

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SUPERVISORY CONTROL OF DISCRETE EVENT PROCESSES

WITH PARTIAL OBSERVATIONS

by

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya

Memorandum No. UCB/ERL M86/63

7 August 1986

SUPERVISORY CONTROL OF DISCRETE EVENT PROCESSES

WITH PARTIAL OBSERVATIONS

by

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya

Memorandum No. UCB/ERL M86/63

7 August 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

SUPERVISORY CONTROL OF DISCRETE EVENT PROCESSES

WITH PARTIAL OBSERVATIONS

by

R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya

Memorandum No. UCB/ERL M86/63

7 August 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Supervisory control of discrete event processes with
partial observations1

R. Cieslak, C. Desclaux, A Fawaz and P. Varaiya

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory

University of California, Berkeley CA 94720

ABSTRACT

The paper extends certain aspects of the work of Ramadge

and Wonham on the control of a class of discrete event processes.

The uncontrolled process is described by a language L whose

strings specify the sequences of events 0\ • • • an that the process

can execute. The controller makes partial observations of the pro

cess events. Based on these observations the controller must

enable or disable certain process events so that the resulting

language generated by the closed loop process is the specified sub

language K c L. We also study the case of decentralized control

where there are several controllers each of which makes partial

observations and controls a subset of the process events. The

results are illustrated by one example of communication protocols.

August 7, 1986

1 Research supported by the MICRO program of the State of California, a grant from BeQ
Communications Research, and Joint Services Electronics Program Contract F4082O-64-C-
0057.

Supervisory control of discrete event processes with
partial observations1

R. Cieslak, C. Desclaux, A Fawaz and P. Varaiya

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory

University of California, Berkeley CA 94720

1. Controlled discrete event process

It is common to describe the behavior of a data communication network

using sentences like "At time ta user A sent a data packet to user B who

received it at time **." The building blocks of such sentences are phrases -

"packet sent" and "packet received" —that indicate the completion of discrete

events. Similar sentences are used to specify a control policy or protocol that

regulates network behavior, e.g.. "If data packet is received, send acknowledge

ment" and "If acknowledgement is not received, retransmit packet." In this way

the control policy prescribes actions that must be taken when certain discrete

events occur.

Such descriptions are also employed to specify the sequence of operations

involved in the manufacture of microelectronic chips. This typically takes 100-

300 discrete operations performed on a variety of machines such as furnaces,

steppers, etc. An operation in this sequence may be specified for example by a
sentence like "Heat the wafer in a furnace at temperature T for a duration D"

An operation may involve inspection of the wafer, and subsequent operations
may be contingent on the outcome, e.g., "If the number of defective chips
exceeds d, then stop further processing and alert the engineer." This sentence

resembles the one describing the communication protocol.

Our purpose here is to introduce a class of mathematical models for formal
izing both the description of such discrete event systems and the specification
of control policies that regulate them. These models may help to realize poten

tial benefits concerning two related but quite distinct aspects: analysis and

implementation.

1 Research supported by the MICRO program of the State of California, a grant from Bell
Communications Research, and Joint Services Electronics Program Contract F49620-84-C-
0057.

-2-

By analysis we mean the study of the system within the formal model in

order to prove assertions about system behavior, effectiveness of particular con

trol policies, etc. This is a purely formal study and the validity of any inference

that one makes about the real system based on this study rests only on intuition

because at present we lack a theory and practice that could link the formal

model to the real system by means of experimental evidence. The rest of this

paper is concerned exclusively with analysis and we devote a few remarks here

to the implementation aspect mentioned previously.

A phrase like "packet sent" or "wafer inspected" is meant to denote the

completion of an indivisible or atomic event in some real system. In actuality

such a phrase typically refers to a sequence of operations in the real system.

For example, suppose a communication protocol is realized by a microproces

sor. The protocol command "Send packet to B" may then be realized by a

series of microprocessor instructions: Head packet from specified memory loca

tion, calculate check bits, find address of B, prepare packet format, load

transmitter buffer, etc. Similarly, in the microelectronics example, the com

mand 'Heat wafer at temperature T" may be executed by a human operator who

must adjust several parameters on the furnace control panel. Thus implementa

tion of a control policy specified within the formal model involves the translation

of the policy from the model language into the language of the real system -

microcode in the first example, natural language in the second. Clearly, the

benefits of formal models will be greater if this translation can be done easily,

accurately and automatically.

Several classes of models have been proposed for describing the behavior of

controlled discrete event systems including, especially, Petri nets and finite

state machines (FSM). Here we build on the framework of Ramadge and Wonham

[1-4]. Although their framework is essentially based on FSM, it has one impor

tant feature that is absent in other approaches in that it allows us to evaluate

and compare the effect of different control policies on the behavior of the

"uncontroled" system. Other approaches require a separate model for each

control policy and do not admit the notion of the uncontrolled system. For

those familiar with feedback control the Ramadge-Yfonham approach treats the

open loop plant and the controller separately, whereas other approaches only

permit models of the closed loop system.

In this section, we extend this basic framework to include the case of a non-

deterministic process with controllers making partial observations of the

-3-

process events.

1.1. Generator

A generator is a nondeterministic automaton

G = (C.2./.go. GJ.

where Q is the set of states. 2 is the input alphabet of events or transitions,
f cEx(?x£ is the transition relation, g0 € Qis the initial state, and ft* c £ is
the set ofmarker states. E is a finite set. whereas Gn and Qmay be infinite. If
(cr.g.g') e/. this means that the transition a from g to g' is possible, With an
abuse of notation we identify the relation / with the point-to-set function
f{p, g) =\ g' e Q| (cr.g.g') e/}. and we say that /(a. g) is defined if it is
nonempty. If / (a. g) contains at most one state for every (ex. g). the generator
is said to be deterministic.

E# denotes the set of all finite strings s =ax • • • ffn of elements of2. includ
ing the empty string e. / can be extended over strings in 2* by. / (c. g) ={g I
and f(sa, g) =U /fo g*) w^re g' e /(s. g) whenever/(s, g) is defined and

3 g' G/ (s • g) sucn tnat / (a» ?') ** nonempty.
Any subset of E* isa language over E. The language generated by Gis

L(G) := \s € £* | /(s. g0) is defined}.

The language marked by G is

^(G) := \s e L(G) | /(s. go) H ftn ^ #•

Strings in L*(G) are said to be marked by G. Alanguage marked by a finite
state generator is called regular.

We think of G as an uncontrolled device that starts in g0 and executes or
generates a sequence of events permitted by /. Events occur instantaneously
and asynchronously - two events cannot occur simultaneously and the time
between consecutive events is not fixed. L(G) is the set of all possible
sequences of events executed by G. If we think of Qm as the states reached
when the device completes some task, then ^(G) is the sequences of events
that lead to completed tasks. It is helpful to interpret events of G as atomic
activities of the device such as "move an object" or "send a message". The
"real" time taken by the device to complete an activity is not modeled by G. If
s =cxi • • • ffn e L(G), this means only that the device is capable of carrying out

-4-

the corresponding activities in the order implied by 0\ • • • an; in other words,

only "logical" time is modeled.

It is sometimes convenient to eliminate states that are not accessible from

go. Let

Qa := {g | 3 s s.t. g e/(s, g0)}. ^ := Qa H On. fa :=/ Isx^.

The accessible component of G is A(G) := (Qa, E. /«, g0. Qajn)- G is accessible if
G = i4(G), it is co-accessible if every string in L(G) can be completed to a string

inlmfG), Le.

s€i(G) =* 3* eE'.s* eAn(G).

G is trim if it is both accessible and co-accessible.

1.2. ControUed discrete event process (CDEP)

To the generator G we add a means of control. Let Ee c E be a prespecified
set of controlled events and call E« := E -Ec the set of uncontrolled events. Let

T be the set of all functions y: 2 -» {0, lj such that y{p) = 1 if a e E«. Such a 7 is

called a control pattern; the event er is said to be enabled or disabled by 7

accordingly as y(a) = 1 or y(a) = 0. Define a new transition relation

/c crxEx£x£by

/e(y. * g):=
/(ff. g). if/(a, g) is defined and 7(a) = 1
undefined, otherwise.

The controlled discrete event process (CDEP) is the generator

Gfc = (Q, TxE, /c, go. On) obtained from G by specifying the set Ec of controlled
events. An external control can now be applied to this CDEP by switching the

control pattern through a sequence 7, 7*. 7", • • • in such a way that the CDEP
behaves in a specified manner. Formally, a supervisor JS. for the CDEP G;. is a
pair (5,$), where 5 = (X,E. g* x0$Xm) is a deterministic automaton and
$: X •* F is a function that selects a control pattern $(*) for each state z. S is

always assumed to be accessible. $ is called the state feedback map.

Since S executes a sequence of state transitions in response to an input

string s e E* we may couple £ to Go in a feedback loop by allowing the transi
tions of S to be forced by (events in) G* and by constraining Gg by the succes

sive control patterns determined by the states of 5 via the map $.

Define the relation gxfe zZxXxQxXxQby

-5-

fo x/c)(cr, z, g) = \g(a, x))x /c($(x), a, g).

Thus (g x/c)(cr, x, g) is defined iff f(a, q) is defined, $(x)(cr) = 1. and g(a, x) is
defined. This yields the generator (Xx Q,Z,gxfQt (ar0, g0), Xm x Qn), whose

accessible component is the supervised discrete event process (SDEP)

£/ Go := A(Xx Q, E. g x/c, (s0. go). *m * $m).

In order to interpret £(2/ Gc) as the set of sequences of events that can occur

when S, is coupled to Gc, one must ensure that transitions in 5 are denned

whenever they occur in G and are enabled by $. Formally, .£ is complete with

respect to Ge provided that for all s € E*. a e E the three conditions
(a) s eZ,(2/Gc)

(b) sa e L(G) (Le.. /(scr, g0) is defined)

(c) $[g(s, Xq)](ct) = 1 (i.e., a is enabled atg(s, x0))

together imply

(d) sere !(£/Ge) (i.e..^(scr,xo) is defined).

(If 5 is not complete, an obvious modification of $ makes it complete without

changing IrCS/Ge).)

Let Lm.(5/ Ge) be the language marked by &/ Gc.

Example 1.1

Consider the deterministic automaton G\ and the nondeterministic automaton

Gz sketched below.

€fc=3D $ ® fo
G. ^^ G.

In both automata, state 0 is the initial and the final state, and Ec = fb.c j. L(GX)

- L(G2) = [a(6+c)]#. We can define a supervisor that will restrict the language

generated by Gx and Gz to (ab)*. This supervisor is a single state automaton

with the state feedback map $(a) = 0 for a = c. This supervisor works for both

generators Gx and G2 although G2 would be deadlocked if it changed from state 0

to state 1 upon event a.

This shows that the controller defined in this paper depends on the

language generated by an automaton and not on the automaton itself, though

different automata have different properties that we do not discuss, such as the

possibility of deadlock.

-6

This framework was developed by Ramadge and Wonham [l] for a deter

ministic generator. We can now state a version of their supervisor synthesis

problem : Given a deterministic CDEP Gc and L C L(G), find a complete supervi

sor £ such that L{£/ Ge) C L is as large as possible. We think of Zr as ihe set of

desirable behaviors and we want to find a supervisor that constrains the

behavior of G to L and within this constraint allows the maximum possible free

dom. In [l], Ramadge and Wonham show that the synthesis problem always has

a solution and in [2] they give a constructive procedure for finding a solution

when both L(G) and L are regular. Other related problems are also discussed in

[3] and [4].

l.S. Partial observations

It was assumed above that when the supervisor S is coupled to Ge it

observes all the transitions of G. In some real situations, however, £ cannot

observe all transitions, and in some other cases it cannot distinguish between

certain transitions.

. 2L. G

1.

j C «

C M .

3. •

These situations can be represented by introducing an observation stage

between G and 5 specified by a mask or observation function

J!:E-»AUW.

where 6 = M(o) is the symbol observed by £ when the generator makes the

transition a. Thus events in M~l\t\ cannot be seen by £; and if Af (er) = M(a')
thenS cannot distinguish between o and o'. M is extended to E* by M{p\ • • • on)
= JU(ol)--M(on).

The preceding framework goes through with some minor modifications to

take into account the mask M. A supervisor £ = (5, $) where the automaton

S = (X, A. g, x0, Xm) now has input alphabet A; the state feedback map $: X -* T
is as before. The SDEP £/ Ge is defined by

-7-

£/ Gc = A{Xx Q, E. (g «Af) x/e. (zo, g0). *m x Qm)

Thus if the relation h := (g°M)xfe, then h(a, z, g) =
te(Af(ff). x)jx /c($(x). a. g) is defined iff f(a, g) is defined, $(x)(a) = 1 and
p(Af(cr), x) is defined. (By convention, g[t, z) s z; however, e is nBt a real
event.) £ is complete with respect to Ge provided that for each s e E* and cr e E
the conditions

(a) s^H£/Gt)

(b) scr e L(G) (Le„ /(scr. g0) is defined)
(c) *[s(Af(s), z0)](er) = 1 (Le., a is enabled at g(Ii(s), z0))
together imply

(d) saeL(£/Gc) (Le., £(Af(scr). z0) is defined).

2. languages dt£/ Gc

Let X c E*. The closure of X, X. is the set of all prefixes of strings in X. Le.,

X := [s € E* | 3 t € E* . s* e XJ.

X is closed if X = X.

Let G be a generator. Ec its controlled events, and Mj E -» A a mask. We call

X(G) the uncontrolled process language. X(G) is closed, and if G is trim,
1(G) = 2J»(G). Let ^ be a supervisor of Gc, X(£/ Ge) the language generated by

£/ Gj. and !»»(£/ Q.) the language marked by .£/ Gc. Note that s e XG§/Gc) is
marked by £/ GJ. iff s is marked by G and M(s) is marked by S. The language

controlled by £ is

ArGS/Gfe) := Z,CS/Gc) Pi An(G).

and can be interpreted as the set of all sequences generated by £/ Gc that

correspond to completed tasks. Evidently,

ZmCS/ £) C Lo(£/ Gfe) C /^(G).

and, if G is trim,

ZmGS/Gc) cZc(£/Q.) cZCS/Gc) = I(£/Gc) cX^G).

Controllable and recognizable languages

Let K c X c E* and 0 c E. We say that K is

(a) (Q, X)-muaricmr if

a€Q,s eA\ saeL =* sae/T, (Le., AD O ^ cJT)

-B-

(b) (A/, L)-recognizable if

s e K, s1 6 X. Af(s) = Af(s') => s' € A". (Le.. X n AT^Af(AO] = A)

(c) (Af, Q. X)-confroUoMe if

s,s' in A". creQ, sere A", s' ere X. Af(s) = Af(s') =^ s'aeA".

The following elementary properties follow immediately from these

definitions.

Lemma 2.1

Suppose Ki c X, i = 1, 2.

(1) If A\ and Ag are (0. X)-invariant, then KXC\K2 and iTjU^z are (Q, X)-

invariant.

(2) If K\ and Ag are (Af, X)-recognizable, then KiC\K2 and A"i (J Ag are {M, X)-

recognizable.

(3) If A*i and Ag are (Af, Q, X)-controllable, then Ai O %z is (Af. Q, X)-controllable.

(4) If Aj is {M, X)-recognizable, then Kx is {M, Q, X)-controllable.

Note that if Af is one-to-one then K is always (M, X)-recognizable. Example

2.1 below shows that K\ \J Ag need not be {M, 0, X)-controllable.

For the remainder of this section fix a CDEP Gc and a mask M: E -» A \J \s].

Lemma 2.2

Let K C Im(G). There is a complete supervisor£ such that

(l)XG£/Gc) = X(G). and

(2) An(£/<*)=*

iff A is {M, Im(G))-recognizable. Moreover, if A" is regular, then £ can be

selected to be finite state.

Proof

Let £ = (5, <*>) satisfy (1) and (2). Let s eK so that M(s) is marked by S. Let

s' € Zm(G). Then s' is generated by £/ G* and marked by G. If M(s') = Af(s),

then Af(s') is also marked by 5 hence s* tLm(£/Gc) = K and so A is

(Af. Xm(G))-recognizabie.

Conversely, suppose A"is {M, Xtn(G))-recognizable. Let S = (X, &, g, z0. Xm)

be a recognizer for Af(A). Le., an automaton such that £(x0, d) is defined for all

d e A* and 0(xo, djeJ^iflde Af(A). (If K is regular, then Af(A) is regular and

X can be selected to be finite.) Let £ = (5, $) with $(z) = 1. Since £ does not

disable any transition in G, X(£/ G^) = X(G). A string s will be marked by £/ Gc

iff s is marked by G and Ji(s) is marked by S iff s e An(G) n Af"l[Af(A)] = if.

-9-

Corollary2.1

Let X c X(G), and suppose there is a complete supervisor .£ with L{£/ Gc) - L.

If A is {M, !*{£/ Gc))-recognizable, there exists a supervisor^ such that

(l)X(&/q.) = X, and

(2)An(&/Gc)=iT.

Moreover, if A is regular, then £k can be selected to be finite state.

Proof

Let T = (r. A, h, yo. 5m) be a recognizer for Af(A). If A' is regular, T can be

selected to be finite state. Let £ = (5, $) be a complete supervisor for which

L(£/ Gc) = X with S = (X, A. g, X& X). Define the supervisor,

£k=(S.V), S =(A'.A.0\z'o.A,m)

by

X = Xx Y, g' (6, z, y) = fatf. z). /i($, V». *'t> = (*c Vo).

^m=^ym, *'(z. y) = *(z).

Since the control action of Sjc is the same as that of £, X(&/ Ge) = X. Further

more, £/' (5, z, y) is defined iff g(6, z) is defined, so & is complete with respect

to Gfc. Finally, the language marked by Sk/Gc is equal to

Z,nAn(G)n^~W*0] = A,G2/Gc)n#~W#)] = * because K is
(Af, Zc (2/ Gq)-recognizable.

Lemma 2.3

Let K c X(G). There exists a complete supervisor .£ such that X(£/ Ge) = A" iff

(1) Ais closed,

(2) Ais (2U, X(G))-invariant, and

(3) A* is (M, Ee. X(G))-controllable.

Moreover, if A* is regular, then £ can be selected to be finite state.

Lemma 2.3 is proved in Propositions 2.1-2.3 below. Let

G = ($.E./.g0. 4»).

Proposition 2.1

If £ is a complete supervisor such that L{£/ Gc) = K, then A satisfies (l)-(3) of

Lemma 2.3.

Proof

Let £ = (5. $) with 5 = (X, A. p. z0. Xi). Since X(£/ ft) is closed. (1) holds.

-10-

Suppose s e A" and a € Ev. Then g(M(s), z0) is defined and

*[0(Af(s). z0)](cr) = 1. Suppose scr eX(G), so f(so, g0) is defined. Since £ is

complete, saeK, so (2) holds. Finally suppose s,s' are in A, Af(s) = li(s'),

ereEc. and sa € K. Then £ (Af(scr), z0) = p (Af(s(cr), z0) is defined.

*[flr(Af(s),z0)](cr) = *[g(M(s'),x0)](o) = 1. Suppose s'aeX(G) so that

/ (s'a, go) is defined. Then s' a GA (because £ is complete) so (3) holds.

For the remainder of the proof fix K c X(G) such that (l)-(3) hold. For

d € A*, let

2(d) := {a € Ec | 3 s € K, Af(s) = d, scr € K\. (2.1)

Proposition 2.2

Let £ = (5, $) be a complete supervisor such that

(1) g(d, z0) is defined iff d € Af(A), and

(2) $[o(d. z0)](ff) = 1 iff ff e E,, U SCO-

ThenXG2/Gc) = ir.

Proof

Suppose s = ai • • ffm G A c X(G). Then / (s, g0) is defined. It is easily checked

from properties (l) and (2) that for each n <m, g{M(ax • • • crn), x0) is defined

and %\jj(M(pi • • • crn), *o)](ffn+i) = L II follows that s e L{£/Gc), hence

A-cXCS/ft).

We prove X(£/ft) C A by induction on the length \s\ of s eX(£/ft).

Suppose |s | = 1, s = a e £(£/ ft)• Write a = ea. Since A* is closed, c G A. By

(2), cr e E(e) U2u- If ff GEu, then a GA because K is (Eu, X(G))-invariant. If

a e E(e), then by (2.1) there exists sToeK, II(s') = e. Since K is (Af, Ee, X(G))-

controllable, it follows that cr e K. Now suppose the assertion is true for strings

of length I. Let |s|=J. s G A. and screXGS/ft). Let d = M(s), then

creE(d) (J2«. If creEu, then saeK because A is (E^, X(G))-invariant If

cr GE(d), then by (2.1) there exists s' G A such that s'a eK and A/(s*) = d, and

then sa G A since A is (Af, Ee, X(G))-controllable.

The proof of Proposition 2.2 yields the following interesting corollary.

Corollary 2.2

Let K be any closed sublanguage of X(G). Let £ be any complete supervisor

satisfying (l) and (2) of Proposition 2.2. Then. X(£/ft) is the smallest closed.

-11-

(Eu, X(G))-invariant, and (M, Ec. X(G))-controllable language containing K.

There is a trivial supervisor £ = (S, $) that satisfies (1), (2) of Proposition

ZZ Take S = (X, A. o. z0. A") with X = Af(A). $(6, d) = d6 if do" € ATfA), and

$r(o\ d) is undefined if d6 % Af(A). z0 = £. Now take $(d)(a) = 1 iff

a GE(d) (J Eu. The states of this supervisor "memorize" the entire sequence of

observations made by the supervisor. If Af(A) is infinite, this supervisor has

infinite states, even if Af (A*) is regular. The supervisor constructed below over

comes this defect.

Let S = (X, E. g, z0. X) be a generator for K, Le.. g(s, z0) is defined iff

s GA. (If K is regular, we can select X to be finite.) Let X be the set of all

nonempty subsets of A* and define the automaton

S:=(X,±g,x0,X) (2.2)

as follows:

IM*. *) | x ex, Af(s) =6J, if this is nonempty
0(5'*):=: {undefined, otherwise; ^3;

o :=#(.*(>) I Af(s) = £|. (a4)

Note that X is finite if A is finite.

Remark

The following comment may provide some insight into the relationship between

S, S, and the closed loop system. Suppose we have found a supervisor £ such

that L(£/ ft) = K. Then the automaton S is an accurate representation of the

closed loop system£/ ft. However, since the supervisor can observe the transi

tions of S (or £/ Gt) only through Hi, it can only partially reconstruct the inter

nal state x of S. Proposition 2.3 says that the states of S provide this partial

reconstruction.

Proposition 2.3

Let d€A#. Then g(dt x0) = \g(s, xj | li(s) = d\ if this is nonempty, and

g(d, z0) is undefined otherwise.

Proof

We use induction on the length of d. If d = s,

g(e, z0) := x0 = \g(s, z0) | M(s) = cj by (2.4).

so the assertion is true for \d\ =0. Suppose it is true for d, g(d, z0) = x is

-12-

defined, and consider the string do*. Then

x = \g(s,x0) I Af(s) = dj^0,

and so

g(d6,x0) =g(6. x)

= \g(s\ x) | x e x, M(s') = 6\ by (2.3)

= \g(ss', xq) I M(s) - d, Ii(s') = 5J by induction hypothesis

= tfC *o) I M(t) = d5J

as required.

i

Since S generates A, Proposition 2.3 implies that g(d,x0) is defined iff

deAf(A). Forz e*. let

E(z) := {a e Ec | 3 x e x, g(o, x) is defined}.

Recall the definition (2.1) of E(d).

Proposition 2.4

If g (d. x0) = x, then E(x) * E(d).

Proof

Suppose x € x and ?(a, z) is defined, so that a GE(z). By Proposition 2.3, there

exists s with M(s) = d and z = j(s, xq). Hence g(so, z0) = g(a, x) is defined and

so sc G A. This implies that a G E(d). Conversely, let cr G E(d), so there exists

sa e K with Kt(s) = d. But then £(s, z0) = £ Gx and g(a, x) is defined, so that

a € E(z).

I

Proof of Lemma 2.3

The necessity follows from Proposition 2.1. To prove sufficiency consider the

supervisor £ = (St $) where S is given by (2.2) and

$(z)(cr) as 1 iff a GE(z) U S„.

It is easily seen that £ is complete and by Propositions 2.2 and 2.4,

X(£/Gc) = A\

I

Lemma 2.4

If there is a supervisor £ with Zwl(S/ft) = A'. then K is (M, Lc(£/ ft))-

recognizable.

-13-

Proof

The proof follows from the definitions of £*(£/ GG) and (Af, X)-recognizability.

i

Theorem 2.1

Let Ai c Lm(G), K2 c Xm(G), and A3 c X(G) with A3 * 0. Then there exists a

complete decentralized supervisor £ such that

(1) Un(£/Ge) = Kx.

(2) Z*C2/ft) = Ag. and

(3)X(^/GC) = Ag

iff

(a) Ai is (Af, AgJ-recognizable,

(b) A-2 = A3 PiAn(G).

(c) Ag is closed, (Ew, X(G))-invariant, and (M, Ec, X(G))-controllable.

Proof

Suppose (l)-(3) hold. Then (a) follows from Lemma 2.4, (b) from the definition of

Lc(£/ Gc), and (c) from Lemma 2.3. Conversely, suppose (a)-(c) hold. By Corol

lary 2.1, it is enough to construct a complete supervisor jj? such that

L{£/ Ge) = A3. Lemma 2.3 states that this is possible.

Example 2.1

020
Let G be a generator with a single state, X = Xm = (Oj, and two transitions,

E = Ec = (a. b j. Then Xm(G) = X(G) s E*. Let Af(a) = Af(6) = 6, so a controller

cannot distinguish between events a and b. Let

K := closure of \(ab)n | n & OJ.

Then M(K) = {df, so M'l[M(K)] = E#. Hence A is not (Af. Z^fGM-recognizable.
By Lemma 2.2 there is no supervisor £ such that XCS/GC) = E* and

ZmCS/ft) = A.

However. A is (A/, E6, X(G))-controilable because if s, s' are in A with

M(s) = Af (s'), then s = s*. Furthermore, since Eu = 0, A is (Eu, X(G))-invariant.

By Lemma 2.3 there exists a supervisor £ = (S, $) such that L(£/ Gc) = A.

Such a supervisor can be built using an automaton with two states, A and B,

I

-14-

initial state A, and the state feedback map $ given by $(A)(o) = 1 iff a = a, and

$(B)(o) = liffa = b.

(2ZZ5)
Continuing with this example we see that

K := closure of \(ba)n \ n fe 0)

is also (Af, Ee. X(G))-controllable. However,

K := A U A = closure of i(ao)n. (ba)n | n ;> Oj

is not (M, Ec, X(G))-controllable because the strings s = a, ab are in K, b is in

K, Af(a) = Af(b), but bb £ A. Hence A is not (Af, Ec, X(G))-controllable and
there is no supervisor £ such that L(£/ Gc) = K.

Remark

This example shows that the set of (Af, Ee. X(G))-controllable sublanguages of
X(G) is not closed under union. This has implications for the supervisor syn
thesis problem posed in § 1.2. Recall that the problem is to find a supervisor £

such that L(£/ Gc) is as large a subset of a specified X c X(G) as possible. Since
the family of languages L(£/ Gc) may not be closed under union, there may not
exist such a largest subset Indeed in the example above take X = K. It is possi

ble to retain the closure property in the partial information case if we allow

"nondetenninistic" supervisors; however, this seems unreasonable in practical
applications.

Wonham [5] considers the case of partial observations where the mask U is

a projection, i.e„ there is E# C E such that M(a) = o if o GEjf and M(cr) = t if

cr g Ejy. His results include Lemma 2.3 for the case where A is (M, X(G))-
recognizabie (in our notation); such K is automatically (Af, Ec, X(G))-
controllabie by Lemma 2.1.

3. A supervisor synthesis problem for a special class of languages

Recall the supervisor synthesis problem stated in section 1.2: Given a CDEP

ft and X c 1(G), find a complete supervisor £ such that L(£/ Gc) c X is as
large as possible. Example 2.1 above demonstrates that the set of

(M, EC,X(G))—controllable sublanguages of X(G) may not be closed under union

-15-

and therefore the desired L{£/ ft) C X may not exist. In this section, we con

sider a subset that is closed under union: the set of languages that are

(M,L(G))—recognizable. If we restrict ourselves to languages in this subset, a

solution to the supervisor synthesis problem does exist. Furthermore, if X and

X(G) are regular, the solution is regular and the procedure for determining it is

effectively computable.

Lemma 2.1 states that if KcL(G) is (Af.X(G))—recognizable, then K is also

(Af, EC,X(G))—controllable. For a closed language XcX(G), define the class of

languages

R(L) = [A" c X | A" is closed,

(Eu,X(G))—invariant and (Af,X(G))—recognizable}.

By Lemma 2.1, &(L) is closed under union. Therefore, supi?(X) exists and is

equal to

\J \K c X | A is closed,

(Eu,X(G))—invariant and (Af.X(G))—recognizable{.

Suppose we have a procedure P that accepts as input regular languages

and produces a regular language as output. We say that P is effectively comput

able if given the finite state automata that generate the input languages, we can

construct in a finite number of steps a finite state automaton that generates the

output language.

We now describe a method for computing a sublanguage A# of X. This pro

cedure consists of three major steps. Afterwards we prove that Kg = supJ2(L).

Summary of procedure

Given: X and X(G) both regular and closed, and X c X(G).

Step 1 Compute M{L(G)), M(L), and let A« = Af(Eu).

Step 2 Using the method developed by Ramadge and Wonham in [2], compute

A, the largest sublanguage of U(L) that is closed and

(Au.Af(X(G)))-invariant.

Step 3 Compute KR = Af-1(A) O £(G).

A detailed description of this procedure follows.

Stepl

Let S = (X, E, /, x0, X) and T= (?, E, g. So. ?) be two finite state automata

-16-

that generate X(G) and X respectively. Let X and Y be the sets of all nonempty

subsets of X and y respectively. Define the two deterministic automata

S := (X, A. /. x0. A) and T := (7. A. o. y0. 10

as follows:

{/(s, x) | x e x, Af(s) = 6j, if this is nonempty
/\ • / •"" undefined, otherwise;

x0:=i/(s,x0) | Af(s) = ej.

and

- U§(s* $) Iy €V» ^(s) =^» ** this is nonenapty
9\6* y):~ | undefined, otherwise;

Vo:=tf(«.ffo) I *<•) = *}.

5 and T are finite state automata that generate M(L(G)) and Af(X) respectively.

Since |A| s 21*' and \Y\ ^ 2'^' (where |.| denotes cardinality), this procedure
is effectively computable. Proposition 3.1 follows immediately from the above

construction.

Proposition 3.1

Ii(L(G)) and M(L) are regular, closed, and the procedure to find them is

effectively computable.

Step 2

In [2], Ramadge and Wonham give a procedure that effectively computes the

largest closed and (Eu.X(G))-invariant sublanguage of a given language X. We
use this procedure to compute A", the largest closed and (Au,Af(X(G)))—invariant
sublanguage of M(L). Proposition 3.2 is a direct consequence of the procedure

described in [2].

Proposition 3.2

K is regular, closed and can be effectively computed.

Step 3

Let V= (Z% A, h, «0. Z) be a deterministic finite state automaton that generates

K. We construct a deterministic finite state automaton V:= (Z, E, h, z0, Z) that

generates Af~*(A). V is defined as follows:

\h(Af(cr), z), if this is defined
7i(a, z) := |̂ defined; otherwise.

By convention, A(e.z) = z.

-17-

We now construct the deterministic automaton

W := (XxZ, Z,p, (x0. z0). XxZ)

where

. r . (f{o, x), h(a, z)), ifboth are defined
PIC (*. «)) := (undefined, otherwise.

W generates Kg = M~l(K) C\L(G). Proposition 3.3 follows from the above con

struction.

Proposition 3.3

KR is regular, closed, and can be effectively computed.

Proposition 3.4

KR is (Eu.X(G))—invariant and (Af.X(G))—recognizable.

Proof

Suppose s eA#, crcEu. and so e X(G). Let M(s)Jli(o) = d6, 6 e £^. Since

s € KR, M(s) = d € K; since scr e X(G), d<S.€ M(L(G)). Since A" is

(Au. Af(X(G)))-invariant, d6 e A", so scr e AP^A"). Hence screA)? and Aj? is

(Eu.X(G))—invariant.

Suppose s.s* in X(G) with Af(s) = Ii(s') = d and s eKR. Then

d € K c Af(X(G)), so s' € M'l(K), hence s' € KR and A}? is

(Af,X(G)) —recognizable.

Proposition 3.5

A/? is the largest sublanguage of X that is closed, (Eu.X(G))—invariant, and

(M,L (G)) -recognizable.

Proof

Let KR be a sublanguage of X that is closed. (Ett,X(G))-invariant, and

(Af,X(G))—recognizable. We show that KR C Kg.

For all s e A"'*, if o e E„ and scr e X(G). then scr e K'R. Also s e X c X(G),
since KRcLc X(G). Let d = Af(s), then d e Af(A'j?) c Af(X) c Af(X(G)). For 6
in Au such that d6 € M(L(G)), so € X(G) where o e Af"l(*) n £u- Since KR is

(Eu.X(G))-invariant. s<x e A> and therefore Af(scr) = d6 € M(KR). Thus Af(A^)
is (Au. Af(X(G)))-invariant. But A is the largest sublanguage of M(L) that is
(Au. Af(X(G)))-invariant, therefore U(KR) cK, and d e A". This implies that

s e li'^d) c Af_1(A). and since s e X(G). s e Aj?.

-1B-

The theorem below follows from propositions 3.1 through 3.5.

Theorem 3.1

(1) KR = sup£(X)

(2) KR is regular and can be effectively computed.

4. Decentralized control

In some situations the uncontrolled generator G represents a collection of

coupled subsystems that are in different locations. Physical considerations may

then lead us to control G by a collection of supervisors, one for each subsystem.

Each supervisor makes (possibly different) observations of events in G and con

trols different transitions of G. We propose a model for such situations.

4.1. Decentralized supervisor

Let ft = (Q, TxE, /c. go. Qm) be a CDEP with controlled events Ec. We are
also given subsets EltC, • • • , E^ (not necessarily disjoint) with E6 = U^i* and

n masks Aft: E -* A* \J jcj, i = 1, • • •, n. A decenfraiized supervisor is a collec

tion

\£i\'\£L^(Si,ii),i = l,- - ,n\,

where 5t is a deterministic automaton

Si = (At, At, flTi, Xi,o, Xi,m),

and $i is a state feedback map $i'. Xj. -*T such that

$i(xi)(a) = lifa t Ei.c.

From the decentralized supervisor \£.\ we construct a (standard) supervi
sor £ = (5, $) as follows: S = (Sx x • • • xSn) is the product automaton,

S = (A, A,flf,xo. Xm)

= (Xxx- • • xXn, AiX- • • xAr.^iX- • • xgn,

(*1.0» ' *• *n.o)i XXtm X ' • XAfi,n),

and $: X -» T is given by

(!. * ' ' . Zn)(0) = 1 iff V i. *i(*i)(*) = 1.

Thus£i can only disable events in Ei.c. Note that £ observes transitions in G

-19-

through the mask Af: E -* A \J {e}, where Af(ff) = (Afi(o-), • • • , Mn(a)). From Gc

and £ we construct the SDEP

£/Gc :=A(XxQ, E, (g oM)xfe, (x0, q0),XmxQm).

Decentralization of the supervisor places a restriction on the languages

generated by the SDEP because each component of the supervisor controls a

subset of the controllable events. Thus, the class of languages L(£/ Gc) in the

decentralized case is smaller than the class of languages L(£/ Gc) in the cen

tralized case with the same mask.

With an obvious abuse of notation we sometimes identify £ and the decen

tralized supervisor \£l\. Say that \£i\ is complete with respect to Gc provided

that for seE* and cr € E the conditions

(a) s€X(2/Gc)

(b) soeL(G)

(c) $k(Af(s).x0)](cr) = l(Le.. Vi. *ifet(^iOO. *i.o)](*) = 1)
together imply

(d) sozL(£/ GG) (Le., V i, g%(Mi(so). Xi.0) is defined).

As before, L^(£/ ft) is the language marked hy£/Gc. Note that since S is

the product automaton, s e L(£/ GG) is marked iff s is marked by G and for

every i, Mi(s) is marked by 5t. Lemma 4.1 is the analog of Lemma 2.2 and it is

proved in the same way.

Lemma 4.1

Let K c X(G). There is a complete decentralized supervisor.2 = \£s.\ such that

(l)X(£/Gc) = X(G)and

(2)A»GS/ft) = *
iff A* is (Id, An(G))-recognizable. Moreover, if A" is regular, then £ can be

selected to be finite state.

Corollary 4.1

Let X C X(G) and suppose there is a complete decentralized supervisor £ with

L(£/GC) = L. If K is (Af, Xe02/Gc)-recognizable, there exists a complete

decentralized supervisor^- such that

(1) L(£k/Ge) = L, and

(2)XmCar/ft)=iT.

Proof

Let Ti = (H, At, hi, yiQ, Yijn) be a recognizer for Mi(K), and let £ = \Sit $iJ be a
complete supervisor for which XCS/GC) = X. Define the supervisor

-20-

Sk = [So *'ij where Si is defined in terms of (Sit $i) and Tt in the same way as
S is defined in terms of (S, $) and T in Corollary 2.1. The rest of the argument

is also similar.

I

Associate with each o eEc a set /c(cr) c { 1, 2. • • • . n\ where

/c(ff) = |i|p eEitCJ. We will say that K c X(G) is ({ Af*). {Ei.c}. 1(G))-
controUable if for o e Ec, a sequence (s< J of (not necessarily distinct) strings in

K indexed by i e Ic(o), and s' € K,

(1) SiOZ K for alii e/c(ff),

(2)s'cr€X(G).

(3) Afi(si) = Odds') for all i € /c(cr)

together imply

s'oeK

In the case where the Ei.e are disjoint, K is ((AfiJ. {Ei^-J. X(G))-controllable iff K

is (Mi, llije, X(G))-controllable for each i.

The next result is the analog of Lemma 2.3.

Lemma 4.2

There exists a complete decentralized supervisor £ = \£i\ such that

L(£/Ge) = K'\tL

(1) A is closed,

(2) K is (Eu. X(G)^invariant, and

(3) A" is ({Af4j. {Et.cJ. X(G))-controllabie.

The proof follows the same lines as the proof of Lemma 2.3. We give the

steps and indicate the key differences.

Proposition 4.1

If £ = \Si, $ii is a complete decentralized supervisor such that L(£/ Ge) = K,
then A satisfies (l)-(3) of Lemma 4.2.

This is proved in the same way as Proposition 2.1 taking into account the

requirement that $i(Xi)(cr) = 1 if a fL Ei^.

Now fix K c X(G) such that (l)-(3) hold. For a\ GV let

Ei(di) := {cr e Eix | 3 s e K, Ui(s) -a\,sa^K\.

Proposition 4.2

Let£ = \(Si, $i)} be a complete decentralized supervisor such that

(1) 9i(<k* *t.o) Is defined iff a\ € Aft(A). and

-21-

(2) *i[gi(di, Xi,0)](a) = 1 iff o e (E - Ei.c) U Xi(<k).

Then L(£/ ft) = K.

This is proved in virtually the same way as Proposition 2.2.

Let S = (X, E. g, x0l A) be a generator for K, and let Xi be the set of

nonempty subsets of A. Define

Si := (Ai, At, flfi. Xi.o. Ai)

as follows:

\\g(s, x) | x e a^, Mi(s) =o\}, if this is nonempty
0u°i. *u:- | undefined, otherwise;

*i.o:={5(s.50)| Afi(s) = sJ.

As in Proposition 2.3 one can showthat for all a\ e Ai*

\g(s, xq) I Iii(s) = a\ j, if this is nonempty
^ivdi. «i.o) •- undefined, otherwise.

Since S generates K, gi(a\t Xi.0) is defined iff a\ e Mi(K). Let

Ei(xi) := {cr e Ei.c | 3 x e x^ g(o, x) is defined}.

As in Proposition 2.4 one can show that

y(di,Xi.0)=Xi =* Ei(xi) = Ei(dt).

Fmally define $t: Xi -♦ T by

$i(xi) = 1 iff a e (E - E^) u Si(xi).

Then £ =\(Sit $i)j is a complete supervisor such that L(£/ ft) = A", completing

the proof of Lemma 4.2.

The next result follows immediately from the definitions of XcC2/ft) and

(M, X)-recognizability.

Lemma 4.3

If there is a complete decentralized supervisor £ with Lm(£/ Gc) = K, then K is
(Id, Le(£/ Gc))-recognizable.

The following result is proved in the same way as Theorem 2.1.

Theorem 4,1 Let Kx C ^(G), K2 c X,n(G) and A3 c X(G) with A3 * 0. Then there

exists a complete decentralized supervisor £ such that

(D£mGS/ft) = *i.
(2)A:CS/ft) = Aig. and

-22-

(3)X(£/ft) = A3,

iff

(a) Kx is (Id, A2)-recognizable,

(b)jr8 = A3nAn(G).

(c) A"3 is closed, (Ett. X(G))-invariant and ({AfiJ. (E^}. X(G))-controllable.

5. Generator connections

Interconnected subsystems can be represented by modeling each subsys

tem as a generator and describing the connections between them in such a way

that the "global" generator can be obtained in a mechanical way. We describe

one such connection used by Hoare [6] and Merlin and Bochmann [7].

Let ft = (Qi, Ei, A. gi,o. Qim), i = 1, • • • , n be generators. Let E = U^i.
i

and for each a let I(o) = {i | cr e EJ. The generator G := Gx// • • •//ft is

defined as G = (Q, E. /. g0. fln). where Q = Qxx • • • xQn, g0 = (g1#0, • • • , gn#0).

Q* = Qun*' x^m,and/ =fx// •••///» is given by

/ (cr, q) is undefined if /i(cr. qi) is undefined for some i € 1(6),

g' € / (cr, q) with g'i e fi(o, gt) for all i e /(cr), and q\ = gi for i ft /(cr).

Thus, in the connected machine G, events that are common to more than

one ft must occur simultaneously. In particular, if the Ei are all disjoint G is

the shuffle of the ft, see [l]. Lemma 5.1 gives a simple characterization of the

language generated by G. Let Afi denote the projection of E on Ei, Le., Afi(cr) = cr
if cr c Ei and Aft(cr) = t if a £ Ei.

Lemma 5.1

Let G = Gx// • • • // ft. Then

(1) X(G) = \s e E* | V i. Afi(s) e X(ft)J.
(2) U(G) = \s € E' | V i. Afi(s) € X^ft)}.

6. The alternating bit protocol

We consider a simple example of a protocol for a communication system

represented as an interconnection of six machines: sender 5, transmitter buffer
TB, transmitter T, channel C, receiver buffer RB, and receiver R.

-23

Sender

sendGO

S has only one state, 0, and one transition send. Transition send means that a

new message is written in the buffer, and by doing so, the sender requests its

transmission from the transmitter.

Transmitter buffer

store

1 * tstore

TB is a single buffer whose state dx takes values 0 or 1, where 0 corresponds to

the buffer being empty and 1 corresponds to the buffer being fulL Messages are

written by S and are read by the transmitter T. The initial state is 0. TB has

one transition, store. The transition store means that a new message is stored

in the buffer. If the buffer is originally full, its content is overwritten and it

remains in the full state.

Transmitter

020
T has only one state, 0, and two transitions t0 and tx. The transitions are to be

interpreted as follows. Transition ^ means that the message in the transmitter

buffer has been read, assigned a sequence number (s.n.) i, and transmitted.

(There are only two s.n.'s, 0 and 1, the s.n. assigned to new messages alternates

between 0 and 1, hence the protocol name.) Repeated transitions £0*0*0 ' ' ' or

txtxt x • • - means that the same message is retransmitted; otherwise it is a new

message. Thus, for example, the sequence tQt0txt0tQt0 means that the first mes

sage is transmitted twice, the second message once, and the third message

three times.

Channel

C is a buffer of size n in which messages sent by T are stored and later for

warded to RB in the same order, i.e., C is a FIFO queue. The state of C is

-24-

represented by an n-tuple

6=(61. •••.bn)e{0. l,ejw.

where b» = 0, 1 or e, accordingly as buffer i contains a message with s.qu 0, 1 or

is empty. Messages are forwarded to RB from buffer bx and messages from T

are stored in the empty buffer with least number. Denote this least number by

1(6) ;.'
min \i \ i &n, bt = e)
n + 1, if V i. bi * e.

Thus the accessible states of C form the subset B c (0, 1, e jn consisting of n-

tuples of the form

b = (bx, • • , 6|(fc)_lf e, • • •, e).

The initial state is (e, • • • , e). C has six transitions: to, tx, r0, rx, 1$, lx; ti

represents messages input to C, whereas rit ^ represent messages output by C.

] b if J(b) = n +1 (reject message if all buffers full)
(store message with s.n. i)

f(»2. * ' , bn, e), if b x= i (output message with s.n. i)
n{«>>.--.6»):= undefined, if bx * i

li(b):=ri(b), V b.

The difference between r< and k will be seen in the receiver buffer model RB; rt

represents channel outputs that are successfully received by RB, whereas k are

channel outputs that are "lost" and do not reach RB.

Receiver buffer

RB consists of a single buffer whose state d2 takes values 0, 1 or e. As we will

see, d2 = 0 or 1 accordingly as the most recent message received had s.n. 0 or 1;

whereas d2 = e if the most recent message received was acknowledged. Thus

RB has four transitions, r0, rx, a0. ax.

r0(d2) :=

rx(d2) :=

0, if d2 = e (receive message with s.n. 0)
1, if d2 = 1

undefined, otherwise

1, if d2 = e (receive message with s.n. 0)
0, if d2 = 0

undefined, otherwise

e, if d2 = 0 (acknowledge message with s.n. 0, clear buffer)
ov 2) •- [undefined, otherwise

o,(d2) :=

-25-

e, if d2 s 1 (acknowledge message with s.n. 1, clear buffer)
undefined, otherwise

17

I foT (e^
rr.r;

Observe that i?i? can receive several messages (Le., several rf transitions can

occur) before the receiver buffer sends an acknowledgement. According to our
model, only the last message will be acknowledged.

Receiver

SO rea<

R has only one state, 0, and one transition read. This transition means that the

content of the receiver buffer is read.

The generator

The overall communication system is constructed by interconnecting the six

subsystem generators S, TB, T, C, RB and R in the way described in the previ

ous section.

The send transition in 5 and the store transition in TB are coupled in the sense

that they must occur simultaneously. Thus both the send and store transitions

will be labelled s.

This defines the generator G = S// TB/ /T//C//RB/ / R. Let

G = (9.E./.g0. Q).

where

Q = {(0. d„ 0. b, d2, 0) | d, € {O.lj. b GB, d2 e {0. 1. e j),

E = {s, ti, rit li, Oi, read | i = 0. lj,

and

go = (0. 0. 0, (e, • • • , e), e, 0).

The transition function / is given implicitly by the individual transition func

tions of S, TB, T, C, RB and R and by the defined connection.

-26-

Suppose the controlled transitions are Ec = \s, t0, tx, ao, ax,read\. Also

assume that the Oi's are observed at the transmitter end instantaneously. This

defines a CDEP ft.

Notice that our assumption about the cti's could be removed if we add to our

model a reverse channel, similar in behavior to the forward channel, for the oVs.

But this assumption reduces the complexity of the overall generator G without

any loss of generality.

The protocol

Informally, an AB protocol is a controller £ = (S, $) such that £/ Gc has the fol

lowing two-state behavior.

State 0: T sends a new message with s.n. 0 and repeats it until this message is

acknowledged, Le., a0 is received. It then switches to state 1.

State 1: T sends a new message with s.n. 1 and repeats it until this message is

acknowledged, Le., ax is received. It then switches to state 0.

Also, duplicate messages should not be read by the receiver.

Formally, for s = ox • • • an e X(G) define

A(0) := 0

u(i) := min \m > X(i-1) | crm = a0|

X(i) := min \m > u(i) \ om = at|

We also define Msr (s) to be the projection of s over {s, read}.
Say that s G X(G) is valid if

{X(i-1) < m < M*)iA{am = t0 or tx\ => om = t0, (6.1a)

\u(i) <m< X(i)}A{«ym = t0 or t,J => am = tx. (6.1b)

MSR (s) e {(s.reod)# , s. (reads)*}. (6.1c)

Let K be the set of valid strings.

To implement the AB protocol, we are going to use two supervisors, one at

the sender end and a second one at the receiver end. Each supervisor will con

trol the transitions in its physical location. Therefore we subdivide Ec into HXx

and E2,c. where Ei,c = \s, t0, tx\ and E2fC = }a0, alt read}. For the task of con

trolling Ei,c the first supervisor £x needs to observe {a0, ax, s] while to control

22,c, £z needs to observe }r0, rx, read]. Hence we define the two masks Afi, U2

such that Afi: E -• {a0, alt s, t\ where Afi (afi ~ aj. Mx (s) = s, and Afi (cr) = t

otherwise; and Af2: E •* (r0, rx, read, t] where Id2 (rfi = rit Id2 (read) = read,

-27-

.and M2 (cr) = e otherwise. From (6.1) it is easy to verify the next result.

Proposition 6.1

A'is closed, (Eu, X(G))-invariant, and (\Mi\, (E<#c j, X(G))-controllable.

It is easy to see that L(£/ Gc), where £ = \£i, i = 1, Z] is defined below.

Supervisor Sx observes G through Mx and controls E1#c. It has a five state auto

maton Sx shown in the sketch below and the feedback rule

•i(0)(a

i(D(

*i(2)(a

*i(3)(a

$i(4)(c

= 1 iff a e JsJu(S-Si^)

= 1 iff ae{*oiU(2-Ei.c)

= 1 iff a€{sJu(2-Ei.e)

= 1 iff creUiJuff-ELc)

= 1 iff ctgJsJu^-Elc).

s

Supervisor £2 observes G through M2 and controls E2tC. It has the four state

automaton S2 shown in the sketch below and the feedback rule

$2(0)(a) = 1 iff o G faij u (2 - E2#c)

$z(1)(<0 = 1 iff cf G {readj \j (E - S2tc)

$2(2)(a) = 1 iff o G {a0j U (E - E2.c)

*2(3)(a) = 1 iff o G (read) uff - 22>c).

-28

"Cfr—*<£)'
read

&
rt&A

If ^i can also observe the transmission events t0 and tx, even without distin

guishing between them, then it can enforce a minimum separation between

retransmissions of the same message equal to a "timeout" of some counter. In

this case the mask Afi would map E -» { a0, a^ t, s, e] where Mx(tfi = t, and

Mx(o) unchanged otherwise. The corresponding machine and the counter are

shown in the sketch below. The counter has two states 0 and 1. In state 0, it is

idle, while in state 1, it is counting. A transition that takes the counter from

state 1 to state 0 resets the counter to its initial count value. The counter is

connected to .Si in the way denned previously, so that the 04, t and Tout transi

tions occur simultaneously in both machines.

The feedback rule is given by

*i(0)(tx) = l iff cGis|u(2-E,.c)

*i(l)(ff) = l iff *G{*o)U(2-Ei.c)

$i(l')(c) = l iff aG(E-Ei.c)

$,(2)(a) = l iff orG{sJu(E-Ei.c)

$,(3)((7) = 1 iff erG(i1Ju(E-Ei.c)

*,(3')(a) = l iff cg(E-Ei.c)

*i(4)(a) = l iff *efsJu(E-E,.c).

-29

gi$ctm<&.

Thus transmissions t0 and tx are enabled only in states 1 and 4 respectively, so

that a timeout (Tout) or a valid acknowledgement must occur between succes

sive transmissions.

7. Extensions and problems

While the framework presented here has the advantage relative to other

approaches of posing explicitly the problem of control, these other approaches

have been developed more extensively in terms of analysis and also, especially,

in terms of simulation software. It would be quite valuable then to extend those

approaches along the directions presented here in order to formulate the con

trol problem.

Second, there is a need to relate the Ramadge-Wonham model to perfor

mance analysis that gives a numerical performance measure. One can readily

imagine doing this by introducing a Markovian structure that assigns transition

probabilities to events. However, a more important and difficult issue concerns

the treatment of real time. This is necessary since most performance measures

involve time in the form of "througput" or "delay".

Finally, there is virtually no work that explores the implementation aspect

of the Ramadge-Wonham model in the sense mentioned in the introduction, both

theoretically and empirically.

References

[l] Ramadge, P.J. and Wonham, W.M., "Supervisory control of a class of discrete

event processes," Systems Control Group Reports #8311, October 1983 and

#8515, November 1985, University of Toronto. To appear in SIAM J. Contr.

Optim., 1986.

-30-

[2] Ramadge, P.J. and Wonham, W.M., "On the supremal controllable sub

language of a given language," Systems Control Group Reports #8312.

November 1983 (revised November 1984), University of Toronto. To appear

in SIAId J. Cbntr. Optim., 1986.

[3] Ramadge, P.J. and Wonham, W.M., "Modular feedback logic for discrete

event systems," Technical Report 48, Information Sciences and Systems

Laboratory. Princeton University. July 1985.

[4] Ramadge, P.J. and Wonham, W.M., "Modular supervisory control of discrete

event systems," INRIA Conference, June 1986.

[5] Wonham, W.M., "On control of discrete event systems," Systems Control

Group Report #8508, July 1983. University of Toronto.

[6] Hoare, CAR., Communicating Sequential Processes, Prentice-Hall Interna

tional. U.K., Ltd., 1985.

[7] Merlin, P. and Bochmann, G.V.. "On the construction of submodule

specifications and communication protocols." ACM Trans. Prog. Lang, and

Syst. Vol 5(1). Jan. 1983. 1-25.

	Copyright notice1986
	ERL-86-63

