

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

NUTCRACKER: AN INTELLIGENT CHANNEL SPACER

by

Xiao-Ming Xiong

Memorandum No. UCB/ERL M86/55

15 May 1986

NUTCRACKER: AN INTELLIGENT CHANNEL SPACER

by

Xiao-Ming Xiong

Memorandum No. UCB/ERL M86/55

15 May 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Nutcracker: An Intelligent Channel Spacer

Xiao-Ming Xiong

Electronics Research Laboratory
Department of EECS

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

We present an intelligent channel spacer which can either transfer the sym
bolic channel routing result into physical layout or serve as a post-process step to
compact the physically routed channel.

Most of the today's channel routers assume that the wires and contacts
used to connect signal nets in the channel must be put on "tracks". The goal of
the channel router is then to minimize the number of tracks in the channel. As

long as the design rules are not violated, there is no reason to lay the wires and
contacts on "tracks" in channel routing. Also the design rules for wires and con
tacts are usually different in today's fabrication technologies. Obviously, the
height of channel can be reduced if we can make full use of these two advantages.

The goal of our channel spacer is to minimize the channel height by reposi
tioning the wires and contacts according to the design rules given.

Nutcracker has two important features: to adjust the relative contact-wire
position and to insert jogs when necessary.

Because the abuse of jogs will not only increase the total wire length in the
channel but also make the physical layout very irregular, Nutcracker will insert
jogs in an intelligent way so that a jog is inserted if and only if we can benefit.

The algorithm used for Nutcracker is very efficient in both aspects of com
plexities and actual run time. The worst case run time complexity is O(nlogn)
and space complexity is O(n) where n is the number of wires and contacts in the
final physical layout. Nutcracker is applicable to both one and two metal layer
technologies and is suitable for both custom chips and gate arrays. Nutcracker
could be a post-process step for many existing channel routers.

Nutcracker is implemented in C on a VAX 11/780 and used as a post-
process step for the gridless channel router -- glitter ([2]). A lot of practical exam
ples are tested and the experimental results shows that on the average the chan
nel height can be reduced by about ten percent. The lower bound of the channel
height in one dimensional compaction is achieved if the routing topology is given.
Due to the inherent properties of the scan-line approach, the irregular channel
boundary does not affect the performance of Nutcracker.

This research is sponsored by the Semiconductor Research Cooperation under SRC 82-11-008.

Nutcracker: An Intelligent Channel Spacer

Xiao-Ming Xiong

Electronics Research Laboratory
Department of EECS

University of California, Berkeley
Berkeley, California 94720

1. Introduction

Spacer is a CAD tool which is used to transfer rough sketches or symbolic diagrams to pro

duce physical VLSI layout using design rules, or to minimize the chip area by compacting objects

on a layout plane. If we can successfully compact physical layout, we can generate an initial phy

sical layout from rough sketches or symbolic diagrams and then do the compaction. From this

point on, we will concentrate on compaction. Compaction was used to describe the process of

repeated cutting of unnecessary spaces from the given rough layout. Different methodologies and

algorithms for layout compaction are developed and described in the literature ([l]). Most of the

compactors developed so far are based on a one-dimensional approach using the longest path

search in the horizontal and the vertical constrain graphs as used by Hsueh and Pederson ([3]).

The constraint-graph approach offers a good flexibility and allows for an efficient implementation.

However, this approach does not fit well with the compaction problem involving two dimensions.

The boolean decision variables have been used by Schlag, Liao and Wong ([4]) in a way to formu

late and solve the two-dimensional compaction problem. It has been proved that the simultane

ous two-dimensional compaction problem is NP-complete ([4]).

An important problem in layout compaction is compacting routed channels ([5]). In channel

routing compaction, we need only to consider two kinds of objects: wires and contacts. The goal

of channel routing compaction is to minimize the channel height. Most of the today's channel

routers assume that the wires and contacts used to connect signal nets in the channel must be put

on "tracks". The goal of the channel router is then to minimize the number of tracks in the

-2-

channel. As long as the design rules are notviolated, there is no reason to lay the wires and con

tacts on "tracks" in channel routing. Also the design rules for wires and contacts are usually

different in today's fabrication technologies. Obviously, the height of a channel can be reduced if

we can take full advantage of these characteristics.

We present an intelligent channel spacer - Nutcracker, which can transfer the symbolic

channel routing result into a physical layout or serve as a post-process step to compact the physi

cally routed channel. The objective of Nutcracker is to minimize the channel height by reposi

tioning the wires and contacts according to the design rules given. Nutcracker has two important

features: to adjust the relative contact-wire position and to insert jogs when necessary. Because

the abuse of jogs will not only increase the total wire length in the channel but also make the

physical layout very irregular, Nutcracker will insert jogs in an intelligent way so that a jog is

inserted if and only if an improvement is made. The final compaction result is dependent on

design rules provided and the amount of channel height reduction is strongly dependent on the

channel router used.

We only use the plane sweep technique in Nutcracker. Compared with other compaction

algorithm which implement constraint graphs, our algorithm maintains and handles the data only

on a scan line. Thus the algorithm used for Nutcracker is more efficient in both complexity and

actual run time. The worst case run time complexity is O(nlogn) and space complexity is O(n)

where n is the number of wires and contacts in the final physical layout. Another important

feature of Nutcracker is that the performance of Nutcracker is independent of the shape of the

channel boundary. This is because we use the scan-line approach to find all possible jogs in the

first phase of the algorithm and the lower bound of the channel height is then achieved.

Nutcracker is applicable to both one and two metal layer technologies and is suitable for

both custom chips and gate arrays. It can also be used as a post-process step for many existing

channel routers.

-3-

2. The Scan Line Method

The scan line approach which has been widely described in the literature is efficient in han

dling geometric figures on a plane. For example, Preparata and Nievergelt [6] presented an

implementation where the worst case running time, O(nlogn) —n is the total number of corner

points and intersecting points of the geometric figures on the plane, is the best currently known.

Let us give a brief overview of the scan line approach. For identifying and manipulating

the geometric figures on a plane, we usually need to scan the plane at least once. To scan the

plane in the vertical direction, a scan line is defined as a horizontal line which sweeps across the

plane from bottom up. Similarly, we define scanning in the horizontal direction, say from left to

right. When a object is hit by the horizontal scan line, we put it in an on-line list. When the

object is ending at the scan line, we delete the line segment from the on-line list. Thus all objects

on the plane will show up in the on-line list once. At any time, the on-line list contains all the

geometric figures which intersect the scan line and these are the geometric figures which can be

maintained and manipulated.

The scan line approach is very efficient since it actually transforms the two-dimensional

problem into a one dimensional problem. The key aspect of the scan line approach is to be able to

maintain the necessary information in the on-line list.

3. Glossary of Terms

Net A net is defined by a set of terminals that must be interconnected by some routing

path.

Channel: A channel is a rectangular routing region with terminals along its edges. There are two

kinds of channels: horizontal channel and vertical channel. In a horizontal channel,

terminals are along the top and bottom edges of the channel and we can shrink or

expand the channel in the vertical direction. In a vertical channel, terminals are along

the left and right edges of the channel and we can shrink or expand the channel in the

horizontal direction. Without loss of generality, we will assume that the channel

-4-

under consideration is a horizontal channel.

Wire: A wire is a straight line segment which is a portion of a routing path. There are two

types of wires: horizontal wires and vertical wires. To compact a horizontal channel,

we do not care about the vertical wires in the channel.

Contact A contact is a feed-through used to connect two wires on different layers in the same

routing path.

Jog: A jog is a vertical wire which connects two horizontal wires of the same routing path

on the same layer.

4. Underlying Idea

In most of the existing compaction algorithms, a constraint graph is first build by sweeping

the layout plane from left to right. Then apply the longest path algorithm to the constraint

graph to do the compaction. In contrast to other algorithms, ours does not use constraint graph

and the compaction is done by sweeping the channel from bottom up.

We call both the horizontal wires and contacts in the channel objects. An object can be

represented by its center line associated with a number, hw, which is half of the object width. A

discontinuous point is either the point shared by two adjacent objects or the end point of an

object which has no adjacent objects. Contacts Cl, C2, C3 and wires Wl, W2 in Fig. 1 is respec

tively represented as objects objcl, objc2, objc3, objwl, and objw2 in Fig. 2. The points A, B, C,

D, E, and F in Fig. 2 are discontmuous points. The half width, hw, is two for objcl, objc2, and

objc3 but hw equals one for objwl and objw2.

An object covers a discontinuous point if the object is right above the point and the the x-

coordinate of the point is in between of the x-coordinates of two end points of the object. In Fig.

2, the object objw2 covers the discontinuous points A, B, and C; objc3 covers discontinuous

points C and D. Notice that a discontinuous point can be covered by more than one object.

-5

Our algorithm consists of two phases. In the first phase, we find all possible jog positions

and assign aweight to every object by scan the channel from bottom up. Notice that all possible

jog positions are the discontinuous points but adiscontinuous point is not necessary a possible

position for a jog, e. g. A and Din Fig. 2are not possible jog positions. The channel height is

determined in this phase. Then in the second phase, we embed wires and contacts in the channel

from top down and minimize the number of jogs under channel height obtained in the first phase.

We sort all objects in the channel lexicographically by their y, x coordinates and then sweep

the channel by jumping a scan line at the y coordinate of the objects. By current scan line, we

mean the position where the scan line is currently at. By previous scan line, we mean the position

where the scan line is just jumped from. A linked list, P, is used to maintain all discontinuous

points on the previous scan line. For every object hit by current scan line we do the following. If

the object covers some discontinuous points in P and the object is longer enough to insert a jog,

then we will break the object into two objects at the possible jog position and generate a new

discontinuous point. Otherwise, consider the next object. All discontinuous points covered by cer

tain object will be deleted from P and all discontinuous points on current scan line will be

inserted in P as scan line jumps. For example, objw2 in Fig. 2 is broken into four objects

objw21, objw22, objw23, and objw24 and new discontinuous points Nl, N2, and N3 are generated

(see Fig. 3). The object, objc3, can not be broken because there is no room for ajog (Fig. 3). An

object A is said to be covered by another object B if B is right above A and when A moves up at

the same y-coordinate as B, A and B intersect each other. The weight of the bottom boundary

edge of the channel is its y coordinate and aweight, WQ, is assigned to an object, o, by the fol

lowing formula while we are scanning the channel.

W = max (W. + hw.) + hw -I- vc
o i * °

where max means take the maximum over all i's; Wj is the weight of object i covered by o; hwj is

the half width of object i; hw is the half width of object o; vc is the vertical clearance between

two objects given by design rule. Notice that the weight of an object is actually the smallest

value ofy coordinate this object can have without violating the given design rules. The weight of

-6-

the top boundary edge of the channel determines the minimal channel height.

After scanning the channel, we sort all objects by their weights in a linked list, L. We

embed the object with maximal weight in L by changing its y coordinate to its weight and then

embed the objects adjacent to the object we just embedded. If design rules are not violated, we

place the adjacent objects at the same y-coordinate. Otherwise, change the y coordinates of the

adjacent objects to their weights and jogs are added to connect two adjacent objects with

different y-coordinates. Deleted embedded objects from L and repeat the above procedure until all

objects are embedded.

Fig. 4 gives an example of a routed channel. Fig. 5 shows the result after compaction.

-7-

5. Pseudo Code of the Algorithm

Nutcracker(R)

INPUT: Channel routing output R = (B, W, C), where B is the edges of the channel
boundary; W and C are respectively a set of wires and a set of contacts in the
channel.

OUTPUT: Updated R: the physical layout of the channel with minimal height.

METHOD: scan line approach

begin

J = FindAUPo6sibleJogs{ R);
MinimizeJoga(J, R);

end

-8-

FiniAllPossibleJogs(R)

INPUT: Channel routing output R = (B, W, C), where B is the edges of the channel
boundary; W and C are respectively a set of wires and a set of contacts in the
channel.

OUTPUT: J: a set of possible jogs.

METHOD: Sweep chip plane from bottom up to identify all possible jog positions; at the
mean time we will calculate the weight of every object which is the smallest y-
coordinate where the object can be placed at without violating the design rules.

begin

objects = list of objects sorted lexicographically by their y and x coordinates;
previous_scanJine = y-coordinate of bottom boundary edge of the channel;
current_scan_Jine = y-coordinate of first object in objects;
while(current_scan_line <= y-coordinate of top boundary edge of the channel) {

while(y-coordinate of object == current_scan_Jine) {
put objects in list on current_scan_Jrae;

if(an object covers some discontinuous point in previous_scan_lme &&
there is room for a jog)

break the object and add a new discontinuous point in
current_scan_line;

put all discontinuous points not covered by the objects on

current_scan_line from previous_scan_line to current_scan_lme;

calculate the weights for all objects on current_scan_Jine;

}
previous_scan_line = current_scan_line;

current_scan_Jine = y-coordinate of the object;

}
generate possible jogs;

output all possible jogs;

end

-9-

MinimizeJogsfJ, R)\

INPUT: Channel routing output R = (B, W, C), where B is the edges of the channel
boundary; W and C are respectively a set of wires and a set of contacts in the
channel. J is a set of all possible jogs in the channel.

OUTPUT: Updated R: the physical layout of the channel with minimal height.

METHOD: Embedding all objects in the channel from top down. The object with maximal
weight is embedded first and then its adjacent objects are considered to be put in
the position where no jog will be introduce. The goal of this step is to embed
objects in the channel and minimize the number of jogs under fixed channel
height.

begin

end

objects = list of objects sorted by their weight;
object = first object in the list of objects;
while(object != NULL) {

if(object not marked) {
y-coordinate of objects = weight of the object;
while(object has adjacent object) {

if(adjacent object can be placed at same y-coordinate of object without
violating design rule) {

y-coordinate of adjacent object = y-coordinate of object;
delete the possible jog associated with the object in J;

}
else

y-coordinate of adjacent object = maximal y-coordinate it can be
placed without violating design rule;

mark this adjacent object;

}
mark object;

}
object = next object in the list;

}
generate jogs according to J;
output R;

10

6. Complexity Analysis

Because we simply use the plane sweep algorithm to do the compaction, the complexities of

our algorithm are the same as the plane sweep algorithm. Let n be total number of objects in the

channel. The worst case time complexity of the algorithm is O(nlogn) if a balanced tree is used

to maintain the data on a scan line. If a linked list is used to maintain the data on a scan line,

the worst case time complexity of the algorithm will be 0(n). If n is large and all objects are

uniformly distributed in the channel (this is true in channel routing problem), then the average

0 5time complexity for two cases are both linear because we have approximately n ' scan-lines and

0 5each scan line will intersect about n ' objects. Due to the constant in time complexity, in actual

run time, the linked list implementation of the algorithm is much faster than the balanced tree

implementation of the algorithm. Our experimental results verify the above statements. The

space complexity for the algorithm is O(n).

7. Experimental Results

Nutcracker is implemented in C on a VAX 11/780 and used is as a post-process step for the

gridless channel router —glitter ([2]). A lot of practical examples have been tested, and experi

mental results (see table 1) indicate that on the average, the channel height is reduced by about

ten percent. All examples in table 1 were finished in less than 3 seconds on a VAX/780. According

to our experimental results, the lower bound of the channel height in one dimensional compaction

is always achieved.

8. Concluding Remarks

We conclude with some further discussions on our channel spacer. If the routing topology is

fixed, the lower bound of the channel height is achieved by Nutcracker. According to our experi

mental results, the channel height can be reduced by about ten percent using Nutcracker as a

post-process step. The algorithm used in Nutcracker is very efficient in terms of both complexity

and actual run time. Currently, we are enhancing Nutcracker to handle channels with irregular

-11-

boundaries and to allow contacts moving in both directions. We are also trying to extend the

approach used in Nutcracker to attack more general compaction problems.

9. Acknowledgment

The author is very grateful to his research advisor Professor E. S. Kuh for his constant sup

port and encouragement. It has been a most rewarding experience to work under his guidance. I

would also like to thank Dr. U. Lauther, Dr. M. Sato, H. H. Chen, W. M. Dai and M. Jackson for

their helpful discussions and valuable suggestions during the development of this work.

Table 1

Experimental Result

of Routed Channel Compaction

channel number

of nets

number

of pins

router

height

spacer

height

CPU

time(s)

gain

%

small 10 22 37 34 0.05 8.1

amd 8 16 322 194 0.04 39.75

Average 23.9

hughesl 221 489 1790 1550 2.4 13.4

hughes2 252 560 1470 1270 2.6 13.6

hughes3 234 499 1310 1050 2.5 19.8

hughes4 230 502 2010 1810 2.7 9.95

hughes5 85 239 1250 1210 2.0 3.2

hughes6 139 359 1570 1330 2.7 15.28

hughes7 133 343 1410 1330 2.4 5.67

hughes8 133 318 1570 1450 2.5 7.64

hughesQ 117 288 930 890 1.4 4.3

hugheslO 129 319 1090 1010 1.8 7.34

hughesl1 113 293 1170 1110 2.4 5.13

hughesl2 121 284 1170 1070 1.9 8.55

Average 9.46

Y
A

16 ..
14
12.4-
10
6
6

4
2

0

16 ..
14._
12...
10 __

8 -
6 -
4 --
2 -

16 1
14
12.
10

8
6
4
2

w2

cl
wl

Fig. 1

objw2

objw21
o.

objcl
o o

B

objw22

I
Nl N2

objcl

B

objwl

Fig. 2

objw23

objwl

Fig. 3

c3

c2

objc3
_o o

E F

objc2
-« o

objw24
Vobjc3

—o—o o

N3 E F

objc2

* X

+ X

X

ffiij

S **?d

n •
— n

"O —
-•
0 •
1*09
• •

1

-•
3 -*
a«

< •
M PI

o
I c

u ••
at it

«tc
*3-

10
M
in
falCi
tno

I

01 •%
•j-o

•-o
o»«*
to

If!
«o

m
• r»
l •
l -

(AM
n c
• 3
—«

- m

• *

n *-
i «•>
o «
3 «

Ol

-14-

References

[1]. D. D. Mlynski and C. H. Sung, "Layout Compaction", Advances in CAD for VLSI, Vol. 4,
T. Ohtsuki Editor, North Holland Publ. Co., 1985.

[2]. H. H. Chen and E. S. Kuh, "A Variable-Width Gridless Channel Router", Proc. of ICCAD-
85, November 1985, pp. 304-306.

[3]. M. Y. Hsueh and D. O. Pederson, "Computer-Aided Layoutof LSI Circuit Building Blocks",
Proc. IEEE International Symposium on Circuits and Systems, 1979, pp. 474-477.

[4]. M. Schlag, Y. Z. Liao and C. K. Wong, "An Algorithm for Optimal Two-Dimensional Com
paction of VLSI Layouts", Integration, VLSI Journal, Vol. 1, 1983, pp. 179-209.

[5]. D. N. Deutsch, "Compacted Channel Routing", Proc. of ICCAD-85, November 1985, pp.
223-225.

[6]. J. Nievergelt and F. P. Preparata, "Plane-Sweep Algorithms for Intersecting Geometric Fig
ures", Communications of the ACM, Volume 25, Number 10, October 1982, pp. 739-747.

	Copyright notice1986
	ERL-86-55

