

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROXIMITY ALGORITHMS: THEORY AND IMPLEMENTATION

by

John E. Hauser

Memorandum No. UCB/ERL M86/53

20 May 1986

PROXIMITY ALGORITHMS: THEORY AND IMPLEMENTATI'

by

John E. Hauser

Memorandum No. UCB/ERL M86/53

20 May 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PROXIMITY ALGORITHMS: THEORY AND IMPLEMENTATION

by

John E. Hauser

Memorandum No. UCB/ERL M86/53

20 May 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Proximity Algorithms:

Theory and Implementation

John E. Hauser

University of California, Berkeley

ABSTRACT

The problem of estimating the minimum norm point in (the
closure of) a convex set C in a real Hilbert space is investigated for
the case where the characterization of the set C allows one to

evaluate its support function and the corresponding contact point
in C.

An extension of Wolfe's algorithm for finding the nearest
point in a polytope in Rn is proposed as an efficient method for
solving this problem. Numerical results are given to illustrate the
behavior of the new algorithm. The new algorithm was imple
mented in C and a listing of the code is given in an appendix.

This research was supported in part by the Armed Forces Communications and Electronics Associa
tion (AFCEA), the Air Force Institute of Technology (AFIT), and the Air Force Office of Scientific
Research under Grant AFOSR-83-0361.

Table of Contents

Introduction 1

Section One: Preliminaries 3

Section Two: Theory and Algorithms 7

2.1. Problem and Basic Algorithm 7

2.2. Selection of the Set C{ H

2.3. Wolfe's Method '. I5

2.4. Extension to Parameterized Sets 23

Section Three: Implementation and Performance 29

3.1. Implementation of Wolfe's Subprocedure 29

3.2. Numerical Results 31

3.3. Application: Nondifferentiable Optimization 34

3.4. Conclusion 38

References **

Appendix 4-

Introduction

There are many applications where it is necessary to compute the minimum

distance (and corresponding minimizer) from the origin to a convex geometric

object. In robotics, for example, a robot must not collide with objects in the

workspace. This requires knowledge of the distance between the robot and all

objects in the workspace throughout the planned maneuver [G2]. Another appli

cation is the calculation of a descent direction for a family of nondifferentiable

optimization algorithms, where the minimum norm point in convex hull of active

gradients (and/or generalized gradients) weighted by a component indicating

their relative importance [P4] must be determined. Optimal control problems

can also be formulated as minimum norm point problems involving convex sets

([Gl], [Bl], [PI]).

In this paper, we study methods to solve the problem of calculating the

minimum norm point (or an approximation thereof) of a convex set C in a real

Hilbert space H. Problems involving the minimum distance between two sets can

be converted to a single set problem by considering the difference of the two sets

(e.g., C = R-0 where J? is a robot arm and O is an obstacle). For the

methods we study, the only restriction on the description of the set C is that one

be able to evaluate its support function and corresponding contact point, i.e.,

given adirection 16H compute ay€Csuch that (x, y} = max^ar, y').

The problem of computing the minimum norm point in a convex set in R"

was studied by Gilbert [Gl] and Barr[Bl]. Wolfe [W2] has presented a method

for finding the (exact) nearest (i.e., minimum norm) point in a polytope in Rn.

In this paper we prove convergence for the obvious generalization of the methods

of Gilbert and Barr applied to convex sets in an arbitrary Hilbert space. Exten

sions to Wolfe's method are proposed for general convex sets in a Hilbert space

(rather than polytopes in Rn) and shown to be convergent. We give an imple
mentation of one extension of Wolfe's method and compare the numerical results

for an example set in Rn with those obtained using the methods of Gilbert and

Barr.

We also show how the ideas used in these algorithms can be used in a

related problem where the notion of distance is not given by a norm but by how

much a parameter is to be increased to grow aconvex parameterized set until it

touches the origin. Optimal control problems and associated subproblems can

often be formulated and solved in such a manner (see [M2], [Pi], [Wl], [Ml]).

This paper is organized as follows: Section 1 presents some mathematical

preliminaries. Section 2 presents the problem and gives algorithms and proves

their convergence. Section 3 describes some implementation details and gives

examples to demonstrate performance. The C program implementing the exten

sion of Wolfe's method is given in the appendix.

1. Preliminaries

Let H be a real Hilbert space with inner product (•, •) and corresponding
norm || •|| = ((v)f • The following definitions and results for convex sets can

be found in books such as [Bl], [B2], [Rl], [Vl], and [V2].

Let s,y6H. The line segment [x,y\ (with endpoints x and y) is the set

{\x+ (l-X)y | 0<X<1}. A set CCH is called convex if [x,y\CC when

ever x}y£C. A convex combination of the points Xi, x2, . . • , xm €H is a point

x E H that can be expressed in the form

x= £ w'xi, £ wi = l> «;*' >0, i = 1, . . . , m. (1.1)
»=i »=i

Let CCH. The convex hull co(C) is the smallest convex set in H contain

ing C. The set co(C) can be shown to be the set of all (finite) convex combina

tions of elements of C'.

A subset of H of the form x + L , where x £H and L is a linear subspace

of H, is called an affine subset (or linear manifold) of H. The dimension

dim(z +L) of x+ L is defined to be dim(a: +L) 4 dim(L). (Note that {0}
and 0 are defined to be linear subspaces of dimension 0 and -1, respectively). An

affine combination of the points xx,x2, . . . , xm 6H is a point z6H that can be

expressed in the form

mm,

s^E^i. E"' = i- t1-2)
»=i *=i

Let CCH. The affine hull aff(C) is the smallest affine set in H containing

C. The dimension dim(C) of C is the dimension of aff(C). The set aff(C) can

be shown to be the set of all affine combinations of elements of C. The relative

interior ri(C) of C is defined to be the interior of the set C with respect to

aff(C).

Given a finite set X = {x^Xo, . . . , xm} C H, the set co(X) is called the

polytope generated by X. By analogy to the case where H = Rn and X is

represented as the nX m matrix whose columns are the points xit we write a

linear combination as

Xw 4 xx*,-
t=0

(1.3)

where w €Rm. In this manner, we can consider X to be a continuous linear map

from Rm to H. Letting XT denote the adjoint map from H to Rm, we write

XTX for the mX m symmetric matrix whose elements are given by

P^u-(*.*)• (1-4)
With this notation we may thus write

aff(X) = {arGH | x = Xw, eTw = 1}, (1-5)

co(X) = {i6H | x = Xw,eTw = l,w > 0}, (1.6)

where e is the column vector [1,1, ... , 1]T and w > 0 denotes wx > 0 for

i = 1, . . . , m. In each case the vector w= [u>\ w2, . . . , wm\T constitutes the

weights, or barycentric coordinates, of the point x with respect to X.

A finite set X = {x1}x2, . . . , arm} C H, is said to be affinely independent

if no point of X belongs to the affine hull of the remaining points (hence

dim (X) = m-1). In this case, the weights expressing the point

x = Xw, eTw = 1 are uniquely determined for each point x 6 aff(X). Affine

independence of X is equivalent to the property that the vectors

€ RXH, x{ ex (1.7)

T+ XTX isare linearly independent which implies that the symmetric matrix ee

positive definite and that the symmetric matrix

'o eT "
e X*X

(1.8)

is nonsingular.

Given a polytope P, a face F is a set F = F C\H where # is a supporting

hyperplane for the set P. It is also convenient to consider P and 0 as faces of P.

A simplex 5 is a polytope that contains an affinely independent set

X = {xlf . . . , xm} such that S = co(X). The points {xv . . . , xm} are the

vertices of S. Note that every point x£S is contained in the relative interior of

a unique face of S.

We shall be interested in sets C for which the support function

<r(x) 4 max(a:,y\ (1.9)

is well defined for all a:€H (many authors use sup instead of max, but we are

interested in sets where the max is achieved). Given 0^i6H, a point y EC

such that (x, y*\ = a(x) is called a contact point since the hyperplane

#(*,/) 4 {j6H| (x,y) = (x,y*)(=*(x))} (1.10)

is a supporting hyperplane for the set C at the point y with outward normal x.

In the algorithms that follow, we shall use only information gathered by comput

ing contact points in the given set.

The following lemma establishes an important property of support func

tions.

Lemma 1.11. Let K be a bounded set in H with a well defined support func

tion. Then

max/ar,t/\ = max (x,y) \/*GH. (1-12)

Proof. Let 16H be arbitrary. Every y' £co(K") can be expressed as a finite

convex combination of points in K. Since a finite convex combination of real

numbers is bounded above by the largest, it follows that

lx,y') < max(ar,y) V y' eco{K). (1.13)

Let y E /f be such that

(x,y*\ = max(:r,A (1.14)

Since y*£co(K), equality holds and the lemma is true. (HI

Proximity algorithms are concerned with finding the nearest point in a con

vex set. This nearest point is, of course, well defined for a closed convex set. We

shall denote the nearest point in the set C by

Nr(C) 4 argmin{||il | xeC}. (1.15)

Since we will not always deal with closed sets, we would like to know that the

approximate answer we compute is valid for both the closed and not-closed cases.

The following lemma shows that the final answer is the same in either case.

Lemma 1-.16. Let C CH be convex. Then

inf Jar I = minj x ||. (1.17)

Proof. Let x be the unique minimum norm point in C. Since C C C it is clear

that

||5T|| =min.|a:I < inf || x ||. (1.18)

Suppose, for the sake of contradiction, that strict inequality holds in (1.18) and

let

€= inf || x I -]x|| > 0. (1.19)
xec

Then, by the triangle inequality, we have that

\\x-x] > |*| - |ri >€ v*ec. (1-20)

This contradicts the fact that x is either a point in C or a limit point of C.

Hence equality holds in (1.18) and the lemma is true. (El

2. Theory and Algorithms

2.1. Problem and Basic Algorithm

Given a set C for which we can compute contact points, we shall consider

the problem of finding an x* GCsuch that Ix* \ estimates the infimum of fxI
over xe C to a given precision. Since we normally do not even know the range

in which this value lies, we should express such a precision relatively. This leads

to the following formal statement of the problem:

Problem 2.1. Let C be a bounded convex set in H such that the support func

tion

a(x) = max(i, y) (2-*v

is well defined for all x in H. Given e > 0, 0 < p < 1 find a point x*eC such

that either

IU*(I < e, (2-3)

or

i*J- inf III <p\f\. (2-4)
z€ C

This problem can also be applied to the convex hull of sets that are not

convex since, for any bounded set K with <x() well defined,

a(x) = max (x, y) = max (x, y). (2-5)

We can thus state the related problem involving inf ||x \ as Problem 2.1
x€co(/t)

using C = co(K) and the <r() for K.

As noted above, it is rare that we will actually know the value of inf | x
x € C

The following lemma provides an estimate of inf | x ||.
x€C

Lemma 2.6. Let C and a{-) be as in Problem 2.1. Then for any 0 7^ x* 6 C

^#< mf |*| < |»*|. (2-7)
I* II *€<7

Proof. We have

^^<£^<|.| V*ec (2.8)

which leads to (2.7). (2

The value ""^J* J is simply the distance from the origin to the hyperplane

{16H I (x*,x} = -a{-x*)} in the x* direction. When -<j(-x*) = 1x* [2, then
the upper and lower bounds are equal and x is the (unique) minimum norm

point in C. If cr(-x) < 0 then this hyperplane properly separates C from the

origin. This is very useful since, for x* 7^ 0,

I* II

directly implies (2.4). We use this fact in the following algorithm.

Algorithm 2.10

Given: ar06 C, e > 0, 0 < p < 1.

Step 0: Set t = 0.

Step 1: If I Xj I < e, stop.

Step 2: Compute o\-Xi) and yt EC such that /-rrt-, y,-\ = a"(-ar,).

Step 3: If]xi I 2+ a{-x{) < p || x{ ||2, stop.

Step 4: Let C; be a closed convex subset of C containing a:,- and y{ and com

pute

xi+1== argmin{ || x || 2 | *GCJ. (2.11)

Step 5: Replace i by i-t- 1 and go to step 1.

Theorem 2.12. Algorithm 2.10 will terminate after a finite number of iterations

yielding an x* satisfying either (2.3) or (2.4).

Proof. Define the cost function c(x) 4 || x]2. Given a point x6 C, the algo

rithm computes a point y€C satisfying (-a;, y) = <x(-ar) (> -1x || 2) so that
c(x) + <x(-ar) = (x,x-y) > 0. Consider the smallest closed convex set contain

ing x and y given by C{ 4 [x, y]. Write

c(ar+X(y-a;))-c(a:)= 2X(a:,y-a:) + X2||y-x J2. (2.13)

To minimize this expression (as in step 4), we use

Xm = min{l, -^4}- (2-H)

Let Ac(ar,y) 4 c(ar+ Xm(y-a;))-c(a:) denote the change in cost corresponding

to a particular y (a contact point from the maximizing set). We have two cases:

Casel: (x,x-y) < ||y-s||2 (Xm< 1). Then

c2
y-x'

< _ (c(x)+a(-x)) ,215\
- d

< o,

where d = sup] y-x \ 2 (the squared diameter of C).
x,yec

Case 2: (x,x-y)> \y-x\\2 (Xm = 1). Then

10

Ac(x,y) = 2(x,y-x) + Iy-x|2

<(x,y-x) (2-16)

= -(c(x)+<7(-z))

< 0.

Define

i,(x) 4 max{- (c(*)+^M)' f_(<.(*)+ <,(_*))} (2.17)

and let A(x) denote the set of all possible successors to xGC computed during

an iteration of the algorithm. From above, we have that

c(x')-c(x) <tP(x)<0 V x£C, V*'6A(*). (2-18)

Now suppose that the algorithm does not terminate, but generates an infinite

sequence {x,}. This implies that

1Xi I > c V * (2-19)

and

|lx,I2+(r(-xt)>/>|xi|2 V« (2-2°)

so that

c(xf)+<7(-xt-)>/>€2 V«. (2-21)

Hence

Hxi) < max{--^-,-P€2} <0 Vi ' (2-22)
a

so that c(x,)-+-oo as i—*oo which contradicts the fact that c(x{) is bounded

from below by inf Bx || 2 > 0. Therefore the algorithm terminates in a finite

number of iterations. Lemma 2.6 shows the sufficiency of the stop rules in satis

fying (2.3) or (2.4). (S

11

Corollary 2.23. Let Step 4 of Algorithm 2.10 be replaced by

Step 4' : Compute xi+j 6 C such that

I*f+l!2< min]*!2. (2.24)

Then the modified Algorithm 2.10 terminates after a finite number of iterations

yielding an x* satisfying either (2.3) or (2.4).

Proof. The decrease in the cost function is at least as good as that achieved by

using C; = [xi} yt], hence the same result holds. (El •

2.2. Selection of the Set Ct

Our knowledge about the set C is obtained solely by computing a contact

point during each iteration. Hence, from a practical point of view, our choice of

C{ in Step 4 of Algorithm 2.10 is restricted to convex hulls of subsets of contact

and minimizing points computed thus far.

The simplest choice for Ct- is, of course, the line segment [x;,y;]. Gilbert

[Gl] used this method for sets in Rn when he extended the Frank-Wolfe pro

cedure [Fl] to the problem of minimizing a quadratic form on general convex sets

for use in solving optimal control problems. This method is illustrated in figure

2.1 for C C H = R2. During each iteration, we find the nearest point in the line

segment between xt- (which is usually a relatively interior point) and y{ (a boun

dary point). Thus our sequence of x,'s tend to remain interior and not approach

the boundary of the set as rapidly as desired. This behavior manifests itself as

very slow convergence when the ratio of the radius of curvature to the minimum

distance for a set is large. This is particularly undesirable for applications such

as optimization where the nearest point must be computed for a sequence of sets

that approach the origin to satisfy optimality conditions.

Another option is to use the convex hull of all points computed so far.

That is, C{ = co{x0, yj,j= 0,...,*}. This, however, leads to a subproblem of

12

Figure 2.1 Algorithm 2.10 using minimal C,-

ever increasing complexity. Furthermore, as the example of figure 2.2 illustrates,

many of the points collected thus far do not play a role in determining the

nearest point in such an approximating polytope. Thus, one can imagine that,

between these two extremes, there is a reasonably good method of choosing the

points to determine Ct- that balances the cost of the subproblem with the rate of

convergence.

Our subproblem always consists of finding the nearest point in a polytope.

It is clear that this point will be found in one of the faces. When working in Rn

this closest face will have dimension less than n. The minimum number of

points needed to determine a face of dimension n-1 is n. Even in infinite

dimensional spaces, a set may have special structure so that the nearest face will

have dimension lower than that of the polytope accumulated thus far. This leads

to the task of deciding how many points to keep and which points to discard.

Barr [Bl] used this idea to extend Gilbert's procedure for sets in Rn by

choosing Ct- to be the convex hull of a number of previous contact points, the

current minimum point, and the corresponding contact point. Each contact

13

x3-y2

Figure 2.2 Algorithm 2.10 using maximal C,-

point is rated by the distance of its supporting hyperplane from the origin: a

higher rating being given to points with a larger distance. A fixed number (p) of

old contact points is kept at each stage. The addition of a new contact point

forces out the old contact point having the lowest rating. Computational experi

ence indicates much faster convergence than Gilbert's two-point method and

tends to reinforce the hunch that p = n (to define the nearest face with n + 1

points) is a good choice for the number of old contact points to keep.

There are a few questions and (minor) problems with this method. During

each iteration, Barr requires that one find the nearest point in a polytope defined

by n + 2 points (n old contact points, the current nearest point, and the new

contact point). When solved by a quadratic program (as he does), we find that

the quadratic form is only positive semi-definite. This can sometimes cause jam

ming in the quadratic program and may not be the most efficient method. Also,

we never take advantage of the possibility that the nearest face in the approxi

mating polytope may have dimension lower than n - 1 (i.e., be an edge, etc.).

The set C may itself have dimension lower than n. In infinite dimensional

14

spaces (n = oo) we would be required to keep all previous points regardless of
the structure or dimension of the set! Furthermore, since the current minimum

point is aconvex combination of previous points, we are carrying extra baggage
by including it as a point in the nearest point subproblem (assuming that we
have not discarded any of the vertices for the face containing the nearest point).

What we really need is a method that automatically determines the nearest

face of the approximating polytope and keeps only those points necessary to

determine that face. There may be a possibility that the nearest face we achieve

by keeping a subset of points is not as good as that achieved by using every
point, but computational experience tends to point to higher efficiency. Figure
2.2 indicates that, at least for H = R2, we are probably not losing anything

using such a method. Keeping fewer points not only means having a simpler
subproblem to solve, the special structure of those points may also lead to a

much more efficient subproblem.

Wolfe used such an approach to compute the nearest point in a polytope in

Rn [W2]. Each iteration starts with a set of affinely independent points such
that the nearest point in the convex hull of these points is contained in the rela

tive interior of this convex hull (such a set is called a corral). The new contact

point is added to the set and selected points (other than the new point) are
deleted as necessary until the resulting set is itself a corral. If the new contact

point is not in the hyperplane defined by the current nearest point (if it was we

would have stopped in Step 3 of Algorithm 2.10), the union of the contact point

and the current corral will be affinely independent since the affine hull of the

current corral is contained in the hyperplane. It is this special structure that

makes Wolfe's method particularly efficient. Furthermore, though designed for

polytopes in Rn, this method is easily extended to general convex sets (in aHil

bert space) for which we can compute contact points.

15

2.3. Wolfe's Method

We will now formally state the subprocedure used by Wolfe to reduce the

value of I x].

Subprocedure 2.25 (Wolfe)

Given: a corral Q= {xlt . . . , xm }CH together with x = Nr(co(<2)) and a

point y6H on the near side of the hyperplane H(x,x) (i.e.,

(x,y)< (x,x)).

Step 0: Set j = 0, QQ = QU{y}, q0 = 2.

Step 1: Compute }y = Nr(aff(Qy)); if Jy €ri(co(ey)) set £' = Qj, x' = }y

and return.

Step 2: Compute qj+1 = Nr([gy,}y]nco(Qy)) and set Qy+1 = Qy\{?y} with

?y € Qy not in the face of co(Qy) containing gy+l.

Step 3: Replace j by j 4- 1 and go to step 1.

This subprocedure can be used in Step 4 of Algorithm 2.10 with values

x __ 2^ y=yt., and Q equal to the Q' returned during the previous iteration of

Algorithm 2.10 (Q = {x„} initially). Upon return, xi+1 is set to the value of x'.
This is the method used by Wolfe to find the nearest point in a polytope [W2].

Let P = {pi,p2; • • •>Pi) be the Siven set of Points tnat Senerate such a
polytope. Then, by Lemma 1.11, we can compute a contact point for the

polytope, co(-P), as required in Step 2 of Algorithm 2.10 by choosing a vertex,

pkeP, such that (xi,pk)<(xi,pk) for j = l,...,/. Wolfe showed that this
method will terminate in a finite number of iterations with the unique nearest

point in the polytope [W2] (i.e., | x* || = ^ Ix||). We later will discuss

how the computations in Steps 1 and 2 ofSubprocedure 2.25 are carried out.

16

qO-0

M 00

Figure 2.3 Subprocedure 2.25

To see how this method works, consider the two examples in figure 2.3. We

begin with the corral Q = {xlf x2} with nearest point x and the new point y.

Thus QQ = {xh x2, y}. The minimum norm point in aff(Q0) = R" is, of course,

q0 = 0. Since 0 is not in the relative interior of co(<Qo)> we calculate the nearest

point in [qQ, qo]nco(QQ) giving qx. Now, x2 is not in the face of co(Qo) that qY

lies in, so we discard it (i.e., ql = x2) and set Qi = {xx, y}. At this point, the

set b,S(Qi) is the line containing xl and y. For example (a), the minimum norm

point qi is contained in the relative interior of [xj, y] so we would stop with

x' = qi and Q' = {x1; y}. Example (b) requires one more projection onto a

nearer face ({y}) and a corresponding point deletion (xj). Since a single point is

its own convex hull, affine hull, and nearest point (hence a corral), we would stop

with x' = y and Q' = {y}.

17

From the above example, one might be tempted to believe that Wolfe's sub-

procedure will always find the nearest point and corresponding corral of the set

co{Qu{y}). This certainly seems to be the case for any polytope you can easily

imagine (i.e., in R2 or R3). This is, in fact, the usual case. In numerical tests for

sets in Rn with n ranging from 2 to 20, we found that Wolfe's subprocedure dis

carded a point that was not separated by the final point x' (i.e.,

x; 7^ Nr(co(£u{y}))) only a few times per thousand calls and this only

occurred when the dimension was approximately fifteen or greater. This small

amount is, of course, more than enough to make the expected result all but pos

sible. We can, however, use Corollary 2.23 to examine the convergence of the

new algorithm using Wolfe's subprocedure.

We will need the following simple lemma to show that Subprocedure 2.25

produces a decrease in the cost sufficient to guarantee convergence when used for

step 4 of Algorithm 2.10.

Lemma 2.26. Let /:H-+R be convex and continuous and let x,y,zGH be

such that

/(*)</(«) V<"€[x,y]. (2-27)

Then

min f(w)< min f(w) V *'€[*,*]• (2-28)
we\x',v\ we\x,y\

Proof. Let v€[x,y\ be a minimizer of /(•) on [x, y]. Since /(•) is convex and

J(z) < /(*>) by (2.27), we have that f(v') < f(v) for all v' e[v,z}. Therefore,

for any x'e[x,z\, the segment [x' ,y] contains a point v' E[v,z] such that

f(v') < f(v) which proves the lemma. (El

The following result shows that Wolfe's subprocedure produces a decrease in

cost at least as large as that obtained using the two point method.

18

Theorem 2.29. Let Q, x, and y be given as in Subprocedure 2.25. Subpro

cedure 2.25 will terminate in fewer than m + 1 iterations with a corral Q' whose

nearest point x' is such that

|| x' J < min | vI. (2-3°)
ve\x,y\

Proof. Since a single point is a corral and the subprocedure deletes one point in

each iteration it must terminate in fewer than m+ 1 iterations, and can only do

so in Step 1 with a corral Q'. If the subprocedure terminates without deleting

any points the result is trivially true. The result is also obvious when the origi

nal corral contains a single point (i.e., Q = {x}). Therefore, suppose that Q

contains at least 2 points and that the subprocedure has terminated with

j = k > 1. Now since y is on the near side of H(x,x), co(Q0) = co(Qu{y})

contains points with norm strictly less than [x || (e.g., the minimum norm point

in [x,y] is one such point). Furthermore, since q0 = x is the minimum norm

point in aff(Q), any point in aff(<90) (and hence in co{QQ)) with norm strictly

less than I q0] (e.g., q0) must be an affine combination of points in Q0 with a

strictly positive weight for y. Write

<7o =<3o"» eT«/ = l, (2-31)

and

qo=Qo*. eT»-l. (2-32)

Then, wl > 0 for / = l,...,m and wm+1 = 0, while wm+1 > 0. Therefore,

there exists X€(0, l] such that

X$o+ (l-X)?o € ri(co(Q0)) VX€(0,X) (2.33)

which implies that

(?0,?0]nri(co(«0))^«. (2-34)

Since J •1 decreases strictly along thesegment \q0l q0\, we find that

loK l«ol- <2-35)

19

Now, since

Iffy I < K-il fori-1,...,*, (2-36)

we see that | x' || < II 9i 1 which implies that yeQ'. Hence, we have

I*' 1-15*1" min JuJ < min JH|. (2-37)

Since qj 6 [fy_i, 5y-i] and | •|| is convex, Lemma 2.26 implies that

min || v 1 < min || v J for j = 1,..., k. (2.38)

Therefore

|| x' I < min |v(— min || t; || (2.39)
v€[q0,u\ v€\x,y\

which is the desired result. S

We must now show that we can compute the quantities required by Subpro

cedure 2.25. Given an affinely independent set of points Qj, we must calculate

the minimum norm point in aff(^y). Dropping the subscripts for convenience,

the problem is

mind? J2 | q = Qw, eTw = 1} (2.40)

or

min{wTQTQw \ eTw = 1}. (2.41)

Forming the Lagrangian wTQTQw + 2X(eTw-l) and differentiating with respect

to io, we obtain the necessary conditions

T
e w » .

T^ « i (242)
eX+ QlQw

which have a unique solution since the system matrix is nonsingular. Further

more, since wTQTQw is convex in w, these conditions are also sufficient. Hence

q = Qw, with w solving (2.42), minimizes]• || over aff(Q). The point q is in

the relative interior of co(Q) if and only if w > 0. Thus the calculations of Step

::}

20

1 are easily accomplished.

Now, for Step 2 we must determine the nearest point in [q, q](lco(Q) and a

point q£Q not in the face of co(Q) containing this nearest point. Given

g€co(Q) we have q = Qw with eTw = 1 and w >0 whereas q£ri(co(Q))

implies that q = Qw with eTw = 1 and wl < 0 for some / G{1,..., m} (where m

is the number of points in Q). Since the value of the norm decreases strictly

along the line segment [q,q], the desired point (call it q = Qw) is the point

closest to q such that

w=\w+(l-\)w > 0. (2.43)

The required X is easily found to be

X= max{ -W' . | w' <0}. (2.44)
u; -w

Choosing q to be a point in Q whose weight w is equal to zero (an / that

achieves the max in (2.44)), we complete the calculations required by Subpro

cedure 2.25.

Wolfe's decision to work with affinely independent points has some impor

tant implications. Since the convex hull of an affinely independent set of m

points is a simplex of dimension m-1, every point in the affine hull (and hence

the convex hull) of this set has a unique representation with respect to the set.

As we saw above, this leads to easy analytic minimization of the norm over the

affine hull. Furthermore, every point in the convex hull is contained in the rela

tive interior of a unique face allowing us to delete vertices that do not determine

the active face. Also, since we can never keep more than dim(C)+ 1 affinely

independent points, this method tends to implicitly determine and work with the

dimension of the set. This is particularly important when dim(C) « dim(H)

as might be the case when H is infinite dimensional.

One minor shortcoming of using Subprocedure 2.25 directly is that it does

not always return the nearest point in co(Qu{y}). To alleviate this problem,

we suggest using Wolfe's method to find the nearest point in the simplex

21

co(Qu{y}) (recall that Wolfe's method was originally designed to find the
nearest point in a polytope). We will then return the (unique) corral
Q' CQu{y} containing this nearest point and use it in the next call. The fol
lowing subprocedure implements this idea by calling Subprocedure 2.25 inter

nally.

Subprocedure 2.45

Given: a corral Q = {x1; . . . , xm }CH together with x = Nr(co(Q)) and a

point yGH on the near side of the hyperplane H(x,x) (i.e.,

(x,y) < (x,x)).

Step 0: Set A: = 0, Q0 = Q, y0 = y, *o = x-

Step 1: Call Subprocedure 2.25 with parameters Q = Qk, x = xk, and y = yk.

Upon return, set Qk+i = Q' and xA+1 = x'.

Step 2: Compute yi+1 = arg min (x*+1, y). If (xA+1, yjt+i) > JxA+11| ", set

Q' = gft+lf x' = xk+! and return.

Step 3: Replace k by k + 1 and go to step 1.

This subprocedure calculates the nearest point and corresponding corral in

the polytope co(Qu{y}). We can thus use this subprocedure directly in Algo

rithm 2.10 by defining Cf to be the convex hull of the union of the corral Q'

returned by the previous call and the new point yf. The reason we only need to

check points in Q\Qk+i for separation by the hyperplane H(xk+1,xk+1) is that

ye Qk+1 implies y6H(xk+ lt xk+ J (i.e., (xk+ hy) = I**+11 2) since xk+ xminim
izes 1•|| over aff(Q*+1). The following finite termination result follows that

given by Wolfe [W2] for general polytopes in Rn.

22

Theorem 2.48. Let Q, x, and y be given as in Subprocedure 2.45. Subpro

cedure 2.45 will terminate after a finite number of iterations with a corral Q'

whose nearest point x' is such that

||x'|= min || *|. (2.47)
w€co(<?u{y})

Proof. Since lx*+1|| < || xk || and xk is uniquely determined by the corral Qk

(and conversely), a given corral will be considered at most once. Since Ql){y}
contains only a finite number of corrals, the subprocedure must terminate finitely

and can only do so in Step 2 upon satisfying an optimality condition which

implies (2.47). G3

As noted above, our experience indicates that Wolfe's subprocedure (Sub-

procedure 2.25) will normally return the minimum norm point in the polytope

co(Qu{y}). Thus, Subprocedure 2.45 will normally terminate in one iteration.

This subprocedure, however, uses Wolfe's subprocedure in a manner that guaran

tees that we will always move from minimizing corral to minimizing corral. Sub-

procedure 2.45 therefore achieves the best we can do working within the frame

work of keeping the corral that determines the nearest face in the approximating

polytope. Further research will be required to determine if any improvements

can be obtained by selectively keeping points not in the minimizing corral.

For the sake of completeness and for easy reference, we state the complete

algorithm obtained by using Wolfe's method to find the nearest point in a sim

plex (Subprocedure 2.45) during each iteration of the main proximity algorithm

(Algorithm 2.10). Since no further analysis is required, we have dropped all sub

scripts. Note that e, v, and w are real vectors of varying length (equal to the

number of points in the current Q). We now include the explicit formulas that

determine the quantities needed by the Wolfe method. This algorithm can thus

be implemented almost directly as stated.

Algorithm 2.48

Given: x06 C, e > 0, 0 < p < 1.

Step 0: Set x = x0, Q = {x0}, w = [l].

Step 1: If I x j < e, stop.

Step 2: Compute <r(-x) and y6Csuch that (-x, y) = <r(-x).

Step 3: If 1x I2+ <r(-x) < p\ x \ 2, stop.

Step 4: (a) Set Q = Q.

(b) Replace Qby <2u{y}, u; by [wT 0]T.

(c) Solve the equations

T
e v =

v = 0 JeX+ QTQt

If u > 0, set w = v, x = Qw and go to (e).

(d) Compute

23

(2.49)

-v

wl -v
X= max{-p-r | vl <0} (2.50)

and replace ti/ by \w 4- (l-X)v. Delete from u; some zero component,

and from Q the corresponding point. Go to (c).

(e) Compute y= argmin{(x,y/) | y' eQ\Q}. If (*, y) <•Ix|| 2, go
to (b).

Step 5: Go to step 1.

2.4. Extension to Parameterized Sets

We will now show how we can extend Algorithm 2.10 to deal with a related

problem. We are given a parameterized convex set C(a), a 6 [amin, oo), and we

wish to find the minimum a for which 06 C(a). For many applications, this set

will actually be the difference of a target set and a reachable set, i.e.,

24

C(a) = T - R(a). For this type of problem, we actually want to find an ele

ment of T which estimates the point where T and R(a) first meet as a is

increased. Examples of the use of this type of formulation in optimal control

algorithms can be found in [M2], [Pi], [Wl], and [Ml]. We will state the problem

as follows.

Problem 2.51. Let C:[<*min,oo)—2H (where 2H denotes the collection of all sub

sets of H) be such that

(1) C(a) is convex and bounded for each a€ [c*min, oo).

(2) C{p!) C C(oJ') for o/, o/' 6 Kin, oo), such that a' < a" .

(3) C(-) is upper semicontinuous [Cl] on [amin,oo) (given a neighborhood

N(C(a)) of C(a) there exists a neighborhood N(oc) of a such that

a' EN{a) implies C(a')C N(C{a))).

(4) 06 C(a), for some a e [amm, oo).

(5) Given a € [amin, oo), the support function

aa(x) 4 max (x,y) (2-52)
y€C(a)v '

is well-defined for all x EH.

Given £>0, find an a* € [<*min, oo) and an x* GC{a*) such that

a* < M{aE [omin,oo) | 06 CH) (2.53)

and

X* || < €. (2.54)

Intuitively, we want to grow the set C(a) (by increasing a) until we find a

point in C(a) close enough to the origin. For many real problems there may be a

good way to express the precision of the result relatively as opposed to the abso

lute precision specified by (2.54). This will, of course, be application dependent

but such a stopping condition can usually be satisfied by choosing e>0

25

sufficiently small.

We can use the following extension of Algorithm 2.10 to solve Problem 2.51.

Algorithm 2.55

Given: x0e C(amin), e > 0.

Step 0: Set i = 0, or0 = armin.

Step 1: If 1x{ 1 < e, stop.

Step 2: Compute <7a(-x,).

If ff^i-Xi) > 0, set ai+! = Qi,

else, compute ai+1 > or,- such that <7ai+1(-xT) = 0.

Compute y{ 6 C(ai+ x) such that ^-x^, y.) = o-at+l(-Xi).

Step 3: Let C{ be a closed convex subset of C(ai+ x) containing xf and yt- and

compute

x,+ 1= argmin{||x||2 | xGC,}. (2.56)

Step 4: Replace i by »+ 1 and go to step 1.

Figure 2.4 illustrates the use of Algorithm 2.55 with maximal C{ for the

case where H = R2 and C(a) is a disc of radius a. The computations for this

example were obtained using Subprocedure 2.45 in Step 3 of Algorithm 2.55.

Note that the next contact point, y3, will be very close to the origin (i.e.,

ocA ?=« ct for small e).

26

Figure 2.4 Algorithm 2.55 using maximal C{

Theorem 2.57. Algorithm 2.55 will terminate in a finite number of iterations

yielding an a* 6 [<*min> oo) and an x* € C(ct) satisfying (2.53) and (2.54).

Proof. First, note that since a is increased only when C(a) is properly

separated from the origin,

a{ < inf{a <= [cw oo) | 0 6 C(a)} \/i > 0 (2.58)

so that (2.53) will be satisfied by any or* generated by the algorithm. To see that

the algorithm terminates finitely, define the cost function c(x) = || x] 2. Given

a point x£C(a), the algorithm computes a point yEC(a'), a' > a, such that

(x>y) ^ 0- Consider the smallest closed convex set containing x and y given by
Ci 4 [x,y]. Write

c(x+X(y-x))-c(x)= 2X(x,y-x)+ X2||y-xJ2

< -2Xc(x) + \2d
(2.59)

27

where d = sup | y-x [2 with a such that 06 C(6c) (d is the squared diame-

ter of C(a)). Since the successor point x' €A(x) to x (computed in Step 3)
minimizes c(x + X(y -x)) over Xe [0,1], it follows that

c(x') - c(x) < min -2Xc(x) + X2(f. (2-60)

Minimizing the right hand side gives

A = min| d<li

so that

c(x')-c(x) < i){x) <0

where

V(a:) 4 • d

-d

c(x) < (/

c(x) > d.

(2-61)

(2.62)

(2.63)

Now suppose that the algorithm does not terminate, but generates an infinite

sequence {xt}. This implies that

so that

fa) <max{--^,-rf} <0 V«. (2-65)
This implies that c(x,)—•-co as :-^oo which contradicts the fact that c(xt) is

bounded from below by zero. Hence the algorithm terminates in a finite number

of iterations satisfying (2.53) and (2.54). E3

Corollary 2.66. Let Step 3 of Algorithm 2.55 be replaced by

Step 3': Compute xi+ xGC(ai+x) such that

||xi+1i2< min Jx||2. (2-67)
*€|x„y,|

28

Then the modified Algorithm 2.55 terminates after a finite number of iterations

yielding an or* E[ormin, oo) and an x* 6 C(e?) satisfying (2.53) and (2.54).

Proof. The decrease in the cost function is at least as good as that achieved by

using C{ = [xi} yf], hence the same result holds. (El .

3. Implementation and Performance

Having presented the algorithms and proven their convergence, we will now

discuss some details of implementation and present some computational results

for some specific sets C.

3.1. Implementation of Wolfe's Subprocedure

Implementation of Subprocedure 2.25 involves finding an efficient and accu

rate method to minimize || • | over the affine hull of a given affinely independent

point set Q. As shown above, this amounts to solving the system of linear equa

tions

eTw = 1 ,
t rt (3.1)eX+QT<>=0. v ;

One straight-forward (and inefficient) method is to simply form the system

matrix each iteration and solve it using a generic method. However, since Q

changes only by the addition or deletion of a single point in each iteration, a

method that updates the solution incrementally will certainly be more efficient.

Wolfe [Wl] has worked with four such methods for solving (3.1) and recom

mends the method we will now describe. One can easily show that the system of

equations

(eeT+QTQ)t; = e (3-2)

w = v/eTv (3-3)

is equivalent to (3.1) in producing the same (unique) w (we really don't care

about X). Working with this system has distinct advantages. The order of the

system (3.2) is one less than that of (3.1) and the normalization of w (so that

eTw = 1) is achieved to the best possible accuracy by (3.3). Furthermore, since

eeT+ QTQ is positive definite, we can employ techniques that are both efficient

and numerically well-conditioned. In particular, we know that there is a real,

29

30

upper triangular matrix R with positive diagonal elements such that

RTR = eeT+ QTQ (3-4)

(this is the Cholesky Decomposition, see, e.g., [G2], Theorem 5.2-3). Given R, we

can then solve (3.2) by solving the two triangular systems

i? v"= e . v

Rv= v.

We will now show how such an R can be constructed incrementally. Ini

tially, Q= {x0} so that R is the l-6y-l matrix (1 + || x01| 2f . When a point y
is added to Q we add a column to R as follows:

(1) Solve for r the system

i?Tr==e+QTy (3.6)

(2) Adjoin to R on the right the column [rT 7JT, where

t-(i+ l|y«2-M2f • <3J)

(Note that]r | is the Euclidean norm of r €Rm). When a point is deleted from

Q the corresponding column of R is deleted making R m-by-(m-l). Then a

series of orthogonal plane rotations are used to restore R to upper-triangular

form (the last row is then identically zero and can be discarded). It is easy to

verify that these operations maintain the relation (3.4) for the subsequent Q and

R. This procedure is very efficient and there is virtually no accumulation of

roundoff error [Wl] unlike that common to routines that maintain an inverse and

perform rank one corrections.

Theoretically, the fact that the new point y is on the near side of the hyper

plane H(x,x) (with x = Nr(co(<9))) guarantees that Qu{y} is affinely indepen

dent if Q is. When implemented by computer, however, (x,y) < (x,x) is no
longer a guarantee that the set Qu{y} will be affinely independent within the

machine. This problem can occur when the point y is very close to the hyper

plane H(x,x). Fortunately, this type of problem will usually only happen when

we are very close to solving the problem and would not have occurred if a

31

slightly more modest precision had been requested.

The above method helps provide an additional check on the affine indepen

dence of the point set Q. If the system matrix eeT+ QTQ loses its positive
definiteness, then the point set Q is no longer affinely independent. This possi-

bility can be detected during the incremental update by checking to see if 7

from (3.7) is strictly positive. If f2 is not positive, then eeT+ Q$Q+ is not posi
tive definite and Q+ 4 Qu{y] is not affinely independent. If this happens

there are two options.

The first option is to compute the limiting value /?* such that p > p would

result in the current x satisfying the stopping condition in Step 3 of Algorithm

2.3. This value is given by

* A x• *HQ _ {*.*-?). (3.8)
9 " M2 bF

If the value of p* is sufficiently small for the purposes at hand, then stop return

ing the current x. (In some cases, you.may have no choice, the contact point

routine may not return values accurate enough to improve on this precision.

The second option is to reset to two points by discarding all points except

the current minimizing x and the new point y. As long as y is far enough away

from x and H{x,x), then some decrease in norm may be possible. However,

since the two point method tends to exhibit slower convergence, it is likely that

any improvement we get will be paid for dearly. Furthermore, we are probably

getting close to the point where no further accuracy is possible due to finite

length arithmetic.

3.2. Numerical Results

In order to compare the results obtained using Wolfe's method to previous

methods, we consider the following general set suggested by Gilbert [Gl]:

C 4 {x6Rn I**> v+ -i-E^,*1^*"} (3-9)
2 j=2 X

32

where v > 0, X* > 0, t = 2,...,n, and k > 1. The nearest point in C is

x* = [v,0, . . . , 0]T and the X* are the principal radii of curvature of the boun

dary of C at the point x*. Since many other sets C have a boundary surface

that can be closely approximated by a similar representation in the neighborhood

of x*, this example is of general interest.

In many problems, the evaluation of the contact points for the set C will be

the most time consuming part of the nearest point calculation. Since each itera

tion involves computing such a contact point, the number of iterations required

to satisfy certain error criteria can be used as a measure of performance.

Table 3.1

Number of iterations to satisfy 1x,- I - || x || < 6.

Wolfe's method Barr's method Gilbert's method

X2 X3

6

1 10"3 10"6

6

1 10"3 10~8

6

1 10"3 10~6

10 10 3 7 12 3 7 12 4 28 41

100 10 6 17 32 6 17 32 11 53 92

1000 10 7 18 28 7 20 29 28 189 341

100 100 4 9 14 4 9 13 10 36 93

1000 100 6 16 26 8 23 32 43 142 386

1000 1000 4 9 13 4 10 12 86 223 301

Table 3.1 present results for the set C defined by (3.9), with n = 3, v = 1,

and x0 = [6 2 2]T, using the methods of Wolfe, Barr, and Gilbert. The data for

Barr's method is that given in [Bl]. The data tends to indicate that the speed of

33

convergence of the two-point method (Gilbert) depends strongly on the ratio of

the maximum radius of curvature to the minimum distance, the convergence

being slow when this value is high. The speed of convergence of the methods of

Wolfe and Barr is much more rapid and exhibits much less dependence on this

ratio. Wolfe's method seem to be doing about the same thing as Barr's method

(the small differences in number of iteration is probably due to the different com

puters on which they were tested), except in a more efficient manner (recall that

Barr used a quadratic program during each iteration). Figure 3.1 shows the loga

rithm plot of error versus iterations for Wolfe's method and Gilbert's two-point

method.

o -

\

1— 1 1 1

-

-

Awolfe 1 Gilbert

-

-

i V i • i

I

•l -

o -3

-4 -

-5 -

20 40 60

Iteration

80

Figure 3.1 Plot of log(|| x || - || x*]) with X2 = 100, X3 = 10.

100

34

3.3. Application: Nondifferentiable Optimization

In this section we show how the proximity algorithm can be used to com

pute a descent direction for a nondifferentiable optimization problem. The par

ticular problem we will investigate involves minimizing the maximum eigenvalue

of a parameterized positive semi-definite matrix. Such a problem can be used to

specify performance in control system design (see e.g., [Pi]).

To set the problem, let A:Rp-+RnXn be such that A{z) is positive semi-

definite for all z 6RP. The problem can then be stated as

min Xroax(A(*)). (3-10)
z€R"

Since the maximum eigenvalue of A (z) can be expressed as

>w(>t(2))= max (u,A(z)u), (3.11)
|«J=1

problem (3.10) can be restated as

min V(*), (3-12)
*€R'

where Mz) 4 max lu,A(z)u). Using the techniques set forth in [Pi], we can
u€R" x '
|«j=i

construct an augmented convergent direction finding map Gi)(z) (a set valued

map) whose nearest point, K(z) = \h\z) h(z)T]T, determines a continuous des

cent direction, h(z). For this case, we can define

4(z)-(u,A(z)u)
Grftz) 4 co({ | | ic | =l,ueRn}), (3.13)

where the vector v€Rp has components v1' = (u, \ ' u). In order to use a
x oz '

proximity algorithm, we must be able to compute contact points. That is, given

xGRp+1, compute y 6RP+1 such that

(x,y\= max (x,y*). (3-14)

Write (letting x = [x° xT]T)

max (x,y)= max {x°(il>(z)-(u,A(z)u))+ (x, v)
VeGrftz)\ * u€R" X

|u|=l

35

(3.15)

= x°i>(z)+ max (u,
«€R"
|«|=i

t=i dz%
u). (3.16)

The u €Rn that achieves the maximum in (3.16) is an eigenvector corresponding

to the maximum eigenvalue of the symmetric matrix

oz1=1

(3.17)

and can therefore be found using a standard routine from a package such as

EISPACK [SI]. The corresponding contact point y is easily computed.

We have implemented this approach for the example given in [Pi] where

A(z) =

2+(xi-x2)2+(xz)2 (x^x^l-x3)
(x^x^l-x3) (xJ)2+ (x2)2+ 3(x3)2

x2x3

xV

x2x3 xV5 2+(xxx3)2
(3-18)

All computations were performed using an Armijo type step size rule [P2] and

were stopped when the minimum distance to Gi})(z) was less than 10 . Initially,

z was set to [4,4,4]T for easy comparison with the results in [Pi].

The accuracy to which we compute the nearest point will certainly affect

the quality of the search direction obtained. We would therefore like to find a

precision that strikes a balance between the quality of the search direction and

the number of iterations taken by the proximity algorithm.

Table 3.2 presents the results of using various precisions, p, on the number

of iterations that the main optimization routine required to satisfy an optimality

test (lNr(Gi>(zk)) \ < 10"5). Times are included to emphasize the fact that

computing the nearest point to higher precision (smaller p) may increase the cost

of the search direction procedure enough to negate overall savings. This evidence

is, of course, inconclusive since other factors, such as step length calculation and

problem scaling, may have a major influence on such computations. These

Table 3.2

Effect of p in computing min Xmax(j4(z)).

P iterations time (sec)

.001 10 2.34

.005 11 2.26

.01 10 2.16

.05 8 1.84

.1 10 2.28

.5 15 2.52

.9 22 4.01

36

results tend to indicate that a value of p between .1 and .01 (such as .05) may be

a good choice in determining the search direction accurately without placing more

emphasis on it than is really necessary.

As Table 3.1 indicates, the proximity algorithms will typically require more

iterations to compute the nearest point as the radius of curvature of the set

increases relative to the minimum distance. Since the set Gip(z) approaches the

origin as z approaches a stationary point (at a stationary point z , 06 Gif>(z)),

it is likely that we will encounter this situation.

Table 3.3 shows the number of iterations required in the proximity algo

rithms of Wolfe and Gilbert to compute a descent direction during each iteration

of the main optimization algorithm. These results are tabulated for p = .05 and

provide the value of the cost function (^z) = Xmax(A(z))), the number of itera

tions needed by the proximity algorithm to compute the (approximate) nearest

37

Table 3.3

Iterations required by proximity algorithms during minXmax(A(z)).

Wolfe's method Gilbert's method

iteration ^mmJLM*))
iterations

required
1**1 WW*))

iterations

required
11**11

0 260.47 3 133.41 260.47 11 132.15

1 77.889 3 33.246 79.076 3 33.909

2 28.122 3 12.433 28.256 4 12.488

3 6.8292 2 3.8199 6.8504 2 3.8348

4 2.0666 9 .21805 2.0745 316 .079028

5 2.0033 12 3.3065e-3 2.0078 ** **

6 2.0003 16 3.2130e-4

7 2.00003 14 3.3376e-5

8 2 20 2.8453e-6

point (x*), and the norm of this point for each iteration. Note that the two-point

method of Gilbert was unable to compute a reasonable estimate of the nearest

point in iteration five (as indicated by the stars). The procedure was terminated

after more than 4000 iterations (and 3 minutes). This same behavior was

observed for all values of p tested. We therefore conclude that a two-point

method is definitely not a good method to use in such problems.

38

3.4. Conclusion

We have studied methods for estimating the minimum norm point in a con

vex set for which contact points can be evaluated. Most of these methods have

required finding the nearest point in a polytope as a subproblem. The questions

of choosing the polytope and finding its nearest point were considered. We

recommend using Wolfe's algorithm [W2] over general-purpose quadratic pro

gramming algorithms to find the nearest point in the polytope because of the

savings in computational effort, storage, and roundoff error. Choosing the

polytope to be the convex hull of the previous corral and the current contact

point produces a very efficient algorithm that incrementally updates the data

structures required for finding the nearest point using Wolfe's method. Further

more, this method always works within the dimension of the set (i.e., never keeps

more than dim(C) + 1 points) rather than the dimension of the space (as Barr

[Bl] does). This property is especially useful when the set is not of full dimension

(i.e., dim(C) T^dim(H)). We recommend the method set forth in Algorithm

2.48 as an efficient, stable computational method for estimating the minimum

norm point in a convex set.

References

[Bl] Barr, R.O., "An Efficient Computational Procedure for a Generalized

Quadratic Programming Problem", SIAM Journal on Control 7 (1969)

415-429.

[B2] Berge, C, Topological Spaces. New York: The Macmillan Company,

1963.

[B3] Brondsted, A., An Introduction to Convex Polytopes. New York:

Springer-Verlag (Graduate Texts in Mathematics; v. 90), 1983.

[Cl] Clarke, F.H., Optimization and Nonsmooth Analysis. New York: John

Wiley & Sons, 1983.

[Fl] Frank, M. and P. Wolfe, "An Algorithm for Quadratic Program

ming", Naval Research Logistics Quarterly 3 (1956) 95-110.

[Gl] Gilbert, E.G., "An Iterative Method for Computing the Minimum of a

Quadratic Form on a Convex Set", SIAM Journal on Control 4 (1966)

61-80.

[G2] Gilbert, E.G. and D.W. Johnson, "Distance Functions and Their

Application to Robot Path Planning in the Presence of Obstacles",

IEEE Journal of Robotics andAutomation RA-1 (1985) 21-30.

[G3] Golub, G.H. and C.F. Van Loan, Matrix Computations. Baltimore:

The Johns Hopkins University Press, 1983.

39

40

[Ml] Mayne, D.Q. and E. Polak, "An Exact Penalty Function Algorithm

for Control Problems with State and Control Constraints", Memoran

dum No. UCB/ERL M85/52, Electronics Research Laboratory,

University of California, Berkeley, 1985.

[M2] Meyer, G. and E. Polak, "A Decomposition Algorithm for Solving a

Class of Optimal Control Problems", Journal of Mathematical

Analysis and Applications 32 (1970) 118-140.

[Rl] Rockafellar, R.T., Convex Analysis. Princeton: Princeton University

Press, 1970.

[PI] Polak, E., Computational Methods in Optimization: A Unified
Approach, New York: Academic Press, 1971.

[P2] Polak, E. and D.Q. Mayne, "A Feasible Directions Algorithm for

Optimal Control Problems with Control and Terminal Inequality

Contraints", IEEE Transactions on Automatic Control AC-22 (1977)

741-751.

[P3] Polak, E. and Y. Wardi, "Nondifferentiable Optimization Algorithm

for Designing Control Systems Having Singular Value Inequalities",

Automatica 18 (1982) 267-283.

[P4] Polak, E., "On the Mathematical Foundations of Nondifferentiable

Optimization in Engineering Design", Memorandum No. UCB/ERL

M85/17, Electronics Research Laboratory, University of California,

Berkeley, 1985.

41

[SI] Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y.Ikebe, V.C.
Klema, and C.B. Moler, Matrix Eigensystem Routines - EISPACK

Guide, New York: Springer-Verlag, 1976.

[VI] Valentine, F.A., Convex Sets. Huntington, New York: Robert E.

Krieger Publishing Company, Inc., 1976.

[V2] van Tiel, J., Convex Analysis: An Introductory Text. Chicester: John

Wiley & Sons Ltd., 1984.

[Wl] Warga, J., "Iterative Procedures for Constrained and Unilateral

Optimization Problems", SIAM Journal on Control and Optimization

20 (1982) 360-376.

[W2] Wolfe, P., "Finding the Nearest Point in a Polytope", Mathematical

Programming 11 (1976) 128-149.

Appendix

In this appendix we present an implementation of Algorithm 2.48. The file

wolfeg.c contains the C functions used in this implementation. These routines

have been written to allow easy use from programs written in FORTRAN as well

asC.

To allow for this flexibility, we must follow the convention that C routines

which are called from FORTRAN programs must end in an underscore, e.g.,

wolfeg_. The trailing underscore is needed to allow for the correct linking of

these routines. Under UNDCf, the C compiler, cc, produces labels of the form

_proc, where proc is the function name, while the FORTRAN compiler, F77, pro

duces labels of the form _proc_. The linker, Id, then uses these labels to set up

the calling sequences. Therefore, we use wolfeg_ in C to refer to the same func

tion that will be called wolfeg in FORTRAN. This convention is, of course, arbi

trary and will likely vary under different operating systems. For the purposes of

the following discussion we shall simply refer to the function as wolfeg.

In order to use wolfeg, the user must provide an initial point in the set of

interest and a subroutine that computes contact points for this set. This user-

defined subroutine will be called from within wolfeg each time a contact point is

needed (i.e., in Step 2 of Algorithm 2.48). The contact point subroutine should

accept three parameters: x, y, and param. The variable x contains the direction

of interest (a vector of n components). Given x, the subroutine should compute

a contact point and place it in y (also a vector of n components). Thus, with C

denoting the set of interest, we have that

(*,y)<(*,y') \fy'ec. (A.i)

The variable param is a pointer (or address) that can be used to pass parameters

to this user-defined subroutine through wolfeg. For example, in FORTRAN,

t UNIX is a trademark of Bell Laboratories.

42

43

param could be (the address of) an array of parameters needed by the contact
point subroutine. In C, a pointer to astructure of parameters could be passed
allowing arbitrary information exchange between the calling program and the

contact point subroutine via param.

To allow for exceptions to the normal stopping conditions, wolfeg requires

two additional integer parameters, imax and ierr. As the name indicates, imax

gives the user the option of specifying amaximum number of iterations that the

main loop of wolfeg (i.e., number of contact points computed) will execute. If

imax is set to a value other than zero, then wolfeg will execute no more than imax

iterations. Setting imax to zero implies no restriction. On return, imax contains

the actual number of iterations that were executed. The parameter ierr is used

to indicate the actual stopping condition used. Ierr is set to zero if the final x

satisfies the stopping condition of Step 3 of Algorithm 2.48 so that

|x||2+<r(-x)<p||x||2. (A.2)

If wolfeg stopped at Step 1 of Algorithm 2.48 with

IX|| < € (A-3)

then ierr is set to one. If ierr has been set to either two or three then computa

tions were stopped for numerical reasons. The value of four in ierr implies that

imax iterations were performed without satisfying any other stopping rule. In

any case, the parameter rho is set to the value of the limiting p defined by (3.8)

corresponding to the final x. This value can then be used to judge the quality of

the final x in light of the actual stopping conditions.

The calling sequence and nature of the parameters are described in detail in

the comments of the program itself. To aid the potential user, we have also

included an ex

wolfeg.c Page 1

#define DEBUG

double wolfeg_(x, n, eps, rho, tanpt, imax, ierr, param)
double *x, *eps, *rho;
int *n, (*tanpt)(), *imax, *ierr;
char *param;
{

/*
** wolfeg__ estimate nearest point in general convex set
**

**

** This function estimates the nearest point in a convex set to
** a desired precision. The method used is an extension of
** P. Wolfe's method for finding the nearest point in a polytope
** (P. Wolfe, "Finding the Nearest Point in a Polytope",
** Mathematical Programming 11 (1976) 128-149.).
** This extension corresponds to Algorithm 2.48 in
** J. Hauser, "Proximity Algorithms: Theory and Implementation".
**

**

** Starting with initial point 'x', wolfeg_ will find a point
** in the set whose contact points are determined by 'tanpt'
** that is either 'close' to the origin (as measured by 'eps')
** or 'close' to the nearest point in the (closure of the) set.
• *

** on input-
**

** x is the initial point in the set ('n' component vector)

** n is the dimension of 'x' (passed by address)
**

** eps is the zero threshold (passed by address)
*•

** rho is the desired ratio precision (passed by address)
**

** tanpt is a subroutine used to determine contact points
** in the set of interest, this subroutine is called with
** three parameters 'x', 'y', and 'param' as in
**

** tanpt(x, y, param);
**

** 'x' is the input direction and 'y' is the output
** contact point, i.e.,
**

** < x , y > <- < x , y' >
**

** for all y' in C. 'param' is used to pass parameters.
**

** imax is the maximum number of iterations to be performed.
** if 'imax' is set to zero, then no limit is imposed.
** (passed by address).
**

** param is a pointer to a parameter area that can be used
** to pass parameters to the function tanpt.
** it is declared

wolfeg.c Page 2

** char *param;
** to imply 'generic pointer'. In C, there is great
** flexibility. In FORTRAN, one is probably limited
** to passing a single variable or array. At any rate,
** as long as the calling procedure and the subroutine
** 'tanpt' agree, there should be no trouble.
**

**

** on output-

** x contains the resulting approximation to the nearest
•* point in the set.
**

** n is unaltered.
*•

** eps is unaltered.
**

** rho contains the limiting rho achieved by the final point.
i.e., rho=f<x,x>-<x,y>)/<x,x>,
unless || x I| < eps in which case rho is unaltered.

**

**

**

•* imax contains the actual number of iterations executed.
**

** ierr is set to
**

** zero if a nominal 'x' was obtained, i.e.,
** <x,x>-<x,y>< rho * < x , x >.
**

** one if 'x' approximates zero, i.e.,
** || x || < eps.
*•

•• two if computation was stopped because the 'rho'
*• requested could not be achieved without the
** system matrix losing its positive definiteness.
** (as a result of numerical errors).
**

** three if computation was stopped because the norm
** was not decreased (because of numerical errors)
•*

** four if the imax iterations were executed without
** satisfying any other stopping condition.
**

**

a***

• *

** example usage
**

**

**

**

** FORTRAN
**

•* program foo
*• external tanpt
** double precision x(20), eps, rho, dummy
** integer n, imax, ierr

wolfeg.c Page 3

**

**

**

** dist = wolfeg(x,n, eps, rho, tanpt, imax, ierr,dummy)
**

**

**

** end
**

** subroutine tanpt(x, y, d)
** double precision x(l), y(l)/ d(l)
**

**

**

** end
**

**

**

** C
**

** main()
** {
** double wolfeg_();
** double x[20], eps, rho, params[3];
** int n, imax, ierr, tanpt();
**

**

**

** dist - wolfeg_(x, &n, &eps, &rho, tanpt,
** simax, sierr, (char *) params);
**

**

**

** }
**

** tanpt(x, y, params)
** double *x, *y;
** char *params;
** {
**

**

**

** }
**

*/

/* zero thresholds */

#define Zl le-10
#define Z2 le-10
#define Z3 le-10

/* constants for stopping & reseting */

#define MINEPS le-12 /* min zero threshold */

wolfeg.c Page 4

#define MINRHO
#define MINGAMMA2

le-10

0

/* min stopping ratio */
/* square of smallest R diag */

/* other useful items */

idefine FALSE
#define TRUE
#define max(a,b)
#define min(a,b)
#define llog(x)

#include <math.h>

#ifdef DEBUG
#include <stdio.h>
#endif

char *calloc();

static int worksize;

static double *work;

""FALSE
((a)>(b)?(a):(b))
((a)<(b)?(a):(b))
(logl0((max(le-38,(x)))))

int i,

i,
k, /*
il,
nn, /*
qq/ /*
ncpts, /*
ndpts, /*
nfpts, /*
small, /*
zeroi; /*

double

norm2x, /*
onorm2x, /*
xdoty, /*
eps2, /*
rho__, /*
••corral, /*
**discard, /*
**freepts, /*
rr, /
w, /
v, /
bb, /
lambda, /*
a, b, c, d, /*
dot(),
norm2();

/"

/* size of working storage */

/* pointer to working storage */

iteration counter */

dimension of points */
length of column in r */
number of points in corral */
number of points in discard */
number of points in freepts */
boolean toggle */
point with zero weight */

squared norm of current x */
squared norm of previous x */
inner product of x and contact point y */
zero threshold for stopping */
ratio for stopping */
ptr to array of ptrs to corral points */
ptr to array of ptrs to discarded points */
ptr to array of ptrs to free points */
ptr to R array */
ptr to weights for 'x* */
ptr to weights for minimum on affine hull */
ptr to scratch vector */
convex multiplier */
used for plane rotation */

wolfeg.c Page 5

** work is partitioned as follows:
**

** r the first (n + l)(n + 1) elements set up
** as a square matrix (see define below).
**

** w is stored in the next (n + 1) elements.
**

** v is stored in the next (n + 1) elements.
**

** bb is stored in the next (n + 1) elements.
**

** corral is stored in the next (n + 1) elements.
** (an array of pointers to vectors)
**

** discard is stored in the next (n + 1) elements.
** (an array of pointers to vectors)
**

** freepts is stored in the next (n + 1) elements.
** (an array of pointers to vectors)
**

** ••• the next n(n+2) elements contain the (n+2)
** vectors of size n that are allocated to the
** corral, discard, and freepts areas.
**

** hence the required storage is 2n~2 + lOn + 7
** this storage is allocated dynamically as one block when
** needed and reallocated if a larger block is needed.

V

#define r(i,j) rr[(i)+ (j)*qq] /* stored columnwise */

/* initialize pointers for working vectors, etc. */

nn = *n; /* dimension of points */
qq = nn + 1; /* size of maximal corral */

/* get working storage (if needed) and allocate it */

i = 2*nn*(nn + 5) + 7; /* calculate storage needed */
if (worksize < i) { /* present storage insufficient */

if (work) /* free up previously allocated */
free((char *) work); /* storage */

worksize = i; /* save size */

/* get needed storage */

work = (double *) calloc((unsigned) i, sizeof(double));

}

rr = work; /* start at beginning */
w = &r(0,nn + 1); /* weights for 'x' */
v = &r(0,nn + 2); /* weights for 'y' */
bb - &r(0,nn + 3); /* scratch vector */
corral = (double **) &r(0,nn + 4); /* corral points */

wolfeg.c Page 6

discard = (double **) &r(0,nn + 5); /* corral points */
freepts = (double **) &r(0,nn + 6); /* corral points */
ncpts =1; /* initial number of corral points */
nfpts = qq; /* number of free points */
ndpts = 0; /* initially no discarded points */

corral[0] = (double *) &r(0,nn + 7); /* set up for first point */

/* set up pointers to free space */

i = nfpts;
freepts[—i] = corral[0] + nn;
for (; i—;)

freepts[i] = freepts[i + 1] + nn;

eps2 = max(MINEPS,*eps);
eps2 *= eps2; /* use square in stop rule */
rho_ = max(MINRHO, *rho) ;

/* Step 0 — get initial corral */

for (i=nn; i—;) /* initial corral is given point in set */
corral[0][i] = x[i];

ncpts =1; /* one point in the corral */
w[0] = 1.;

/* initial R matrix (1 by 1) and set max squared norm */

r(0,0) = sqrt(l. + norm2(x,nn));

/* main loop of algorithm */

for (k=0; ; k++) C

#ifdef DEBUG

printf("x[%d]: ",k);
for (i=0; i<nn; i++)

printf("%g ",x[i]);
printf("\n");

#endif

/** Step 1 ** — check for small x */

if ((norm2x = norm2(x,nn)) < eps2) {
*imax » k;
*ierr = 1;
return (sqrt(norm2x));

}

/** Step 2 ** — pick up tangency point */

wolfeg.c Page 7

/* get point from free points */

corral[ncpts++] = freepts[—nfpts];

(*tanpt)(x, corral[ncpts-1], param);

xdoty = dot(x, corral[ncpts-1], nn);

#ifdef DEBUG

/*

V

#endif

printf("y[%d]: ",k);
for (i=0; i<nn; i++)

printf("%g ",corral[ncpts-1][i]);
printf("\n");

c = sqrt(norm2x);
if (norm2x > le-24)

printf("%d: [%g,%g], e - %g, le = %g\n",
k,xdoty/c, c, 1.-xdoty/norm2x, Hog(1. -xdoty/norm2x)) ;

/** Step 3 ** — test for ratio stopping condition */

if (norm2x - xdoty < rho__*norm2x) [
/* stop - we have a solution */

*imax = k;
ierr =0; / normal return */
rho = (norm2x - xdoty)/norm2x; / actual rho achieved*/

return (sqrt(norm2x)); /* return distance */
}

/** stop if more iterations than desired */

if (*imax && k >= *imax) C /* if *imax = 0, don't check */
*imax - k;
*ierr = 4;
*rho = (norm2x - xdoty)/norm2x;
return(sqrt(norm2x));
}

/* save x and normx to check for decrease in norm */

for (i=nn; i—;)
freepts[0][i] =x[i];

onorm2x = norm2x;

/** Step 4 — find nearest point in Q U {y} */

/** Step 4(a) is handled implicitly */

wolfeg.c Page 8

/* loop for Steps 4(b) through (e) */

for (;;) {

/** Step 4(b) — add new point to corral */

/* point is corral from either Step 2 or Step 4(e) */

ncpts—; /* subtract one for convenience */

w[ncpts] =0.; /* zero weight */

/* add new column to R */

c = norm2(corral[ncpts],nn); /* norm2 of tangency point */
for (i = ncpts; i—;)

bb[i] = 1. + dot(corral[i], corral[ncpts], nn) ;
solve_t_upper(rr, &r(0,ncpts), bb, ncpts, qq);

/* check that points are affinely independent in machine */
/* i.e., that system matrix is positive definite */

if ((a - 1. + c - norm2(&r(0,ncpts),ncpts)) <= MINGAMMA2) [
*imax = k;
*ierr = 2;
*rho = (norm2x - xdoty)/norm2x;
return(sqrt(norm2x));

}
else {

r(ncpts, ncpts) - sqrt(a);
ncpts++;

}

/* loop for Steps 4(c) and (d) */

for (;;) {

/** Step 4(c) — solve system for new v */

for (i - ncpts; i— ;) /* init vector of ones (e) */
v[i] = 1.;

solve_t_upper(rr, bb, v, ncpts, qq);
solve_upper(rr, v, bb, ncpts, qq) ;

/* normalize v & check for small values */
/* and compute lambda for Step 4(d) and */
/* element acheiving lambda */

a = 0. ;
for (i =° ncpts; i—;)

a +- v[i] ;
small - FALSE;
lambda = 0.; /* min is zero */
for (i = ncpts; i—;) {

if C(v[i] /= a) <= Z2) {

wolfeg.c Page 9

if (Ismail) [
small = TRUE;

zeroi = i;

}
if ((b = w[i] - v[i]) > Z3 &&

(c = -v[i]/b) > lambda) {
lambda = c;

zeroi = i;

}
}

}

if (! small) [/* good positive v - put in w */

for (i = ncpts; i—;)
w[i] = v[i];

/* update x and norm2x */

for (i = nn; i— ;) C
a = 0. ;
for (j = ncpts; j— ;)

a += corral[j][i]*w[j] ;
x[i] = a;

}

norm2x - norm2(x, nn);

/* check for decrease in norm */

if (norm2x >= onorm2x) [/* no decrease — stop */

*imax = k;
*ierr = 3;

/* restore previous x */

for (i = nn; i—;)
x[i] = freepts[0][i];

norm2x = onorm2x;
*rho = (norm2x - xdoty)/norm2x;

return (sqrt(norm2x));

}

break; /* break out (go to Step 4(e)) */
}

/* Step 4(d) — project and delete point not in face */

/* lambda and zeroi computed above */

/* w = lambda * w + (1 - lambda) * v */

for (i = ncpts; i—;)

wolfeg.c Page 10

w[i] = lambda*w[i] + (1.-lambda)*v[i];

/* delete zeroi-th element from Q, w, & R */

ncpts ; /* one less point in corral */

/* put zeroi-th element of corral on discard list */

discard[ndpts++] = corral[zeroi];

for (il = (i = zeroi) + 1; i < ncpts; i++, il++) [
w[i] = w[il];
for (j = il + 1; j—;)

r(j,i) = r(j,il);
corral[i] = corral[il];
}

/* use plane rot to restore R to upper triangular form*/

for (il - (i - zeroi) +1; i < ncpts; i++, il++) {
a = r(i,i);
b = r(il,i);
a /= (c = sqrt(a*a + b*b));
b /= c;
for (j = i; j < ncpts; j++) {

r(i,j) = a*(c = r(i,j)) + b*(d = r(il,j));
r(il,j) = -b*c + a*d;
}

}

} /* end of Step 4(c) & (d) loop (i.e., go (c)) */

/** Step 4(e) — check discarded points for separation */

if (ndpts < 1) break; /* no points to check */

/* find min dot in discard set */

j = i = ndpts - 1;
a - dot(x, discard[i], nn);
for (; i— > 0;)

if ((b = dot(x, discard[i], nn)) < a) [
a = b; /* a contains min dot */
j = i; /* j contains its index */
}

if (norm2x < eps2 || norm2x - a <= Zl*norm2x) [
/* all discarded points are separated */

/* place discard points on free list */

for (; ndpts—;)
freepts[nfpts++] - discard[ndpts];

ndpts++;

wolfeg.c Page 11

break; /* i.e., go to Step 1 */
}

/* else */

/* place j-th point back in corral for further decrease */

corral[ncpts++] = discard[j];

ndpts—;

/* shuffle discard pile */

for (; j < ndpts; j++)
discard[j] = discard[j+1];

} /* end of step 4(b) - (e) loop (i.e., go to (b)) */

} /* end of main loop (i.e., go to Step 1) */

#undef r
} /* end of wolfeg_ function */

/* solve__upper solve R*x = b w/ R upper triangular
**

** note: do not called from fortran

*/

static solve_upper(R, x, b, n, q)
double *R, *x, *b;
int n, q;

#define RR(i,j) R[(i) + (j)*q] /* stored columnwise */

int i, j;
double z;

for (i=n; i—;) {
z = 0. ;
for (j=i+l; j<n; j++)

z += RR(i,j)*x[j];
x[i] = (b[i] - z)/RR(i,i);
}

#undef RR
} /* end of solve_upper */

/* solve_t_upper solve R-tr*x = b w/ R upper triangular
**

** note: do not called from fortran

V

static solve_t_upper(R, x, b, n, q)
double *R/ *x, *b;

wolfeg.c Page 12

int n, q;

#define RR(i,j) R[(i) + <j)*q]

int i, j;
double z;

for (i=0; i<n; i++) {
z = 0. ;
for (j=i; j—;)

z += RR(j,i)*x[j];
x[i] = (b[i] - z)/RR(i,i);
}

#undef RR
} /* end of solve__t_upper */

/* dot returns dot product of 2 n-vectors
**

** note: not to be called from fortran routines

V

static double dot(x, y, n)
double *x, *y;
int n ;

{
double d;

d = 0;
for (; n—; x++, y++)

d += *x * *y;
return(d);

}

/* norm2 returns sqared norm of n-vector
**

** note: not to be called from fortran routines

V

static double norm2(x, n)
double *x;
int n ;

£
double d;

d = 0;
for (; n—; x++)

d += *x * *x;
return(d);
}

example_c.c Page 1

#include <stdio.h>

#define N 20
#define max(a,b) ((a)>(b)?(a): (b))
#define min(a,b) ((a)<(b)?(a):(b))

struct parameter [
int n;
double lambda[N+l];

};

main()

{
int

i,
n,

imax,
ierr,
quadtpt();

double

d,
eps,

rho,
x[N],
wolfeg_();

struct parameter params;

for (;;) [

printf("enter n (max %d): ", N) ;
scanf("%d",&n);
if (n == 0) break;

n = min(n,N);
params.n = n;

printf("enter v: ");
scanf("%lf",sparams.lambda[0]);

printf("enter lambda[2 ... %d] : ", n);
for (i=l; i<n; i++)

scanf("%lf",sparams.lambda[i]);

printf("enter x: ");
for (i=0; i<n; i++)

scanf("%lf",sx[i]);

printf("enter eps: ");
scanf("%lf",seps);

printf("enter rho: ");
scanf("%lf",srho);

printf("enter imax: ");

example_c.c Page 2

scanf("%d",simax);

printf("\nWolfe algo:\n");
printf("initial x:\n");
for (i=0; i<n; i++)

printf(" %g",x[i]);
printf("\n");
d = wolfeg_(x, Sn, seps, srho, quadtpt,

Simax, sierr, (char *) sparams);
printf("min dist is %g + %g\n",

params.lambda[0], d - params.lambda[0]);
printf(" imax = %d, ierr = %d, rho = %g\n", imax, ierr, rho);
printf("final x:\n");
for (i=0; i<n; i++)

printf(" %g",x[i]);
printf("\n");

}

quadtpt(x, Yf params)
double *x, *y;
char *params;

{
double

xO, yo,
*lambda /

dot();

int i^
n;

struct parameter *p;

n = ((struct parameter *) params)->n;
lambda = ((struct parameter *) params)->lambda;

if ((xO = *x) < (yO = *lambda)) [
/* x is not in set !! */
for (i=n; i—;)

*(y++) = 0.;

}

/* start from the last element of each vector */

lambda += n - 1;
y += n - 1;
x += n - 1;

for (i=n-l; i—; lambda—, x—, y—) {
*y = -(*lambda)*(*x)/xO;
yO += (*y)*(*y)/(*lambda)/2. ;
}

*y = yO;

}

example_f.f Page 1

program main

integer i, n, imax, ierr
external quadtpt, wolfeg
double precision d, eps, rho, x(20), params(21)

c main loop (infinite loop)

1 continue

print *, "enter n (max 20): "
read *, n
if (n .eq. 0) stop

if (n .gt. 20) n = 20

params(1) = n

print *, "enter v. "
read *, params(2)

print *, "enter lambda(2 ... ", n, "): "
read *, (params(i), i=3,n+l)

print *, "enter x: "
read *, (x(i), i=l,n)

print *, "enter eps: "
read *, eps

print *, "enter rho: "
read *, rho

print *, "enter imax: "
read *, imax

print *, " "
print *, "Wolfe algo:"
print *, "initial x:"
print *, (x(i), i=l,n)
d = wolfeg(x, n, eps, rho, quadtpt, imax, ierr, params)
print *, "min dist is ", params(2), " + ", d - params(2)
print *, " imax = ", imax, ", ierr = ", ierr, ", rho = , rho
print *, "final x:"
print *, (x(i), i=l,n)

go to 1

end

subroutine quadtpt(x, y, params)
double precision x(l), y(l)/ params(l)

double precision xO, yO
integer i, n

example__f.f Page 2

n = params(1)

xO = x(l)
yO = params(2)

if (xO .It. yO) then
/* x is not in set !! */
do 1 i=l,n

y(i) = 0.0
return

end if

do 2 i=2,n
y(i) = -params(i+l)*x(i)/x0
yO = yO + y(i)*y(i)/params(i+l)/2.0
continue

y(l) = yO
return

end

	Copyright notice1986
	ERL-86-53

