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USE OF SPECIFIC PRIOR INFORMATION IN THE ADAPTIVE
IDENTIFICATION OF CONTINUOUS TIME SYSTEMS

Jeffrey E. Mason

Department of Mechanical Engineering
University of California, Berkeley, CA. 94720

ABSTRACT

In this paper we modify an adaptive identification scheme
given in [l]. The identification method assumes that real valued
parameters appearing as linear multipliers of known polynomials
are the only unknown components in the partially known transfer
function. Thus, this scheme makes use of specific prior information
about the system to more efficiently identify its partially known
transfer function; We prove that the proposed scheme always
identifies an "equivalent" transfer function provided the input is
rich enough, and we specify conditions on the known polynomials
which determine when and when not the unknown parameters are
uniquely identifiable.

Introduction

In order to implement any of the current controller design methodologies,

e.g. pole-placement, LQ, etc.. or if one wishes to simply analyze the behavior of a

continuous time dynamical system, one must have an accurate model of the

plant or system to be studied. Such models are usually generated by studying,

analyzing and modelling the physics of the system. Then, once the structure of

the model has been determined, one must fill in the various parameters of the

model with exact physical data (e.g. the spring constants of all springs or the

resistance values of all resistors.) However, depending upon the complexity of

the specific system it may or may not be practical to measure the physical con

stants of the system. Thus, in the cases where measurement data is not avail

able, one would like to determine the values of those unknown constants from

the input-output properties of the system in question. Furthermore, frequently

not every parameter of the system is unknown. Consequently, one would, for the

sake of efficiency, want to use all prior knowledge of the system in the

identification process. In [l] a scheme is proposed and studied which takes

advantage of specific prior knowledge about a given partially known system.

Specifically, [l], in part, deals with the identification of linear continuous time
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systems whose transfer function is of the form: (for the 3 unknown case)

H/s ^_no(s)+fei^i(g)+fe2ng(s)+fc3na(s)+A;1A;2n4(s)+A;1A:3ns(s)+A;2A;3n6(s)+A;1A;2fc3n7(s)
' ^o(s)+kldl{s)+k2d2(s)+k3ds(s)+klkzd4(s)+klk3d5(s)+k^3^^^

In H(s,K) the only unknown pieces are the elements of K- kltk2 andfc3. All of
the n*(s)'s and di(s)'s are known polynomials. Thus, although it is not proven,
when K has fewer than 2n+l elements, n being the order of H(s,K), it is intui

tively suggestive that it is more efficient to identify only K and not the 2n+l

coefficients needed when the entire transfer function is assumed to be unknown.

The scheme for identification given in [l] identifies only K and therefore com

pletely determines H(stK). In this paper we employ the basic philosophy of [l]
to identify transfer functions of the following form:

M( ErX_n0(s)+fe1n1(s)+...+fcpnp(s)
"I'-*'- d0(s)+Mi(s)+...+*pdi,(s)

Notice that the H(stK) we identify does not include elements with "multilinear"

appearance of the k's so it is an easier problem than that tackled in [l]. How

ever, in [1] it is assumed that when the real value of Kis stuck into H(stK), the
numerator and denominator are coprime. Furthermore, it is assumed that

there exist no constants ct cp such that J0*7^(5)= £ c^s^O. When
4=1 i=l

dealing with the identification of unknown systems, it seems particularly advan
tageous to make as few arbitrary assumptions about the structure and behavior

of the of the unknown system as possible since the system is exactly that —unk

nown. Therfore, in this paper we do not impose the just given assumptions but

rather we analyze the behavior of the identification scheme when those assump

tions are and are not violated. What we prove is that provided the support of the

spectral measure of the input is not concentrated on n<r+l points where

r:=maxdej(7iidj—nja\) i,j=l,...,p one will always identify an equivalent
transfer function —a transfer function identical to the real one modulo pole-

zero cancellations and multiplication by 1 in the form of a/a for a€R Further

more, we give conditions on the known polynomials n0(s) np(s)td0(s) dp(s)
which determine if the unknown parameters are not uniquely determined and

we give conditions on the polynomials n0(s),...tnp(s),d0(s),...,d^(s) which deter
mine if the unknown parameters are uniquely determined. Thus, when the unk

nown parameters are uniquely determined the transfer function identified is the

exact transfer function of the real system and when the unknown parameters

are not uniquely determined the identified transfer function is equivalent to the



real one. Furthermore, the method of analysis used to prove the above results

differs from that used in [l]. In this paper we employ the ideas of Generalized

Harmonic Analysis developed in [5] to prove the above assertions about parame

ter convergence. This method of analysis is a very general approach which can

handle almost all types of input signals and is, unlike [l], not restricted to the

case when the input is composed of simple sinusoids.

This paper is split up into seven sections. The first section defines explicitly

the problem under taken and the assumptions made about the system being

identified. The second section defines what is meant by parametric uniqueness

and identifiability. The third section describes the identification process while

the fourth section connects the ideas of input sufficient richness and parameter

convergence. The fifth section talks more about identifiabilty and parametric

uniqueness while the sixth section describes what types of systems the given

identification scheme could be used on and gives examples of the identification

process. The seventh and final section lists some comments about the

identification process presented and gives suggestions for further reasearch.

Statement of the Problem and Assumptions

This paper deals with the identification of all continuous time systems

whose input-output transfer function is of the form:

H(s ^=n0(s)+A:1n1(s)-f...+fcp7V(s) jfe^
/nS,A; d0(s)+Jfcidi(s)+...+Jbprfp(s) u(s) U;

Where KG.1K? is defined as K:=\kx • • • kp]T and one assumes the following:

Al) The unknown plant is strictly stable —all its poles are located in the open

left half of the complex plane.

A2) n0(s),n1(s),...,np(s),do(s).di(s) d^(s) are known polynomials in seC
with real coefficients.

A3) kltkz kp are real numbers representing the unknown parameters of the

system.

A4) There exists at least one K, call it K*:=[k{ k2 • • • k£\T , such that H(s,K*)
posseses the same input-output properties as the real system for every

input. K* is in some sense meant to represent the actual values of the unk

nown parameters and will be referred to as the "physically meaningful"

value of K.
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Note that the structure of H(s,K) is in fact very general. One has simply

required that the n's and the d's be polynomials in s which means they can be

zero, a constant or any n-th order polynomial. Note also that any transfer func

tion which is completely unknown, except for the order of its denominator, may

be put in to the same form as eqn.(l) with the appropriate choices of the n^'s

and the dj's. Specifically, H(s,K) for a completely unknown plant will be of the

form:

* U . _J.I« . _c»J. J.l»_ -C.P—1.kp+z+kp+tf +...+Jb^+1s*-|+s* (2)

As mentioned earlier, H(s,K) given in eqn.(l) has a particular structure so

as to separate known and unknown information about the system. The following

two examples illustrate when one might have partial information about a sys

tem.

Consider the following simple dynamical system:

u(t):forcing function

x=0 is the equilibrium position

The dynamic equation governing the above system when m is the mass of

the block, k is the spring constant of a linear spring and c is the damping

coefficient of a velocity porportional viscous dashpot is:

mx+cx+kx=u(t) (3)

The Laplace-domain transfer function of this system is:

iSsLs
u(s) ms2+cs+Jb

Hence, if one knows the mass m of the block, one need only identify c and k -

two parameters which could be difficult to measure directly.

From more of a controls point of view consider the following feedback con

trol system:

M
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u

o

e
Where n(s) and d(s) are both known polynomials in s and k —the feedback

gain —is unknown. The overall transfer function of the above system is:

V(s) _ n(s)
u(s) d(s)+kn(s) (5)

Thus, all that need be found to explicitly determine the transfer function

between y and u is the value of k.

Identifiability and Parametric Uniqueness

At this point however, it is important to point out that there exist two levels

of identification of transfer functions which occur in the form of eqn.(l). One

could in fact be performing the identification for the sole purpose of obtaining

the exact value of one of the k's which may have an important physical meaning,

or, one could in fact be interested in finding any transfer function which

posseses the same input-output properties as the system being identified with

no real concern as to what each specific k might be. More specifically, given the

structure of H(s,K), there may exist situations when H(s,K*)=H(s,K*+C) for
some nonzero C £ ]RP. Thus, H(stK*) and H(s,K*+C) are equivalent but numeri

cally not the same i.e. there exists more than one value of K which works

namely K* and K*+C. As a simple illustration of the just described situation con
sider H(s,K) defined below:

( v fci(s +l)+fc2(s2+2)+A:3(s3+3s)
V' ;~ *i(sa+l)+fc2(s)+*3(s2+l)

Notice that H(s,1,2,3) and H(s,2,4.6) are, from an input-output stand point, the
same transfer function. However, the specific ICs which generate them are quite

different. Therefore, given a transfer function in the form of eqn.(l), under
specific circumstances there may be many K's which give the same transfer

function from an input-output stand point. And, since this scheme for
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identification relies solely on input-output measurements, when there exist

many K's which "work", it may be impossible to identify the "physically meaning

ful" value of K At this point then, one proposes the following definitions which

specify exactly what is meant by parametric uniqueness. One first however,

recalls assumption (A4) which declares the existence of at least one set of k's,

called K*t which make eqn.(l) equal to the transfer function of the system one is
trying to identify. Note that the existence of K* is in a sense implicit in the
assumption that eqn.(l) is a legitimate representation of the system being stu
died. With that, one states the following definitions.

Definitionl: A transfer function of the form given in eqn.(l) is referred to as

Parametrically Unique if for each JTelRP there does not exist some KeRp such

that K*K and H(s,K)=H(s,K).

Definition2: A transfer function of the form given in eqn.(l) is referred to as

ParametricaUy Non-unique if for some K€RP there exists a KG.W such that

K*K and H(s,K)=H(s,K).

It will be shown that the values of n0(s),...tnp(s),d0(s) dp(s) will deter
mine the parametric uniqueness of H(s ,K). Thus, before one can say anything

about an identification process, one must first establish exactly when there exist

many values of K which 'work* and specify how those quantities are character

ized.

To start with assume that H(s) is the transfer function of the unknown

linear time invariant plant which one is trying to identify and assume the

appropriate modelling of that plant yields H(s,K) which is of the form of eqn.(l).

In addition, let assumptions Al)-A4) hold. Thus H(s)=H(s,K*). One will therefore

accept any H(stK) such that H(s)=H(s,K) where H(s,K) could also be written

as H(s,K*+C). Hence, it is necessary to characterize the set of all C e W such
that#(s)=#(s,/r+C).

At this point it will be convenient to introduce the following notation.

Let C:=[cv..cp]TzW and 1C:=[1 cl • • •cp]Te.W+K

Let 1K:=[1 Arx •• • Jkp^eR"*1 and 1/T:=[l k{ • • •ibpTeK"*1

Let NQ:=[noni- •n^cEO]^1 andJV,:=[ni • • -npl^sp.

Let D0=[d0 d, •• • ^,]7elR|>]P+1 and Dx=[dx •• •o^eRfsp.

Where R[sp denotes the set of all p-dimensional vectors whose elements are
composed of polynomials in the variable s€ C.
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The following theorem characterizes the set of K's which "work". One should

be forewarned that this set of K's depends on K* —the physically meaningful

value of K Thus, it is not a set which can be calculated a priori (K* is unknown.)
However, it will prove to be an important characterization.

Theorem1: If XCBP is defined as the set of all CeW such that;

ff(sn= n0(s)+fc;n1(s)+...+ynp(s) ^nQ(s)+(k'l+cl)nl(s)+...+(k;+cp)nv(s)
d0(^)+*rd1(s)+...+A:;dp(s) t£0(s)+(Jbr+Cl)rfi(s)+...+(A:/+Cp)dp(s) W

Then X=Q:=NL(IL(s))ModB where ZL(s ):=[#, Dx][-D0 NdTlK*t NL( ) denotes
the left null space of ( ) over the reals and B:=\CzWP:[l (K*+C)T][DD 7V0]s0j.

Proof; Let X be defined as stated above and assume C€X. Eqn.(6) can thus be
written as;

[n0(s)+klnl(s)+...+k;np(s)][d0(s)+(k^

~[d0(s)+k:dl(s)+...+k;d^(s)][nQ(sMk;+c

Which, when expanded, can be written as;

[n0(s)+A:;n1(s)+...+A:i;«p(s)][cId1(s)+...+cp^(s)]

-[d0(s)+A:l#cfl(s)+...+A:^(s)][cln1(s)+...+cJJTip(s)]=0.

And thus can be written as;

Cr[^i £i][-A> N0]T1!T=0 or CTIL(s)=0

In addition, Cft B because H(s)* 0/0. Therefore. XcQ.

Let X be defined as stated above and assume that CeQ. Therefore,

CT[NX Dili-Do N0]T1K*=0

so one can write;

[no(s)+kl0nl(s)+...+k;np(s)][cldl(s)+...+cpdp(s)]

-ido(s)+kl0dl(s)+...+k;dp(s)][c1nl(s)+...+cpnp(s)]^O.

Adding zero to the left side in the form of;

[n0(s)+*:rn1(s)+...+A^7»p(s)][d0(s)+A:;d1(s)+...+A^dp(s)]

4n0(s)+AJrn1(s)+...+Vnp(s)][d0(s)+A:r(i1(s)+...+fc;dp(s)]
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yields;

[nQ(s)+klnl(s)+...+k;np(s)][do(s)+(k0+^

-[d0(s)+*rdi(s)+...+A^a^(s)][n0(s)+(A:r+c1)n1(s)+...+(A:p%cp)7ip(s)]sO.

So because C ft B the above gives;

n0(s)+fc1n1(s)+...+A^np(s)[_no(s)+(A;r+c1)n1(s)+...+feVcp)7ip(s)
d0(s)+A:rdi(s)+...+fcp#dp(s) d0(s)+(k'+cl)dl(s)+..M*±+cP)dp(s) '

Therefore, QcX. I

Review of the theorem just given specifying the set which describes all K's

which "work" reveals that such a characterization is rather obscure. That is, the

set X (or Q) is not necessarily a linear subspace and that makes both the

definition of and the operation with X rather messy.

In the following claim one shall give necessary conditions for when a

transfer function given in the form of eqn.(l) is parametrically unique.

Claim1: Let H(s,J() be given in the form of eqn.(l). Then, if there exists CeRP

such that CVO and CT[NiDi]sO or if there exists lCeR**1 such that

1CT[N0 Dq]^Q then H(s,K) is not parametrically unique.

Proof; Given later.

The Identification Process

The above discussion dealt entirely with the structure of the partially

known transfer function and how that structure determined whether or not

there existed unique values of the parameters being identified. Such an aspect is

very important to the success of this identification scheme and will be returned

to later. One now, however, turns to the actual method used to identify the k's.

Consider a transfer function given in the form of eqn.(l) and multiply it out

to get it into the following form.

y(s)[d0(s)+A:ld1(s)+...+fcpC^(s)]=u(s)[n0(s)+A:1n1(s)+...+^np(s)] (9)

where y(s) and it(s) are the Laplace transforms of the output and input of the

system respectively. Collecting unknown terms on the right hand side and
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dividing both sides by A(s) —a polynomial whose order is equal to the maximum

order of d0(s) dp(s) and whose zeros are located in the open left half of the

complex plane — one gets:

y(s)d0(s)-u(s)n0(s) tt(s)n1(s)-y(s)<i1(s) , ^(s}nPis)^y(s)dp(pXs
W) l W) '"+A» W)—^m

Note that one has effectively extracted the unknown quantities from the original

transfer function and made them multipliers of known signals — signals which

are simply filtered versions of the input and the output of the system. To tidy

things up a bit let:

W°(S):- A(sT~
~ /-i-tt(s)ni(s)-v(g)<*i(s)

Wils): W)

? _u(s)np(s)-y(s)dp(s)
wpV>'- A(s)

(ii)

Thus eqn.(10) becomes;

ti?0(s)=fciUi1(s)+...+A^ii;p(s) (12)

Taking the Laplace inverse of eqn.(12) yields:

wtl(t)=klwl(t)+...+kpwp(t) (13)

And again recall that w0(t),...,Wp(t) are generated from the input and output of
the system only. In eqn.(13) replace kx J^, by fcf Jfep and let &i(t) &p(t) be
the time varying parameters corresponding to k*,...,kp respectively. Now con
sider the following signal:

^o(0:=^i(0^i(0+...+^,(0^p(0 (14)

Subtract eqn.(l4) from the modified eqn.(13) to get the error equation;

c(0:=Wo(o-^o(o=(*r-^i(0)^i(o+...+(V^(OK(o (15)
which will be used to update the parameters #i(r) &p(t). Let:

Pi(0:=*r-tfi(0

<p2(0:=*I1*2(0
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^,(0:=V-^p(0

Thus, the p's represent parameter errors, and with the above definition for the

p's, eqn(l5) becomes;

• (0=wi(Opi(0+.»+tifr(OMO (i6)

If one lets r(*):=I>i(0 • • •tifc(0]r. ®(0:=[*i(0-»^p(0]r
and $(0:=[Pi(*)—ty(0]r then equation (16) becomes;

e(t)=W(t)T*(t) (17)

At this point one must establish an algorithm for updating $(t) (and thus

0(f)) which will make $(t) go to zero as t goes to » . One common update
scheme, the projection algorithm, defines the dynamic behavior of $(f) as;

*(*)=->«(0*(0 (18)

where 7>0 is the update gain.

With the above defined update scheme one uses a simple Lyapunov argu

ment to prove the following claim about system error behavior.

1heorem2: If the input. u(t), to the plant and update system is bounded and has

a bounded derivative and the plant is stable then the error signal, e(t), defined

by eqn.(l5) will decay to zero as t goes to « .

Proof: Consider the Lyapunov function 7($)= ^-$rfe0. Therefore, V($)=$r$. By

eqns. (17) and (18) one gets 7($)=-ye2(*)^0. Thus, V($) is bounded which

means that $ is bounded. Furthermore, since the unknown transfer function is

stable and the input is bounded, W is bounded. W and $ bounded implies that e is

bounded and e and W bounded implies that $ is bounded. Note that W is com

posed of filtered versions of the input and output of the unknown system. Thus,

Wis just linear combinations of the unknown plant states and the input. There

fore, Wis also composed of linear combinations of the unknown plant states, the

input and the time derivative of the input. Since, the unknown plant is stable
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and the input and its time derivative are bounded, W is bounded. Wand $
bounded imply that Wand $ are uniformly continuous which implies that K($) is
uniformly continuous. Now note that since V($) is bounded, one gets that

| v($(t))\ =\f Vdt +K($(0))|<.M <« for all t. Thus, since Vis uniformly continu
ous, K($) goes to 0 as t goes to °° which means that e goes to 0 as t goes to «».i

Therefore, given any bounded input whose .derivative is also bounded one

will always drive e(t) to zero. However, as discussed in [2], e(t) going to zero in

no way implies that the parameter errors go to zero. One needs a condition on

the spectral content of u(t) to guarantee parameter convergence, and it is that

aspect one shall consider next.

Sufficient Richness and Parameter Convergence

As with all adaptive identification schemes, parameter convergence in this

scheme will rely on a condition on the spectral content of the input, u(t), to

guarantee that the signal W(t) is persistently exciting. It has been shown in [3]

and [4] that in order for parameter convergence to be assured in identification

schemes similar to that which is defined by eqns. (11),(17) and (18), one must be

sure that the signal W(t) is persitently exciting. Then [5] showed that in order

for a signal like W(t) to be persistently exciting, the input must be sufficiently

rich —contain enough spectral lines. How many is enough in this case will be

determined. But first recall that previously it was shown that do to the structure

of H{s,K), there may be many K's which work. Thus, it will be shown that param

eter convergence in this case will mean that the updated parameters converge

to the set K*+Ni(IL(s)) where Ni(IL(s)) was defined previously. Whether

Ni(IL(s)) contains no elements or many elements is in fact a separate issue dic

tated by the structure of H(s,K).

From this point on the definitions and terminology are the same as that

used in [5] except for quantities previously defined in this paper. In particular

one will repeatedly rely on the concepts of autocovariance and the spectral

measure of a time function. Thus, we review the definitions of those terms and

give two lemmas; the first tells how the spectral measure of the input to a stable

system is passed to the output and the second makes the connection between

the ideas of autocovariance and persistent excitation. The definitions and lem

mas are from [5].
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Definition4; A function u:R+-»lRn is said to have autocovariance Ru(r)€Mn*n if

iim ±rfu(t)u{t+r)Tdt =Ru(t)

with the limit uniform in s.

Definition5; The spectral measure of u:R+-»IRn, Su(v), is simply the Fourier

transform of the autocovariance of u(t). Specifically,

Su(v)= fe^RutfdT
—oo

As pointed out in [5], "if u is scalar valued, then Su is just a positive bounded

measure; 25'u([&>q,&>1]) can then be interpreted as the average energy contained

in u in the frequency band [cj0."i]-"

Lemma?: Suppose u:R+->IRn has autocovariance Ru(r), its spectral measure is

Su and h is an mxn matrix of bounded measures. Then y =/i*u has an autoco

variance By and its spectral measure is given by:

Sv(dv) =H(j'u)Su(dv)H{jv) *

In particular,

Rv(0) =fH{jv)Su{dv)H(jvY

where H{jv) is the Fourier transform of h and superscript * denotes complex

conjugate transpose.

Idsmmafl: Suppose w has autocovariance ^(t). Then there exist positive con

stants a and <5 such that for all s&O

•+a

cd^fwwTdt
a

(Le. w is persistently exciting.) if and only if Bw(t) is positive definite.

Keeping in mind the above definitions and lemmas, one presents the follow

ing main theorem determining when parameter convergence results.

Theorem3: Assume that one is attempting to identify a plant whose transfer

function, H(s,K), is of the form given in eqn.(l). Let assumptions Al) - A4) hold,
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and assume the input, u(t), has an autocovariance Bu(T) and ^(0 is bounded.

Let the method of identification be that as defined by equations (11), (17) and

(18). Also, let r:=maxcfe^(7iid;-dtnJ)i,;=0,l,...,p and let XcW be defined as
the set of all CeR* such that;

Tt0(s)+fc;n1(s)+...+fep*np(s) n0(s)+(k*+cl)nl(s)+...+(k£+cp)np(s)
d0(«)+A:rd1(s)+...+fcp#dp(s) = d0(s)+(k{+cl)dl(s)+...+(**+cp)dp(s)

Let B:=\Ctz.W:[l (K*+C)T][N0 Ad=nJ. Then, if the support of the spectral
measure of u(t) is not concentrated on n<r+l points, the parameters

[tfi(0 #P(t)] will converge to the set definedby K*+(XuB) as t goes to » .

Remark: Notice that the above theorem and theorem 1 basically state that the

parameters in this identification scheme will converge to the set

K*+(XvB)=K*+NL(IL(s)) - the set which contains the set of all K's which work
in addition to the K's which would predict H(stK) to be 0/0. Parameter conver

gence to the set of all K's which work is an acceptable solution because one has

identified an equivalent transfer function and in some cases that is the best one

can do. Parameter convergence to a value of K making H(s,K)=Q/0 is, however,

an unacceptable but unavoidable solution. To determine if such solutions exist

one simply checks to see if [N0 D0] has a left null space over the reals.

Proof; l^t X and r be defined as above and assume the support of the spectral

measure, of u(t) is not concentrated on n<r+l points. Recall eqn.(18) which
defines the dynamic behavior of the parameter error —$(*).

*(0=-7»(0*(0 (IB)

By eqn.(l7) the above equation becomes;

*(0ss-r»r(0»r(0r*(0 (19)

Bytheorem 1 in [4] eqn.(19) defines an exponentially stable system if and onlyif
W{t) is a bounded persistently exciting signal i.e. there exists positive con
stants c*i ,a2 and 6 such that for all sfeO;

Note that in this case the boundedness of W(t) comes from the fact that the

input is bounded and the unknown system is stable. Thus, ag exists. Lemma 3

gives ax if and only if /2^(0) is positive definite. Thus, one must show that the
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spectral measure of u(t) filters through to W(t) in such a way that /^,(0) is

positive definite.

To calculate Rw(0) one first calculates the transfer function between u(s)
and W(s) as given below;

Therefore, one has that;

W(s)=L{s)u(s)

where hatted quantities are Laplace transforms of the corresponding time

domain signals. Let Su(dv) denote the spectral measure of u over the interval

dv. Then, by lemma 1, Whas spectral measure:

Sw(dv) = L{jv)Su{dv)L{jvY

and autocovariance at r=0:

Bw(0) =fHju)Su(du)L(juy (21)

At this point one states and proves a necessary claim.

Claim: Wz(ZZ»(s))=JV(^„(0)); NL() denotes the left null space of (•) over the

reals and N(-) denotes the usual null space of (•) over the reals. Recall that

IL(s):=[N0 D0][-D0 N0]t1K*.

Proot: Assume nontrivial CeRP is an element of NL(IL(s)). Then IL(s)TC^O so

L(s)TC&0. From Eqn.(21) it follows that Rw{fi)C=fL(Jv)Su(dv)L{jvYC^Q.
Thus. C is an element of tf(.fl^(0)) so NL(IL(s))cN(Rw(Q)).

Assume now that nontrivial CeRP is an element of N(Rw(0)). Thus, /^(0)CsOso

Cr^(0)CsO. From eqn.(21) it follows that (noting that Su(dv) is scalar

valued) 0= CTRw(0)C =f\L(jv)*C\2Su(dv). Therefore, since v is continuous in
\L(jv)0C\z, L(jv)*C must be zero for all v in the support of Su(dv). Recall that

the support of Su(dv) contains r+1 or more points. Thus, the numerator polyno

mial of L(jv)*C, namely /L(j'i/)#C, must be zero at all of those points. However,
IL(jv)*C is at most an rth order polynomial. Hence, it must be identically zero.

Thus. IL(s)TC = 0 so C is an element of NL(IL(s)) and 7V(i2^(0))cJvi,(/Z,(s)). |

Note that the above claim merely establishes the fact that if IL(s) has a left

null space, W(t) will never be persistently exciting, and if it doesn't, one needs

at least r +1 points in the support of Su(dv) to guarantee that W(t) is per

sistently exciting.
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Since IL(s) is composed of 7ii(s)'s and a\(s)'s and there are no constraints

on those quantities, IL(s) could very well have a left null space. Thus, in general,

one can not guarantee that W(t) will always be, strictly speaking, persistently

exciting. However, using the Partial Convergece Theorem given in [5] p.9 one can

say something useful (the main point of this proof) about parameter conver

gence. Therefore, one states the Partial Convergence Theorem of [5] and applies

it to this problem.

Partial Convergence Theorem: Suppose that u is bounded. Then

limi^(0)$(O = 0
(•♦oo

Thus, in this case, the above theorem says that $(£)• the parameter error, con

verges to tf(/^(0)) which, by the above claim, equals NL(IL(s)). Since

*(0 = A"*-9(0, one has that 0(f), the parameters, converge to the space
K*+Ni(IL(s)) which, by theorem 1, is the same space as K*+(XuB). Note that
as pointed out in [5], the above Partial Convergence Theorem says that the dis
tance between 0(f) and K*+(XuB) goes to 0 and not that 0(f) goes to some

B(oo)^K*+(XuB). |

Remark; Note that even though [5] deals with an MRAC scheme, the theorems

and analysis borrowed from [5] and used here still apply. There are however,

some differences in the structure of equivalent signals and vectors. In particu

lar, the form of the transfer function being identified here is more general then

that dealt with in [5] since in this system the quantities

no(s) ^(s^ote) dp(s) are allowed to be any polynomials whereas
corresponding terms in [5] are much more structured and of the form

s^.s*-1 lis*,s*~l....fl. Therefore, with that added structure one never needs

to worry about the exsistence of K's such that sp+sp~lk l+...+kp=0 since there
are none. Furthermore, it is the added generality of allowing

**o(s) 7ij,(s),d0(s) dp(s) to be any polynomials that in a certain sense elim
inates the idea of always having only one value of K which works. Under this

identification scheme when there is more than one value of K which works one

has, in a sense, over parameterized the system and that fact is borne out by the

behavior of the system. That is, the dynamics can only achieve the real number

of degrees of freedom —the number of linearly independent columns achievable

in /^(O) —and that may be less than the number of parameters to be identified.
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Furthermore, recall that parameter convergence to a set rather than a point
arises do to the fact that W(t) is not, strictly speaking, persistently exciting. In

this case the use of a signal whose spectral measure is supported by more than

r+1 points will not increase the degree of persistent excitation of W(t) because

the lack of persistent excitation is a result of the structure of H(s,K).
Specifically, as long as the spectral measure of u(t) is supported at r+1 or more

points, the degree of persistent excitation of W(t) is determined by the existence

of a left null space of IL(s) - a factor which is not affected by the input having
more than r+1 points in the support of its spectral measure. So, what the above

theorem really says is that if one puts in an input whose spectral measure is

supported by r+1 or more points then, after a sufficient amount of time, the sys

tem will have identified the transfer function but not necessarily the K* value. In

addition, since convergence is defined in some cases as convergence to a partic

ular set, it may be that the updated parameters &x(t) • • •&p(t) never settle on
one value. However, at any time t the values of tfi(f) &p(t) read off and used
as klt...,kp in H(s,K) will in fact give the right transfer function.

So, to summarize things to this point it is evident that sufficient richness of

the input signal is the only criterion for ensuring "parameter convergence".

And, as one saw, parameter convergence means basically that after a sufficient

amount of time the real plant and the identified transfer function are equivalent.

However, that in no way implies that the resulting identified parameters are the

so called physically meaningful ones or that the parameters even converge at

all. If one wants to identify the physically meaningful values of the parameters

and there are many values for K which work, then more information about the

parameters must be known. For example, to know that a particular physically

meaningful parameter is never zero may allow one to factor that parameter out

reducing the number of unknowns in such a way that they are now unique.

Therefore, at this point, one turns to analyzing exactly when H(s,K) is
parametrically unique.

More on Identifiability and Parametric Uniqueness

Recall the matrix IL(s) (where one has dropped the * from K*);

/£<*):=[#, DJl-Do N0]T1K

and recall the fact that the time varying parameters converge to the set
K*+NL(IL(s)).
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From theorems 1 and 3 it was shown that the set K*+Ni(IL(s)) serves the

following two purposes;

1) it defines the set of K's (modulo those which make H(s ,K)=0/ 0) which

work —determines the uniqueness of K*~~ and

2) it defines the set to which the time varying identification parameters

converge.

Thus, to determine the uniqueness of K* one askes the question: Does there

exist a CeTFP and a vector 1KZ.W+1 used in IL(s) such that CTIL(s)=Q? If the

answer is no then H(stK) is parametrically unique. Conversely, if the answer is

yes, then H(s,K) is parametrically nonunique. But, if one could show (by having

slight knowledge of 1A"*) that IK* was not in the set of lICs making CTIL(s)=0
then, although IK* is not unique, it would be the value identified by the
identification scheme —it is identifiable. Thus, the aspects of parametric unique

ness and identifiability are duly separated.

At this point then one wishes to study the matrix IL(s). And, in particular,

determine for what values of K it has a left null space. As a first analysis of IL(s)

one determines when such a matrix has a left null space for all values of K As it

turns out, Claim 1 above gives such necessary conditions. Thus, Claim 1 is res

tated and proven here.

Claim 1; Let H(s,K) be given in the form of eqn.(l). Then, if there exists CeRP

such that C*Q and Cr[A7, Dx]=Q or if there exists 1C€R?+1 such that

1CT[N0 Dq]=0 then H(stK) is not parametrically unique (i.e. it will be shown
that IL(s) has a non-trivial left null space regardless of the value of IK*.)

FYoof; Assume H(s,K) is of the form given in eqn.(l) and choose any LfifeRP

such that 1KT[N0 Dq]*Q to be used in IL(s). (The just given condition is
imposed on IK since we know such a condition is true of IK*.) Also, assume

there exists C£F? such that CVO and CT[Nx Di]=0. Then, obviously. CTIL{s)=0.
Now assume there exists a lCeRP+1 such that and 1Ct[Nq Dq]=0. Thus, note
that lCr[N0Do][-D0NQ]TlK=0 and lA^o D0][-D0 N0]T1K=0. Subtracting
these two quantities gives (K-C)TTL(s)=Q. Thus, note that 1CV1A" so C*K and
IL(s) has a non-trivial left null space.
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So, what the above theorem really says is that in order for H(s,K) to be

parametrically unique, [Nq Dq] must not have a left null space over the reals. If

it does, one can never identify the unknown quantities in H(s,K) uniquely. How

ever, by theorem 3 one can always identify an equivalent transfer function for

H(stK).

Thus far one has given only necessary conditions for parametric uniqueness

and identifiabiUty. In order to study the situation further, one must express

IL(s) in a different form.

By calculation it is easy to check the following.

IL(s)=T(K)P(s)

where r(K)z]Rp**. P(s)eR[s]*,g:=^fi,

IW:=

and

100.
0 10.
001.

q k2 k3
. o-*i 9
. 0 0 -*i
... 0
10 .

000.0 10 0

. . *p 1? °*3 k4
o . 0

. . 0 . *p . 0

. . 0 ~*2 0 0 . .

, , , 0 -k2 0
. -fc, 0 . -*2 0 . . kp
• o -*i o 6 0 ~*2- • -Ai-1,

-(d0(s )nx(s )-d,(s ]n0(s ))
~(d0(s )n2(s)-d2(s )n0(s))

•(d0(s )rip (s) -dp (s )n0(s))
di(syn2(s)-d2(s)ni(s)
d1(s)na(s)-d3(s)nl(s)

d1(s)7iJ,(s)-<^(s)n1(s)
d2(s )n3(s )-d3(s )n2(s)

P(s):= d2(s)n4(s)-d4(s)n2(s)

d2(s)7ip(s)-^(s)n2(s)
d3(s)n4(s)-d4(s)n3(s)

d3(s)7ip(s)-^(s)n3(s)

dp-iWnpisydpWnp.As)

Thus, the question still stands: Does there exist a CeRPand a KG.WP such

that CTT(K)P(s)=Q? In this form the unknown K forms a matrix while C is still a
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vector. Notice then that for CTT(K)P(s) to be identically zero two things must
happen. P(s) must have a left null space over the reals and there must exist a C

and a K such that CTT(K) is an element of that left null space. Furthermore,
examinaton of T(K) and C reveals that CTT(K) can only equal a vector whose
first p terms are not all zero. Thus, one has a sufficient condition for both

parametric uniqueness and identifiabiUty namely : H{s,K) is parametrically

unique and therefore K* is identifiable if the only elements in the left null space
of P(s) have zeros in the first p places. Beyond this, characterizing the sets of
K's and C's which make CTT(K) Ue in the left nuU space of P(s) must be delt with
on a case by case basis.
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Exampies§

In this section one wishes to illustrate two different types of systems whose

transfer functions are of the form given in eqn.(l) and therefore would be eUgi-

ble for the identification scheme presented in this paper.

The first class of systems presented is the general class of interconnected

systems whose innterconnection gains are unknown. An example of such a sys

tem is given below.

In the above system the interconnection gains are unknown and the intercon

nected blocks are known. The matrix of transfer functions between [ux uz]T and

[l/i VzV for the above system is:

nx(s )d2(s J+can^s )n2(s) —c4nx(s)n2(s)
c lnl(s )n2(s) dl(s)n2(s)+c2nl(s)n2(s)

di(s )d2(s )+czni(s)d2(s )+can2(s )d1(s)+(c1c4+c2c3)n1(s)n2(s)

Notice that as long as none of the c's are zero, the u2.yi or the ux.y2 input-

output pair could be used to identify the unknown c's by the method presented

in this paper. (In the identification procedure simply make one of the unknown

parameters equal to CiC4+c2c3.) If the ux,yx or the u2,y2 input-output pair is

used, only three of the four parameters are identifiable. When one of the c's is

zero, one can still use the presented identification scheme except that care

must be taken in choosing the proper input-output pair for the identification.

From more of a physical point of view, any spring-mass-damper system or

its electrical analog will generate system transfer functions of the form given in

§ AD simulationspresented in this section were done using Siranan —An Interactive Simula
tion Program For Nonlinear Systems, Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden.
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eqn.(l) when there exist unknown system parameters like spring constants,
resistor values etc.. TVpicaUy, such systems wUl produce transfer functions

where the unknown parameters appear in the "multilinear" form. To convert

such problems to ones this identification scheme can handle, one simply defines

a new parameter as the multilinear parameter. As an example, consider the fol

lowing simple system:

3*'

~-x2

I7l| m2

ta fn

~~y*"*r~
J

r2

Now assume that m2=2,r2=l.A:2=3 and everything else is unknown. Then, making

a forcing function on either mass the input and the postion of either mass the

output produces a matrix of transfer functions for the above system as foUowes:

2s2+s+3 s+3

s+3 (s+Sj+Jbi+m^+rjS*i

x8 (2s3+8s2)+ibi(2s2+s+3)+m1(2s4+s3+3s2)+rl(2s3+sz+3s)

Thus, in this case, no multilinear terms appear. Also, one can use any input-

output pair to identify the unknown parameters. To illustrate the identification

process one uses the 2,2 entry of the above matrix of transfer functions to iden

tify the unknowns mXtrx and kx. Thus, letting kx-kXtk2=mx and k3-rx gives:

n0=s+3 d0=2s3+6s2
m=l d!=2s2+s+3
nB=s2 d2=2s4+s3+3s2
n3=s da=2s3+s2+3s

Note that neither Nq nor Dq has a left null space so that the necessary condi

tions for parametric uniqueness are met. Now form the vector P(s).

P(s)=

—fdon i~"d- l^o)
—(dQn2—djffio)
—(don3~"G^3no)

dxn2-d2nx
dxn3—d3nx
d2n3—d3n2

s2+6s+9
s4+6s3+9s2
s3+6s2+9s

0
0
0

Notice that every element in the left nuU space of P(s) has the first 3 terms
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equal to zero. Thus, the sufficient condition for parametric uniqueness is met so

that no matter what mx,rx or kx is, they can be uniquely identified.

Below are simulation results of the successful identification of mi,r1 and kx

when the real values of those parameters are 3,2 and 2 respectively.

0.

I \f~

-1.5 e: error
1.5 mx: Final Value = 3

-3.

437
0. _i

0. 40.

A , 1

1. kx: Final Value = 2 1.
rf Final Value = 2

0.

0.40.0T~ 40'.

fig. 1: Simulation results for the identification of the given spring-mass-
damper system. u(t)=2+2sin(.5t)+2sin(t), aU initial conditions were set to 0
and the update gain for all parameters was 1. The values of the input
parameters were m1=3,r1=2 and kx=2.

As illustrated by the above discussion, it is clear that the presented

identification scheme has appUcation. To present further this identification pro

cedure and to emphasize the ideas of parametric uniqueness and identifiabiUty,

one presents several more simple examples.

ad

Example 1

Consider the following partially known transfer function.

6s +s3+A; xs2+k2(s2+5s+6)

K' ;~4s+s3+JM2+ife2(s2+5s+4) (23)
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a\j=s3+4s

nj=s* dx=s2

n2=s2+5s+6 d2=s2+5s+4

Note that neither [Nx Dx] nor [Nq Dq] has a left nuU space over the reals —both
necessary conditions for parametric uniqueness and identifiabiUty are satisfied.

Now calculate P(s).

J>(*)=
-(d0(s )nx(s )-dx(s )nQ(s))
-(d0(s )n2(s )-d2(s )nQ(s))

difcJna^-dgfcWs)

2s3
10s2
2s2

Ihe only element in the left nuU space of P(s) is [ 0 -1 5 ]. So any element in

the left nuU space of P(s) is of the form [0 -a 5a ]. a€R Does there exist a

A'eR2 and a CeM2 such that CTT(K)=[ 0 -a 5a ]? WeU.

CTT(K)=[cx c8]

Thus.

1 0 k2

0 1 -kx =[cx c2 cxk2-czkx]

Cj=0

c2--a

*!=5

k 2=anything

does it. Therefore, H(s,K) is not parametricaUy unique. However, if kx^5 then

kx and kz are identifiable. Plugging Jbt=5 into H(stK) gives;

„, - . x_(s+2)(s+3)(s+fe2)
^(S,5,*b;~(s+4)(s +1)(s+A:2)

Thus, for A: i=5 a pole-zero canceUation results and the value of k2 does not

matter. However, as mentioned, if A: ^5 then no pole-zero canceUation results

andJbj andfc2 are identifiable.

Below are the results of two identification simulations. The first run uses the

scheme presented in this paper to identify H(s,K) given in eqn.(23) with

Jbj=5 and k^^unspecified. The second run uses the same identification scheme

on H(stK) except that here kx=2 and fc2=l.
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4.E-6
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0 .99939592

k2: Final Value = 0
(initial value = 0)
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"f\ A:2: Final Value =1
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v \

0. 40'.

Fig. 2: Simulation results for the identification of eqn.(23).
u(t)=4sin(t)+4sin(2t), aU initial conditions were set to 0 and the update gain
for aU parameters was 1. The values of the input parameters were
&i=5 and k2=unspecified.

Examination of the above results shows that the identification scheme suc-

cessfuUy identified kx. However, since fc2 is lost in the pole-zero canceUation, it

can go to any value —which seems to depend on its initial condition.
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1.2

0.6

0.

;/Wrw%

k2: Final Value = 1

j

. 40'.

Fig. 3: Simulation results for the identification of eqn.(23).
u(t)=4sin(t)+4sin(2t), all initial conditions were set to 0 and the update gain
for aU parameters was 1. The values of the input parameters were
fcx=2 andfc2=l.

Examination of the above results shows that the scheme was successful in

identifying both parameters as predicted.

Example 2

Consider the partially known transfer function given below.

3+A:1(s+2)+fc2s2+A:a(s+2)
*** ;"(s3+2s+3)+A:l(sz+s)+A:3(s2+s)

In this case;

n0=3 d0=s3+2s+3
7li=S+2 d,=s2+s

n2=s2 d2=0

n3=s +2 d3=s2+s

(24)

Thus, [Nx Dx] has a left null space over the reals making H(s,K) parametrically

nonunique by Claim 1. Note that eqn.(24) can be written as given below. In this

form the nonuniqueness of the parameters is more obvious.
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rr( rr]_ 3+(kx+k3)(s+2)+k2s2
V' '~(s8+2s+3)+(*i+*a)(s8+*)

A simulation was performed to iUustrate the above predicted nonuniqueness of

acceptable parameter values. In that simulation A:1=2,A:2=5 and fc3=3. The

results of the simulation are given below.

1.25 1.25
fif

kx: Final Value = 2.5 k3: Final Value = 2.5

0. 0.

0. 407 407

1.5

e: error

-1.5

Fig. 4: Simulation results for the identification of eqn.(24).
u(t)=2sin(.5t)+2sin(l.5t)+2sin(4t), all initial conditions were set to 0 and
the update gain for all parameters was 2. The values of the input parame
ters were A;1=2,A:2=5 and A:3=3.

Examination of the above simulation results reveals that the parameters

did not converge to their input values. However, the values they did converge to

namely fc1=2.5,fc2=5 and fc3=2.5 do yield an eqivalent transfer function when

plugged into H(s,K) given in eqn.(24).

Example 3

Consider yet another partially known transfer function as given below.

(s +l)+A:1(s +l)+Jb2s2
H(s.K)=

(s2+l)+Jb,(s2+l)+fc3(s3+lls)

For this transfer function:

(25)
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71q:=s + l do-=s2+l

nx-=s+l dx:=s2+l

n2-=s2 d2-=0

n3=0 d3=s3+lls

Thus, [N0 Dq] has a left null space over the reals so that again H(s,K) is not

parametrically unique. Rewriting eqn.(25) in the foUowing form Ulustrates the

parametric nonuniqueness of the parameters.

(l+kx)(s + l)+k2S2
H(s,K)=

(l+kx)(sz+l)+k3(s3+lls)

A simulation was also run for this system with fcj=5,fc2=l andA:3=7. The results

of that simulation are given below.

0.

1

0 .25

1 k x: Final Value = -.5813

-0.5 V
0 40.

•

0.25 _J
- A

0.

"

fc3: Final Value = .0698

0.25

0 40 .

0 .4 f
0.2

r

/ k2: Final Value =.4884

1

0 . J
0 40'.

0.5

0.

-0.5

07

lAltyV-

e: error

40.

Fig. 5: . Simulation results for the identification of eqn.(25).
u(t)=2sin(.5t)+2sin(t)+2sin(2t), aU initial conditions were set to 0 and the
update gain for aU parameters was 1. The values of the input parameters
were A:!=5,A:2=1 and A:3=7.

Examination of the above results shows that again the parameters do not con

verge to their input values but do converge to values that, when plugged into

eqn.(25), yield a transfer function which is equivalent to the input transfer func

tion. (In this case one needs to multiply the identified transfer function by

14.33/14.33 to get exactly the same transfer function as input.)
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Example4

Finally, consider the following slightly higher order partially known transfer

function.

s +fc1s5+fc3(s2+2)+A:4
H(s,K)=

(57s2+l)+A:1sa+A:2(5s4+l)+Jb4(4.5s5+29s3+ 14.5s)

For this transfer function;

n0=s d0=57s2+l
nx=s6 dx=s«
n2=0 d2=5s4+l

n3=s2+2 cfa=0

n4=l d4=4.5s5+29s3+14.5s

(26)

Thus, neither [Nq Dq] nor [Nx Dx] has a left nuU space over the reals so that all

necessary conditions for parametric uniqueness and identifiabiUty are satisfied.

Now check P(s).

—(dQnx—dxnQ)
—\dQn2—c2271q)
—(don3—d3no)
—(don4"~^4n,o)

dxn2—d2nx
dxn3—d3nx
dxn4—d4nx
d2n3—d3n2
d2n4—d4n2
d3n4—d4n3

/>(*)=

-56s7-s5
5s5+s

-57s4-115s2-2
4.5s8+29s4-42.5s2-l

-5s9-s5
sB+2s8

-4.5s10-29sB-13.5s8
5s6+10s4+s2+2

5s4+l
,-4.5s7-3Bs5-72.5s3-29s,

From P(s) the coefficient matrix Pe is formed and is given below.

Pc =

0 0 -56
0
0

4.5
0
2

-1 0
0
0
0
-5
0

-4.5 0 -29
0 0 0
0 0 0

5
0
0

-1
0

-13.5 0
5 0
0 0

0
-57
29
0
0
0
10
5

0
-115
-42.5

0
0
0
1
0

0 0
0
-2
-1
0
0
0
2
1

0 0 0 -4.5 0 -38 0 -72.5 0 -29 0

It can easUy be shown that Pc has no left nuU space which impUes that P(s) has

no left nuU space over the reals. Thus. H(s,K) is parametricaUy unique and any

value for K in H(stK) is uniquely identifiable. On the next page are the simula

tion results when fc1=l,fc2=5,A:3=4 and A:4=2.



-29-

0.2

e: error

0.
jBiTt 1*^"' **"*' * *

•!
-0.2

40T

0.

"\ INrt
k

kx: Final Value = 1

i.

0.

^

M M .
*a: Final Value = 4

40*. 0. 40.

fV ^_

3.

0.
J
V *2: Final Value = 5 0.

•"I r
vV<-^

A:* Final Value = 2

-i.

40. 0T "407

Fig. 6: Simulation results for the identification of eqn.(26).
u(t)=2+2sin(.5t)+2sin(t)+2sin(l.5t)+2sin(2t)+2sin(4t), all initial conditions
were set to 0 and the update gain for all parameters was 1000. The values of
the input parameters were A:l=l,A:2=5.A:3=4 and A:4=2.

Examination of the above simulation results shows that the identifier was

indeed successful in identifying the exact input values for kx,k2,k3 and k4.
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Conclusion

In this paper one has presented a method similar to a scheme given in [l]

which utilizes specific prior knowledge of an unknown continuous time linear

system to deterministically identify the transfer function of that system. It was

shown that an equivalent transfer function (i.e. one which is identical to the unk

nown one modulo multipUcation by 1 in the form of a/a where aeR and possibly

pole-zero canceUations) can always be identified provided the support of the

spectral measure of the input is not concentrated on n<r+l points where

r:=maxdeg(nidj-njO\) ij=l,...,j>. Furthermore, conditions on the structure of

the prior information were given which determine when and when not unique

values of the unknown parameters of the system are identifiable.

The advantages to the given identification scheme Ue in the fact that one

does not have to identify every coefficient in the transfer function just the unk

nown parameters. Thus, the amount of computation necessary to perform the

identification is in some cases significantly reduced (e.g. in example 4 only 4

parameters were identified as opposed to the necessary 13 when the transfer

function is assumed to be completely unknown). In addition, it is intuitively

argued that because fewer parameters are being identified, the real time con

vergence rates for those parameters is improved.

Note that in aU of our analysis it was assumed that there exist at least one

set of parameter values which made the assumed form of the transfer function

used by the identifier equal to the transfer function of the real system. However,

when there exist unmodeUed dynamics in the system, it is not true that such a

set of parameter values exist. Therefore, now that one knows the system

behavior for the ideal case, more analysis will have to be done to determine the

behavior of this identification scheme when used to identify a system in the

presence of unmodeUed dynamics. One way to perform such a robustness study

would be to make the ni(s)'s and a\(s)'s proper, stable rational functions rather

than polynomials by dividing the numerator and denominator of H(s,K) by A(s)

— a Hurwitz polynomial of sufficient order. Then, weU defined norms such as the

sup norm over jq could be used to measure uncertainty in each n+is) or a\(s)

which could then be related back to the total uncertainty about the system.

Thus, once the system uncertainty is expressed in a famiUar measure, such as

the previously mentioned sup norm, existing robustness results could be

appUed.
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