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1. Introduction

As the complexity of integrated circuits (IC) keeps increasing, the need for simulation

and design automation of IC chips before their fabrication is becoming increasingly

significant. Simulations help find out design errors and can evaluate the chip performance

without actually fabricating the chips. Some automatic design aids, such as programmable

logic array (PLA) minimization programs or placement and routing packages, make life

easier for desiners. Both the simualtion and automatic design tools help improve the pro

ductivity of IC chip design by greatly reducing the design turnaround time and are becom

ing indispensible in today's IC design methodology.

In the automatic layout generation system, or Lager for Layout generator, which has

been developed recently [l], it is possible for the signal processing specialists who know

relatively little on chip design to generate IC chips automatically from behaviorial descrip

tions of the chips . Since our philosophy is to release these users of the need to know how

the layouts are generated, the behaviorial descriptions must be

high-level. The current Lager system uses a register transfer level (RTL) language called

the design file to specify the chips' behavior. Users can simulate from the design files

using a RTL simulator. The users prepare the input sample value file and let the RTL

simulator emulate the chip behavior and generate the output file. If the output meets the

specifications, then the users start the layout generation and fabriction process; otherwise,

they can modify the designfile and simulate again.

However, users still have to know quite a few details when writing the chip design

file. These details include the architecture, its arithmetic properties, and the datapath

design of the resultant chips. The design file is similar to the assembly-level descriptions

often used in microprogramming a processor. It is not easy to arrive optimized code even

for experienced hardware designers, not to mention a novice to the Lager system.



Silage descriptions, on the other hand, requires less knowledge of the hardware than

the design file descriptions. It is much easier to write Silage code from signal processing

algorithms, which makes Silage more attractive to the users. Nevertheless, the Lager sys

tem has to do more to simulate and to generate layouts from the more abstract chip

descriptions. This report describes such a behavioral-level simulator using Silage as the

chip description language.

Silage is similar to other high level languages (HLLs) like C. Fortran and Pascal. And

although painfully, we can use any of these HLLs to describe the chip behavior. There are

two reasons we choose to develop a new language to do the job. First, we can optimize the

language ourselves such that it fits our purposes. Second. Silage is a functional (applica

tive) language, which makes it more natural for describing signal processing algorithms.

The report is devided into 7 chapters. Chapter 2 talks about the Lager system in

more detail. Chapter 3 describes the Silage and functional languages in general. Chapter 4

and 5 discuss and compare the two methods of implementation of the simulator, viz.. the

demand-driven approach and the data-driven approach. Chapter 6 deals with the arith

metic issues and gives some examples. Finally. Chapter 7 summarizes the report.



2. The Lager System

2.1. Overview

The Lager system[l][2] is an integrated set of computer-aided design (CAD) tools

built on top of a cell library (CMOS and NMOS) to facilitate the signal processing IC

designs. The goal is to allow signal processing specialists to be able to design IC chips .

The system allows them to enter higher-level descriptions of the algorithms and automati

cally generates the chip layouts.

The flow diagram of current Lager system (without the Silage input ) is depicted in

Fig. 1. The highest level description language is the design file, which is specified by the

users. A design file simulator called Demon is used to test the algorithms and to tune the

coefficients. Demon has a debugging capability also, which allow users to find out any pro

gramming errors. After verifying the algorithms, the users can then run Archer, the

architecture intepreter. which will extract architectural information from the design file

and generate the parameter description language (pdl) file. The pdl file contains basically

the parameters of each macrocell and the connectivity among these macrocells. A macrocell

is a large block of circuitry containing perhaps several thousand transisters and is assem

bled by tiling small rectangular cells (leaf cells) in two dimensions. The parameters in the

pdl file are used to direct the tiling (or module generation) process. There are three kinds

of parameters at the moment, namely, the name of the macrocell (rom. ram, etc.), the type

of the macrocell (column-decoded or non-column-decoded ram. for example) and the

width of the macrocell (the word lendth of the datapath, the length of the control word,

etc.).

Modgen is the tool that does the module generation from pdl files and produces the

macroell layout file and the hardware description language (hdl) file. Modgen also refines

the connectivity data in the pdl file by determining the real coordinates of each terminal of



each macrocell. and storing them in the hdl file. There is a placement, routing and graphi

cal display tool, called Flint, to place the macrocells and to route them together using the

connectivity data in the hdl file. Flint is implemented on Sun workstations. All other

software tools can run on any machine that runs Unix (4.2 BSD).

To summarize, the Lager tools make possible quick turnaround time for designing

chips from high level descriptions. The methodology has been used to design several signal

processing chips, including a speech vocoder[3], 300 baud modem[4] and digital scrambler.

2.2. Architecture

The target architecture of the Lager system, as illustrated in Fig. 2, consists of several

concurrent signal processors. Interprocessor communication is performed over bit-serial

lines with parallel-serial (and serial-parallel) conversion and data buffering at the proces

sor side. The present version allows only one of the processors to input and output sam

pled data via a bidirectional parallel bus at the sample rate. The chip may optionally have

a host-IO unit to interface with a host processor at frame rate. The host-10 unit can con

nect with one or more processors through bit-serial lines.

Each processor is composed of seven macrocells (fig. 3). They are the AAU (address

arithmetic unit). AUIO (arithmetic unit and i/o unit). PC (program counter). SPC (sub

program counter). ROM. RAM. and FSM (finite state machine). The AAU is used to do

index addressing. There are two index registers, ix and iy. The ix-register counts the

iterations of the subprogram. The iy-register is normally implemented as a counter with a

user-defined modulus. The counter is incremented at the start of each sample period. This

kind of indexing can be used for decimation. Another option is to implement the iy-

register as a register, which can be loaded from the mbus. This allows for table lookup

and memory processing.
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AUIO is composed of the arithmetic unit and the i'o unit. The arithmetic unit is a

pipelined datapath, as shown in fig. 4. The mor (memory output register), sor (shift regis

ter), ace (accumulator) and the mir (memory input register) are the four pipeline stages.

The i/o unit consists of the connection to the i/o bus (for only one of the processors) and

the serial interconnections with the other processors and the host i/o units. These serial

i/o units include serial-to-parallel and/or parallel-to-serial converters and also the

buffering latches for the global variables.

The FSM is the only place where some logical operations can be performed. The only

type of conditional operation is the conditional write which is useful for decision-making

type of applications. The input to the FSM can come from the sign-bit of accumulator, or

any bit or bits of ix- and iy-registers. The output of the FSM is a set of control bits which

are used to control the write-enable of the RAM. The FSM is implemented by a pro

grammable logic array (PLA) which is also user-defined (by the designfile).

ROM. PC and SPC make up a very simple control sequencer. Looping is restricted to

one level of subroutine call. Branching is prohibited. For every sample, each processor

starts with the execution of a piece of microcode (the so-called main program) and may

optionally execute a user-defined number of iterations of a single sub program. The main

program and sub-program have fixed lengths and contain no branching. The ROM is

where the main and sub microcodes are stored. The PC and SPC are used as cycle-

counters for main and sub programs, respectively.

The Lager architecture, although very primitive, has proved to be sufficient for many

signal processing applications. Because of its simplicity, four or five processors may fit

into a single chip and thus achieves considerable power. The original scheme uses bit-

parallel multiplications (Fig. 4), which takes a number of cycles equal to the wordlength.

A new AUIO has been designed to use a Booth multiplication^] scheme, which requires

one half of that number. Effort is underway to enhance the control sequencer and the



conditional operations.

2.3. Lager — from User's Point of View

The current Lager system requires the user to write the designfile. which is no harder

than any assembly language programming except that it's much more difficult to optimize

the code because of the pipelining. There are several constraints that the user needs to

know. The total computational power is constrained by the product of the number of pro

cessors and the size of the microcode. The number of processors per chip is basically lim

ited by the chip size and is usually less than five. The maximum number of microinstruc

tions that one processor can perform for each sample is constrained by the ratio of clock

rate to sampling rate. For example, our cell library is designed for a maximum clock rate

of 5 MHz and for an application of 20 KHz sampling rate (digital audio), the maximum

number of microinstructions is 400 cycles. If the chip has 5 processors, then it could com

pute 2.000 microinstructions per sample.

To partition the signal processing algorithms into several loosely-coupled sequences

of computational tasks is by no means trivial. It is very important to balance the size of

the microcode among the processors since they execute synchronously. Any processors

requiring less time than others are in fact executing nops (no-operation) at the end of their

program. The vocoder chip [3](Fig. 5) is a good example of program optimization and bal

anced design within these various constraints.

In terms of program development time it is usually best to be able to program in a

high level language (HLL). The goal is that future users of Lager will be able to design in

Silage, which is not only easier to write but also provide further abstraction of the archi

tectural details. The Silage compiler will generate the design file, optimize the code to

fully utilize the pipelining and (probably with some guidance by the user) should parti

tion the code into several balanced pieces. An advantage of programming in a HLL is that
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the source code can potentially be compiled into microcode for different architectures.

2.4. The Future Lager System

The Lager system has succeeded in converting a high level description into chip lay

outs. However, its application has the following four limitations:

(1) It is targeted for signal processing applications.

(2) Its architecture is fixed.

(3) The system doesn't have the intelligence to 'figure out* the best design, instead

each design is a subset of some architecture.

(4) The underlying cell library is vulnerable to a change in the technology.

Since design automation is a very complicated process, it is mandatory to restrict the prob

lem domain to achieve acceptable performance. It thus seems justifiable not to worry

about the universality of the methodology for the moment. The third and fourth limita

tions are actually orthogonal to the Lager system in that they can be removed easily and

independently of the current system. The third can be achieved by bringing in some

efforts from the data path compiling area. The fourth can be done simply by rebuilding

the cell library in procedural layout.

In my opinion, the second point above, the fixed architecture, is the only unnecessary

restriction. Future Lager systems ought to be able to target into several different architec

tures since there is no fundamental reason why this can not be the case. In our plan, not

only are we trying to map Silage into more than one architecture, but we want to be able

to generate chips that are not microprogrammed. Higher sampling rate applications, such

as required in image processing, are the other possibilities of extending the design space.
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3. Silage and Functional Languages

In this chapter. 1 will emphasis the different nature of Functional Language* and con

ventional programming languages. The latter can also be called Imperative Languages.

Silage will be cited as an example to illustrate those points.

3.1. Functional Languages

A summary of the differences of Imperative (Procedural) Languages and Functional

(Applicative) Languages has been given [6] in the following way:

A program in an Imperative Language is used to convey a list of commands, to be

executed in some particular order, such that on completion of the commands the

required behavior has been produced.

A program in a Functional Language is used to define an expression which is the solu

tion to a set of problems: this definition can then be used by a machine to produce an

answer to a particular problem from the set of problems.

The two programming language types. Imperative and Functional, can be illustrated by the

use of an analogy in which one is asked to specify a physical object. For example, to

describe a garden shed, an imperative language programmer might say:

To build a shed

(1) Lay the foundation:

(2) Build the walls:

(3) Lay the floor:

(4) Put the roof on.
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A functional langauge programmer may say:

A shed consists of

(1) Walls supported by the foundation:

(2) A floor supported by the foundation;

(3) A roof supported by the walls.

Looking closely into the two descriptions, we can see clearly that the first approach is

more commanding (imperative) while the second one is more static and definitional.

Another obvious difference is that the order of statements is important in an imperative

approach but is not important in the functional approach. Functional languages do not

have typical imperative control structures. This relieves the programmer of the burden of

explicitly specifying the control flow, and reduces the errors which are introduced by

incorrect control sequencing.

Signal-flow graphs (very similar to the data-flow graphs in compter science terminol

ogy) are heavily used in signal processing to represent digital networks and algorithms.

Fig. 6 shows a simple first-order digital filter. The signal-flow graphs use arcs to represent

the functions to be performed on the signals and vertices (and arcs actually) to represent

the dependency of the signals. The data-flow graphs use vertices to represent the func

tions performed and arcs the dependency. Notice although different, there is a one-to-one

correspondence between the signal-flow graph and the data-flow graph.

Because of the explicit and implicit concurrency of the signal-flow graph, it is neces

sary to over-specify the control flow in a conventional language description of a signal-

flow graph. Since the programming of a functional language is basically nothing but

recording the dependency in a consistent way. it avoids over-specificity. This is the most

important reason why a functional language was chosen, choose Silage in the first place.
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Technically speaking, a functional language is a language whose main body is nothing

but function definitions and function applications. There are no global or static variables,

and the local variables can only be called-by-value. There can be no assignment state

ments so the programmer often need some time to gel used to using only equations. For

example.

i = i + 1:

is not allowed, which makes a description of looping more complex In a conventional

language, one would write

S:=0;

for i := 1 to 10 do S := S + A[i]:

but in a functional language, one has to say

PS[0] = 0:

(i: 1..10) ::PS[i] = PS[i-l] + A[i]:

S = PSf10]:

In functional languages, variables are not used for storage, but instead are more like macro

names for expressions. An identifier can be defined only once within a certain scope while

allowing it to be refered as many times as desired.

Another difference of the two types of languages is the way they manipulate arrays

and data structures. Arrays and data structures can be viewed two ways - either as sin

gle, large objects or as collections of small objects. In functional languages, arrays and

data structures are almost always viewed as a single object, and some constructs that copy

the entire array or substitute in new values for particular chosen elements are often pro

vided. The programmer has to create new data structures with small changes from the

original ones, rather than changing individual elements. This approach may sound more

expensive but it has the advantage that the entire array or data structure can have one set

of control information rather than a control block for each element of the data structure
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or array.

3.2. Features in Design of Silage[7]

Being a functional language. Silage has almost all the essential properties mentioned

above. Moreover, since we want Silage to be a special-purpose language for signal process

ing IC design, several features are designed for that purpose.

All data objects in Silage are actually infinite arrays indexed by an integer quantity

that can be thought of as "time" or "sample number". Thus, when you see

Q = A + 1:

this is really a definition of a vector:

(n: -infinity.. +infinity):: Q[n] = A[n] + 1:

We usually don't have to mention the index since all the samples are doing the same.

Sometimes it is necessary to refer to a value computed during a previous sample. For this

purpose, there is the notation

X@n

where n is a compile-time integer constant expression, to mean "the value of X. n samples

(i

ago.

Within each sample, a quantity may be an integer, a fixed-point number, a boolean,

or an array of any of these. These types must be specified by the programmers. A quan

tity with value n and type num <w,d > represents a fixed point number of the form n 2~J .

where —2U ^n <2W. The numeric type num<l,0>is boolean type, and the numeric type

num<w,0> is an integer. Square brackets can be used along with type declaration to

declare the dimension of an array. For example. num[k]<w,d> declares an array of k ele

ments of type num<w,d> Moreover, num<w> is the same as num<w,w>, and num is

used to specify fixed point numbers of arbitrary range and precision.
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Defining functions in Silage is fairly simple. Suppose we want to write a function

that adds one to each input, this is accomplished by:

func addl ( in: num ): num =

begin

return = in + 1:

end :

Multiple-return functions are allowed. For example.

func dummy ( in: num )

inc: num . dec: num :

begin

inc = in + 1:

dec = in - 1;

end :

is a function that defines two subfunctions. Function application is very flexible. X.y refers

to the subfunction y in the function definition of x. One can invoke any subfunction alone

without altering the other subfunctions. The calls

out = addl ( in );

and

out = dummy.inc ( in );

are exactly the same. You may notice these functions resemble

macro definitions. In fact, they are macros in terms of implementation, so that when

applying a function, it is a macro expansion rather than a function call. Looping is dealt

with in the same way. so the sentence

(i: 1..3)::B[i] = B[i-l] +A[i]:

is expanded to
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B[1] = B[0] + A[1]:

B[2] = B[1] + A[2]:

B[3] = B[2] + A[3]:

internally. This implementation does not allow recursive calls to the same function.

An entire program consists of a sequence of definitions of quantities and functions,

including one definition of a function called main. The arguments and outputs of the

function main comprise the inputs and outputs of the system.

Silage offers, besides arithmatic and logical operations, conditional operations for

decision-making . A typical command looks like

y = if Cj ->EX ilC2->£2ll-IIEfi :

and means that y equals Et if Ct is TRUE {Ct is boolean) or E if none of Ct is TRUE. In

addition. Silage has special library functions like Interpolation and Decimation to facilitate

the programming for signal processing applications.

There are several constructs in Silage which are designed especially for working with

hardware generated by the Lager system. These are pragmatic directives whereby the pro

grammers can specify some non-algorithmic information about their programs. The gen

eral format is

pragma expression

where expression is interpreted differently from elsewhere in the language. For instance.

pragma Processor(n.E1.E2....)

means that those expressions defining El. E2. ... have to be computed in processor n. Since

the chip generated by Lager may have more than one processor, this pragma gives the pro

grammer the opportunity to determine the computation allocation between the processors.

The pragmas, pragma Stored(C) and pragma Implicit(C) can be used to direct Lager to

assign local memory for the constant C or not. The pragmas may appear wherever a



17

definition may appear.
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4. Demand-driven Simulation

4.1. Intermediate^Format of Silage

For encapsulation purposes (see fig. 7). a Silage program will go through a front-end .

in which the parsing and semantic analysis are done, and generate a intermediate format.

The intermediate format will then go through various back-ends such as the compiler and

the simulator. The intermediate format is represented by the so-called decorated Abstract

Syntax Tree (d-AST). The plain (undecorated) AST emerges directly from the parser, and

contains all the syntactical information of the Silage program. After the semantic process

ing, the semantic information of the Silage program is incorprated by augmenting the AST

with various attributes, depending on the type of the node. These attributes can be

thought of as hanging off the tree nodes and thus we say that the AST is decorated. Each

node in the d-AST is a C structure defined as:

typedef struct iNODETYPE {

short LineNum. CharNnm;

char *Filename:

NodeKindType kind:

struct NODETYPE *L: *R:

AttrType *Attrs:

} NodeType:

The LineNum and CharNum indicate source position of text producing the node. The

Filename indicates which file the source came from. Kind indicates the type of the node.

For instance, the expression

El+E2

is represented by a tree whose root has a Kind entry of PlusNode. and whose left son is a

subtree representing Ex and whose right son is a subtree representing E2. Later in this



19

report. I will use the notation

(PlusN0de.Ej.f2)

to indicate the internal AST representation. There are various node types for arithmetic

and logical operations, e.g.- PlusNode. Minus.Node l.TNode. GTNode etc. There are

node types for other language constructs. IdentLeaf. IntegerLeaf. and FixedLeaf are the

types for leaf nodes, and each indicates an identifier, integer constant and fixed point con

stant, respectively. DefnNode is the type name of the equal sign because equations in

Silage can be viewed as definitions.

Some semantic information, the numeric type ( num<w,d> ) for example, is stored

as an attribute in the d-AST. The data structure of an attribute is defined by:

typedef struct ATTRTYPE {

short NumAttrs:

struct ATTR {

short Attrld:

short Type:

int *Value:

} Attrs[l];

} AttrType:

which is a variable length array of the structure Attrs. There are several types of attri

bute that display different types of information. Each node in the d-AST may have none,

one or more attributes depending on the kind of the node. For example, the numeric type

attribute exists for every IdentLeaf and operator node of any arithmetic or logic expres

sions. There is a pointer (Attrs) declared inside each node which points to the attribute

data structure (AttrType). If the node doesn't have any attribute, the pointer simply

stores NULL.
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4.2. Traversing the Decorated AST

Consider the scenario that a symbol (of kind IdentLeaf.) is defined once and is refer

enced several times in a certain scope. If we were to define an IdentLeaf of every occurence

of the symbol, then it would be extremely difficult to pass information between these

IdentLeaves. So in the d-AST every symbol has one unique IdentLeaf associated with it.

This makes the d-AST not a tree (because of the node sharing ), but rather a Directed Acy

clic Graph (DAG). Actually it is a general directed graph when attributes are taken into

account. The traversing of a DAG is more difficult than traversing a tree, but that's the

trade-off that is made to simplify the manipulation of each symbol.

Because the common symbols in our d-AST are only leaf nodes, the traversing prob

lem can be accomplished by small amendments to a tree-treversing algorithms. First we

need to build a symbol table to include all the symbols. Then we traverse the d-AST as if

we were traversing a tree. If we encounter an IdentLeaf in the symbol table, we check to

see if the symbol was labelled. If yes. we stop: if not. we label it and visit that IdentLeaf.

However, since the d-AST is not threaded, in general we can only traverse it top-

down but can't do it bottom-up. As we will see later, demand-driven simulation involves

top-down traversing while data-driven simulation requires bottom-up traversing of the

d-AST. We will have to use more data structures in data-driven simulation to overcome

the traversing problem.

4.3. Demand-driven Approach

Given the d-AST representation of the Silage program, the simulation task can be

viewed as evaluating (interpretating) the d-AST. There are two approaches in this evalua

tion, the demand-driven approach and the data-driven approach. The demand-driven

approach starts at the root of the d-AST and evaluation of each node proceeds by a
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demand for its left son and right son to be evaluated in the proper order. For example,

when PlusNode is evaluated, it first demands that both the left and right son be evaluated,

and then adds the two results from the two sons to get the result for PlusNode itself.

When DelnXode is evaluated, it requests its right son to be evaluated and passes the result

to the left son. The entire simulation is done by simply forwarding the demand of evalua

tion from the root down to the leaves and at the same time collecting the result of evalua

tion from the leaves to the root. All the input nodes are located among the leaf nodes of

the d-AST. and all the output nodes should be the left sons of some DefnNodes. For each

input sample, the evaluation process is done once. Output samples are generated when

their parent DefnNodes are evaluated.

An attribute slot called Result is specially designed to store the temporary evaluation

result for each node. GetAttr and SetAttr are two macros devised to access the attributes

and can be invoked as:

out » GetAttr ( T. Result );

SetAttr ( T. Result, out ):

The former gets the Result attribute of node T and assigns it to out. The latter sets the

Result attribute of node T to be out.

The evaluation process is basically a big recursive routine called NodeProcess. At this

beginning of the routine, a switch statement selects the proper code segment, depending on

the kind of the node which is encountered. For example, if a node has a kind PlusNode is

being evaluated, the simulator would be:

case PlusNode:

NodeProcess ( T->L );

resultJeft = GetAttr ( T->L. Result ):

typejeft = GetAttr ( T->L. Type ):

NodeProcess ( T->R ):
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resuli_right = GetAttr ( T->R. Result ):

type^-ight = GetAttr ( T->R. Type ):

out = Plus ( result_left. type_left. result_right. type_right):

SetAttr ( T. Result, out ):

break:

The Plus function will be discussed in Chapter 5. The code segment for DefnNode is:

case DefnNode:

NodeProcess ( T->R );

result_right = GetAttr ( T->R. Result ):

SetAttr ( T->L. Result. result_right ):

break:

For simplicity, the case when the numeric types of the right and left son are different has

been omitted. For each input sample, we evaluate the d-AST once by calling Nodeprocess

at the root which in turn generates calls to traverse the remainder of the d-AST.

Most signal processing algorithms involve z~l delays. This is represented internally

by the DelayNode . Although theoretically every symbol in Silage is an infinite array,

there is no way we can directly handle such arrays. Before run-time (before calling

NodeProcess). we traverse the d-AST once to determine the maximum number of delays

defined the Silage program. This can be done because the delay number (located at the

right son of each DelayNode) is manifest (known at compile-time). We dynamically allo

cate storage in the simulator ( mallocO ) for each symbol with an array whose length

equals the maximum delay. Before evaluating the d-AST. we preset all the past samples

of every symbol to zero: after evaluating the d-AST once, we shift all past samples one

step into the past and throw the oldest sample away.

The array symbols are the most complicated to handle. A one-dimensional (1-d)

array is stored internally as a two-dimensional (2-d) since each element in the array is
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itself an array of present and past samples. Also, since an array is viewed as a single

object, only one symbol appears in the d-AST. Thus the subtrees

(ArrayIndex.Node. a. 2)

and

(Array Index Node. a. 3)

which stands for a[2] and a[3] respectively are two distinct trees with a common left son.

The GetAttr and SetAttr of ArraylndexNode. however, has to manipulate the same, single

object. In other words, there is a 2-d array for the array symbol a which is commonly

refered for any element, present or past, of the array. Address calculation is required in

the 2-d array. For example.

a[2] @ 3

is stored at the 20th slot in the 2-d array if the maximum delay is 8. When a symbol is

an array name, the Result attribute stores the pointer pointing to the 2-d array where all

the values are located. There are special attribute macros for addressing into the array:

out = GetAttr2 ( T. Result, n. d):

SetAttr2 ( T. Result, n. d. out):

get and set the Result attribute of a[n] @ d (T is the node of array symbol, or a in our

example).
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5. Data-driven Simulation

5.1. Data-driven Approach

We have seen the essentials of evaluating a d-AST using a demand driven approach.

Another technique views the problem of evaluating the d-AST from the supply point-of-

view and leads to quite different method of implementing the simulator. Consider the d-

AST with input or constant leaf nodes at the bottom and with an output node at the top.

the values at the leaf nodes, which were demanded by their parents, were in turn

demanded by higher ancestors themselves. Now. if the leaf nodes are to supply their

values to their parents . and if these parents could supply, after interaction (computation)

their values upward, the evaluation result would eventually get to the output node. In

other words, the important thing is that the result propagate to the output node rather

than how this propagation is initiated.

Let's use an example to illustrate how it works. Suppose we are to evaluate

(DefnNode. y.

(PlusNode. a. b)

)

and a is known, but b is not. The node a will supply its value to the PlusNode so the

PlusNode has one operand. Since the node b does not yet have a value to give to the

PlusNode. the calculation at the PlusNode can not proceed. Once node b finally gets its

value and gives it to the PlusNode. the calculation at PlusNode is made and result is sup

plied upward to DefnNode. Then the DefnNode will take the value at the PlusNode and

bring it to node y. and then every operation pending the value ol y can proceed. The entire

evaluation process is triggered by data, so we call it a data-driven approach.
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Since the traversing is upwards, the data-driven approach requires a node to know its

parent. Also as the node a is waiting for the value from the node b in the above example,

care must be taken to not lose the value of a These aspects reflect that the data structure

which was designed lor demand-driven simulation is no longer sufficient.

5.2. Data Structure

It was decided not to use the previous node structure. NodeType. Rather, a set of

new data structure was devised in which every node of the d-AST comes in as an element

of a big array, TL (for treelist). A node in the d-AST, which was previously referred by a

pointer to the structure NodeType in the demand-driven approach, is now referred by an

index of TL in the data-driven approach. The TL is created by reading in the d-AST and

fitting it into the TL array, one entry per node. It takes extra time and memory space to

do this, but it has the advantage that the data structure of the back-end (simulator) is

independent of that of the front-end (intermediate format, or the d-AST). Each node

inthe TL is defined by:

typedef struct treelist {

short up: /* interpolation factor *•

short down: /* decimation factor *

short count: /* how many more operands */

/* still needed before fire-up */

short Isconst: /* boolean. TRUE if const */

short Iswait: /* boolean. TRUE if exist a waitoperand */

int waitoperand: /* value of waitoperand */

NodeType *ptr:/*

Parent *phead;/*

Valueq *vhead:/*

Valueq *vtail;/*
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short arlen: /* array length, equal 1 if scalar */

Parent *ppfl]:/*

/* non-NULL only for array-type identleaf */

} Tl.[PROGRAMSlZE]:

Since a node may have more than 1 parent (because of the common nodes), a linked-list is

defined to keep the parent information:

typedef struct parent {

int Parentlndex: /* index of parent in the TL */

short IsRight; /* boolean. TRUE if the node is */

/* the right child of the parent */

struct parent *pnext:/*

} Parent:

The parent information is created along with TL initially when the d-AST was read in.

The parent list of an array-type identleaf is special (deviced by pp) in that parents with

different array index need to be treated differently. Thus an array (length equals arlen) of

parent list pointers are created for these array-type identleaves.

Each node has a count field to determine how much more data is still needed before it

can operate and give the result. Initially, the count field is at the maximum. For example,

the count field for PlusNode is 2 since it needs two data to operate. For DefnNode it is 1.

For DelayNode it is 0 since it is assumed that all the past values are zero and are available

initially. If right or left child of a node is available or is a constant, then the count field

decrements. When the count field equals zero, the operation is carried out and the count

fields of the children are reset to the maximum value. The result of the operation (e.g.

Plus) will again trigger its parents' count field to be decremented. The process then repeats

for the parents.
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The temporary value of a node is kept in the Valueq (Value queue), not in the Result

attribute. The advantages for this are that the length of the Valueq is variable, thus every

symbol needs not reserve the maximum number of past samples. Secondly, the past

values are stored at ihe Valueq of the DelayNode rather than at the symbol sites. Address

calculation for past samples is then not needed. For a DelayNode with delay number n, a

Valueq of length n is initially allocated and initialized to all zeros. In all cases, a new

value enters the tail of the Valueq and the output value is taken from the head. Vhead

and vtail in the TL are used for this purpose. Each element in a Valueq is defined as:

typedef struct valueq {

int value:

struct valueq *vnext:

} Valueq:

If a symbol has more than 1 parent, when it has got the value ready for its parents,

it is often the case that some parents are ready to use the value (their count fields will be

zero) while some parents are not. If we let parents wait until all parents are ready, those

parents that are currently not ready may in fact wait for those parents who are ready, and

then a deadlock occurs. On the other hand, if we let those parents who are ready use the

value freely, when a parent is ready later it could find that the value is gone. The solution

to this is to send the value to all parents, ready or not ready. The ready parents can use

the value immediately; the parents which are not ready can keep the value pending by

storing it in the waitoperand field. The Iswait is a boolean variable to indicate if there is a

waiting operand. These complexities exist partly in order to simplify the manipulation of

the Valueq.

Constants are another trouble-maker. Since constants can be viewed as everlasting

sources of data, we must be careful not to treat them as other ordinary symbols. The

solution is to propagate the constants right at the beginning of the evalution. If a node has



28

one child which is constant, then the constant value will be used as a waitoperand and the

maximum count of the node (the number to reset to) will be only 1. If both children are

constants, computation is carried out and the node is degenerated to an constant leaf. The

Isconsi in TI is a boolean variable to indicate if a node is a constant.

The up and down are used to record the sampling frequency ratio of the node. When

interpolation and decimation are parts of the program, there is more than one sampling

frequency. The sampling frequency ratio is defined as the ratio of the sampling frequency

to the input sampling freqnency and can be represented by a rational number that is

stored as two integers, up and down. Ptr is the pointer pointing to the NodeType struc

ture. Arlen indicates if the node is an array symbol. If it is not. arlen equals unity and pp

equals NULL, otherwise pp points to the array structure.

After the data structure is set up, the evaluation algorithm is fairly simple. In the

initialization phase. TL and Parent structures are created, then the constants are handled

and Valueqs for DelayNodes are allocated. An Availq (available queue) is defined to store

all the nodes whose count fields are zeros. At the beginning, only DelayNodes are in the

Availq. Each element in the Availq is fetched sequentially and the following process is

executed:

For each parent of a node A, decrement the count field by 1. If the count field

reaches zero, take the value of the child, make the appropriate computation and store

the result in the Valueq. Meanwhile put the node A into the Availq. If the count

field is not zero yet. take the value and put it onto the waitoperand field and set the

Iswait field.

After every parent is finished, the node A leaves the Availq with its count field reset

to initial maximum number. However, delayNode would be reset to 1 even though it

is 0 initially.
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Whenever the Availq is empty, read in a new input sample and put the input symbol

onto the Availq. Whenever the output node gets anything to its Valueq. output it.

The most remarkable part of the algorithm is that it needs no bookkeeping for Valueq.

since everything is done in a first-in-first-out l>asi>.

5.3. Comparison of the Two Approaches

We have noticed that the data-driven approach requires a more complex data struc

ture. Furthermore, it runs slower. This is because the large amount of queue manipula

tion and the frequent searching through the big TL array. Why do we find it interesting

after all? The answer is flexibility.

One feature of functional languages is that the statements need not obey a certain

order. However, at execution time, the proper order is very important and this is obtained

through a data-flow analysis. In Silage, this is part of the semantic analysis and the d-

AST is a result of this ordering. The demand-driven approach relies on this fact since the

forwarding of evaluation demand is a rigid process which has to obey a predefined order.

On the contrast, the data-driven approach does not require the built-in execution order. It

will work as long as the d-AST reflects the Silage program syntactically. However, the

current implementation did not take the advantage because we use the same d-AST to

create the TL.

Notice there is no explicit need to implement the z~l delay in the data-driven

approach. That is. no bookkeeping is necessary when the new input samples are read in.

Each new value entering at the tail of the Valueq makes all the values previously in the

Valueq "one time step older" automatically. This property makes the handling of asyn

chronous input almost painless since the evaluation process is not "synchronous" to any

input. In the same light, the handling of conditional expressions are also easier in the

data-driven approach because asynchronous inputs can be treated as special cases of
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conditional expressions.

The statement

Y = Interpolate ( A.N ):

means that }' is defined by the result of interpolating the values A[0] A[N-l] in that

order where A is an array. The statement

pp = Decimate ( X. N. P );

means that pp is defined as the result of sampling every Nth element of X. starting with

the one at time Pr. where r is the sample interval of X. The sampling frequency of Y is N

times that of A. and the sampling frequency of pp is 1/N times of that of X. When deal

ing with these different sampling rates among symbols, the demand-driven approach will

require a more complex address calculation scheme. For example, a reference like

a = X @k:

is internally treated as

a = A[k-(k/N)*\]@(k/N):

and

a = pp @ k :

is treated as

a = X @ (k*N-P) :

Also the maximum number of past samples to be allocated is no longer the 'literal' max

imum delays of any sample, rather it is determined also by the sampling frequency. The

lower sampling frequency a symbol has. the more past delay samples it should reserve.

Surprisingly, the same decimation and interpolation problems cause no extra effort in the

data-driven approach. For those symbols with higher sampling rate, the Valueq will

expand and shrink more rapidly. Again, no bookkeeping is necessary for Valueq.
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Last but not least, data-driven approach is proven to be essential if the evaluation

process is to be scheduled into small tasks when we have multi-processor enviroment, or

single processor with instruction pipelining[9].
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6. Arithmetic

6.1. Lager Arithmetic

Lager make use of 2's complement binary arithmetic. Every data object, independent

of wordlength. has value between -1 and 1. Data are interpreted as having a binary point

after the most significant bit (MSB), which is also the sign bit. This format has the

advantage that the binary point position is the same for operands and result, and hence

leads to consistent interpretation of data objects!10]. Signal samples as well as the

coefficients and parameters of digital filters should be properly scaled before being sent to

Lager chips. Some algorithms, like the lattice filter, bound the coefficient values between -1

and 1 hence no scaling is necessary. If the computation leads to values greater than 1 or

less than -1. the partial result is satuated at 1 or -1.

Miltiplication is implemented by bit-parallel shift-and-add. There are two kinds of

multications in Lager. Variable multiplication is done by a subroutine-like piece of code

which basically implements the equation

n-l x
xy =-*yo+£T-y,

»=1 A

where x is the multiplicand and y is the multiplier. Thus, if y is negative (y0 is 1). -x is

first put into the accumulator and in successive cycle that follows, y, is being tested while

x is right shifted. If y, is one. then shifted x is added. The entire length of the multipli

cation routine is n+3. where n is the wordlength of the multiplier. Variable multiplication

is expensive in a sense that lots of cycles are spent regardless of how many adds (the

number of l's in the multiplier) are actually required. Moreover, the Lager hardware dic

tates that the multiplier must be stored in a global variable before shift-and-adds can be

performed and global storage is very expensive in terms of silicon area in the Lager imple

mentation.
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Other alternatives are feasible when the multiplier is a known constant. Then we

can make use of the barrel sliijier of the layer arithmetic unit to shift over a string of

zeros. Optimum usage of the shilt-and-add c\cles is when the multiplier is formated into

the canonical sign digit (CSD) representation [ll]. The CSD format has trinary symbols

for each bit, 0. 1 and -1 (depicted by -). For example, the 8-bit constant

00111100

in binary format is equivalent to

01000-00

in CSD format. The latter has fewer "active" (nonzero) bits than the former so that the

CSD representation can result in fewer microcode cycles. The results from constant or

variable multiplication are different because of their different truncation properties.

Although more expensive, we can choose to use variable multiplication when the multi

plier is a constant. It is done by simply loading the constant to a temporary local and

then following the variable multiplication routine.

The division operation in Lager is by means of long division. Each cycle a bit is gen

erated so the number of cycles depends linearly on the wordlength of the quotient. The

quotient is also stored in a global.

6.2. Implementation

As explained in Chapter 3. each data object has a numeric type, which is treated as an

attribute. Inside the attribute a pointer is stored which points to a node having the struc

ture

(NumTypeNode. IntegerLeaf. IntegerLeaf)

The first (left) IntegerLeaf stores the w and the second (right) IntegerLeaf stores the d of

the numeric type num<w,d>. Each function in the arithmetic library (Plus. Minus. Mult
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and Div) will take 4 parameters, namely, the values and the type pointers of the two

operands (except for Mult which has three as explained below). Based on the 4 parame

ters, the arithmetic functions determine the resultant value of the operator using the fol

lowing semantic rules as defined in the Silage:

Expression Type of Result

L+R

L-R

num<w,d>, assuming w=w '. 6=d '

L*R

L/R

num<w.d+</ '-w>. assuming w=w '
num<w,d+w-<f '>. assuming w=w'

M+L. L+M

M-L. L-M
M*L. L*M
M/L. L/M

num<w.d>

M+N.M-N

M*N. M/N
num

Notes:

M and N are type num.
L is type num <w ,d >.
R is type num <w'. d' >.

Thus, in each arithmetic function there is no need to set the Type attribute. Rather, the

resultant value has to be properly scaled to fit the numeric type. The drawback of this

approach is that it enforces some type relation between the two operands. Note if we had

let the back-end simulator figure out both the value and the numeric type, it might require

that new NumTypeNodes be declared and included in the d-AST.

The Mult function has one more parameter than other functions which determines

whether variable multiplication or CSD constant multiplication is to be used. In every

function, special effort is made to make the result "inaccurate" in the same (truncation)

pattern as that would happen in the Lager architecture. The encapsulation of the arith

metic functions from other parts of the simulator makes it possible that we may simulate

different architectures by simply changing the arithmetic routines.
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6.3. Examples

In a-ppendix A. a Silage program example of a low-pass filter is given and run through

the two versions of simulator, demandriven and daiadriven. A flattened (for the ease of

printout) AST is also included in appendix A. In appendix B. the designfile program of the

same low-pass filter example is shown which is run by Demon. Note the results are the

same for Silage simulator and Demon.
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7. Conclusion

This report describes a beha\ ioral-le\ei simulator which uses Silage to specify the

chip behavior. Armed with this high level simulator and the Silage compiler, the users of

Lager system would not need to write the designfile and use the RTL Lager simulator

(Demon) any more. The simulator can be used to simulate the behavior of more than one

architectures by simply replacing the arithmetic module.

It is instructive to study the different approaches of implementing the simulator. We

compared the relative merits of the demand-driven approach and data-driven approach in

terms of speed, run-time storage and flexibility.

A final note: Silage has been changed from the version reported here. Interested

reader is encouraged to consult with Prof. Paul Hilfinger.
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Appendix A: Silage Program Example

Script started on Mon Nov 25 10:23:08 1985
oz 1% cat FIR.si

♦define word num<8>

my_coefs - { 5, 7, 8, 9, 12, 16, 27, 81, -81, -27, -16, -12, -9, -8, -7, -5};

func main(in: word): word *
begin

return - h_transform(in,my_coefs);
end;

func ^transform(in: word/ coefs: num []): word -
begin

filter[15] - in;
(i: 0 .. 14):: filter[i] - filter[i+l]@2;
Sum[16] - 0;
(i: 0 .. 15):: Sum[i] - Sum[i+1] + filter[i]*coefs[i];
return - Sum[0];

end;

oz 3% cat infile
127

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

oz 4% demandriven FIR.il < infile

Silage Simulator Version 2.1 (Mon Jul 15 16:14:49 PDT 1985)
Identifier my_coefs
Identifier filter

Identifier in

Identifier Sum

Identifier return

Identifier return

Identifier return
-10
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0

-11

0

-11

0

-14

0

-15

0

-18

0

-30

0

-85

0

oz 5% datadriven FIR.il < infile

Silage Simulator Version 2.3 (Wed Aug 7 17:15:47 PDT 1985)
-10

0

-11

0

-11

0

-14

0

-15

0

-18

0

-30

0

-85

0

oz 6% exit

script done on Mon Nov 25 10:26:33 1985
/*********************************+*******************

*

* the following is the flattened AST representation

*****************************************************^

oz 2% ~hilfingr/bin/pr±ntTree FIR.il
#1 ProgramNode L: #2, R: -*-,
#2 SemiNode L: #3, R: #4,
#3 SemiNode L: #5, R: #6,
44 DefnNode L: return#7, R: return*8,
#5 SemiNode L: #9, R: #10,
#6 DefnNode L: return*8, R: return*11,
#7 return#7 Type: #12, ValueClass: 24,
#8 return*8 Type: #12, ValueClass: 16,
#9 SemiNode L: #13, R: #14,
#10 DefnNode L: return*!1, R: #15,
#11 return*11 Type: #12, ValueClass: 16,
#12 NumTypeNode L: (8), R: (8),
#13 SemiNode L: #16, R: #17,
#14 DefnNode L: #18, R: #19,
#15 ArraylndexNode L: Sum#20, R: (0), Type: *12,
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#16 SemiNode L: #21, R: #22,
#17 DefnNode L: #23, R: #24,
#18 ArraylndexNode L: Sum#20, R: (0), Type: #12,
#19 PlusNode L: #25, R: #26, Type: #12,
#20 Sum#20 Bounds: #27, Type: #28, ValueClass: 16,
#21 SemiNode L: #29, R: #30,
#22 DefnNode L: #31, R: #32,
#23 ArraylndexNode L: Sum#20, R: (1), Type: #12,
#24 PlusNode L: #33, R: #34, Type: #12,
#25 ArraylndexNode L: Sum#20, R: (1), Type: #12,
#26 MultNode L: #35, R: #36, Type: #12,
#27 CommaNode L: (0), R: #37,
#28 ArrayTypeNode L: #38, R: -*-,
#29 SemiNode L: #39, R: #40,
#30 DefnNode L: #41, R: #42,
#31 ArraylndexNode L: Sum#20, R: (2), Type: #12,
#32 PlusNode L: #43, R: #44, Type: #12,
#33 ArraylndexNode L: Sum#20, R: (2), Type: #12,
#34 MultNode L: #45, R: #46, Type: #12,
#35 ArraylndexNode L: filter#47, R: (0), Type: #12,
#36 ArraylndexNode L: my_coefs#48, R: (0), Type: #12,
#37 CommaNode L: (16), R: -*-,
#38 NumTypeNode L: (8), R: (8),
#39 SemiNode L: #49, R: #50,
#40 DefnNode L: #51, R: #52,
#41 ArraylndexNode L: Sum#20, R: (3), Type: #12,
#42 PlusNode L: #53, R: #54, Type: #12,
#43 ArraylndexNode L: Sum#20, R: (3), Type: #12,
#44 MultNode L: #55, R: #56, Type: #12,
#45 ArraylndexNode L: filter#47, R: (1), Type: #12,
#46 ArraylndexNode L: my_coefs#48, R: (1), Type: #12,
#47 filter#47 Bounds: #57, Type: #28, ValueClass: 16,
#48 my_coefs#48 Bounds: #57, Type: #58, ValueClass: 144,
#49 SemiNode L: #59, R: #60,
#50 DefnNode L: #61, R: #62,
#51 ArraylndexNode L: Sum#20, R: (4), Type: #12,
#52 PlusNode L: #63, R: #64, Type: #12,
#53 ArraylndexNode L: Sum#20, R: (4), Type: #12,
#54 MultNode L: #65, R: #66, Type: #12,
#55 ArraylndexNode L: filter#47, R: (2), Type: #12,
#56 ArraylndexNode L: my_coefs#48, R: (2), Type: #12,
#57 CommaNode L: (0), R: #67,
#58 ArrayTypeNode L: #68, R: -*-,
#59 SemiNode L: #69, R: #70,
#60 DefnNode L: #71, R: #72,
#61 ArraylndexNode L: Sum#20, R: (5), Type: #12,
#62 PlusNode L: #73, R: #74, Type: #12,
#63 ArraylndexNode L: Sum#20, R: (5), Type: #12,
#64 MultNode L: #75, R: #76, Type: #12,
#65 ArraylndexNode L: filter#47, R: (3), Type: #12,
#66 ArraylndexNode L: my__coefs#48, R: (3), Type: #12,
#67 CommaNode L: (15), R: -*-,
#68 NumTypeNode L: -*-, R: -*-,
#69 SemiNode L: #77, R: #78,
#70 DefnNode L: #79, R: #80,
#71 ArraylndexNode L: Sum#20, R: (6), Type: #12,
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#72 PlusNode L: #81,
#73 ArraylndexNode L
#74 MultNode L: #83,
#75 ArraylndexNode L
#76 ArraylndexNode L
#77 SemiNode L: #85,
#78 DefnNode L: #87,
#79 ArraylndexNode L
#80 PlusNode L: #89,
#81 ArraylndexNode L
#82 MultNode L: #91,
#83 ArraylndexNode L
#84 ArraylndexNode L
#85 SemiNode L: #93,
#86 DefnNode L: #95,
#87 ArraylndexNode L
#88 PlusNode L: #97,
#89 ArraylndexNode L
#90 MultNode L: #99,
#91 ArraylndexNode L
#92 ArraylndexNode L
#93 SemiNode L: #101
#94 DefnNode L: #103
#95 ArraylndexNode L
#96 PlusNode L: #105
#97 ArraylndexNode L
#98 MultNode L: #107
#99 ArraylndexNode L
#100 ArraylndexNode L
#101 SemiNode L: #109
#102 DefnNode L: #111
#103 ArraylndexNode L
#104 PlusNode L: #113
#105 ArraylndexNode L
#106 MultNode L: #115
#107 ArraylndexNode L
#108 ArraylndexNode L
#109 SemiNode L: #117
#110 DefnNode L: #119
#111 ArraylndexNode L
#112 PlusNode L: #121
#113 ArraylndexNode L
#114 MultNode L: #123
#115 ArraylndexNode L
#116 ArraylndexNode L
#117 SemiNode L: #125
#118 DefnNode L: #127
#119 ArraylndexNode L
#120 PlusNode L: #129
#121 ArraylndexNode L
#122 MultNode L: #131
#123 ArraylndexNode L
#124 ArraylndexNode L
#125 SemiNode L: #133
#126 DefnNode L: #135
#127 ArraylndexNode L

R: #82, Type: #12,
Sum#20, R: (6), Type: #12,

R: #84, Type: #12,
filter#47, R: (4), Type: #12,
my_coefs#48, R: (4), Type: #12,

R: #86,
R: #88,
Sum#20, R: (7), Type: #12,

R: #90, Type: #12,
Sum#20, R: (7), Type: #12,

R: #92, Type: #12,
filter#47, R: (5), Type: #12,
my_coefs#48, R: (5), Type: #12,

R: #94,
R: #96,
Sum#20, R: (8), Type: #12,

R: #98, Type: #12,
Sum#20, R: (8), Type: #12,

R: #100, Type: #12,
filter#47, R: (6), Type: #12,
my_coefs#48, R: (6), Type: #12,
R: #102,
R: #104,
Sum#20, R: (9), Type: #12,
R: #106, Type: #12,
Sum#20, R: (9), Type: #12,
R: #108, Type: #12,
filter#47, R: (7), Type: #12,
my_coefs#48, R: (7), Type: #12,
R: #110,
R: #112,
Sum#20, R: (10), Type: #12,
R: #114, Type: #12,
Sum#20, R: (10), Type: #12,
R: #116, Type: #12,
filter#47, R: (8), Type: #12,
my_coefs#48, R: (8), Type: #12,
R: #118,
R: #120,
Sum#20, R: (11), Type: #12,
R: #122, Type: #12,
Sum#20, R: (11), Type: #12,
R: #124, Type: #12,
filter#47, R: (9), Type: #12,
my_coefs#48, R: (9), Type: #12,
R: #126,
R: #128,
Sum#20, R: (12), Type: #12,
R: #130, Type: #12,
Sum#20, R: (12), Type: #12,
R: #132, Type: #12,
filter#47, R: (10), Type: #12,
my_coefs#48, R: (10), Type: #12,
R: #134,
R: #136,
Sum#20, R: (13), Type: #12,
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#128 PlusNode L: #137, R: #138, Type: #12,
#129 ArraylndexNode L: Sum#20, R: (13), Type: #12,
#130 MultNode L: #139, R: #140, Type: #12,
#131 ArraylndexNode L: filter#47, R: (11), Type: #12,
#132 ArraylndexNode L: my_coefs#48, R: (11), Type: #12,
#133 CommaNode L: #141, R: #142,
#134 DefnNode L: #143, R: #144,
#135 ArraylndexNode L: Sum#20, R: (14), Type: #12,
#136 PlusNode L: #145, R: #146, Type: #12,
#137 ArraylndexNode L: Sum#20, R: (14), Type: #12,
#138 MultNode L: #147, R: #148, Type: #12,
#139 ArraylndexNode L: filter#47, R: (12), Type: #12,
#140 ArraylndexNode L: my_coefs#48, R: (12), Type: #12,
#141 CommaNode L: #149, R: #150,
#142 DefnNode L: #151, R: (0),
#143 ArraylndexNode L: Sum*20, R: (15), Type: #12,
#144 PlusNode L: #152, R: #153, Type: #12,
#145 ArraylndexNode L: Sum#20, R: (15), Type: #12,
#146 MultNode L: #154, R: #155, Type: #12,
#147 ArraylndexNode L: filter#47, R: (13), Type: #12,
#148 ArraylndexNode L: my_coefs#48, R: (13), Type: #12,
#149 CommaNode L: #156, R: #157,
#150 DefnNode L: #158, R: #159,
#151 ArraylndexNode L: Sum#20, R: (16), Type: #12,
#152 ArraylndexNode L: Sum#20, R: (16), Type: #12,
#153 MultNode L: #160, R: #161, Type: #12,
#154 ArraylndexNode L: filter#47, R: (14), Type: #12,
#155 ArraylndexNode L: my coefs*48, R: (14), Type: #12,
#156 CommaNode L: #162, R? #163,
#157 DefnNode L: #164, R: #165,
#158 ArraylndexNode L: filter#47, R: (14), Type: #12,
#159 DelayNode L: #166, R: (2),
#160 ArraylndexNode L: filter#47, R: (15), Type: #12,
♦161 ArraylndexNode L: my_coefs#48, R: (15), Type: #12,
#162 CommaNode L: #167, R: #168,
#163 DefnNode L: #169, R: #170,
#164 ArraylndexNode L: filter#47, R: (13), Type: *12,
#165 DelayNode L: #171, R: (2),
#166 ArraylndexNode L: filter#47, R: (15), Type: #12,
♦167 CommaNode L: #172, R: #173,
#168 DefnNode L: #174, R: #175,
#169 ArraylndexNode L: filter#47, R: (12), Type: #12,
#170 DelayNode L: #176, R: (2),
#171 ArraylndexNode L: filter#47, R: (14), Type: #12,
#172 CommaNode L: #177, R: #178,
#173 DefnNode L: #179, R: #180,
#174 ArraylndexNode L: filter#47, R: (11), Type: #12,
#175 DelayNode L: #181, R: (2),
#176 ArraylndexNode L: filter#47, R: (13), Type: #12,
#177 CommaNode L: #182, R: #183,
#178 DefnNode L: #184, R: #185,
#179 ArraylndexNode L: filter#47, R: (10), Type: #12,
#180 DelayNode L: #186, R: (2),
#181 ArraylndexNode L: filter#47, R: (12), Type: #12,
#182 CommaNode L: #187, R: #188,
#183 DefnNode L: #189, R: #190,
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#184

#185

#186

#187

#188

#189

#190

#191

#192

#193

#194

#195

#196

#197

#198

#199

#200

#201

#202

#203

#204

#205

#206
#207

#208

#209

#210

#211

#212

#213

#214

#215

#216

#217

#218

#219

#220

#221

#222

#223

#224

#225

#226
#227

#228

#229

#230

#231

#232

#233

#234

#235

#236

#237

#238

#239

ArraylndexNode L: filter#47, R:
DelayNode L: #191, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #192, R: #193,
DefnNode L: #194, R: #195,
ArraylndexNode L: filter#47, R:
DelayNode L: #196, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #197, R: #198,
DefnNode L: #199, R: #200,
ArraylndexNode L: filter#47, R:
DelayNode L: #201, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #202, R: #203,
DefnNode L: #204, R: #205,
ArraylndexNode L: filter#47, R:
DelayNode L: #206, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #207, R: #208,
DefnNode L: #209, R: #210,
ArraylndexNode L: filter#47, R:
DelayNode L: #211, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #212, R: #213,
DefnNode L: #214, R: #215,
ArraylndexNode L: filter#47, R:
DelayNode L: #216, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #217, R: #218,
DefnNode L: #219, R: #220,
ArraylndexNode L: filter#47, R:
DelayNode L: #221, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #222, R: #223,
DefnNode L: #224, R: #225,
ArraylndexNode L: filter#47, R:
DelayNode L: #226, R: (2),
ArraylndexNode L: filter#47, R:
CommaNode L: #227, R: #228,
DefnNode L: #229, R: #230,
ArraylndexNode L: filter#47, R:
DelayNode L: #231, R: (2),
ArraylndexNode L: filter#47, R:
DefnNode L: my_coefs#48, R: #232
DefnNode L: #233, R: in#234,
ArraylndexNode L: filter#47, R:
DelayNode L: #235, R: (2),
ArraylndexNode L: filter#47, R:
AggregateNode L: #236, R: -*-,
ArraylndexNode L: filter#47, R:
in#234 Type: #12, ValueClass: 4,
ArraylndexNode L: filter#47, R:
CommaNode L

CommaNode L

CommaNode L

CommaNode L

(5), R: #237,
(7), R: #238,
(8), R: #239,
(9), R: #240,

9), Type: #12,

11), Type: #12,

8), Type: #12,

10), Type: #12,

7), Type: #12,

9), Type: #12,

6), Type: #12,

8), Type: #12,

5), Type: #12,

7), Type: #12,

4), Type: #12,

6), Type: #12,

3), Type: #12,

5), Type: #12,

2), Type: #12,

4), Type: #12,

1), Type: #12,

3), Type: #12,

0), Type: #12,

2), Type: #12,

15), Type: #12,

1), Type: #12,
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#240 CommaNode L: (12),
#241 CommaNode L: (16),
#242 CommaNode L: (27),
#243 CommaNode L: (81),
#244 CommaNode L: #245,
#245 NegateNode L: (81)
#246 CommaNode L: #248,
#247 NumTypeNode L: -*-,
#248 NegateNode L: (27)
#249 CommaNode L: #250,
#250 NegateNode L: (16)
#251 CommaNode L: #252,
#252 NegateNode L: (12)
#253 CommaNode L: #254,
#254 NegateNode L: (9),
#255 CommaNode L: #256,
#256 NegateNode L: (8),
#257 CommaNode L: #258,
#258 NegateNode L: (7),
#259 CommaNode L: #260,
#260 NegateNode L: (5),

R: #241,
R: #242,
R: #243,
R: #244,
R: #246,

, R : -*-,
R: #249,

r R : -*-,

r R : -*-,
R: #251,

, R s -*-,
R: #253,
r R : -*-,
R: #255,
R: -*-,
R: #257,
R: -*-,
R: #259,
R: -*-,
R: -*-,
R: -*-,

Type: #247,

Type: #247,

Type: #247,

Type: #247,

Type: #247,

Type: #247,

Type: #247,

Type: #247,
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Appendix B: Designfile Program Example

Script started on Mon Nov 25 09:49:32 1985
tuborg 1» cat fir.df
.global

begin
in<8>;
out<8>;

tap<8>;
end

.io <8>

begin
in : signal_in;
out : signal_out;
end

.processor : one<8>
begin
.local

begin
dly[32], result;
end

.constant

begin
weight[31] - 5,0,7,0,8,0,9,0,12,0,16,0,27,0,81,0,

-81,0,-27,0,-16,0,-12,0,-9,0,-8,0,-7,0,-5;
end

.main_pr /* initialization, in- and output handling */
begin
r(result), mbus * in, le;
w(dly[31]), mbus - mor, out - mbus, ace :- 0;
w(result), le;
end

.sub_pr <31> /* implements one tap of the fir */
begin
rx(weight);
rx(dly[l]), mbus - mor, tap :- mbus;
r(result), sor:-mor;

8or:-sor>l,acc;-mor + coef.-sor,coef - tap;
sor:-sor>l,ace:-acc+coef.sor;
sor:-sor>l,ace:-acc+coef.sor;
sor:-sor>l,ace:-acc+coef.sor;
sor:-sor>l,ace:-acc+coef.sor;

rx(dly[l]), sor:-sor>l,ace:-acc+coef.sor;
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mbus - mor, le, sor:-sor>l,ace:-acc+coef.sor;
wx(dly), ace:-acc+coef.sor;
w(result), le;
end

end

tuborg 2» cat infile
127

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

tuborg 3» -/Demonnew/Demon fir.df
The U.C. Berkeley LAGER Layout Generation System
Program : Demon - Version 2.3

input readin and check ...
read_in finished ...
control and i/o structure set up ...
connect data files ...

Current Data File Selection :

in : infile

out : outfile

Any changes wanted ? (y/n) [n] > n

start emulation ...
Demon > run

input data exhausted ...
16 samples processed ...
done ...

Demon > quit

16 samples processed
emulation halted !

elapsed time : Oh : Om : 14s
tuborg 4» cat outfile
0

-10

0

-11

0

-11
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0

-14

0

-15

0

-18

0

-30

0

-85

tuborg 5» exit
tuborg 6»
script done on Mon Nov 25 09:51:36 1985
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Figure.6 (a) Block Diagram of A First-order Digital Filter

(b) Signal-flow Diagram of (a)

(c) Dau-flow Diagram of (a)
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