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ABSTRACT

The two beam accelerator is a proposed linear ete~ machine employing
2 x 500 tapered free electron lasers (FELs) as a source of microwave power.
A high current, low energy (20 MeV) beam drives the FELSs, producing 1 cm
microwaves. These microwaves are used to accelerate a low current beam to
energies of 1 TeV. High efficiencies are obtained by re-accelerating the low
energy beam after passing through each FEL. Restoring the 2 MeV /particle lost
on passing through each FEL section (using an induction- accelerator) avoids
wasting the 18 MeV/particle left in the beam. The periodic nature of the
acceleration and deceleration of the low energy beam can lead to stochastic
motion. We exhibit design criteria that ensure that detrapping of the low energy
beam by this stochasticity is minimal, preserving the high efficiencies inherent
in a single tapered FEL. Numerical integrations of a one dimensional model for
the FELs are presented showing various degrees of detrapping. We also explore
the effects of islands produced by resonances between the periodic acceleration
and the trapped particle motion. These islands represent coherent motion of
large numbers of trapped particles, leading to oscillations in the power output
of the FELs.

INTRODUCTION

In their search for an understanding of the fundamental structure of matter,
high energy physicists have been the driving force behind the development of
accelerator technology. Presently, the goal is to study interactions at energies
of a few TeV (10'2eV). Historically, the results of high energy experiments
have stimulated interest in phenomena at still higher energies, and there is no
reason to believe that this trend will not continue. Today’s accelerators rely on
well understood and well tested techniques to produce accelerating gradients of
about 20 MeV per meter. To accelerate particles to 1 TeV then requires very
large machines, typically tens of kilometers in circumference or length. The
cost of such large devices is becoming prohibitive.



We briefly review three state-of-the art machines. The proposed supercon-
ducting super collider (SSC) is a proton-proton collider using a standard collid-
ing ring configuration. Two proton beams are circulated in opposite directions
in the ring. The center of mass energy in a collision is 40 TeV. Individual
protons are known to consist of many partons, each of which carries only a
fraction of the proton’s energy. Thus the average center-of-mass energy for a
parton-parton collision is much less than the apparent center-of-mass energy of
the proton-proton collision. For this reason as well as others protons are not
ideal candidates for studying high energy physics!.

Electron positron colliding beam storage rings such as the large electron
positron ring at CERN (LEP) avoid these problems. At presently attainable
energies electrons do not display any internal structure. The center of mass
energy of the two beams is the center of mass energy available in a collision; for
LEP the design energy is 200 GeV. However, energy losses due to synchrotron
radiation are much higher for an electron ring than for a proton ring of the
same radius. To keep synchrotron losses to acceptable levels LEP was built 27
km in circumference. To scale up LEP to a 1 x 1 TeV machine would require
the purchase of large amounts of real estate. Large e* e~ machines are simply
too costly to build.

Linear colliders, such as the Stanford Linear- Collider (SLC), may prove
the successors to colliding beam storage rings. To avoid very long linear ma-
chines, which encounter the same fiscal constraints as very large ring machines,
. large accelerating gradients are necessary . The accelerating gradient at SLC is
roughly 20 MeV/m, running with a 10 cm wavelength. Thus a 1.5 on 1.5 TeV
machine using the SLC technology would be 2 x 50 km long.

The accelerating gradient may be improved by increasing the strength of
the electric field E. Unfortunately, very high electric fields cause breakdown
(sparks) in the accelerating structure. This is the limiting factor at SLC. Fur-
thermore, increasing E will increase the energy stored in the machine. Main-
taining stored energy requires (expensive) power, so increasing the electric field
without changing the rest of the design is costly.

Both of these problems can be eased by using shorter wavelengths?’3’*. The
breakdown field scales as A\~7/% and the stored energy required for a given ac-
celerating gradient scales as A2. If one could run an accelerator using a wave
length of 1 cm then accelerating gradients of several hundred MeV/m could be
obtained with acceptable power costs. Unfortunately, klystrons such as those
employed at SLC are not efficient generators of 1 cin power.

Sessler® noted that free electron lasers (FELs) can efficiently generate 1
cm power and proposed the Two Beam Accelerator (TBA). In this scheme
about 500 FELs replace the klystrons. The FELs are powered by a single low
energy, high current electron beam. This high current beam propagates parallel
to the relatively low current beam that is to be accelerated to high energy.
The microwave power generated by the FELs is coupled into the accelerating



structure in the same manner as is the power generated by klystrons in present
linear accelerators.

The energy extracted from the low energy beam in the form of microwaves
must be replaced periodically if the beam is to be used to power more than a few
meters of high gradient acceleration. Conventional induction units would ac-
complish this. The acceleration of low energy, high current beams by induction
units is a well developed, efficient technology.

Considerable analysis of the TBA must be done to determine its feasibil-
ity and to identify design criteria that a successful candidate must meet. For
example, the coupling scheme between the two beams must be developed and
studied. The growth of any side band instabilities in the FELs must be sup-
pressed. These and other considerations are being examined®’s.

In this study we will examine the question of particle detrapping in the low
energy beam due to stochasticity. A non-autonomous one degree of freedom
Hamiltonian is used to describe the motion of an electron in the FEL due to the
ponderomotive force of the wave and FEL wiggler field. Resonances between
this motion and the spatial variation along the series of FELs form islands
which may overlap. The stochasticity generic to such systems may cause the
low energy beam to disintegrate, preventing acceleration of the high energy

. beam. We develop criteria to ensure that this does not occur.

In the next section we write down the equations of motion for the electrons
in the FEL and derive a Hamiltonian that generates them. An analysis of
this Hamiltonian allows us to select an optimum design for the FEL wiggler.
In Section we obtain an estimate for the size of the trapped region from a
surface-of-section mapping. The results are compared to numerical integrations
of the. equations. In Section we describe the effects of resonances between
the libration in the ponderomotive well of the FEL and the periodic driving
of the induction unit. These resonances can lead to the coherent libration
of a significant fraction of the trapped particle population. We believe that
these resonances explain the bunching effect observed by Sternbach and Sessler’.

HAMILTONIAN FORMULATION

A model of the low energy beam dynamics of the TBA is shown in Fig. 1.
The low energy beam periodically passes through a tapered wiggler free electron
laser which extracts a fraction of its energy as microwave power to accelerate
the high energy beam. The low energy beam then passes through an induction
unit which restores the beam to its original energy. Current schemes call for
about 500 FELs for each accelerator. ‘
~ Kroll, Morton and Rosenbluth® discuss the operation of tapered wiggler
FELs. In an FEL, electrons pass through a periodic transverse magnetic field,
called the wiggler field. The resulting acceleration causes the electrons to emit
or absorb electromagnetic waves. Since the electrons travel with a velocity less
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Figure 1: One section of the TBA, consisting of a tapered free electron
laser followed by an induction acceleration unit. In this paper we assume
an infinitely thin induction acceleration region so that I; — 0.



than the speed of light, they will not, in general, stay in phase with the wave.
If the electrons fall behind the wave by an integer number of wavelengths while
travelling a distance equal to the period of the magnetic field, they will interact
coherently with the wave. An FEL operates in such a manner as to ensure that
most of the beam electrons emit coherent radiation.

FEls with constant amplitude, constant wavelength wiggler fields cannot
be steady state devices; the electrons give up energy to the electromagnetic
wave and slow down. Their phase relative to the wave slips until they begin to
reabsorb energy from the wave. Thus, electrons oscillate in energy, the wave
amplitude growing when the electron energy decreases and vice versa. The
motion of the electrons in the energy-phase angle phase space is similar to the
motion of a pendulum, with electron libration around a stable center in phase
space. The region of phase space inside the largest libration orbit is called a
bucket. The maximum energy that may be extracted from the beam is some
fraction of the width of the bucket in energy. In addition, the spread in energy
of the emerging beam is of order the bucket size. Due to this spread in energy
the beam cannot be used to power another FEL.

The tapered FEL avoids this limitation by slowly changing the strength and
the period of the wiggler field along the beam path to ensure that the electrons
on the average emit energy. Tapering the wiggler takes advantage of the fact
that electrons are trapped in the bucket. The bucket is moved adiabatically
down in energy drawing the trapped electrons down with it. The spread in
energy of the beam is again of the order of the bucket height, but the tapered
FEL can still extract energy from the beam.

For modeling the TBA, we assume that an electromagnetic wave has been
produced previous to the start of steady state FEL operation. This could be
accomplished by a series of FELs in which no power is drawn off to power
‘the high gradient structure. Thus we assume that the field strength at the
beginning of the FEL is non-zero.

We start with the equations of Kroll, Morton and Rosenbluth;

% _ 90O

E - Y
ai _ k, + d¢ _ ﬁ‘-(l + a2 — 2a,a, cos ),

dz dz i 1
da, kgc siny M)

dz 2w,
d¢ _ kyeay jcosipy
dz = 2w, v I°

In these equations v; is the energy of the i’th particle and the conjugate variable
1; is the phase of the i’th particle in the ponderomotive well, defined by

b= [(ka(a) + k)2 — wit. (2)



The quantity k, is the wavenumber of the wiggler field, k, and w, are the
wavenumber and the frequency of the microwaves, and a, = eA,/mc? is the
dimensionless vector potential of the wave (the subscript s stands for signal).
The quantity ¢ = [ k,dz — w,t is the phase of the wave, a., is the dimensionless
vector potential of the wiggler magnetic field, having wave number k,, and
k, = 47n €% /mc is the plasma wave number. The independent variable z is the
distance along the beam path. The brackets in the last two equations denote
an average over all N particles in the beam.

In the TBA, the FELs will be in waveguides. The effect on equations (1)
is minor®. In the second equation we must replace k, — k, — 6k,, where
8k, = w,/c — k, is the shift of the wavenumber from its value in vacuum. This
has the effect of changing the numerical value of k,. Similarly, k, must be
adjusted by a fill factor, k3 — k?(beam area/mode area). Again, this means
that the numerical value of k, must be adjusted from its value in vacuum.

In terms of the wave action J, = N(w?/kic*)a and letting 6; = ¥; —
where x = —¢, we obtain from (1)

ﬁ——k, (J )"’sxn(o -x)

%
%“ 2c_y,(1+ ,,)+"P7‘:w(N) cos(8; — x), o
1/2 -—
;‘J—_k’ (J ), ;mw‘% X)’
g () =D

These equations may be derived from the Hamiltonian

H(%,60i; Ju, X) = Z{’%‘Ti + )=

ﬁ'%k—’ (%)1/2 cos(6; — x)}

We expect that the total energy E, i.e. the wave energy plus the particle
energy, will be a constant of the motion. Summing the first and third equations
of (3) confirms that this is the case. Because of this it is convenient to make
a canonical transformation to E = J, + ¥;v;. We use the generating function
Fy(p;, 0i; E, x) = x(E — ;p:) + 0ip; to obtain J, = E — 3, pi, % = Pi» X = X
and 8; = 0; — x. This leads to the Hamiltonian

(4)

ko (E -E:'P:‘)m o
He(Pi:oi;E’X)=Z kwpi + al) — p Nz cosf; y. (5)




Note that 8; = 9; and p; = 7;, so we use ¢ and ;. Since x does not appear in
the Hamiltonian the total energy F is constant.

Setting the derivatives of the Hamiltonian with respect to v and ¥ equal to
zero, we find the two conditions for resonance

d$ lw(l+ad)  kaw(E—Ny)'P

d'y,.(z) —_—— kpaw (E — IV'YP)I/z sint/:
dz ~  7(2) N1/2 T

which yields the resonance values v, and 1,. Since we are interested in studying
the motion of particles in the bucket we make a final canonical transformation
to coordinates around the resonance. The generating function F>(%;, ¥;; E,x)=
Ex + (% + 7+(2))¥: — %:¥» gives us the new Hamiltonian

H= E{kw(% + %) + 5—(-—+—)(1 +al) -
— ko (B 11:17;(%)1’;:) %)Y cos(v, + ¥i) + ﬁtﬁ.}

The new variable 7; is the deviation of the energy of the i’th particle from the
resonant value +,.

Finally, we make the assumption that N+, >> Ef_'__, Fiory, >>< ¥; >. We
expect that the particles will be evenly distributed within the bucket so that
< 9; >= 0. In reference® this corresponds to k, >> d¢/dz, w,al/(2c7}) >>
(d¢/dz), since (d¢/dz) is nearly constant. This decouples the equations for -y
and 9 from the equation for ¢. Using this approximation and dropping the
bars over the particle energy and phase
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The corresponding equations of motion are

di — kpa, (E — N’Y--)1 /2 dv,
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& _ 0
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Since different particles are decoupled we will drop the subscript . For the
TBA a,, 7. and E are periodic functions of z, e.g. a,(z+ L) = aw(z), where L
is the length of an FEL making up one section of the TBA.

Using the Hamiltonian (8) we would like to design an FEL so that the area of
the trapped region in phase space is a maximum. We have several parameters
at our disposal: the wiggler strength as a function of 2, a,(z), the wiggler
wavelength k,(z), and the amplitude of the signal a,(z), or,equivalently the
total energy E(z). We will choose a linear dependence for +,(z) for simplicity.
We have shown that in an FEL with no power extracted E is a constant of the
motion. However in the TBA we wish to extract energy from the device, in this
case by placing ports in the FELs. This may be modeled in the Hamiltonian
(8) simply by adding a term f(z)x where f(2) is the derivative of the desired z
dependence of E. To motivate our design choices consider the expansion of H
in powers of v/~,:

18*H
' 287,

= koo + 2G(I2 = Fol) cos(ihy +4) + 2

+ :kw(Z)'Yr - %G(z)‘)’f + F, cos(v, + 1/’)] (%)
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] 2
-+ .%G(z)'yz(z) — F,cos(¥, +¢)? (1) (10)
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where G(z) = w,(1 + a2)/(e?) and F, = w,ana,/(cy.).



Using the resonance conditions (6) and ignoring terms that are independent
of v and 1, the Hamiltonian (10) simplifies to

H =%G(:.»')'y2 - F,coé Y, cosyp + -?Eﬁ'rﬁm/’

+ Fosin (in g = §) + = costs — 1)y (11)

2
+ F,(sin 1, sin ¢ — cos ¥, cos 1) (71) +....

The Hamiltonian (11) has the form of a pendulum (the first two terms), plus
perturbations. However, the “mass” G(z) and the “length” F(z) = F,cos,
are both functions of the “time” z. If the variation with z is slow compared to
the frequency VFG adiabatic theory tells us that the action does not change,
and particles are trapped. This is in fact the case as the particles pass through
the slow taper of the FEL. We also assume that a,, and a, do not vanish in the
induction accelerator unit so that the separatrix defining the bucket does not
collapse.

When the beam passes through the induction unit to the beginning of the
next FEL section, k,, aw, 7 and a, or E all vary rapidly. This variation may
break adiabaticity, causing detrapping of the electrons. To avoid this, we choose
the functions a, k, and E so that G and F are held constant. Specifically we
set

Z
Ye(2) =70 - Avg

au(2) =

- 3
a+ao)(Z) -1
F(@0)
(()
— aw(0)7-(2) _ 1/2
E(z) = Nv.(2) + o0 (E(0) — N)
This should minimize the amount of detrapping.

Figure 2 shows the surface of section obtained by plotting v versus ¥ for
100 particles at the beginning of an FEL section. These phase portraits were
obtained by integrating (9) numerically. G and F are held constant for the
design corresponding to Fig. 2a. We see a well-defined bucket with electron
orbits showing little evidence of stochasticity. In Fig. 2b, G changes linearly
with z by 50 percent from one end of the FEL to the other. We now see a
very large region of stochasticity. Because G varies rapidly across the induction
acceleration unit, the action of trapped orbits jumps every time an induction
acceleration unit is traversed. This leads to chaos and detrapping. In both cases
the taper Ay = 7,(z = 0) — 7.(2 = L) = 4. We have run numerical simulations
of many FEL designs (all with linear tapers), and fixing G and F' maximizes the

-~

(12)
ku(2) = -G(O)‘rr( ) -
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size of the trapped region. Allowing G and F to vary by 10 — 20 percent leads
to trapped regions about 5 percent smaller than in Fig. 2a.

STOCHASTICITY CRITERION

Choosing G and F to be constants, we now estimate the size of the trapped
region. The maximum trapped region is defined by the area enclosed by the sep-
aratrix, the boundary between libration and rotation around the resonant orbit.
For a tapered FEL, the Hamiltonian describing the system is non-autonomous,
and we expect the homoclinic orbits forming the separatrix to break up and
cross, leading to chaos and detrapping. Effectively, there are two degrees of
freedom: the motion of the particles librating in the bucket, and the periodic
(period L) forcing of the taper and induction acceleration unit. The interaction
between these two degrees of freedom leads to resonances.

The analysis is simplified by employing action-angle variables. The action
in a periodic system is defined as

1
J=o f ~dp. (13)

The conjugate angle a is then found by requiring that the transformation from
(7,%) = (J, @) be canonical. This transformation generates a new Hamiltonian
of the form :

Ko(J,2) + K1(J,a, 2). (14)

A resonance occurs when the frequencies of the two degrees of freedom are
rationally related, so that

wy _ : '
;; - s ’ (15)
Where OK. 2
T
w(J) = -8—12’ wy(L) = - (16)

Calculating the location and size of these resonances in phase space allows us to
estimate an overlap criterion predicting the size of the chaotic region. Figure 3a
is a schematic diagram of the resonances in the (v, 1) surface of section. Figure
3b shows the same section in action-angle variables (J, a). We illustrate two sets
of resonances, with periods r/s = 5, 6. In a surface of section the periodic orbits
appear as fixed points, with an island around each fixed point. Each island has
its own separatrix, with higher order resonances forming smaller islands, and
so on. This structure is explicated in Lichtenberg and Lieberman®.

The idea of the overlap criterion is that as the islands grow, their separatrices
will touch. When this happens the chaos around each separatrix will link up,
destroying any invariant curves that would bound the particle motion. The of
overlap is usually parameterized by a stochasticity parameter K°.

The most convenient approach to the calculation is to construct a surface of
section of the flow generated by the Hamiltonian (8). Because the Hamiltonian

11
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Figure 3: Schematic drawing of the motion near a resonance. Two resonances
inside the FEL bucket are shown, a period five and a period six (r/s=5 and 6).
a) The (v, ¥) plane. b) The (J, a) plane.
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is periodic in z with period L, we will calculate v and ¥ at z = nL + ¢, where
n is an integer. In this way we will generate a mapping of the phase plane
onto itself. Since we are taking an equal time map using canonical variables,
Liouville’s theorem tells us that the mapping must be area preserving. Starting
from the Hamiltonian (11), we expand in powers of . Keeping terms to fourth
order in 4 and v, we obtain

\ F,siny,
H= 307+ 5F¥ — i ~ Ty
_1 s_1 F 2 Fsm¢,. _2F 7
3:" "’;’f :v,(z)'” @ '”'I’: i TREERE 4
‘g siny, 4 2.2 sing, 5
- T T T e
1 2F ~4
+9l0 el

Recall that we have chosen G=const. and F=const. Using the generating

function
Fi(¢,a) =1/2y/F/GY* cot @ (18)

to transform to action-angle variables (J, a) of the linearized motion, we obtain
the new Hamiltonian

K = K,(J,z) + K\(J, a, z)

FR \
= [wo — )z]J - GJ ) 19)
FR F(2y/G/F '
- %(Z)chosh T %)

The cos2a term comes from the third term in (17), and the cos a term comes
from the sum of the sixth and eighth terms. We have examined the rest of the
terms in (17) and these three (third, sixth, and eighth) contribute the largest
jump in the action (the size of which is calculated below). We have defined
wo = VGF and R = /F/G. The approximate adiabatic invariant ( the action)

is J = 1/2\/G/F~? + 1/2,/F/Gy?, while a = tan™" ((F/G)"/?¢/7). Treating
K, as a small perturbation, the zero order motion is

J%cosa+...

(20)

where w = w, — FR/(70(7 — A7)), and 7o = 7-(0). Integrating over one period,

13



we arrive at the twist mapping

Jn+l = Jm
1 (21)
Qpyl = Qp +wL - §GLJ,‘+1.

This mapping describes the trapped particle motion when there is no taper in
the FEL and no induction accelerator kick. The corrections due to these effects
are modeled by K. To find the corrections to (20), we consider

AK = j [ —dz =L +5. (22)

Because of adiabatic invariance we expect the first integral I;, due to the slow
changes in parameters along the FEL, to be small. The second integral I,
describes the effects of the sudden change in FEL parameters from the end of
one FEL to the beginning of the next. If there is any mismatch in the taper
A~ and the size of the kick in energy imparted by the induction acceleration
unit, it would also be included in I,. Writing out the first integral, we find

2
o _ [F2FRIcosa (d dz+jL (2/G/F) J¥cosa dr\ 4, (23)
Tl wEP \dz 0 " )

We consider the second term (the first is smaller by a factor 1/4, =~ 1/40). We
expand

1 2mnz 2tnz
7,—(2?—%/2+n§la,.cos +bn L (24)
where
o, 12 ( )
'71-2))2 27y, (0) (25)
b =
- (0) (21r’7r(0))
Then we can estimate the size of I; by
1/2 . 4A"/
= 32 __ 27
L (2 G/F) FJ ( T (0)3) COS G + - - )

=dpJps1€080, +... .

for a resonance of order r/s = m (3 = 1 leads to the largest effect). Away from

14



resonance the integral is much smaller. Now consider I, :

Lte d 1
Iz = —FR.qIn.,.l COos 2&,; /L—c Iz' (7—(?)3) dz

0./G R e d (1

_ ( /F) Flicosan [~ — (7—(5) dz

- R S 27

= FRJn-H COS Oy, [72 ('Yo _ A’)’)z] ( )
Ay

0= 27

= awJn41 cOS 20, + wa,%_,,l COS Qrp,.

We have defined the small quantities

1
+ (2 G/F)’ FJ3,, cosam

>l al

3I[F Ay
y= (2/a7F) [F] = A1
/ wl 7(70 — A7)

For 79 = 42, Ay = 4, a,, = 13 and a, = 0.4, the nominal design values, we find
a =~ Tx10™3 and b ~ 1 x10~2. For the same design values we have d,, ~ 3x10~7.
Thus for the tapers envisioned for use in the TBA we may neglect the change
in action due to the non-adiabaticity of J in the FEL. The result is, using just
Iz,

(28)

AK = waJny cos2a, + wa:_/:l COS Qp. (29)
To see how this affects the mapping, observe that
AK,=K(nL+¢)-K((n—1)L +¢)

= W(Jnp1 = Jn) = (G/8)(Jn41 — Ju)Jn + O(AT?).

For trapped particles (G/8)J, << w so we neglect that term. Then from (30)
AJ = (AK/w) and the first order change in J becomes

(30)

Jat1 = Jn + aJns1 €08 20 + bI; cOS n. (31)
This change in J is derivable from the generating function
3
Fy(Jot1,0n) = Jnp10n + wldpyy — %Juﬁ sin 2a, — bJ3) sinan (32)

through the equation J,;; = 8F:/8a,. Using any1 = 8F2/8Jn41, We obtain
the change in a, to first order, which yields the complete mapping

Jn-l—l = Jn + aJn+l cos 2(!,. + bJ:./'.zl cosay,,

(33)
Qpy1 = 0p +wL - %GJ,H.,L - gsin 2a, — g—bJ,%_,_l sin a,.
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To find the stochz;sticity coﬁd.ition, we note that we are interested in motion
near the separatrix, where J >> 1, so that a << bv/J << GLJ. Hence we set
a = 0. Then we define I = —(1/8)GLJ to obtain

I = I, + K(J)cosay, ,

(34)
Qni1 =C!,.+WL+I,.+1+...

where K(J) = GLbJ*/?/8 is the stochasticity parameter and we neglect the
term involving bv/J << GLJ in the c equation. This is a slight generalization
of Chirikov’s standard map!®. Setting K = .976 ~ 1 to find the island overlap
condition, we obtain

Koie = %I-‘wi, =1. (35)
The action at which the motion becomes stochastic is then
2
o 8wyo(70 — A7) * (36)
FGL(2\/G/F)\*Ay

We note that J,; — 0o as Ay — 0, meaning that the entire bucket is regular.
Of course the estimate (36) only makes sense for Juie < Joz = (8/7)y/F/G, the
action of the separatrix orbit. If this inequality holds, the fraction of the bucket
filled by trapped orbits is

J;: _ (24/3 1:1"'7/3) ['Yo(‘YoA; A'r)]z/s. -

Writing F in terms of the FEL parameters, we obtain from (37) the explicit
result

Jorie _ 1 (2 — AN
Jo (24/31r((w.a..,(0)a.(0)/'yoc)z-A'yz/L’)lla) [ Ay ] - (38)

As A« is increased the stochastic region around the separatrix grows into the
trapped region and J.; decreases. Figure 4 is a plot of the ratio (trapped
area/bucket area) versus taper Ay. The solid line is the prediction of (37).
The points are measurements of the maximum deviation of v in the trapped
region from the resonant value taken from numerical integrations of (9). These
are converted to a ratio of areas, trapped area divided by the area inside the
separatrix, by ratio= (Ymaz/7sz)?- There are two points at each taper since the
ratios for 7 at the top of the bucket and at the bottom differ slightly. For small
tapers our calculation predicts perfect trapping. The numerical experiments
indicate very little detrapping in agreement with the theory. Around Ay =
15, where our calculation predicts detrapping, the area of the trapped region
observed in the numerical experiments rapidly decreases.
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integrations. Here 7, = 42.
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RESONANT ISLANDS

The mapping (33) that we have derived gives us more information about
orbits than the simple stochasticity criterion. Fixed points of the mapping
correspond to closed, periodic orbits of the flow in phase space. To see this,
consider the Hamiltonian (8), modified to take into account the energy extracted
from the FEL:

Hiy,9,E,x) =Y {kt..((m +9) +

=1

)((1 +ag))-

d7r

2(+

(39)
- 1/2
(7’:’:77,') = NIY,Z) os(¥r + i) + % — f(2)x -

The energy E evolves independently of the rest of the dynaxmcs, since dE/dz = ..
f(z) is fixed by the design. Also, the evolution of x does not influence the
evolution of y or 1. The problem reduces to a one degree of freedom, ”time” (z)
dependent system. All orbits start at z = 0 and evolve to z = 500L. However,
since each FEL-inductor pair is identical we may identify axial positions that
" differ by L. Identifying points with z coordinate differing by L means that the
flow is on a torus. The mapping is a slice through the torus at a particular
value of z mod L. Orbits that return te the same values of y and ¥ in this slice
are closed orbits.

We expect the topology of the flow to be affected by the presence of stable or
unstable periodic orbits. In particular, we know that islands exist around stable
periodic orbits, and that particles initially in such an island will be trapped in
that island. Thus, we expect particles to be trapped around a stable periodic
orbit inside the trapped region of the FEL bucket. If the island is large, a
significant number of particles will be trapped in orbits that remain close to
the periodic orbit. These particles will rotate around 4, and ¥, in a coherent
manner, behaving as if they were one large particle. Such a super particle, if
large enough, might alter the signal wave in a deleterious manner. Figure 5 is
a section taken 15 cm along the FEL, showing several such islands surrounding
the main resonance.

We use the mapping (33) to calculate the location in phase space of periodic
orbits, the stability of such orbits, and the size of any island around a stable
periodic orbit. To find orbits with period L, we set AJ = J,;; — J, = 0 and
Aa = any1 — an = 27q, where q is an integer. Writing g(J, a; L) for (AJ, Ac),
we set

T — aJ cos2a + bJ3 cos _
9(Jrai L) = ( (w—1GJ)L - ¢sin2a — 3bJ3 sina—21rq) =0. (40)

We think of L as a bifurcation parameter. A necessary condition for a bifurca-
tion is that the eigenvalues of Dg lie on the unit circle:

4 40AJ ( )
Dg = ( o Tog, ) 41
A%s g1y A%a g, aad
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where

_aJn-i-l
_ 1
~ (1 - acos2a — (3/2)bJV/2 cosa)’ 42
AT ' (42)
— =—2asin2a - bJ**sina,
da
dAa 1

3b .
o7 =8¢z me
If we look for bifurcation of the central fixed point at J = 0, dAJ/8a —
0(J), 3Aa/dJ — O(1/v/J) and A = 1/(1—acos2a). The eigenvalues are A, =
1 —acos2a and A\; = 1/(1 — acos2a). Setting A = 1 fixes a = +v/4, +37/4.
Since o must be fixed g(J,, as; L) = 0 may be solved for

4rqta
"

The plus sign corresponds to @ = n/4 and —3n/4, while the minus sign cor-
responds to a = —m/4 and 37/4. In both cases there is a collision between
two orbits which exchange stability. In the collision at L_ = 47q — a/(2w) the
stable fixed point at J = 0 loses stability to an unstable fixed point born at a

slightly smaller L, o
L‘I’INL_(I—m), : (44)

in a saddle-node bifurcation. In the collision at L = 4wq + a/(2w) the unstable
fixed point at J = 0 regains stability after colliding with a stable orbit born in
a second saddle-node bifurcation at

L= (43)

ob?
Ira=~ L, (1 G(4mq + a)) ) (45)
Finally there is a third saddle-node bifurcation in which the stable fixed point
originating at J = 0, a = 3w/4, L = L_ annihilates the unstable fixed point
which originated in the collision at J = 0, « = —3w/4, L = L,. This occurs
at J = a?/b?, a =~ +n, Lrs =~ (2nq + a/2)/(w — (1/8)Ga?/b?). The bifurcation
diagram and the corresponding phase spaces are shown in Fig. 6.
The result of all these bifurcations is that one stable island is born at small
positive J and moves to larger J as L increases. At the center of the island is
a fixed point located at (J,, ). From (40) we find for J, > 4a¢/(GL) =~ .01

8 2nq
Lz (@-T)
n 2a (46)

aqzi-b\/z.
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Figure 6: Bifurcation diagram for the TBA. a) Location of the stable (solid
lines) and unstable (dashed lines) fixed points as a function of L. b) Phase
space portraits for values of L marked in a).
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We are treating the zero order problem as if it were a harmonic oscillator rather
than a pendulum. This simplifies the analysis but the price we pay is that the
frequency w(J) = w, — (1/8)GJ does not go to zero at the separatrix. In fact
our w(J) is too large for all non-zero values of J. This means that our predicted
value of J,, and hence 1),, will be too large. This small but noticeable error can
be reduced by using the full pendulum Hamiltonian as the zero order system.
The resulting action and frequency, involving elliptic integrals, are given in ?,
for example.

We are interested in the area of the island and its amplitude of oscillation
&+ about «,. We note that §v is proportional to V/J. If §v is small there will be
no noticeable oscillations in a, since in that case the coherent motion will not
change the average energy of the beam. Therefore we consider only the case
J; >> 1. To find the area of the island, we linearize around the fixed point at
(J,» ). Ignoring the term proportional to J since J%/2 >> J, we find

8Jnyy = 6J, + bJF sinbon
1 (47)
6&,....1 = 6% - §GL6J,.+1.

Letting I = (GL/8)J we arrive at the standard map'® with K = (1/8)GLbJ*/2.
The width of the island in the standard map is 2V'K, or

GLbJ}
Ly

AJ, = ‘/ §G2-L'f.1$ . (49)

The width AJ,, is a function of the taper of the wiggler through b, and depends
explicitly on the length of the FEL. We may compare this calculation to the
results of numerical integration of the basic equations (9). The results are shown
in Fig. 7. Figure 7a is a plot of ¥, = 4/2J,;/Rsinay as a function of the length
of the FELs. (The fixed point is at 4, = 0 so we plot only 1,). The taper of
the wiggler is four. The data points are taken from surface of section plots like
those in Fig. 5, obtained by integrating (9). The solid line is the prediction of
(46).

Figure 7b gives the width A% of the island in radians as a function of
the length of the FELs. The solid line is found using (49) and the canonical
transformation from (J,a) to (v,%), and the points are measurements from
phase plots. The area of the island around the stable fixed point may be
an appreciable fraction (8 to 10 percent) of the area of the trapped region.
Particles inside this island will oscillate coherently around the center of the
trapped region. They oscillate (nearly) as a rigid body around (7, %,) with

Al, =2 (48)

In terms of J
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the frequency corresponding to J,, that is, w = 2wq/L. This coherent motion
will modulate a,, causing it to oscillate around its nominal value (Fig. 8). This
will produce a modulation in ¢, the phase of the signal, adversely affecting the
acceleration of the high energy beam. In addition, the modulation introduces
another frequency into the FEL which may drive parametric instabilities.

One way to alleviate this problem is suggested by Fig. 7. We can adjust
the length of the FEL (or w) so that the islands born in bifurcations are either
out near the separatrix or near the central fixed point. Particles in islands near
the separatrix will be detrapped so that there is little coherent motion. At the
same time L must be chosen so that the most recently born island is near the
center of the bucket. This will have two effects. First, the area of the island will
be small, so that the number of coherently rotating particles is small. Second,
the amplitude of oscillation §v is small, so that a, is not strongly modulated.
In Fig. 2, J, and J; are near the separatrix, but J; is too large and causes the
oscillations shown in Fig. 8.

CONCLUSIONS

We have studied a simple one dimensional model to examine the performance
of the two beam accelerator. In order for the accelerator to be successfully op-
erated the electrons that drive the FELs must be trapped in the ponderomotive
potential well bucket. Because the TBA employs tapered FELs the particle
motion is described by a non-autonomous one degree of freedom Hamiltonian.
In general the Hamiltonian predicts stochastic motion leading to detrapping of
particles. This detrapping is observed in numerical integrations of the equations
describing the TBA, at a level in agreement with theoretical predictions. We
have given a criterion to keep the detrapping to acceptable levels.

Resonances between the nonuniform spatial dependence and the libration of
particles in the FEL bucket lead to the formation of islands within the bucket.
These islands trap particles in the same manner that the bucket does. Such
island particles rotate coherently within the well, modulating the power output
of the FELs. We have determined the position and size of the islands in phase
space. Suitable choices of parameters allows us to minimize the amplitude of
the modulation.

We conclude that if the design of the FELs employed in the TBA is suitably
chosen, stochasticity and detrapping will not significantly degrade the perfor-
mance of the TBA.
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