accumulate logic with

theassociated twopipeline delays. Thiscircuitry runs atthe 10MHzclockrate.
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The data read from the RAM is delayed, and routed to one input of the adder. To generate the

second adder input, a selector was designed to choose between an input value or the constant 1. A zero

block, consisting of a pull-down transistor, follows the selector to selectively prevent accumulation of the

RAM data. The full adderrequires different even and odd slices so that each bit of the adderaddsonly one

gate delay to the ripple carry. With the 18 bit example mentioned earlier, the ripple carry becomes the crit

ical pathbetween the pipeline stages.

When the adder overflows, this condition is stored to force a saturated output The synchronization

FSM could have been used to keep track of the overflow, however, more delays would have been intro

duced into the system. As a result, an RS flip flop is used in the control slice to store this condition. The

flip flop must be reset at the startof both the histogramcalculationand die post-processingcycle, to prevent

false overflow indications from the precedingcycle.

Following the adder, a multiplexer selects the source of the second pipeline register. The input

comes from the adderduring the histogramcomputationand accumulation. To temporarily store an accu

mulation, the registeroutput can be fed back into the input At the beginningof the accumulation post pro

cessing cycle, this register must be reset to zero, hence another zero block is placed between the multi

plexer and the delay. The result is then driven by an invertingsuper-buffer to write to die RAM.

The second half of the datapath scalesandsaturates the datapath output and selects whether this data

or the address is sent to the output This partof the circuit is asynchronous and slower than the fint half,

and provides meaningful dataonly duringthe slower post processingcycle.

Four shifter stages are used to scale the datapath output The fint stage shifts left zero or 1 bit the

second shifts by zero or 2, and the last two shift left zero or 4 bits. By selecting appropriate shifters, the

accumulation result can be shifted left from zero to 11 positions,corresponding to output scalingby powers

of two from 2°= 1 through 211. The control slice of each shifter stage will sense if the shifted value

overflows, allowing the output to be clipped later.

The shifters are followed by a saturation register. If the adder or the shifters overflow, the output

will be forced to all ones, corresponding to the maximum unsigned value (218-1 in the 18 bit case).

Without the saturation, meaninglessresults would result if the adderor shifters overflowed.
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The last stage in the datapath is the selection of the output data. The look up table is loaded with

four accumulation values, followed by the most significantsix bits of die address for those values. To sim

plify routing, this selectionis includedwithin the incrementer datapath.

422. The Address Datapath

The datapath compiler is well suited to generate the address datapath. All of the data slices in this

macrocellare identicaL Although much simpler thanthe incrementer datapath, the routingwithin the slice

makes it unsuitable as a Modgen macrocell. Below is the slice interconnection:

external
address M
counter s.
address

delay

duplication

t
equal delay select buffer

+ external
delayed

^ RAM
address

Address DatapathOrganization

After the address is delayed, the currentand previous addresses are compared, to recognize succes

sively equal video samples. The result is delayed again to adjust for pipelinedelays. A selector can then

choose to send this address through a buffer to the RAM banks. During post processing, the address is

chosen from the timing counter chain. The delayed address datais alsorouted to the synchronizationlogic,

where the RAM bank selection is decoded.
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43, Interconnection and Hierarchy Specification: Connect

Now that all of the macrocells have been defined, the remaining layout task is to assemble the

blocks. Connections betweenmacrocells must be completely defined. Once the connections are specified,

the macrocells must be positioned in a floorplan to indicate the relative placement, after whichthe actual

connections can be made.

The program Connect is used to define the interconnection of die macrocells. The connections to a

given macrocell are called terminals, which are located on the cell's boundary. Terminal namesgenerated

by Modgen are defined in the individual leafcellswhich compose the macrocell, andare fixed for a given

type of cell. The datapath compiler allows the designer to specifyunique terminal names on the boundary

ofa macrocell. Several macrocells can share the same terminal names.

To connectseveral terminals together, they are associated with a common net name. A given termi

nal or net can be one conductoror a bus of any width. Since terminals andnets can have arbitrary width,

they can be parameterized, so that one terminal-net list is sufficient to describe a variety of designs with

different sized data and address busses.

If a chip is made up of 10or more macrocells, the floorplanning effort can become difficult since all

channels and routing must be redefinedwhen the placementof a cell is changed. By grouping macrocells

togetherto form another larger macrocell, hierarchy canbe introduced into the floorplanning effort In this

case, a small block can be reorganizedwithout affecting the higher level placement

The histogram processor can be neatlybrokenup into groups. The timing andcontrol logic,consist

ing of two PLAs and two counten, is grouped into the macrocell 'control'. This new macrocell is then

included in a larger macrocell containing the RAMs, thedatapaths, andthedelayblock, to formthe proces

sor(pr) macrocell. Finally, the full chipconsists of the pads surrounding the processor. Each group in the

hierarchycan also be debugged separately.

The description of thehistogram processor begins by defining parameten. Two basic parameten are

needed to specify the processor. The parameter 'width', referring to the number of bits of video data,

determines the width of the address datapath and busses, as well as the total number of RAM rows. The

parameter 'size' indicates the log base 2 of thenumber of pixels in an image. This sets the width of the
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incrementer datapath, and die RAM word size.

After the parameten are defined, the actual hierarchy of the processor is described in the 'design'

block. Macrocells can containcable references if they aregenerated by Modgen or Compile, or they can

list other macrocells for assembly by Flint The description of a 'narrow' processor is listed below, with

cable references and net lists removed:

design (narrow) {
macrocell(pr) {

macrocell(histdata, datapath) { }
macrocell(rami) { }

macrocell(ram2) { }

macrocell(addrdata, datapath) { }
macrocell(delay1) { )
macrocell(control) (

macrocell(fsmsync) ( )
macrocell(timingpla) { )
macrocell(counter1) { }

macrocell(counter2) { }

)

}
macrocell(inpads) { )

macrocell(outpads) { }

macrocell(ctrlpads) { }
macrocell(power5) { )
macrocell(ground) ( )

macrocell(clocks) { }

}

Now that the hierarchy has been established, the interconnections mustbe given. All macrocells whichdo

not contain other macrocells will have a list of cables, except for power and clock macrocells. A cable,

whichrefen to a bundle of wires running between two macrocells, is designated by thenameof the desti

nation macrocell. The definitionof the connections for the "outpads" illustrates this:

macrocell(outpads) {

cable(histdata) {

in[0,7]-outdata[0,7];

in[9]-saturated;

}
cable(delay1)

in[8]«loadml;

1

The output pads connect toan eight bitdata bus and astatus signal from the histogram datapath, "histdata".

Also, a control signal comes from the "delay1" macrocell.
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Thecomplete description of thesystem is given in the appendices, listing howallof die signals come

together. For more details about the Connect program, refer to theConnect User's Manual in the appen

dices.

At this point in the design, the electrical connections of the histogram processor have been com

pletely specified, with no explicit information regarding the silicon layout of the processor. Neither the

design rules nor the technology have been formally enforced in theModgen, Compile orConnect input

description files, allowing for futurechanges.

After theConnect program has been run witha given setof parameters, the libraries of leafcells for

the twomodule generators mustbeselected. Modgen expects to find a Jib file in thedirectory from which

it is run,or in the user'shome directory, with a complete path nameto a directory containing the subdirec

tory 'descriptModgen'. This directory contains 'descriptor files', which provide all of the information

required by Modgen to assemble leaf cells andcorrecdy identifyterminals on the macrocell boundary. A

differenttechnology canbe chosen by naming a functionally identical setof descriptors in the Jib file.

The datapath compiler. Compile, is not quite as flexible, since it wasdesigned forNMOS macrocell

generation. The restriction is mostevident in that routing canbe done in diffusion, between leaf cells. If

this layerwere ignored, then CMOS datapaths couldbe assembled given a functionally equivalent library

of leaf cells. Minor modifications mightberequired in thedatapath compiler so thatit wouldrecognize the

different metal and polysilicon layer names. All of theleafcells are defined in one file, *celldesc', which is

generated automatically by reading theleafcelllayout files withthe 'parse' utility. An extensive library of

tested NMOS macrocells has grown over thelast few yean for this datapadi compiler, providing much of

theincentive forusing NMOS rather than CMOS for thehistogram processor design.

4A Floorplanning and Routing with Flint

Once the macrocells have been generated, the designer must provide a floorplan for the final chip

layout The floorplan is symbolically specified with a floorplan description language (FDL), and a given

design can have several FDL layouts. The first purpose of the FDL is to indicate therelative placement of

the macrocells. Also, the designer includes therouting strategy in the FDL file.
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To support flexibility, the FDL uses minimal information to indicate the relative placement of the

macrocells. Each side of a macrocell can be connected to one of several features. If nothing is attached to

a side, it is called a 'NULL' side. A single channel can be adjacent to die side of a macrocell, permitting

signal routing from that side. Also, a collection of macrocells and channels can be grouped into a rec

tangularmodule, introducinghierarchy into the floorplan.

Once the macrocells and channels arein place, the routingstrategy must be planned. The routingis

controlled by referring to the cables specified in the Connect input description. Since a cable is associated

widi a pairof macrocells, there is no need to refer to explicit terminallocations and interconnectionnets in

the floorplan description. Foreach side of a channel,allcables passing through that side are labeled with a

list of macrocell pain. Power, ground and clocks arerouted in a similar manner, although there is no cable

in this case. The details of the FDL format are described in the FDL documentation.

The interactive floorplanning tool, Flint both generates and processes the FDL files. After running

the Connect program and generating the macrocells, Flint is used to generate the FDL files for a chip.

Once a floorplan has been designed, the same floorplan can often be used for different versions of the same

chip. This flexibilitymeans fast turn-around whenchanging chip size parameten.

The fint step for designing a new floorplan in Flint is to place the macrocellsrelative to one another.

Each macrocell can be moved, rotated and mirrored, in attempt to reduce routing complexity. The cables

are drawn as lines between macrocells to give a visual estimate of the routing density for a given place

ment

Once the macrocells arein place, Flint is switched to channelmode, at which time the routingchan

nels are placed to fill the space between macrocells. Each macrocell side which has terminals must come

in contact with a channel, and the channels must abut to provide a complete path for all routing. Flint

automaticallyexpands each rectangular channelto the sides of adjacentmacrocells.

With the channels in place, the user must then route the cables between macrocells. A cable is

interactively selected by pointing to the sides of two macrocells. Then thedesigner points sequentially to

the abutting channels which are to carry that cable. This is repeated for allcables, after which the signal

routing is completed. At this stage, the designer can choose to route the signals, and view the result If
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desired, the fint steps can be repeated to try other floorplans.

When the signal routing is satisfactory,Flint is switched to Power mode, allowing interactive place

ment of power, ground and clocks. This has no direct effect on the signal routing. With the histogram

chip, the circuit was simulated initially without power and clock connections, until the final signal routing

strategy was settled upon.

When the full-scale histogram processorwas made, the floorplan for the smaller version was reused.

To use an existing floorplan within Flint the Library mode can be selected, and the desired floorplan can be

chosen. The new layout is then generatedby issuing the Route command, which uses the FDL information

along with die database set up by the Connect program. Within seconds, the new layout is ready for test

ing, and fabrication.

4.4.1. The Floorplan for the Histogram Processor

The floorplan for the histogrammer,which can be used for several parameterized versions, has been

chosen to reduce the amount of unused silicon area. To simplify the design effort the floorplanning was

broken into three stages, where each stage required the assembly of a group of macrocells into another

macrocell by using Flint Earlier, the Connect input file described which macrocells were to be grouped

together,leaving the actualplacementup to Flint

The fint element which is assembled is the 'control' macrocell. This macrocell contains the two

counten and two programmable logic arrays (PLA's). The control logic is assembled separately since

there is a greatdeal of feedback and routing within this group. This block is then treated as a black box

which generates the timing andcontrol signals for the rest of the system. The symbolic floorplan shown in

figure4.1 places the counten and PLAs around a centralroutingchannel, which contains most of the inter

connections.

After the control macrocell is generated, it is includedin the main processor macrocell, 'pr', shown

in figure 42. This macrocell is dividedin half by the channel connecting the two RAM banks to the histo

gram datapath. For the full size histogram processor with an 18 bit datapath, this channel carries 36 bus

lines for RAM read and write data, plus the address lines and several control wires. The RAM banks
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Figure 4.1: The floorplan of thecontrol block, 'control',

occupyroughlyone-halfof thechip area. On the othersideof the mainchannel, the histogram incrementer

datapath is accompanied by the address datapath, thecontrol macrocell, andextraneous delaycircuits.

The highest level macrocell, 'histchip', contains all other macrocells, and has no external terminals,

sinceit contains allof die pads. The main processor macrocell 'pr* is surrounded by the pads, as seen in

figure 4.3. The power connections are here, and the pads are routed to 'pr* through channels surrounding

the main processor.

The histogram processor is unusual compared to the audio DSPchips generated by theLAGER sys

tem, in thatmorethan two levelsof calls are made to Flint for floorplanning macrocells. Most DSPchips

havea processor whichcontains macrocells from Modgen, and oneor moreof theseprocessors are assem

bled by Flint into a complete chip. The histogram processor has an additional level, in that the control

logic is also assembled by Flint
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Figure 4.2: The floorplan ofthe processor main block, 'pr'.

Figure 43: The floorplan of the complete histogram chip.
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5. Resulting Circuits and Simulations

Two versionsof die histogram processor were generated by giving different parameten to the Con

nect program. To simplify and speed up the testing and debugging procedure, a small histogrammer was

generated. The video data bus is only four bitswide, and a tenbit incrementer datapath accumulates up to

a 1024pixel field. Although this is insufficient for practical video signals, it serves well for testing pur

poses.

Once the smaller processor was debugged, the full size venion was generated. The steps for gen

erating the larger chip afterthe smaller one wasdesigned are straight forward, requiring minimal editing.

The Connectinput file fordie smaller chip,called 'narrowxh', is edited, andthe parameten size andwidth

are changed to size= 8 andwidth = 18. The design nameis changed to design (histogram) to savethe old

design, and the new file histogranuch is saved Then the Connect program is run from the directory con

taining the template files andthe fustogranuch file:

Connect histogram,ch

The Connect program has generated the inputdescription files for the module generators. The next step is

to run Modgen andCompile on the appropriate files, to generate the hardware description language (HDL)

files and the layout files. This is currendy done manually using a C Shell script although this task will

eventually be done by Flint

Once the HDL files aregenerated, die floorplan files canbe copied from the narrow directory tree to

the newly generated histogram tree. Now, all of the files areready for Flint The Flint interactive floor-

planneris then called for each level in the hierarchy, starting with the innermostmacrocells of the directory

tree.

Flint is fint used to generate the control macrocell. From Flint the control macrocell is selected,

and the controipr processor floorplan file is selected by using the library mode. Once the floorplan is

loaded, the routecommand is selected, andthe resulting routing is displayed. Then this layoutis dumped

by selecting the Flint store command, generating the control layout file, andthe controLhdl description of

this macrocell.
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The same procedure is repeated for the pr macrocell, and finally for die narrow macrocell,which is

in fact the complete chip. The layout files are now distributed throughout die histogram directory tree.

Rather than listing the paths to eachof these directories so that the KIC or Magic layout editorscan find the

layouts, the next step is to link to all of these files from one directory. The Connect program provides a

utility for doing this automatically:

Connect -£ histogram,ch

This 'flattening' option generates the directory histogram /Layout, which links to all layout files. Now, the

Magic or KIC startup files can be copied from die similar narrow/Layout directory, with no changes.

Finally, the Caltech Intermediate Format(OF) filecan be generated from the Magic or KIC files, preparing

the circuit for simulation and transmission to the fabrication facility.

5.1. Histogram Processor Pin Descriptions

Before discussing simulations, the pinoutsof the histogram processormust be defined. The pads can

be broken into four groups. The power, ground and clock pad group is self-explanatory. The input pads

accept the 5 or 10 MHz video input stream, which is four bits wide for the test chip, and is 8 bits wide for

the full scalechip. The output pads consistof 8 outdata pads for loading the look-up table, and threebits

ofLUT registerselection address, addr$-addr% with the load signal for strobingthe registers.

The remaining groupof pads are the control pads, which serve to synchronize the processor with the

video circuitry, and to program features of the processor. The vertical and horizontal blank signals, vblank

is FALSE and hblank is TRUE during the visible portions of the video signal. Whenever vblank is

FALSE, hblank is used to enable the histogram accumulation, to prevent histogramming the video data

which is presented during the horizontal retrace. When vblank is TRUE, die postprocessing cycle com

mences, reading and refreshing the histogram if the input read is FALSE, or integrating die histogram if

read is TRUE. Also during post processing, thefield input selects that the histogram is to be cleared as it

is readout if field is FALSE. If the video data is interlaced, the memory will be alternately refreshedand

accumulated, if histogram equalization is being performed
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When a histogram equalization curve is being calculated, the result of die integration must be nor

malized, or scaled Four scaling facton can be selected externally to the chip, where each scale factor is

applied in sequence. The accumulator output can fint be multipliedby 1 or 2, then by 1 or 4, according to

the shift 1 and shift! signalsrespectively. Two selectable 4 bit shifters follow, each one multiplying by 1

or 16, according to shift4 and shift4a. By selecting a combination of these, any power of two from 1 to

211 can be used to normalize the outputdata. Unsigned, saturating shifters areused, to prevent unpredict

able overflow errors.

The remaining control pin, fivemegt selects the clock speed If a 10 MHz clock is used, fivemeg

should be low. This signalensures that the postprocessing cycle generates 2.4ju LUT programming cycles

for both a 5 and 10 MHz video sample rates.

5.2. Simulations of the Histogram Processor

Now that the histogram processor layout has been completely generated, simulations are run to ver

ify that the circuit is functional. By extracting the circuit directly from the CEP file rather than from

schematics, the simulation will also verify that the layout is sound The CAD utility 'mextra' is used to

extract the circuit from the layout Transistor features andcapacitances arerepresentedin the resultingcir

cuit

The extractedcircuit is passedas input to the switch level circuit simulator, 'esim*. Test vectors are

then applied to the system, to check out the circuitry. Fint, the RAM is cleared, then a sampleof video

datais applied Finally, the datais readout to verify the RAM contents.

The RAM is cleared during the post-processing cycle, when vblank is high. By forcing the field

inputlow, the RAM will be cleared asit is read out The small testchip, 'narrow', has4 bitsof videoinput

data, andhencecontains 16locations which mustbe cleared The processor outputsandclean 4 locations

every ZOOns x 16= 12.8(15. The 16 locations are then cleared over lZ&\is x4 = 512ps. If a 5 MHz

video sample rate is used then atleast 51.2ju x 5MHz =256clock periods are required during the vertical

blank period to clear the memory. For the simulation, 270 cycles were given to clear the memory. The

resultsof the histogram calculation will verify that the RAM hasbeen cleared
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Now that the RAM has been initialized the video data can be read in. As long as the vblank input is

low, the histogram will be calculatedon the video input stream. The hblank input is used to gate the video

data, histogramminginput dataonly when hblank is high. For this test, one line of data is read in, consist

ing of triplets of samples 0,1,2,3,0,1, in order, as shown at the top of figure 5.1. A sliding time scale is

given for reference, representing 18 clock cycles at the video sample rate. The numben in this scale

represent the video sample values.

The RAM bank selects, selO through set 3, are delayed by three clock cycles from the corresponding

input The RAM is actuallyread a cycle later, with the complementary outputs ramout[0-2]. Two cycles

later, the incrementer outputs complemented data to be written into the RAM. Notice that the histogram

datapath increments by two when the video dataandhence the RAM address is repeated

The histogram data can be observed during simulation on the outputs from the histogrammer, one

period after it has been written to the RAM. Duringactual use, this data will not be reliable, since the out

put circuitry is intended for much slower operation.

After the video stream has been processed the result can be read during the next post-processing

cycle. For the above example, the video intensities 0 and 1 occurred six times, and the values 2 and 3

occurred3 times. The result of reading the video datais shown in figure 5.2.

The datacan be readout of the RAM only once if the RAM is being clearedat the same time. As a

result,validdatais available fromthe RAM every 12thcycle at a 5 MHz samplerate, or every 24th sample

interval at the 10MHz samplerate. The histogram incrementer datapath stores the current value afterread

ing or accumulating, so that it is stable for the sloweroutputcircuitry, including the scaling and saturating

logic.

The look-up table expects to receive four consecutive LUT values, followed by the address of these

four in the table. The signals addrQ, addrl, and outsrc indicate which of these values is loaded at one

time. If outsrc is high, the address signals indicate which LUT register is to be loaded with the data on

outdata [0-7]. If outsrc is low, outdata [0-5] provide the most significant six bits of the LUT addresses to

be loaded In either case, the data is valid on the risingedge of the load signal. The full cycle for down

loading four values is repeated until all values are loaded into the LUT.
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Figure5.1: Histogram Calculation Simulations

The timing diagrams in figures 5.1 and52 were generated automatically from the simulator results,

andindicate the actual functioning of thecircuit Sincethecircuit simulates asdesired it is ready for fabri

cation, after design rule checks verify the integrityof the layout
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6. Conclusion

Designing the Histogram processor with silicon compiler CAD tools offered many advantages over

the alternative ofmanual layout The ability to parameterize adesign is abig win, compared to redesigning

the layout ofasimilar circuit by hand Also, fundamental changes can be made to acircuit with afast tur

naround Debugging can also be simplified by fint building asmall test circuit for tracking down prob

lems, and then merely specifying new parameten to generate the full size project In addition, different

architectural changes can be evaluated often with minimal modification ofexisting descriptions.

The overall design ofthe histogram processor, including CAD tool development was often criticized

for taking longer than the design time for manual layoutofsimilar circuits. Since new macrocells had to be

added to the library to support the circuit some manual design and layout was required anyway. The

design effort for the histogram processor was in fact similar to that for other video chips, in that the same

module generaton, Compile and Modgen, were used to make many of the macrocells. The difference

appeared at the system level, when the blocks were pulled together. The "manually" designed video chips

were assembled and routed by hand For the histogram processor, a symbolic description at the system

level was used to generate the macrocells, and to connect them together. Most ofthe design time attributed

to the histogram processor was spent trying to adapt the CAD tools so that they could work together at the

system level. Writing the Connect program to unite Modgen, Compile and Flint proved to be asubstantial

part of the project since the latter three were originally written independendy. Future projects promise to

have much more favorable design times.

On the whole, the histogram processor project demonstrated the advantages ofusing asilicon com

piler for designing high speed digital circuits. The flexibility offered by the modified LAGER silicon com

piler can be compared to that of awire-wrap board by offering astraightforward means for the designer to

change a circuit



-43

REFERENCES

[1] Hall, Ernest L., "Computer Image Processing and Recognition,", p. 166-173, New York: Academic
Press, 1979

[2] Ohlander, Ron, Keith Price and D. Raj Reddy, "Picture SegmentationUsing a Recunive Region Split
ting Method" Digital ImageProcessingandAnalysis,Vol. 2, p. 226, IEEE, New York, 1985.

[3] Ruetz, Peter A., Robert W. Brodersen, " A Realtime Image Processing Chip Set" Proceedings of the
ISSCC, Vol XXDC, p. 148;February, 1986.

[4] Ruetz, Peter A^ Rajeev Jain, Robert W. Brodenen, " Comparisonof Parallel Architectures for Image
Processing Circuits," IEEE International Conference on Circuits and Systems; San Jose, April,
1986.

[5] Rabaey, Jan MM Steven P. Pope, Robert W. Brodenen, "An Integrated Automated Layout Generation
System for DSP Circuits," IEEE Transactions on Computer-Aided Design, Vol CAD-4, NO. 3, p.
285; 1985.



44

Acknowledgements

This research was sponsoredby funds from DARPA, MICRO, Bell Labs, and GeneralElectric.

Many people contributed direcdy or indirecdy to this project PeterRuetz deserves a great deal of
credit for offering architectural suggestions, numerous circuitlayouts, and updating his datapadi compiler
to fit the needs of the LAGER system.

The automated layout of the processor would have been impossible without the assistance of the
LAGER development team. Gordon Jacobs andRajeev Jain helped with the Modgen support for generat
ing several macrocells. Professor Robert W. Brodenen provided invaluable support for the Flint Floor-
planner tool which he andJan Rabaeyhavedeveloped over the pasttwo yean.

During the development of the Connect program, Chuen-SbenShung offered feedback on the inter
nal workings of the program. Mats Torkelson helped to debug the Connect program when trying to auto
mate the design of Robert Kavaler's Dynamic Time-Warp circuit Robert Kavaler also helped to catch
bugs in theoriginal code.



-45-

Appendix A: ConnectUser's Manual

Motivation

Over the last few yean at Berkeley, several CAD tools were designed aimed at automated layout

The LAGER system, intended as a digital signal processor design tool, resulted in a variety of useful pro

grams. Modgen, a tiling module generator, can assemble a large variety of macrocells from a simple

description. Flint, aninteractive fioorplanner, allows thedesigner to try a varietyof floorplans. Flintusesa

symbolicdescription of the chip,andcanhandle theentireplaceandroutetask up to the final layout

Anotherprogram, 'compile', is a flexible tool for generating bit sliced datapaths. Each slice of the

datapath can contain a list of functional blocks, which will be routed together as specified by the user.

Although not originally intended for use with the automatic fioorplanner, 'compile' has evolved to fit in

with the system.

Simulationprograms, such as 'esim', can be used to test a layout after it has been generated Labels

in die layout file can be used to identify inputs and outputs in the circuit To prevent confusion, the labels

should be meaningful, and consistent throughout the layout The individualprograms, however, had their

own conventions,occasionally resulting in namingconflicts,or assigning two names to one signal.

The objective of the Connect program is to take full advantage of the individual CAD tools, while

pulling them together into a generalized silicon compiler. Any macrocell orienteddesign shouldbe ableto

fit into the framework. Also, once a chiphasbeendesigned a similar chip with differentdata sizes should

be realizable with minimal effort

Terminology

To describe a chip symbolically, a variety of definitions should be clarified The basic building

blocks of a system are themacrocells ormodules. Ingeneral, macrocells contain other cells ormacrocells.

To simplify the definition, allmacrocells haverectangular boundaries.

The external connections to a macrocell are defined as "terminals", which must be located on the

bounding box. The name of a terminal is defined when the macrocell is designed and does not change

between different designs, although the number of terminals mightvary. If a terminal occun more than
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once in a given macrocell, it will be given an integerindex, thereby supportingvariablebus widths. Termi

nals to be connected togedier are alsogiven a common net number,which is usually assignedby a higher

level program. At feast one destination macrocell is specified assigning the net to a "cable", defined

below. The macrocellgenerating programs alsospecify theexact locationof the terminalon the macrocell

boundary. The terminals completely define the circuitinterconnections while remainingindependentof the

floorplan.

Routing between macrocells is constrainedto rectangular channels. A macrocell can have only one

channel touching each side, whereas a channel can have several channels and macrocells adjacent to it

Once the macrocells are placed on the floor plan, the channels are inserted to fill the space in between to

provide paths for all terminal interconnections.

Often, there aremany possiblepaths forroutingbetween macrocells, where a pathis a seriesof abut

ting channels. Rather than specify the path for each interconnection separately, nets are groupedtogether

into "cables". Since a cable is defined by the macrocells at either end the designercan specify where the

routing is to be done without reference to the terminal or net names. This helps reduce the confusion when

a designer is interactively floorplanning with Flint

The Netlist Language for Connect

The file for defining the interconnections and hierarchy of a desired architecture uses a syntax like

that of the C programming language, however, it is not a C program. To allow parameterization, integer

variables with limitedC style expression handling are supported excluding arrays and pointers. The sup

ported expressions are given in figureA.1, listed in the orderof precedence.

These operations canbe applied to integer constants or variables denoted by the"symbol" syntax. A sym

bol is an unquoted character string of alphanumeric symbols, or a quoted string of any symbols, where

backslash " can escape the following symbol Parentheses can beused tochange theorder of precedence.

The description of a chip begins with an optional header of parameter definitions. Values can be

assigned tovariables atthis time, and other parameten can becalculated The syntax of this definition sec

tionis shown in figure A2. Once theparameten have been defined thenetlist can be specified Thedirec-
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FigureA.1: Precedence ofOperators.

parameter:

<symbol> - <expr> ;
I <symbol> ; Verify that the symbol is defined.
I { pararaeter_list }

parameter_list:
parameter

I parameter parameter_list

Figure A2: ParameterDefinitions.

tory containing the Flint database is named in the argument to 'design'. The hierarchy of a design is

described by the syntax in figure A.3.

design:
%design' ( <Flint hierarchy> ) statement

statement__list:
statement

I statement statement_list

statement:

{ statement_list }
<symbol> •» <expr> ;
<symbol> ;
'if ( <expr> ) statement
%±f ( <expr> ) statement %else' statement
macrocell ( <Modgen-macrocell-name> ) cable
macrocell ( <Datapath-macrocell~name> , ^datapath' ) cable
macrocell ( <Flint-macrocell-name> ) statement

Figure A.3: Design Hierarchy Syntax.

By using either form of the "if statement entire sections of a design can be removed For example, if
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RAM storagein a design is smallenough, a designer canchoosenot to use a secondRAM macroceU. The

syntax definition of the statement illustrates the three types of macrocells, from the datapath compiler,

Modgen and Flint

The Flint database requires the assignment of net numben to the terminals of all macrocells. Rather

than specify net numben, the designercan use the cable syntax to assign a net name to a terminal. This net

name can be the global signal name on a schematic, for example. The syntax, in figure A.4, goes further to

allow busses to be referenced by a single name. This allows parameterization of the bus widths, since

integer expressions can be used to index partsof a bus.

cable:

*cable' *(' <Destination-macrocell-name> *>' term_net
I M' cableJList M'
I M' M'

tenn_net__list:
term_net

I term_net term_net_list

term_net:
<terminal-name> range *«' <net-name> range ';'

I M' term_net_list M'

range:

/* no range */
I M' <expr> *]'
I M' <expr> *,' <expr> *]'

Figure A.4: Cable and Netlist Syntax.

The argument to 'cable', theterminal name and thenetname are of thetype"symbol" discussed earlier.

Notice that therearethree forms for a terminal or net range. If no range is specified, this is the same

as the range "[0,0]". This is used for most one-bit signals. The range "[value]" is the same as

"[value,value]", and is usedto attach one-bit terminals to abus. If two values are given, boththe terminal

andthenet musthavedouble ranges, and the difference between theranges must be the same. For exam

ple, the netlist assignment term_a[3,6] - net_g[4,7] is valid whereas

term_a [3,6]-net_g [3,8] is ambiguous. The order that nets are assigned toterminals can also be

reversed For example, the assignment
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counter_out[0,2]-int_address[5,3];

is the same as specifying

counter_put - int_address[5];
counter_out [1 ] - int_address [4];
counter_out[2] - int_address[3];

Since the ranges can contain expressions, the program Connect will report range inconsistencies, to

help identify mistakes in the netlist

At this point die designer can parameterize the net-list andconditionally include macrocells. The

major task remaining is to pass parameten to the macroceU generators.

Flexible MacroceU Generation

The input files for the datapath compiler and for Modgen specify parameten for macroceU genera

tion, but a different file must be generated foreach type of macroceU. Hence a method must be devised to

generate the input files without losing the flexibility of each program.

The Connect program uses modifiedModgen or datapath compiler input files, called template files,

to define all macrocells in a design. A template file is identical to a regular input file to either macrocell

generator, except for a varietyof substitution commands. After reading and processing the netlist descrip

tion file, the Compile program filten the template files and generates proper input files for the desired

macrocells. Aside from filtering the files, Compile moves the resulting input file to the correctlocationin

the FUnt directory tree. This means that all of the template files and the netlist file can reside in die same

directory,and severalresultingFlint directory trees can startin the same directory.

Modgen Template Commands

To generate a macroceU with Modgen, a processor description language (PDL) file must be gen

erated as input toModgen. The PDL has aLISP-like format to define module and terminal features. Con

sider this description of a RAM bank:
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(module

(name rami)

(type ramjiist)
(width 10)

(words 4)

)

(term (name din[0]) (net 11) (cable prlhistdata) )
(term ...

Figure A.5

This PDL file describes a RAM which is to be called "rami", generated by using the "ramJust" module

generator. This file expUcidy specifies a word width of 10, an address of4 bits. The module description is

foUowed by terminal information, all of which is completely dependenton the netlist data. Now, compare

the PDL file above to the correspondingtemplate file:

♦delimiter &

(module

(name rami)

(type ram_hist)
(width &widths)

(words &words&)

)

♦pdlterm

Figure A.6

Assume that the variables "width" and "words" have been defined in the header of the netlist file (see the

previous section). Then, the Connect program will substitute an ascii integer for "&width&" and

"&words&". Then, the substitution command"#pdTterm" wiU be replaced by allof the terminals which are

defined in the netlist The netlist file contains sufficient information so that Connect can fiU in the terminal

entries completely. Hence, aU features of Modgen can be used without requiring that the designer keep

track of the confusing terminal information.

Datapath Compiler Template Commands

The datapath compiler hasaninputspecification which is analogous to thePDLfile usedby Modgen.

The first part of the file defines the terminal information, much like the second halfof thePDL file. Con

sider the following excerpt from a datapathdescription:
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LEFT

extaddr 58 inpads
countaddr €2 pr|control Icounter2

RIGHT

ramaddr 21 prIhistdata

Figure A.7

For each side of the macroceU, the terminals are listed with relevant information. AU datapath slices will

have terminalson the right and left with the same name and different indices, corresponding to a databus.

The signals on the top and bottom of the macroceU are not duplicated since they are usually control sig

nals. The terminal name is foUowed by the net number of the fint terminal of that name. Then an

expanded cable path is given. AU of this informationcan be generatedautomatically, and the template file

would look like this:

• • •

LEFT

♦term extaddr

♦term countaddr

RIGHT

♦term ramaddr

Figure A.8

Again, die Connect program fills in the details. The remaining problem is to parameterize the width of a

datapadi. The designer defines die width by listing the slices which are to be assembled ratherthan by giv

ing a number. To handle this, one more command has been added to conditionally include a template line

in die datapath description file. This is illustrated in figure A.9.

The #if command copies the following template line to the destination datapath description file if the

expression is true. The expression can only compare variables or constants, and the six arithmetic com

parison operators apply (•—\ '!«*, '<*, V, *>-' and •<-'). Figure A.10 shows the result of reading this

template file if "size" is set to 6 in the header of the netlist file.

Since the datapath compiler was not originally designed as part of the LAGER system, some net

assignment inconsistencies can result When the datapadi compiler assigns nets to terminals, it assumes
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ORGANIZATION

CNT NODATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

♦if size > 4

CELLDATA

♦if size > 5

CELLDATA

♦if size > 6

CELLDATA

♦if size > 7

CELLDATA

GND NODATA

Figure A.9: Datapath Width Parameterization.

ORGANIZATION

CNT NODATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

CELLDATA

GND NODATA

Figure A.10

that the nets for a given terminal name arenumberedsequentiaUy. hi general, this may not be true,andcan

cause fatal wiringmistakes. To solve this problem, the Connectprogram can be used to readthe hardware

description language (HDL) file which results from running the datapath compiler. The HDL file is the

complete macroceU layout description. By reading the terminal name in the HDL file, the Connect pro

gram can determine the correct net number, and fix the file if necessary. Aside from fixing the net number,

this filter mode wuT also substitute the net number for the terminal name, in the form "net_##", fordebug

ging purposes. This filter is included in a sheU script "Compile", which runs the datapadi compiler *com-

pfle', and fixes up the output The final result fromthe datapath compileris then virtuaUy indistinguishable

from die output ofModgen.
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Using the Connect Program

After the netlist file and the templates have been prepared the Connect program is ready to go. The

foUowing command should be run in the directory containing the template files and the netlist file

netlistch:

Connect netlist.ch

If no errors occur, the subdirectorynamed by the parameter 'design' should exist in the current directory.

The PDL and datapath (*.dp) files should be in the desired places. The next step is to run Modgen and

CompUe on the appropriate files, to generate the HDL files. At thispoint,this must be donemanuaUy, or in

a sheU script This is not done by Connect since a proposal was once made to do this in Flint Once the

module generators have been run, the FUnt interactive fioorplanner can be run, and the design is complete.

After the chip has been successfully generated by Flint the actual layout is distributed through

several subdirectories in the Flint hierarchy. To flatten out this information, Connect can find the layout

files, and place a symbolic link to each of them in the directory <design>/Layout

Connect -f netlist.ch

If the layout files are in the KIC format then the .KIC file only needs to include the datapath and Modgen

CELL libraries in its search path. This command is usually needed only once, since the links to die layout

files remain whenever Connect or FUnt are rerun.

Debugging Aids

The module generators Compile andModgenplacelabels in the layout files indicating the location of

nets or signals. A circuit extractor, such as 'mextra' wiU use these labels where possible to identify nodes

in the extracted circuit As a convention, Modgen generates labels of the form "net_##", placing the

integer net number in the name. Net numben are used instead of terminal names, since macrocells can

share common terminal names. This can cause one circuit node to have two names, and also two circuit

nodes might share the samename. Both cases couldconfusea circuitextractor, andcouldcauseunpredict

ableresults when simulating a circuitusinganexistingsetof test vectors. The 'compile' program normally

places the terminal names in the layout file, andthe Compile script corrects for this by using the Connect
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program to filter the layouts.

Since net numben have no obvious relationship to the circuit schematic, the Connect program can

generatea list of the net names associated with the net numben:

Connect -n netlist.ch > netlist.alias

The resulting list is suitable as inputthe the 'esim' or 'mosim' simulators:

- net_l ramout[0]
• net_2 ramout[1]

• o •

- net_9 ramout[8]
- net_10 histout[0]
- net_ll histout[1]
• • •

- net_42 saturated
- net_43 readml

This assigns theactual net or signal name to a node, allowing thedesigner to refer to actual signal names

when simulating thecircuit Simulator command files with testvecton can be similar for several different

versions of a given circuit
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AppendixB

The Connect Program: Internal Representation

Data Structures

The Connect program uses several internal data structures to organize the data from the Connect

input database, detailedin the Connect User'sManual. Modules,macroceU terminals, cablesandnets each

have associateddatastructures. FigureB.l illustrates the relationshipbetween the structures.

MODULE

next module

child module

same

terminal list

cable

type Modgen

TPBMTNAT,

TERMINAL

next terminal

name

cable

mm index

max index

net

Mart index

ttep

Macrocell

A

56
• "out"

-2

.4

-5

-+1

MODULE

(Child)

CABLE "A"

^->CABLE_ NET

next net t>
name

minindex

max index

-"A_TO_B"

-2

-9

-135•tart net

use

net number —i

135 Uu[2]

PI 136 D

(41 137 • ^~£
[51 138 D—^~Lr Macrocell

(61 139 D—y^i.r B
PI 140 D— i
[8] 141 •

[91 142 D

Net: "A TO B"

Figure B.l: Internal DataStructuresin Connect

Modules, or macrocells, arestoredin a tree data structure, to supportthe nested hierarchy of macro-

cells. Modules which share a single floorplan are siblings in the tree. Siblings are organized in a linked
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list, widi each referring tothe 'next' one. Similarly, the child pointer points toalistof children. Inthe his

togram processor, the 'control' block has the children 'counterl', *counter2', 'timingpla' and 'fsmsync',

and has several siblings, including the RAM and two datapaths. The module name is also recorded so that

cable paths can be built up later. The cable entry points to an entry in a list of cables, which is filled in

after the Connect input file has been read. Also, to identify which module generator is to be used, the

'type' of macroceU is storedas a choice betweenModgen,CompUe or Flint

A linked list containing terminal information, 'terminal list', is stored for each module which has no

children. In general, a terminal on the edge of a macroceU can be a single signal or a bus of several sig

nals. The elements of each bus are indexed so that they can be referenced individuaUy,or in groups. The

purposeof each terminal structurein die linked list is to index aU or partof such a macroceU terminal, and

several such structures may refer to sections of the same terminal. Each structure contains the name of a

terminal and a minimum and maximum index range.

To attach two or more terminals together, they are assigned to a common net name, which is stored

in the structure 'net'. Each terminal structure can refer to only one net where a net hirea macroceU termi

nal, can be a signalor a bus. In general, a terminal can connect to any consecutive elements ofa net in the

foUowing form:

texm_name [a, b] - netjname [c, d];

Since the named net may have a larger range than that indicated in the square brackets, the terminal struc

ture must alsostore the startof the net range, as 'startindex'. In the aboveexample, the startindex is set to

the smallerof c and d If the terminal andnet ranges arein the opposite order from one another, the ter

minal will be connected to the net in reverse order, a condition stored as a 'step' direction of -1 in the ter

minal data structure.

The net structure is similar in form to the terminaldata structure. The name and index rangeof the

net arestored. Since several terminals mayreferto the samenet the nunimum andmaximum range index

values must be adjusted to include all ranges given for the named net Once all of the nets have been

assigned, integer net numbers are generated, one foreach indexed signal. The lowestnet number foreach

net structure is stored in 'start net'. The last feature in the net structure is the 'use' flag, which indicates
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whetheror not a net is of interest atrun time. Forexample, when debugging, the designer may wish to list

only those nets attached to a selected group of macrocells (see the -g option for the Connect program).

This is done by marking the desired nets as they are referenced, and then reading the 'use' flag to decide

whedier or not a net is to be listed.

Cables

The Flint fioorplanner uses a mechanismcalleda 'cable' to refer to macroceU interconnections at a

high level To route the cableof all wires which connect from a side ofone macroceU to a side of another,

the designer can interactively select the two sides, and then sequentiaUy select the channels through which

to route the cable.

In the Connect input file, cables are defined by giving the macrocell names at each end of a net

Flint however, requires more than the macroceU names; the path to a macroceU is alsoneeded, since each

macroceU has a different directory in the Flint design file hierarchy. The path to a macroceU starts at the

root of the Flint directory tree for a given design, and a vertical bar, '1', delimits the list of directorieswhich

must be traversed to find a desired macroceU.

After the module data structures have been initialized, the tree of modules is traversed. The cable

paths are built up at this time, and stored in the cable structure 'path' element Once the paths are set up,

Connect uses these paths to generate input files for the module generators.

For each macrocell which does not contain other macrocells, the Connect program generates

Modgen or CompUe input files. Foreach terminal in a macroceU, at least one destination macroceU must

be named, to completely specify a cable. Forthe current versions of Flint several rules must be foUowed

to avoid erroneous cable designations.

If the path to a destination module is too long, connections between two blocks can become unneces

sarilycomplicated. Consider, for example, the cablebetween the macrocells pr Icontrol Icounterl

and pr Icontrol Itimingpla. Although this cable can be entirely within the control floorplan, the

paths include the processor macroceU, 'pr*. As a result Flint may not actuaUy connect them together

within the 'control' macroceU, and willroute this signal to theboundary of thecontrol macroceU. By elim-
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inating 'pr* from the path of each macrocell, these macroceUs wuT be routed together within the floorplan

of 'control'. This problem can be solvedin general by removing the path whichis commonto bothmacro-

cells, with the exception of the parent containing both.

If a path is too long, a cable may not be generated. The two macrocells ctrlpads and

pr Icontrol Itimingpla iUustrate thisproblem. When routing the fullchip,Flintrecognizes 'pr* asa

black box containing 'control', and knows nothing about the 'timingpla'. Hence, it rejects the cable

between these two blocks. To solve this problem, the 'timingpla' is removed fromthe path, thereby satis

fying Flint

The cable path restrictions, which are adjusted by theConnect program, comeabout since Flint was

originally designed to support two levels of design hierarchy. The procedure for generating a proper path

to a destination requires comparing the fuU source and destination paths. First diecommon part of a path

name is eliminated,and the result is truncated to two macroceU names if more than two remain in the path.

This cable generation scheme prevents cables from being routed outside of thelowestmacroceU con

taining both the source and destination. If a signal which connects two macroceUs together is also to be

routed beyond the parent of those macroceUs, one of the macroceUs within the parent must refer to a

macroceU beyond the parent otherwise no connectionwuT be made.

Normally, each cable will be described twice, once ateach end. If more than twoterminals are to be

interconnected, somecables may be referenced onlyonce, which presents no problem, aslongasthe cable

connects to a sibling macroceU.
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Appendix C. Listings of the Connect Program

The input script for the UNIX 'make' program, for automatic compilation of the
Connect program.

Definitions of the internal data structures and global variables for the Connect
program.

Definitions of variables common to several of the Connect routines.

This is the main C program for Connect where command line parsing is handled.
Once a database describing a chip has been read in, this code generates the Flint
directory tree.

This code filters PDL and datapath input description templates, and generates
Modgen .pdl and datapadi compiler .dp input files. Variable and terminal infor
mation substitutions, as weU as conditional line exclusion are implemented here,
to support parameterization of a design.
This file provides the routines for handling the macroceU, cable, terminal, net and
numeric variable data lists.

These routines traverse a Flint directory tree, and link aU layout files to the sub
directory Layout This simplifies the testing, debugging and fabrication stages in
the development of a circuit

C routines for operating on lists are included here. Functions for appending and
sorting lists are provided.
These filters written in C use the database read from the input description for a
design to correct inconsistencies in the KIC layout files, and the hardware
description language (HDL) files.

This file is input for the lexical analyzer compiler, LEX, which produces C code
for characterizing input data.

This file describes the syntax of the design input file, and is compiled by YACC
to generate a syntactic analyzer in C. The result is used in conjunction with the
LEX output to parse the design input file.
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Appendix D. Listings of Template Definitions for the Histogram Processor.

addrdata.tem The address datapath detects repetitions of video samples, and selects the source
for the RAM bank address.

clocks.tem This template describes the pair of unbuffered clock pads.
counterLtem This counter generates the postprocessing timing by dividing the sample clock by

four or eight

counter2.tem This macroceU includes two counters separated by a delay in the carry line. The
first counter selects the bank of the RAM for postprocessing, while the second
counter indicates the address within each bank. These counters are only used
during the post-processing cycle.

ctrlpads.tem This group of pads provides synchronization and programming signals for the his
togram processor.

delayl.tem This delay block provides four delays for aligning the control signals with the
pipelined datapaths.

fsmsynctem This PLA macroceU controls the synchronization of the histogram processor with
the external circuitry. RAM bank decoding is also handled here.

histdata.tem This datapath performs the incrementing when the histogram is being calculated.
During post-processing, the data can be accumulated, and die result can be scaled
by a power of two using barrel shifters.

inpads.tem The video rate intensity data enters the processor through these pads.
outpads.tem These pads program a look-up table, providing internally generated data, address

and control signals.

power5.tem This pad provides Vdd to the chip.
rami.tern

ram2.tem These are die RAM banks in which the histogram calculation is stored.
timingpla.tem The outputs of counterl are decoded by this PLA, to generate post-processing

timing signals.
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addrdata.tem

Histogram processor address datapath
Input: Off-chip RAM address

On-chip RAM address from counters
Output: Selected RAM address

Indication of equal consecutive addresses

10/23/85
*/

CONTROL
- VddO Vdd

GND OGND

phi 0 phil
ph2 0 phi2i

LEFT

#term extaddr

#term countaddr

RIGHT

#term ramaddr

#term extdelayed

BOTTOM

#term equal

TOP

#term selsrc

ORGANIZATION

CNT NODATA
fPT.T. DATA
rFT.T. DATA
rFT.T. DATA
rFTT. DATA

#if size > 4
rFT.T. DATA

#if size > 5
PFTT. DATA

#if size > 6
PFTT. DATA

#if size > 7
rPTj. DATA

#if size > 8
fTrTT. DATA

#if size > 9
rpTi. DATA

GND NODATA

SLICE

'extaddr'

addrdata.tem
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I* Flint pads * I
> sideleft (in4»countaddr,out4=countaddrT,out»extaddrT)

I* delay the address * I
> delay ('in'-'extaddrT)

/* compare consecutive addresses */
> equal ('inb'-'extaddrT',B/'equal'-'equalundel')

/* Delay the data and the comparison result. */
> delay (out»extdelayedT,B /ln'-'equalundel',B /'out'-'equal')

/* select input source */
select ('in2'-extdelayedT,'in'-'countaddrT',T /'sel'-'selsrc')

I* drive the address outputs *l
> buffer

> sideright (out-ramaddr,in2-extdelayedT,out2=extdelayed)
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clocks.tem

(module (name clocks) (type padclk) (clock))
#pdlterm



counterLtem - 110 - counterLtem

counterLtem

(module
(name counterl)
(type counter)
(loadable)
(value xOO)
(design

(count 3)

)
)
#pdlterm



counter2.tem - 111 - counter2.tem

counter2.tem

(module
(name counter2)
(type counter)
(nodoadable)
(design

(count 4)
(delay)
(count $counter3width$)

)
)
#pdlterm
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ctrlpads.tem

(module (name ctrlpads) (type padclk) (input 9))
#pdlterm



delayl.tem - 113 - delayl.tem

delayl.tem

(module (name delayl) (type delay) (length 3) (width 4)
(design (array

DDDD

xDxx

DDxx

))
)
#pdlterm



fsmsynctem

fsmsynctem

(module
(name fsmsync)
(type fsm_pr)
(in 15)
(out 13)
(numclocked 14)
(minterm 29)
(minimize)
(input-plane (array

OlOxxxxxxxxxxxx

01Ixxxxxxxxxxxx

OOllxxxxxxxxxxO

OOllxxxxxxxxxxl

xOlOxxxxxxxxxxx

xOOxxxxxxxxxxxx

lOllxxxxxxxxxxx

11Ixxxxxxxxxxxx

1lOxxxxxxxxxxxx

xxOxxlOxxxxxxxx

xxOxxOxxxxxxxxx

xxlxxxxxxxxxxxx

xxOxxllOxxxxxxx

xxOxlxxxxxxxxxx

xxxxOxxxxxxxxxx

xxxxxxlxxxxxOOx

xxxxxxlxxxxxlOx

xxxxxxlxxxxxOlx

xxxxxxlxxxxxllx

xxxxxxOxOOOxxxx

xxxxxxOxOlOxxxx

xxxxxxOxOOlxxxx

xxxxxxOxOUxxxx

xxOxxxxxxxxxxxx

xxlxxxxxxxxOxxx

xxlxxxxxxxxlxxx

xxOxxxxxxxxxxxx

xxlxxxxxOxxxxxx

xxlxxxxxlxxxxxx

))
(output-plane (array

1000000000010

1100000000010

0100000000001

1100000000010

0000000000010

0000000000010

0100000000010

0000000000010

1000000000010

0001000000000

0011000000000

0011000000000

114 - fsmsynctem

I* negative logic outputs */
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))
)
#pdlterm

0001000000000

0000100000000

0000100000000

0000010000000

0000001000000

0000000100000

0000000010000

0000010000000

0000001000000

0000000100000

0000000010000

0000000000000

0000000000100

0000000000000

0000000000000

0000000000000

0000000001000
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ground.tem

(module (name ground) (type padclk) (ground))
#pdlterm
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histdata.tem

/*

Histogram datapath
Input: RAM data
Output: to RAM and output circuitry

9/23/85

*/

CONTROL

VddO Vdd1

GND OGND

phi 0 phil
ph2 0 phi2

RIGHT

#term Shifted

LEFT

#term Inl

#term Out

#term Address

BOTTOM[

#term zero

#term hold

#term outsel

#term shsat

#term resetc

#term zeroaccum

TOP

#term shift!

#term shift2
#term shift4

#term shift4a
#term cin

#term accum

ORGANIZATION

CNT NODATA

#if width > 16

ODD DATA

#if width > 16

EVEN DATA

#if width > 14

ODD DATA

#if width > 14

EVEN DATA

#if width > 12

ODD DATA

#if width > 12

EVEN DATA

#if width > 10

histdata.tem



histdata.tem

ODD DATA

#if width > 10

EVEN DATA

#if width > 8

ODD DATA

tfif width > 8

EVEN DATA

#if width > 6

ODD DATA

#if width > 6

EVEN DATA

#if width > 4

ODD DATA

#if width > 4

EVEN DATA

#if width > 2

ODD DATA

#if width > 2

EVEN DATA

ODD DATA

LSB DATA

GND NODATA

SLICE

118 - histdata.tem

/* delay the RAM output * /
Tnl'

> sideleft (in2=Out,out2=out,in3=Address,out3»address)
> minus1 /* RAM data is inverted */

> delay /* delay the RAM data, * /
> 'addin' /* and send it to the adder * I

'seUn'

> select! (T/'sel'-'accum') /* select the adder input */
f* zero it if desired * /

> zero (B/'zerobar'-'zero')
/* Add RAM data & selected data */

> uadder ('inb'-'addin',T/'cin'-'cin',B/'por-'addsat')
> mux2tol ('inb'-'selin',B/'in<_to_out'-Tiold')
> zero (B /'zerobar'-'zeroaccum')

f* hold output value */
> delay ('out'-'selin',B/'in'-'addsat')

'selin'

> driver ('out'-'out',B /reset-resetc)

'seUn'

> shiftOl (T/'shiftl'-'shiftlO
> shift02 (T/'shift2'-'shift2')
> shift04 (T/'shift4'-'shift4')
> shift04 (T/'shift4'-'shift4a',B/'satoutb'»'shsat')
> usatregister ('out'-'shout')
mux2tol ('in'-'shout','inb'-'address',B /'in_to_out'-'outsel')
> sidelight (out-Shifted)
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inpads.tem

(module (name inpads) (type padclk) (input $size$))
#pdlterm



outpads.tem - 120 - outpads.tem

outpads.tem

(module (name outpads) (type padclk) (output 13))
#pdlterm
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power5.tem

(module (name power5) (type padclk) (power))
#pdlterm



raml.tem - 122 - rami .tern

raml.tem

#delimiter &

(module (name rami) (type ramjiist) (width &width&) (words &words&) )
#pd!term



ram2.tem - 123 - ramZtem

ram2.tem

(module (name ram2) (type ram_hist) (width $width$) (words $words$) )
#pdlterm
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timingpla.tem

(module
(name timingpla)
(type fsm_pr)
(numclocked 7)
(in 8)
(out 7)
(minterm 18)
(minimize)
(input-plane (array

OOlOxxxx

OlOlxxxx

lOOOxxxx

lOUxxxx

lUOxxxx

OOxxxxxx

Olllxxxx

lOOxxxxx

lllxxxxx

Uxlxxxx

OlOxxxxx

OlxOxxxx

OOOllOOx

OlOOlOOx

OllllOOx

IOIOIOOx

OOOOUlx

xxxxxxxl

))
(output-plane (array

1000000

1000000

1000000

1000000

1000000

0110000

0100000

0100000

0111000

0111000

0010000

0010000

0000100

0000100

0000100

0000100

0000010

0000001

))
)
#pdlterm
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Appendix E. Net Lists for the Histogram Processor.

histogram.ch

/* Description of the Histogrammer macrocells and blocks * I

width - 18;
size - 8;
wmax - width-1;
smax - size -1;
banks - 4;
bankbits - 2;
words - (1 « size) / banks;
counter3width - size - bankbits;

}

/* The Histogram processor * I
design(histogramS) { histOgramS
macrocell(pr) {

macroceU(histdata,datapath) {
cable(raml) {

Inl [wmax,0]*ramout[0,wmax];
Out[wmax,0]-histout[0,wmax];

}
cable(addrdata) {

Address[smax,0]»ramaddr[0,smax];
Address[width-l,size] «

histdataNULLO[0, width-size-1];
accum-vblank;

}
cable(outpads) {

Shifted[width-l,8]«histdataNULLl [0,width-9];
Shifted[7,0]-outdata[0,7];
shsat»saturated;

}
cable(fsmsync) {

zerosreadml;
cin-inclor2ml;
resetc-resetcarry;
zeroaccum«resetaccum;

}
cable(delayl) {

hold°holdm2;
>
cable(ctrlpads) {

shift1-shiftl;
shift2»shift2;
shift4-shift4;
shift4a-shift4a;

}
cable(dmingpla) {

outsel-outsrc;
)

}
macrocell(raml) {

cable(histdata) {
din[wmax,0]-histout[0,wmax];
dout[wmax,0]-ramout[0,wmax];
din[width,width+wmax]»histout[0,wmax];
dout[widtn,width+wmax]«ramout[0,wmax];
address[0,smax-2]«ramaddr[2,smax];

>
cable(fsmsync) {

sela»selO;
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selb-sell;
clear[0]-clear;
clear[l]=clear;

}
}
macroceIl(ram2) {

cable(histdata) {
dui[wmax,0]«histout[0,wmax];
dout[wmax,0]-ramout[0,wmax];
din[width,width+wmax]-histout[0,wmax];
dout[width,width+wmax]»ramout[0,wmax];
address[0,smax-2]-ramiddr[2,smax];

)
cable(fsmsync) {

sela-sel2;
selb=sel3;
clear[0]»clear;
clearjl]-clear;

}
}
macrocelI(addrdata, datapath) {

cable(inpads) {
extaddr[0,smax]«extaddr[0^max];

>
cable(counter2) {

countaddr[0,l] - addrdataNULL[0,l];
countaddr[2,smax]»count3[0,smax-2];

}
cable(histdata)

ramaddr[0,sinax]«ramaddr[0,smax];
cable(fsmsync) {

equal»equal;
extdelayed[0,l]»extaddrisb[0,l];
extdelayed[2,smax] - addrdataNULL&smax];

cable(ctrlpads)
selsrc-vblank;

}
macrocell(delayl) {

cable(fsmsync) {
in[0]*holdml;
in[l]»inclor2;

}
cable(timingpla)

in[2]«load;
cable(ctrlpads)

in[3]-hblank;
cable(histdata) {

out[0]-holdm2;
out[l]«inclor2ml;

}
cable(outpads)

out[2]-loadml;
cable(timingpla)

out[3]=hblankml;
}
macrocell(control) {
macrocell(fsmsync) {

cable(fsmsync) { fsmin[0]-sl;
fsmin[l]-count; }

cable(addrdata) rsmin[2]«vblank;
cabIe(counter2) fsmin[3]-stop;
cable(ctrlpads) fsrnin[4]»field;
cable(delayl) fsmin[5]«hblankml;
cable(fsmsync) rsmin[6]»hl;
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cable(addrdata) fsmin[7]«equal;
cable(timingpla) { fsmin[8]-hold;

fsmin[9]-addr0;
fsmin[10]«addrl;}

cable(ctrlpads) fsmin[U]«read;
cable(addrdata) fsmin[12,13]-extaddrlsb[0,l];
cable(timingpla) fsmin[14]-reset;
cable(fsmsync) { out[0]=sl;

out[l]-count;
out[2]-hl; }

cable(histdata) out[3]-inclor2;
cablegram1) out[4]«clear;
cablegram1) { out[5]»sel0;

out[6>sell; }
cable(ram2) { out[7]-sel2;

out[8]-sel3; }
cable(delayl) out[9]»holdml;
cable(histdata) out[10]-readml;
cable(histdata) { out[l l]«resetcarry;

out[12]«resetaccum; }
}
macrocell(timingpla) {

cable(counter2)
fsmin[0,3]«count2[3,0];

cable(counterl)
fsmin[4,6]«countl[2,0];

cable(timingpla)
fsmin[7]=outsrc;

cable(delayl)
out[0]«load;

cable(outpads) {
out[l]»addrO;
out[2]«addrl;

}
cable(histdata)

out[3]«outsrc;
cable(fsmsync) {

out[4J-hold;
out[5]«reset;

}
cable(outpads)

out[6>addr2;
}
macrocell(counterl) {

cable(ctrlpads)
load-fivemeg;

cable(fsmsync)
'cin*'«count;

cable(timingpla)
out[0,2]«countl[0,2];

cable(counter2)
cout»coutl;

}
macroceIl(counter2) {

cable(counterl)
'cin*'«coutl;

cable(dmingpla)
out[0,3]«count2[0,3];

cable(addrdata)
out[4,4+counter3width-l] -

count3[0,counter3width-l];
cable(fsmsync)

cout-stop;
}
}
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}

/* Input pads * /
macrocell(inpads)

cable(addrdata)
out[0,smax] « extaddr[0,smax];

/* Output pads * /
macrocell(outpads) {

cable(histdata) {
in[0,7]«outdata[0,7];
in[12]<>saturated;

}
cable(delayl)

in[8]=loadml;
cable(timingpla) {

in[9]«addr0;
in[10]-addrl;
in[ll]-addr2;

}
}
/* Control pads * I

macrocell(ctrlpads) {
cable(histdata) {

out[0]-shiftl;
out[l]»shift2;
out[2]-shift4;
out[3]-shift4a;

}
cable(addrdata)

out[4]«vblank;
cable(delayl)

out[5]°hblank;
cable(fsmsync) {

out[6]-field;
out[7]»read;

>
cable(counterl)

out[8]»fivemeg;
}

/* Power, ground, clocks */
macroceII(power5) { }
macrocell(ground) { }
macrocell(clocks) { }

}



'histdata*

'addrdata'

•rami'

'control'

'histogram8'

129

Appendix F. Layout Examples of the Histogram Processor

The incrementing andaccumulating datapath of thehistogram processor. The histogram
andpost-processing calculadons are handled in thismacrocell, whichincludes theoutput
scalingandsaturation logic.

The address source selectlogic. External or internally generated addresses are directed
to the RAM banks andthe control logic fromthismacroceU.

One of two RAM banks. Each RAM bankincludes the simultaneous read-write logic.
Eachmacrocell contains two mirrored banks,sharing the row selectlogic.

The control macrocell, generated by Flint, consists of two PLA's and two counter
macrocells. The timing for the sample rate histogram calculadon, and the slowerpost
processingoperations is generated in this section.

The complete histogram processor, with pads. This version can calculate the histogram
of animagewith 512 x 512 pixels, with 256 intensity quantization levels (eightbits) per
pixel
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One of the RAM banks, 'ramjiist'
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The 'control' block, with two PLA's and two counters.
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TheComplete Histogram Processor, for a512 x 512,8 bitpixelimage.
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