

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE POSTGRES PAPERS

by

Michael Stonebraker and Lawrence A. Rowe

(editors)

Memorandum No. UCB/ERL M86/85

25 June 1987

(Revised)

THE POSTGRES PAPERS

by

Michael Stonebraker and Lawrence A. Rowe

(editors)

Memorandum No. UCB/ERL M86/85

25 June 1987

(Revised)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

THE POSTGRES PAPERS

by

Michael Stonebraker and Lawrence A. Rowe

(editors)

Memorandum No. UCB/ERL M86/85

25 June 1987

(Revised)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FORWARD

This collection of papers reports on the design of the POSTGRES data base
management system. The first paper entitled "The Design of POSTGRES" gives
an overview ofthe system and the various capabilities that were planned. It also
describes the design as it was envisioned in early 1986. Then, three papers are
included that describe aspects ofthe system in more detail. The first one indicates
the data model and query language that is being implemented. This paper was
written in March 1987, and the reader should note that the data model evolved
somewhat during the intervening year to include the notion of inheritance and a
set-oriented query language construct. The next paper describes the rules system
that is actually being implemented. In spirit it is the same as presented in the ori
ginal POSTGRES paper; however, the syntax has been changed to be somewhat
cleaner and the lock manager that supports the implementation is considerably
more complex. Lastly, a paper on the design of the storage manager is included.
This paper elaborates on the sketchy design presented in the the 1986 paper, but
contains no fundamental changes.

Lastly, this collection of papers concludes with a revised version of the
POSTGRES programming environment that is being constructed by Lawrence
Rowe and a collection ofstudents. This system, Object-FADS, is a user-extendible
object-oriented system that will allow the construction of user interface programs
for POSTGRES. The paper presents the environment as well as the techniques
that will support efficient execution ofObject-FADS programs.

At the current time (July 1987) large pieces of POSTGRES are operational.
The parser, optimizer and communication routines are complete. The run-time
system is still primitive, but all POSTGRES function except support for rules and
procedures is present. The storage manager for the magnetic disk system is work
ing, while the archive system is in the early phase of coding. Lastly, the abstract
data type system and extendible index capability is fully operational. We expect to
have a complete prototype by January, 1988 that could be used by others for useful
work.

The system is being constructed under the direction ofJeff Anton who is our
full-time chief programmer by a team consisting of Philip Chang, Steven Grady,
Serge Granik, Mike Hirohama, Spyros Potamianos and Yongdong Wang.

This research was sponsored by the National Science Foundation under grant DMC-
8504633 and by the Navy Electronics Systems Command under contract N00039-84-C-
0089.

Table of Contents

The Design ofPOSTGRES : l

The POSTGRES Data Model 33

A Rule Manager for Relational Database Systems 47

The Design ofthe POSTGRES Storage System 69

A Shared Object Hierarchy 91

THE DESIGN OF POSTGRES

Michael Stonebraker and Lawrence A. Rowe

Department of ElectricalEngineering
and Computer Sciences
University of California

Berkeley, CA 94720

Abstract

This paper presents the preliminary design of a new database management
system, called POSTGRES, that is the successor to the INGRES relational data
base system. The main design goals of the new system are to:

1) provide better support for complex objects,

2) provide userextendibility for data types, operators and access methods,
3) provide facilities for active databases (i.e., alerters and triggers) and

inferencing including forward- and backward-chaining,

4) simplify the DBMS code for crash recovery,

5) produce a design that can take advantage of optical disks, workstations
composed of multiple tightly-coupled processors, and custom designed
VLSI chips, and

6) make as few changes as possible (preferably none) to the relational model.

The paper describes the query language, programming langauge interface, system
architecture, query processing strategy, and storage system for the new system.

1. INTRODUCTION

The INGRES relational database management system (DBMS) was imple
mented during 1975-1977 at the Univerisity of California. Since 1978 various pro
totype extensions have been made to support distributed databases [STON83a],
ordered relations [STON83b], abstract data types [STON83c], and QUEL as a data
type [STON84a]. In addition, we proposed but never prototyped a new application
program interface [STON84b]. The University ofCalifornia version ofINGRES has
been "hacked up enough" to make the inclusion of substantial new function
extremely difficult. Another problem with continuing to extend the existing system
is that many of our proposed ideas would be difficult to integrate into that system
because of earlier design decisions. Consequently, we are building a new database
system, called POSTGRES (POST inGRES).

This paper describes the design rationale, the features of POSTGRES, and our
proposed implementation for the system. The next section discusses the design
goals for the system. Sections 3 and 4 presents the query language and program
ming language interface, respectively, to the system. Section 5 describes the sys
tem architecture including the process structure, query processing strategies, and
storage system.

2. DISCUSSION OF DESIGN GOALS
The relational data model has proven very successful at solving most business

data processing problems. Many commercial systems are being marketed that are
based on the relational model and in time these systems will replace older technol
ogy DBMS's. However, there are many engineering applications (e.g., CAD sys
tems, programming environments, geographic data, and graphics) for which a con
ventional relational system is not suitable. We have embarked on the design and
implementation of a new generation of DBMS's, based on the relational model,
that will provide the facilities required by these applications. This section
describes the major design goals for this new system.

The first goal is to support complex objects [LORI83, STON83c]. Engineering
data, in contrast to business data, is more complex and dynamic. Although the
required data types can be simulated on a relational system, the performance of
the applications is unacceptable. Consider the following simple example. The
objective is to store a collection of geographic objects in a database (e.g., polygons,
lines, and circles). In a conventional relational DBMS, a relation for each type of
object with appropriate fields would be created:

POLYGON (id, other fields)
CIRCLE (id, other fields)
LINE (id, other fields)

To display these objects on the screen would require additional information that
represented display characteristics for each object (e.g., color, position, scaling fac
tor, etc.). Because this information is the same for all objects, it can be stored in a
single relation:

DISPLAY(color, position, scaling, obj-type, object-id)
The "object-id" field is the identifier of a tuple in a relation identified by the "obj-
type" field (i.e., POLYGON, CIRCLE, or LINE). Given this representation, the fol
lowing commands would have to be executed to produce a display:

foreach OBJ in {POLYGON, CIRCLE, LINE} do
range of 0 is OBJ
range of D is DISPLAY
retrieve (D.all, O.all)
where D.object-id = O.id
and D.obj-type = OBJ

Unfortunately, this collection of commands will not be executed fast enough by any
relational system to "paint the screen" in real time (i.e., one or two seconds). The
problem is that regardless of how fast your DBMS is there are too many queries
that have to be executed to fetch the data for the object. The feature that is
needed is the ability to store the object in a field in DISPLAY so that only one

query is required to fetch it. Consequently, our first goal is to correct this
deficiency.

The second goal for POSTGRES is to make it easier to extend the DBMS so
that it can be used in new application domains. A conventional DBMS has a small
set ofbuilt-in date types and access methods. Many applications require special
ized data types (e.g., geometic data types for CAD/CAM or alatitude and longitude
position data type for mapping applications). While these data types can be simu
lated on the built-in data types, the resulting queries are verbose and confusing
and the performance can be poor. A simple example using boxes is presented else
where [STON86]. Such applications would be best served by the ability to add new
data types and new operators to a DBMS. Moreover, B-trees are only appropriate
for certain kinds ofdate, and new access methods are often required for some data
types. For example, K-D-B trees [ROBI81] and R-trees [GUTM84] are appropriate
access methods for pointand polygon data, respectively.

Consequently, our second goal is to allow new data types, new operators and
new access methods to be included in the DBMS. Moreover, it is crucial that they
be implementable by non-experts which means easy-to-use interfaces should be
preserved for any code that will be written by auser. Other researchers are pursu
ing a similar goal [DEWI85].

The third goal for POSTGRES is to support active databases and rules. Many
applications are most easily programmed using alerters and triggers. For example,
form-flow applications such as abug reporting system require active forms that are
passed from one user to another [TSIC82, ROWE821. In a bug report application,
the manager of the program maintenance group should be notified if a high prior
ity bug that has been assigned to a programmer has not been fixed by a specified
date. A database alerter is needed that will send a message to the manager cal
ling his attention to the problem. Triggers can be used to propagate updates in the
database to maintain consistency. For example, deleting a department tuple in the
DEPT relation might trigger an update to delete all employees in that department
in the EMP relation.

In addition, many expert system applications operate on data that is more
easily described as rules rather than as date values. For example, the teaching
load of professors in the EECS department can be described by the following rules:

1) The normal load is 8 contact hours per year

2) The scheduling officer gets a 25 percent reduction

3) The chairman does not have to teach

4) Faculty on research leave receive a reduction proportional to their leave
fraction

5) Courses with less than 10 students generate credit at 0.1 contact hours per
student

6) Courses with more than 50 students generate EXTRA contact hours at a
rate of 0.01 per student in excess of 50

7) Faculty can have a credit balance or a deficit ofup to 2 contact hours

These rules are subject to frequent change. The leave status, course assignments,
and administrative assignments (e.g., chairman and scheduling officer) all change
frequently. It would be most natural to store the above rules in a DBMS and then
infer the actual teaching load of individual faculty rather than storing teaching
load as ordinary data and then attempting to enforce the above rules by a collec
tion of complex integrity constraints. Consequently, our third goal is to support
alerters, triggers, and general rule processing.

The fourth goal for POSTGRES is to reduce the amount ofcode in the DBMS
written to support crash recovery Most DBMS's have a large amount of crash
recovery code that is tricky to write, full of special cases, and very difficult to test
and debug. Because one of our goals is to allow user-defined access methods, it is
imperative that the model for crash recovery be as simple as possible and easily
extendible. Our proposed approach is to treat the log as normal data managed by
the DBMS which will simplify the recovery code and simultaneously provide sup
port for access to the historical date.

Our next goal is to make use ofnew technologies whenever possible. Optical
disks (even writable optical disks) are becoming available in the commercial mark
etplace. Although they have slower access characteristics, their price-performance
and reliability may prove attractive. A system design that includes optical disks
in the storage hierarchy will have an advantage. Another technology that we for-
see is workstation-sized processors with several CPU's. We want to design
POSTGRES in such way as to take advantage of these CPU resources. Lastly, a
design that could utilize special purpose hardware effectively might make a con
vincing case for designing and implementing custom designed VLSI chips. Our
fifth goal, then, is to investigate a design that can effectively utilize an optical
disk, several tightly coupled processors and custom designed VLSI chips.

The last goal for POSTGRES is to make as few changes to the relational
model as possible. First, many users in the business data processing world will
become familiar with relational concepts and this framework should be preserved if
possible. Second, we believe the original "spartan simplicity" argument made by
Codd [CODD70] is as true today as in 1970. Lastly, there are many semantic data
models but there does not appear to be a small model that will solve everyone's
problem. For example, a generalization hierarchy will not solve the problem of
structuring CAD data and the design models developed by the CAD community
will not handle generalization hierarchies. Rather than building a system that is
based on a large, complex date model, we believe a new system should be built on
a small, simple model that is extendible. We believe that we can accomplish our
goals while preserving the relational model. Other researchers are striving for
similar goals but they are using different approaches [AFSA85, ATKI84, COPE84,
DERR85, LORI83, LUM85]

The remainder of the paper describes the design of POSTGRES and the basic
system architecture we propose to use to implement the system.

3. POSTQUEL
This section describes the query language supported by POSTGRES. The

relational model as described in the original definition by Codd [CODD70] has
been preserved. A database is composed of a collection of relations that contain

tuples with the same fields defined, and the values in a field have the same data
type. The query language is based on the INGRES query language QUEL
[HELD75]. Several extensions and changes have been made to QUEL so the new
language is called POSTQUEL to distinguish it from the original language and
other QUEL extensions described elsewhere [STON85a, KUNG84].

Most of QUEL is left intact. The following commands are included in POST
QUEL without any changes: Create Relation, Destroy Relation, Append, Delete,
Replace, Retrieve, Retrieve into Result, Define View, Define Integrity, and Define
Protection. The Modify command which specified the storage structure for a rela
tion has been omitted because all relations are stored in a particular structure
designed to support historical data. The Index command is retained so that other
access paths to the date can be defined.

Although the basic structure of POSTQUEL is very similar to QUEL,
numerous extensions have been made to support complex objects, user-defined date
types and access methods, time varying date (i.e., versions, snapshots, and histori
cal date), iteration queries, alerters, triggers, and rules. These changes are
described in the subsections that follow.

3.1. Data Definition

The following built-in data types are provided;

1) integers,

2) floating point,

3) fixed length character strings,

4) unbounded varying length arrays of fixed types with an arbitrary number
of dimensions,

5) POSTQUEL, and

6) procedure.

Scalar type fields (e.g., integer, floating point, and fixed length character strings)
are referenced by the conventional dot notation (e.g., EMP.name).

Variable length arrays are provided for applications that need to store large
homogenous sequences of data (e.g., signal processing date, image, or voice).
Fields ofthis type are referenced in the standard way (e.g., EMP.picture[i] refers to
the i-th element of the picture array). A special case of arrays is the text date type
which is a one-dimensional array of characters. Note that arrays can be extended
dynamically.

Fields of type POSTQUEL contain a sequence of date manipulation com
mands. They are referenced by the conventional dot notation. However, if a
POSTQUEL field conteins a retrieve command, the data specified by that command
can be implicitly referenced by a multiple dot notation (e.g.,
EMP.hobbies.battingavg) as proposed elsewhere [STON84a] and first suggested by
Zaniolo in GEM [ZANI83].

Fields of type procedure contain procedures written in a general purpose pro
gramming language with embedded data manipulation commands (e.g., EQUEL
[ALLM76] or Rigel [ROWE79]). Fields of type procedure and POSTQUEL can be
executed using the Execute command. Suppose we are given a relation with the
following definition

EMP(name, age, salary, hobbies, dept)
in which the "hobbies" field is of type POSTQUEL. That is, "hobbies" contains
queries that retrieve date about the employee's hobbies from other relations. The
following command will execute the queries in that field:

execute (EMP.hobbies)
where EMP.name = "Smith"

The value returned by this command can be a sequence of tuples with varying
types because the field can contain more than one retrieve command and different
commands can return different types of records. Consequently, the programming
language interface must provide facilities to determine the type of the returned
records and to access the fields dynamically.

Fields of type POSTQUEL and procedure can be used to represent complex
objects with shared subobjects and to support multiple representations of data.
Examples are given in the next section on complex objects.

In addition to these built-in date types, user-defined data types can be defined
using an interface similar to the one developed for ADT-INGRES [STON83c,
STON861. New date types and operators can be defined with the user-defined data
type facility.

3.2. Complex Objects
This section describes how fields of type POSTQUEL and procedure can be

used to represent shared complex objects and to support multiple representations of
data.

Shared complex objects can be represented by a field of type POSTQUEL that
contains a sequence of commands to retrieve data from other relations that
represent the subobjects. For example, given the relations POLYGON, CIRCLE,
and LINE defined above, an object relation can be defined that represents complex
objects composed of polygons, circles, and lines. The definition of the object rela
tion would be:

create OBJECT (name = char[10], obj = postquel)
The table in figure 1 shows sample values for this relation. The relation contains
the description of two complex objects named "apple" and "orange." The object
"apple" is composed of a polygon and a circle and the object "orange" is composed of
a line and a polygon. Notice that both objects share the polygon with id equal to
10.

Multiple representations of data are useful for caching data in a data struc
ture that is better suited to a particular use while still retaining the ease of access
via a relational representation. Many examples of this use are found in database
systems (e.g., main memory relation descriptors) and forms systems [ROWE85J.

6

Name OBJ

apple

orange

retrieve (POLYGON.all)
where POLYGON.id = 10
retrieve (CIRCLE.all)
where CIRCLE.id = 40

retrieve (LINE.all)
where LINE.id = 17
retrieve (POLYGON.all)
where POLYGON.id = 10

Figure 1. Example ofan OBJECT relation.

Multiple representations can be supported by defining a procedure that translates
one representetion (e.g., a relational representetion) to another representetion
(e.g., a display list suitable for a graphics display). The translation procedure is
stored in the database. Continuing with our complex object example, the OBJECT
relation would have an additional field, named "display," that would contain a pro
cedure that creates a display list for an object stored in POLYGON, CIRCLE, and
LINE:

create OBJECT(name=chart10], obj=postquel, display=cproc)
The value stored in the display field is a procedure written in C that queries the
database to fetch the subobjects that make up the object and that creates the
display list representetion for the object.

This solution has two problems: the code is repeated in every OBJECT tuple
and the Cprocedure replicates the queries stored in the object field to retrieve the
subobjects. These problems can be solved by storing the procedure in a separate
relation (i.e., normalizing the database design) and by passing the object to the
procedure as an argument. The definition of the relation in which the procedures
will be stored is:

create OBJPROC(name=char[12], proc=cproc)
append to OBJPROC(name="display-list", proc="...source code...")

Now, the entry in the display field for the "apple" object is
execute (OBJPROC.proc)
with ("apple")
where OBJPROC.name="display-list"

This command executes the procedure to create the alternative representetion and
passes to it the name of the object. Notice that the "display" field can be changed
to a value of type POSTQUEL because we are not storing the procedure in
OBJECT, only a command to execute the procedure. At this point, the procedure
can execute a command to fetch the data. Because the procedure was passed the
name of the object it can execute the following command to fetch its value:

execute (OBJECT.obj)
where OBJECT.name=argument

This solution is somewhat complex but it stores only one copy of the procedure's
source code in the database and it stores only one copy of the commands to fetch
the data that represents the object.

Fields of type POSTQUEL and procedure can be efficiently supported through
a combination ofcompilation and precomputation described in sections 4 and 5.

3.3. Time Varying Data
POSTQUEL allows users to save and query historical date and versions

[KATZ85, WOOD83]. By default, date in a relation is never deleted or updated.
Conventional retrievals always access the current tuples in the relation. Historical
date can be accessed by indicating the desired time when defining a tuple variable.
For example, to access historical employee date a user writes

retrieve (E.all)
from E in EMP["7 January 1985"]

which retrieves all records for employees that worked for the company on 7 Janu
ary 1985. The From-clause which is similar to the SQL mechanism to define tuple
variables [ASTR76], replaces the QUEL Range command. The Range command
was removed from the query language because it defined a tuple variable for the
duration of the current user program. Because queries can be stored as the value
of a field, the scope of tuple variable definitions must be constrained. The From-
clause makes the scope of the definition the current query.

This bracket notation for accessing historical date implicitly defines a
snapshot [ADBB80]. The implementation of queries that access this snapshot,
described in detail in section 5, searches back through the history of the relation to
find the appropriate tuples. The user can materialize the snapshot by executing a
Retrieve-into command that will make a copy of the data in another relation.

Applications that do not want to save historical data can specify a cutoff point
for a relation. Date that is older than the cutoff point is deleted from the data
base. Cutoff points are defined by the Discard command. The command

discard EMP before "1 week"

deletes date in the EMP relation that is more than 1 week old. The commands
discard EMP before "now"

and

discard EMP

retain only the current data in EMP.
It is also possible to write queries that reference data which is valid between

two dates. The notation

relation-name[datel, date2]

specifies the relation containing all tuples that were in the relation at some time
between datel and date2. Either or both of these dates can be omitted to specify
all date in the relation from the time it was created until a fixed date (i.e.,
relation-name[,date]), all data in the relation from a fixed date to the present (i.e.,

8

relation-name[date,]), or all date that was every in the relation (i.e., relation-
name[]). For example, the query

retrieve (E.all)
from E in EMP[]
where E.name="Smith"

returns all information on employees named Smith who worked for the company at
any time.

POSTQUEL has a three level memory hierarchy: 1) main memory, 2) secon
dary memory (magnetic disk), and 3) tertiary memory (optical disk). Current data
is stored in secondary memory and historical data migrates to tertiary memory.
However, users can query the data without having to know where the date is
stored.

Finally, POSTGRES provides support for versions. A version can be created
from a relation or a snapshot. Updates to a version do not modify the underlying
relation and updates to the underlying relation will be visible through the version
unless the value has been modified in the version. Versions are defined by the
Newversion command. The command

newversion EMPTEST from EMP

creates a version named EMPTEST that is derived from the EMP relation. If the
user wants to create a version that is not changed by subsequent updates to the
underlying relation as in most source code control systems [TICH82], he can create
a version off a snapshot.

A Merge command is provided that will merge the changes made in a version
back into the underlying relation. An example of a Merge command is

merge EMPTEST into EMP
The Merge command will use a semi-automatic procedure to resolve updates to the
underlying relation and the version that conflict [GARC84].

This section described POSTGRES support for time varying data. The stra
tegy for implementing these features is described below in the section on system
architecture.

3.4. Iteration Queries, Alerters, Triggers, and Rules
This section describes the POSTQUEL commands for specifying iterative exe

cution ofqueries, alerters [BUNE79], triggers [ASTR76], and rules.
Iterative queries are requried to support transitive closure [GUTM84

KUNG84]. Iteration is specified by appending an asterisk ("*") to a command that
should be repetitively executed. For example, to construct a relation that includes
all people managed by someone either directly or indirectly a Retrieve*-into com
mand is used. Suppose one is given an employee relation with a name and
manager field:

create EMP(name=char[20],...,mgr=char[20],...)

The following query creates a relation that conatins all employees who work for
Jones:

9

retrieve* into SUBORDINATES(E.name, E.mgr)
from E in EMP, S in SUBORDINATES
where E.name="Jones"

or E.mgr=S.name

This command continues to execute the Retrieve-into command until there are no
changes made to the SUBORDINATES relation.

The "*" modifier can be appended to any of the POSTQUEL date manipula
tion commands: Append, Delete, Execute, Replace, Retrieve, and Retrieve-into.
Complex iterations, like the A-* heuristic search algorithm, can be specified using
sequences of these iteration queries [STON85b].

Alerters and triggers are specified by adding the keyword "always" to a query.
For example, an alerter is specified by a Retrieve command such as

retrieve always (EMP.all)
where EMP.name = "Bill"

This command returns data to the application program that issued it whenever
Bill's employee record is changed.1 A trigger is an update query (i.e., Append,
Replace, or Delete command) with an "always" keyword. For example, the com
mand

delete always DEPT
where count(EMP.name by DEPT.dname

where EMP.dept = DEPT.dname) = 0
defines a trigger that will delete DEPT records for departments with no employees.

Iteration queries differ from alerters and triggers in that iteration queries run
until they cease to have an effect while alerters and triggers run indefinitely. An
efficient mechanism to awaken "always" commands is described in the system
architecture section.

"Always" commands support a forward-chaining control structure in which an
update wakes up a collection ofalerters and triggers that can wake up other com
mands. This process terminates when no new commands are awakened.
POSTGRES also provides support for a backward-chaining control structure.

The conventional approach to supporting inference is to extend the view
mechanism (or something equivalent) with additional capabilities (e.g. [ULLM85,
WONG84, JARK85]). The canonical example is the definition of the ANCESTOR
relation based on a stored relation PARENT:

PARENT (parent-of, offspring)

Ancestor can then be defined by the following commands:

1 Strictly speaking the data is returned to the program through a portal which is
defined in section 4.

10

range ofP is PARENT
range of A is ANCESTOR
define view ANCESTOR (P.all)
define view* ANCESTOR (A.parent-of, P.offspring)

where A.offspring = P.parent-of

Notice that the ANCESTOR view is defined by multiple commands that may
involve recursion. A query such as:

retrieve (ANCESTOR, parent-of)
where ANCESTOR.offspring = "Bill"

is processed by extensions to a standard query modification algorithm [STON75] to
generate a recursive command or a sequence of commands on stored relations. To
support this mechanism, the query optimizer must be extended to handle these
commands.

This approach works well when there are only a few commands which define a
particular view and when the commands do not generate conflicting answers. This
approach is less successful if either of these conditions is violated as in the follow
ing example:

define view DESK-EMP (EMP.all, desk = "steel") where EMP.age < 40
define view DESK-EMP (EMP.all, desk = "wood" where EMP.age > = 40
define view DESK-EMP (EMP.all, desk = "wood") where EMP.name = "hotshot"
define view DESK-EMP (EMP.all, desk = "steel") where EMP.name = "bigshot"

In this example, employees over 40 get a wood desk, those under 40 get a steel
desk. However, "hotshot" and "bigshot" are exceptions to these rules. "Hotshot" is
given a wood desk and "bigshot" is given a steel desk, regardless of their ages. In
this case, the query:

retrieve (DESK-EMP.desk) where DESK-EMP.name = "bigshot"

will require 4 separate commands to be optimized and run. Moreover, both the
second and the fourth definitions produce an answer to the query that is different.
In the case that a larger number of view definitions is used in the specification of
an object, then the important performance parameter will be isolating the view
definitions which are actually useful. Moreover, when there are conflicting view
definitions (e.g. the general rule and then exceptional cases), one requires a prior
ity scheme to decide which of conflicting definitions to utilize. The scheme
described below works well in such situations.

POSTGRES supports backward-chaining rules by virtual columns (i.e.,
columns for which no value is stored). Data in such columns is inferred on demand
from rules and cannot be directly updated, except by adding or dropping rules.
Rules are specified by adding the keyword "demand" to a query. Hence, for the
DESK-EMP example, the EMP relation would have a virtual field, named "desk,"
that would be defined by four rules:

replace demand EMP (desk = "steel") where EMP.age < 40
replace demand EMP (desk = "wood" where EMP.age > = 40
replace demand EMP (desk = "wood") where EMP.name = "hotshot"
replace demand EMP (desk = "steel") where EMP.name = "bigshot"

The third and fourth commands would be defined at a higher priority than the first

11

and second. A query that accessed the desk field would cause the "demand" com
mands to be processed to determine the appropriate desk value for each EMP tuple
retrieved.

This subsection has described a collection offacilities provided in POSTQUEL
to support complex queries (e.g., iteration) and active databases (e.g., alerters,
triggers, and rules). Efficient techniques for implementing these facilities are
given in section 5.

4. PROGRAMMING LANGUAGE INTERFACE
This section describes the programming language interface (HITCHING

POST) to POSTGRES. We had three objectives when designing the HITCHING
POST and POSTGRES facilities. First, we wanted to design and implement a
mechanism that would simplify the development of browsing style applications.
Second, we wanted HITCHING POST to be powerful enough that all programs that
need to access the database including the ad hoc terminal monitor and any prepro
cessors for embedded query languages could be written with the interface. And
lastly, we wanted to provide facilities that would allow an application developer to
tune the performance of his program (i.e., to trade flexibility and reliability for per
formance).

Any POSTQUEL command can be executed in a program. In addition, a
mechanism, called a "portal," is provided that allows the program to retrieve date
from the database. Aportal is similar to a cursor [ASTR76], except that it allows
random access to the data specified by the query and the program can fetch more
than one record at a time. The portal mechanism described here is different than
the one we previously designed [STON84b], but the goal is still the same. The fol
lowing subsections describe the commands for defining portals and accessing date
through them and the facilities for improving the performance of query execution
(i.e., compilation and fast-path).

4.1. Portals

A portal is defined by a Retrieve-portal or Execute-portal command. For
example, the following command defines a portal named P:

retrieve portal P(EMP.all)
where EMP.age < 40

This command is passed to the backend process which generates a query plan to
fetch the data. The program can now issue commands to fetch date from the back-
end process to the frontend process or to change the "current position" of the por
tal. The portal can be thought of as a query plan in execution in the DBMS pro
cess and a buffer containing fetched data in the application process.

The program fetches date from the backend into the buffer by executing a
Fetch command. For example, the command

fetch 20 into P

fetches the first twenty records in the portal into the frontend program. These
records can be accessed by subscript and field references on P. For example, P[i]
refers to the i-th record returned by the last Fetch command and P[i].name refers
to the "name" field in the i-th record. Subsequent fetches replace the previously

12

fetched data in the frontend program buffer.

The concept of a portal is that the data in the buffer is the data currently
being displayed by the browser. Commands entered by the user at the terminal
are translated into database commands that change the date in the buffer which is
then redisplayed. Suppose, for example, the user entered a command to scroll for
ward half a screen. This command would be translated by the frontend program
(i.e., the browser) into a Move command followed by a Fetch command. The follow
ing two commands would fetch data into the buffer which when redisplayed would
appear to scroll the date forward by one half screen:

move P forward 10

fetch 20 into P

The Move command repositions the "current position" to point to the 11-th tuple in
the portal and the Fetch command fetches tuples 11 through 30 in the ordering
established by executing the query plan. The "current position" of the portel is the
first tuple returned by the last Fetch command. If Move commands have been exe
cuted since the last Fetch command, the "current position" is the first tuple that
would be returned by a Fetch command if it were executed.

The Move command has other variations that simplify the implementation of
other browsing commands. Variations exist that allow the portel postion to be
moved forward or backward, to an absolute position, or to the first tuple that
satisfies a predicate. For example, to scroll backwards one half screen, the follow
ing commands are issued:

move P backward 10
fetch 20 into P

In addition to keeping track of the "current position," the backend process also
keeps track of the sequence number of the current tuple so that the program can
move to an absolute position. For example, to scroll forward to the 63-rd tuple the
program executes the command:

move P forward to 63

Lastly, a Move command is provided that will search forward or backward to
the first tuple that satisfies a predicate as illustrated by the following command
that moves forward to the first employee whose salary is greater than $25,000:

move P forward to salary > 25K

This command positions the portal on the first qualifying tuple. A Fetch command
will fetch this tuple and the ones immediately following it which may not satisfy
the predicate. To fetch only tuples that satisfy the predicate, the Fetch command
is used as follows:

fetch 20 into P where salary > 25K

The backend process will continue to execute the query plan until 20 tuples have
been found that satisfy the predicate or until the portal date is exhausted.

Portals differ significantly from cursors in the way date is updated. Once a
cursor is positioned on a record, it can be modified or deleted (i.e., updated
directly). Date in a portel cannot be updated directly. It is updated by Delete or
Replace commands on the relations from which the portel data is taken. Suppose

13

the user entered commands to a browser that change Smith's salary. Assuming
that Smith's record is already in the buffer, the browser would translate this
request into the following sequence ofcommands:

replace EMP(salary=NewSalary)
where EMP.name = "Smith"
fetch 20 into P

The Replace command modifies Smith's tuple in the EMP relation and the Fetch
command synchronizes the buffer in the browser with the data in the database.
We chose this indirect approach to updating the data because it makes sense for
the model of a portel as a query plan. In our previous formulation [STON84], a
portal was treated as an ordered view and updates to the portel were treated as
view updates. We believe both models are viable, although the query plan model
requires less code to be written.

In addition to the Retrieve-portal command, portals can be defined by an Exe
cute command. For example, suppose the EMP relation had a field of type POST
QUEL named "hobbies"

EMP (name, salary, age, hobbies)
that contained commands to retrieve a person's hobbies from the following rela
tions:

SOFTBALL (name, position, batting-avg)
COMPUTERS (name, isowner, brand, interest)

An application program can define a portal that will range over the tuples describ
ing a person's hobbies as follows:

execute portel H(EMP.hobbies)
where EMP.name = "Smith"

This command defines a portal, named "H," that is bound to Smith's hobby records.
Since a person can have several hobbies, represented by more than on Retrieve
command in the "hobbies" field, the records in the buffer may have different types.
Consequently, HITCHING POST must provide routines that allow the program to
determine the number offields, and the type, name, and value ofeach field in each
record fetched into the buffer.

4.2. Compilation and Fast-Path
This subsection describes facilities to improve the performance of query execu

tion. Two facilities are provided: query compilation and fast-path. Any POST
QUEL command, including portal commands, can take advantage of these facili
ties.

POSTGRES has a system catalog in which application programs can store
queries that are to be compiled. The catalog is named "CODE" and has the follow
ing structure:

CODE(id, owner, command)
The "id" and "owner" fields form a unique identifier for each stored command. The
"command" field holds the command that is to be compiled. Suppose the program
mer of the relation browser described above wanted to compile the Replace

14

command that was used to update the employee's salary field. The program could
append the command, with suitable parameters, to the CODE catalog as follows:

append to CODE(id=l, owner="browser",
command="replace EMP(salary=$l) where EMP.name=$2")

"$1" and "$2" denote the arguments to the command. Now, to execute the Replace
command that updates Smith's salary shown above, the program executes the fol
lowing command:

execute (CODE.command)
with {NewSalary, "Smith")
where CODE.id=l and CODE.owner="browser"

This command executes the Replace command after substituting the arguments.
Executing commands stored in the CODE catalog does not by itself make the

command run any faster. However, a compilation demon is always executing that
examines the entries in the CODE catalog in every database and compiles the
queries. Assuming the compilation demon has compiled the Replace command in
CODE, the query should run substantially faster because the time to parse and
optimize the query is avoided. Section 5 describes a general purpose mechanism
for invalidating compiled queries when the schemachanges.

Compiled queries are faster than queries that are parsed and optimized at
run-time but for some applications, even they are not fast enough. The problem is
that the Execute command that invokes the compiled query still must be pro
cessed. Consequently, a fast-path facility is provided that avoids this overhead. In
the Execute command above, the only variability is the argument list and the
unique identifier that selects the query to be run. HITCHING POST has a run
time routine that allows this information to be passed to the backend in a binary
format. For example, the following function call invokes the Replace command
described above:

exec-fp(l, "browser", NewSalary, "Smith")
This function sends a message to the backend that includes only the information
needed to determine where each value is located. The backend retrieves the com
piled plan (possibly from the buffer pool), substitutes the parameters without type
checking, and invokes the query plan. This path through the backend is hand-
optimized to be very fast so the overhead to invoke a compiled query plan is
minimal.

This subsection has described facilities that allow an application programmer
to improve the performance of a program by compiling queries or by using a spe
cial fast-path facility.

5. SYSTEM ARCHITECTURE

This section describes how we propose to implement POSTGRES. The first
subsection describes the process structure. The second subsection describes how
query processing will be implemented, including fields of type POSTQUEL, pro
cedure, and user-defined date type. The third subsection describes how alerters,
triggers, and rules will be implemented. And finally, the fourth subsection
describes the storage systemfor implementing time varying date.

15

5.1. Process Structure

DBMS code must run as a sparate process from the application programs that
access the database in order to provide data protection. The process structure can
use one DBMS process per application program (i.e., a process-per-user model
[STON81]) or one DBMS process for all application programs (i.e., a server model).
The server model has many performance benefits (e.g., sharing of open file descrip
tors and buffers and optimized task switching and message sending overhead) in a
large machine environment in which high performance is critical. However, this
approach requires that a fairly complete special-purpose operating system be built.
In constrast, the process-per-user model is simpler to implement but will not per
form as well on most conventional operating systems. We decided after much soul
searching to implement POSTGRES using a process-per-user model architecture
because ofour limited programming resources. POSTGRES is an ambitious under
taking and we believe the additional complexity introduced by the server architec
ture was not worth the additional risk of not getting the system running. Our
current plan then is to implement POSTGRES as a process-per-user model on Unix
4.3 BSD.

The process structure for POSTGRES is shown in figure 3. The POSTMAS
TER will contain the lock manager (since there are no shared segments in 4.3
BSD) and will control the demons that will perform various database services (such
as asynchronously compiling user commands). There will be one POSTMASTER
process per machine, and it will be started at "sysgen" time.

The POSTGRES run-time system executes commands on behalf of one applica
tion program. However, a program can have several commands executing at the
same time. The message protocol between the program and backend will use a
simple request-answer model. The request message will have a command designa
tor and a sequence ofbytes that contain the arguments. The answer message for
mat will include a response code and any other date requested by the command.

Posthas t&

PosTGtes

Figure 3. POSTGRES process structure.

16

Notice that in contrast to INGRES [STON76] the backend will not "load up" the
communication channel with date. The frontend requests a bounded amount of
date with each command.

5.2. Query Processing
This section describes the query processing strategies that will be imple

mented in POSTGRES. We plan to implement a conventional query optimizer.
However, three extensions are required to support POSTQUEL. First, the query
optimizer must be able to take advantage of user-defined access methods. Second,
a general-purpose, efficient mechanism is needed to support fields of type POST
QUEL and procedure. And third, an efficient mechanism is required to support
triggers and rules. This section describes our proposed implementation of these
mechanisms.

5.2.1. Support for New Types
As noted elsewhere [STON86], existing access methods must be usable for new

date types, new access methods must be definable, and query processing heuristics
must be able to optimize plans for which new date types and new access methods
are present. The basic idea is that an access method can support fast access for a
specific collection of operators. In the case of B-trees, these operators are {<, -,
>? >=j <=}. Moreover, these operators obey a collection of rules. Again for B-
trees, the rules obeyed by the above set ofoperators is:

PI) key-1 < key-2 and key-2 < key-3 then kejr-1 < key-3
P2) key-1 < key-2 implies not key-2 < key-1
P3) key-1 < key-2 or key-2 < key-1 orkey-1 = key-2
P4) key-1 < = key-2 ifkey-1 < key-2 or key-1 = key-2
P5) key-1 = key-2 implies key-2 = key-1
P6) key-1 > key-2 if key-2 < key-1
P7) key-1 > = key-2 if key-2 < = key-1

A B-tree access method will work for any collection of operators that obey the
above rules. The protocol for defining new operators will be similar to the one
described for ADT-INGRES [STON83c]. Then, a user need simply declare the col
lection of operators that are to be utilized when he builds an index, and a detailed
syntax is presented in [STON86].

In addition, the query optimizer must be told the performance of the various
access paths. Following [SELI79], the required information will be the number of
pages touched and the number of tuples examined when processing a clause of the
form:

relation.column OPR value

These two values can be included with the definition of each operator, OPR. The
other information required is thejoin selectivity for each operator that can partici
pate in a join, and what join processing strategies are feasible. In particular,
nested iteration is always a feasible strategy, however both merge-join and hash-
join work only in restrictive cases. For each operator, the optimizer must know
whether merge-join is usable and, if so, what operator to use to sort each relation,
and whether hash-join is usable. Our proposed protocol includes this information

17

with the definition of each operator.

Consequently, a table-driven query optimizer will be implemented. Whenever
a user defines new operators, the necessary information for the optimizer will be
placed in the system catelogs which can be accessed by the optimzier. For further
details, the reader is refered elsewhere [STON86].

5.2.2. Support for Procedural Data
The main performance tactic which we will utilize is precomputing and cach

ing the result ofprocedural data. This precomputetion has two steps:
1) compiling an access plan for POSTQUEL commands
2) executing the access plan to produce the answer

When a collection of POSTQUEL commands is executed both of the above steps
must be performed. Current systems drop the answer on the floor after obtaining
it, and have special code to invalidate and recompute access plans (e.g. [ASTR76]).
On the other hand, we expect to cache both the plan and the answer. For small
answers, we expect to place the cached value in the field itself. For larger answers,
we expect to put the answer in a relation created for the purpose and then put the
name of the relation in the field itself where it will serve the role of a pointer.

Moreover, we expect to have a demon which will run in background mode and
compile plans utilizing otherwise idle time or idle processors. Whenever a value of
type procedure is inserted into the database, the run-time system will also insert
the identity of the user submitting the command. Compilation entails checking
the protection status of the command, and this will be done on behalf ofthe sub
mitting user. Whenever, a procedural field is executed, the run-time system will
ensure that the user is authorized to do so. In the case of "fast-path," the run-time
system will require that the executing user and defining user are the same, so no
run-time access to the system catelogs is required. This same demon will also
precompute answers. In the most fortunate of cases, access to procedural date is
instantaneous because the value of the procedure is cached. In most cases, a previ
ous access plan should be valid sparing the overhead of this step.

Both the compiled plan and the answer must be invalidated if necessary. The
plan must be invalidated if the schema changes inappropriately, while the answer
must be invalidated if data that it accesses has been changed. We now show that
this invalidation can be efficiently supported by an extended form of locks. In a
recent paper [STON85c] we have analyzed other alternate implementations which
can support needed capabilities, and the one we will now present was found to be
attractive in many situations.

We propose to support a new kind oflock, called an I lock. The compatibility
matrix for I locks is shown in figure 4. When a command is compiled or the
answer precomputed, POSTGRES will set I locks on all database objects accessed
during compilation or execution. These I locks must be persistent (i.e. survive
crashes), of fine granularity (i.e. on tuples or even fields), escalateble to coarser
granularity, and correctly detect "phantoms" [ESWA75]. In [STON85a], it is sug
gested that the best way to satisfy these goals is to place I locks in data records
themselves.

18

R W I

R ok no ok

W no no
♦

I ok no ok

Figure 4. Compatibility modes for I locks.

The * in the table in figure 4 indicates that a write lock placed on an object
containing one or more I locks will simply cause the precomputed objects holding
the I locks to be invalidated. Consequently, they are called "invalidate-me" locks.
A user can issue a command:

retrieve (relation.I) where qualification

which will return the identifiers of commands having I locks on tuples in question.
In this way a user can see the consequences of a proposed update.

Fields of type POSTQUEL can be compiled and POSTQUEL fields with no
update statements can be precomputed. Fields of type procedure can be compiled
and procedures that do not do input/output and do not update the database can be
precomputed.

5.2.3. Alerters, Triggers, and Inference
This section describes the tactic we will use to implement alerters, triggers,

and inference.

Alerters and triggers are specified by including the keyword "always" on the
command. The proposed implementation of"always" commands is to run the com
mand until it ceases to have an effect. Then, it should be run once more and
another special kind of lock set on all objects which the commands will read or
write. These T locks have the compatibility matrix shown in figure 5. Whenever a
transaction writes a data object on which a T-lock has been set, the lock manager
simply wakes-up the corresponding "always" command. Dormant "always" com
mands are stored in a system relation in a field of type POSTQUEL. As with I
locks, T locks must be persistent, of fine granularity and escalatable. Moreover, the
identity of commands holding T locks can be obtained through the special field, T
added to all relations.

Recall that inferencing will be support by virtual fields (i.e., "demand" com
mands). "Demand" commands will be implemented similar to the way "always"
commands are implemented. Each "demand" command would be run until the col
lection of objects which it proposes to write are isolated. Then a D lock is set on
each such object and the command placed in a POSTQUEL field in the system
catalogs. The compatibility matrix for D locks is shown in figure 6. The "&"

19

R W I T

R ok no ok ok
W no no * #
I ok no ok ok
T ok no ok ok

Figure 5. Compatibility modes for T locks.

R W I T D

R ok no ok ok &
W no no * # no
I ok no ok ok ok
T ok no ok ok ok
D ok no * # ok

Figure 6. Compatibility modes for D locks.

indicates that when a command attempts to read an object on which a D lock has
been set, the "demand" command must be substituted into the command being exe
cuted using an algorithm similar to query modification to produce a new command
to execute. This new command represents a subgoal which the POSTGRES system
attempts to satisfy. If another D lock is encountered, a new subgoal will result,
and the process will only terminate when a subgoal runs to completion and gen
erates an answer. Moreover, this answer can be cached in the field and invali
dated when necessary, if the intermediate goal commands set I locks as they run.
This process is a datebase version of PROLOG style unification [CLOC81], and
supports a backward chaining control flow. The algorithm details appear in
[STON85b] along with a proposal for a priority scheme.

5.3. Storage System
The datebase will be partly stored on a magnetic disk and partly on an

archival medium such as an optical disk. Date on magnetic disk includes all
secondary indexes and recent database tuples. The optical disk is reserved^as an
archival store containing historical tuples. There will be a demon which "vacu
ums" tuples from magnetic disk to optical disk as a background process. Data on
magnetic disk will be stored using the normal UNIX file system with one relation

20

per file. The optical disk will be organized as one large repository with tuples from
various relations intermixed.

All relations will be stored as heaps (as in [ASTR76]) with an optional collec
tion ofsecondary indexes. In addition relations can be declared "nearly ordered,"
and POSTGRES will attempt to keep tuples close to sort sequence on some column.
Lastly, secondary indexes can be defined, which consist of two separate physical
indexes one for the magnetic disk tuples and one for the optical disk tuples, each
in a separate UNIX file on magnetic disk. Moreover, a secondary index on will
automatically be provided for all relations on a unique identifier field which is
described in the next subsection. This index will allow any relation to be sequen
tially scanned.

5.3.1. Data Format

Every tuple has an immutable unique identifier (ED) that is assigned at tuple
creation time and never changes. This is a 64 bit quantity assigned internally by
POSTGRES. Moreover, each transaction has a unique 64 bit transaction identifier
(XACTID) assigned by POSTGRES. Lastly, there is a call to a system clock which
can return timestamps on demand. Loosely, these are the current time-of-day.

Tuples will have all non-null fields stored adjacently in a physical record.
Moreover, there will be a tuple prefix containing the following extra fields:

immutable id of this tuple
the timestamp at which this tuple becomes valid
the transaction identifier that assigned tmin
the timestamp at which this tuple ceases to be valid
the transaction identifier that assigned tmax
the immutable id of a tuple in this or some other version
descriptor on the front of a tuple

The descriptor contains the offset at which each non-null field sterts, and is similar
to the data structure attached to System R tuples [ASTR76]. The first transaction
identifier and timestamp correspond to the timestamp and identifier of the creator
of this tuple. When the tuple is updated, it is not overwritten; rather the identifier
and timestamp ofthe updating transaction are recorded in the second (timestamp,
transaction identifier) slot and a new tuple is constructed in the datebase. The
update rules are described in the following subsection while the details of version
management are deferred to later in the section.

5.3.2. Update and Access Rules
On an insert of a new tuple into a relation, tmin is marked with the times

tamp of the inserting transaction and its identity is recorded in BXID. When a
tuple is deleted, tmax is marked with the timestamp of the deleting transaction
and its identity is recorded in EXID. An update to a tuple is modelled as an insert
followed by a delete.

To find all the record which have the qualification, QUAL at time T the run
time system must find all magnetic disk records such that:

IID

tmin

BXID

tmax

EXID

v-IID
descriptor

21

1) tmin < T < tmax and BXID and EXID are committed and QUAL
2) tmin < T and tmax = null and BXID is committed and QUAL
3) tmin < T and BXID = committed and EXID = not-committed and QUAL

Then it must find all optical disk records satisfying 1). Aspecial transaction log is
described below that allows the DBMS to determine quickly whether a particular
transaction has committed.

5.3.3. The POSTGRES Log and Accelerator
A new XACTID is assigned sequentially to each new transaction. When a

transaction wishes to commit, all data pages which it has written must be forced
out of memory (or at least onto stable storage). Then a single bit is written into
the POSTGRES log and an optional transaction accelerator.

Consider three transaction identifiers; Tl which is the "youngest" transaction
identifier which has been assigned, T2 which is a "young" transaction but
guaranteed to be older than the oldest active transaction, and T3 which is a
"young" transaction that is older than the oldest committed transaction which
wrote date which is still on magnetic disk. Assume that T1-T3 are recorded in
"secure main memory" to be presently described.

For any transaction with an identifier between Tl and T2, we need to know
which of three states it is in:

0 = aborted
1 = committed
2 = in-progress

For any transaction with an identifier between T2 and T3, a "2" is impossible and
the log can be compressed to 1bit per transaction. For any transaction older than
T3, the vacuum process has written all records to archival storage. During this
vacuuming, the updates to ail aborted transactions can be discarded, and hence all
archival records correspond to committed transactions. No log need be kept for
transactions older than T3.

The proposed log structure is an ordered relation, LOG as follows:
line-id: the access method supplied ordering field
bit-l[1000]: a bit vector
bit-2[1000]: a second bit vector

The stetus ofxact number i is recorded in bit (remainder of i divided by 1000) of
line-id number i/1000.

We assume that several thousand bits (say 1K-10K bytes) of "secure main
memory" are available for 10-100 blocks comprising the "tail" of the log. Such
main memory is duplexed or triplexed and supported by an uninterrupteble power
supply. The assumed hardware structure for this memory is the following.
Assume a circular "block pool" ofn blocks each ofsize 2000 bits. When more space
is needed, the oldest block is reused. The hardware maintains a pointer which
indicates the current largest xact identifier (Tl - the high water mark) and which
bit it will use. it also has a second pointer which is the current oldest transaction
in the buffer (the low water mark) and which bit it points to. When high-water
approaches low-water, a block of the log must be "reliably" pushed to disk and

22

joins previously pushed blocks. Then low-water is advanced by 1000. High-water
is advanced every time a new transaction is started. The operations available on
the hardware structure are:

advance the high-water (i.e. begin a xact)
push a block and update low-water
abort a transaction
commit a transaction

Hopefully, the block pool is big enough to allow all transactions in the block
to be committed or aborted before the block is ''pushed." In this case, the block will
never be updated on disk. If there are long running transactions, then blocks may
be forced to disk before all transactions are committed or aborted. In this case, the
subsequent commits or aborts will require an update to adisk-based block and will
be much slower. Such disk operations on the LOG relation must be done by a spe
cial transaction (transaction zero) and will follow the normal update rules
described above.

A trigger will be used to periodically advance T2 and replace bit-2 with nulls
(which don't consume space) for any log records that correspond to transactions
now older than T2.

At 5 transactions per second, the LOG relation will require about 20 Mbytes
per year. Although we expect a substantial amount of buffer space to be available,
it is clear that high transaction rate systems will not be able to keep all relevant
portions ofthe XACT relation in main memory. In this case, the run-time cost to
check whether individual transactions have been committed will be prohibitive.
Hence, an optional transaction accelerator which we now describe will be a advan
tageous addition to POSTGRES.

We expect that virtually all of the transaction between T2 and T3 will be
committed transactions. Consequently, we will use a second XACT relation as a
bloom filter [SEVR76] to detect aborted transactions as follows. XACT will have
tuples of the form:

line-id : the access method supplied ordering field
bitmap[M] : a bit map of size M

For any aborted transaction with a XACTID between T2 and T3, the following
update must be performed. Let Nbe the number of transactions allocated to each
XACT record and let LOW be T3 - remainder (T3/N).

replace XACT (bitmap[i] = 1)
where XACT.line-id = (XACTID - LOW)modulo N
and i = hash (remainder ((XACTID - LOW) / N))

The vacuum process advances T3 periodically and deletes tuples from XACT that
correspond to transactions now older than T3. A second trigger will run periodi
cally and advance T2 performing the above update for all aborted transactions now
older than T2.

Consequently, whenever the run-time system wishes to check whether a can
didate transaction, C-XACTID between T2 and T3 committed or aborted, it exam
ines

23

bitmapt hash (reaminder((C-XACTID - LOW) / N))]
If a zero is observed, then C-XACTID must have committed, otherwise C-XACTID
may have committed or aborted, and LOG must be examined to discover the true
outcome.

The following analysis explores the performance of the transaction accelera
tor.

5.3.4. Analysis of the Accelerator
Suppose B bits of main memory buffer space are available and that M =

1000. These B bits can either hold some (or all) of LOG or they can hold some (or
all) of XACT. Moreover, suppose transactions have a failure probability of F, and
N is chosen so that Xbits in bitmap are set on the average. Hence, N = X/ F. In
this case, a collection ofQtransactions will require Qbits in LOG and

Q* F * 1000 / X
bitsin the accelerator. If this quantity is greater than Q, the accelerator is useless
because it takes up more space than LOG. Hence, assume that F * 1000 / X < <
1. In this case, checking the disposition of a transaction in LOG will cause a page
fault with probability:

FAULT (LOG) = 1 - [B / Ql

On the other hand, checking the disposition of a transaction in the accelerator will
cause a page fault with probability:

P(XACT) = 1-(B*X)/(Q*F* 1000)

With probability

X /1000

a "1" will be observed in the accelerator date structure. If

B < Q * F * 1000 / X
then all available buffer space is consumed by the accelerator and a page fault will
be assuredly generated to check in LOG if the transaction committed or aborted.
Hence:

FAULT (XACT) = P(XACT) + X /1000
If B is a larger value, then part of the buffer space can be used for LOG, and
FAULT decreases.

The difference in fault probability between the log and the accelerator
delta = FAULT (LOG) - FAULT (XACT)

is maximized by choosing:

X = 1000 * square-root (F)
Figure 7 plots the expected number of faults in both systems for various buffer
sizes with this value for X. As can be seen, the accelerator loses only when there is
a miniscule amount of buffer space or when there is nearly enough to hold the
whole log. Moreover

size (XACT) = square-root (F) * size (LOG)

and if

24

M*

Figure 7. Expected number of faults versus buffer size.

B = size (XACT)

then the fault probability is lowered from
FAULT (LOG) = 1 - square-root (F)

to

FAULT (XACT) = square-root (F)
If F = .01, then buffer requirements are reduced by a factor of 10 and FAULT
from .9 to .1. Even when F = .1, XACT requires only one-third the buffer space,
and cuts the fault probability in half.

5.3.5. Transaction Management
If a crash is observed for which the disk-based database is intact, then all the

recovery system must do is advance T2 to be equal to Tl marking all transactions
in progress at the time of the crash "aborted." After this step, normal processing
can commence. It is expected that recovery from "soft" crashes will be essentially
instantaneous.

Protection from the perils of"hard" crashes, i.e. ones for which the disk is not
intact will be provided by mirroring datebase files on magnetic disk either on a
volume by volume basis in hardware or on a file by file basis in software.

We envison a conventional two phase lock manager handling read and write
locks along with I, T and Dlocks. It is expected that R and Wlocks will be placed
in a conventional main memory lock table, while other locks will reside in data
records. The only extension which we expect to implement is "object locking." In
this situation, a user can declare that his stored procedures are to be executed with

25

no locking at all. Of course, if two uses attempt to execute a stored procedure at
the same time, one will be blocked because the first executor will place a write lock
on the executed tuple. In this way, if a collection of users is willing to guarantee
that there are no "blind" accesses to the pieces of objects (by someone directly
accessing relations containing them), then they can be guaranteed consistency by
the placement ofnormal read and write locks on procedural objects and no locks at
all on the component objects.

5.3.6. Access Methods

We expect to implement both B-tree and OB-tree [STON83b] secondary
indexes. Moreover, our ADT facility supports an arbitrary collection of user
defined indexes. Each such index is, in reality, a pair of indexes one for magnetic
disk records and one for archival records. The first index is of the form

index-relation (user-key-or-keys, pointer-to-tuple)
and uses the same structure as current INGRES secondary indexes. The second
index will have pointers to archival tuples and will add "tmin" and "tmax" to
whatever user keys are declared. With this structure, records satisfying the
qualification:

where relation.key = value

will be interpreted to mean:

where (relation["now"].key = value)

and will require searching only the magnetic disk index. General queries of the
form:

where relation[T].key = value

will require searching both the magnetic disk and the archival index. Both
indexes need only search for records with qualifying keys; moreover the archival
index can further restrict the search using tmax and tmin.

Any POSTQUEL replace command will insert a new date record with an
appropriate BXID and tmin, and then insert a record into all key indexes which
are defined, and lastly change tmax on the record to be updated. A POSTQUEL
append will only perform the first and third steps while a delete only performs the
second step. Providing a pointer from the old tuple to the new tuple would allow
POSTGRES to insert records only into indexes for keys that are modified. This
optimization saves many disk writes at some expense in run-time complexity. We
plan to implement this optimization.

The implementor of a new access method structure need only keep in mind
that the new data record must be forced from main memory before any index
records (or the index record will point to garbage) and that multiple index updates
(e.g. page splits) must be forced in the correct order (i.e. from leaf to root). This is
easily accomplished with a single low level command to the buffer manager:

order pagel, page2

Inopportune crashes may leave an access method which consists of a multi-level
tree with dangling index pages (i.e. pages that are not pointed two from anywhere
else in the tree). Such crashes may also leave the heap with uncommitted date

26

records that cannot be reached from some indexes. Such dangling tuples will be
garbage collected by the vacuum process because they will have EXID equal to not
committed. Unfortunately if dangling date records are not recorded in any index,
then a sweep of memory will be periodicaly required to find them. Dangling index
pages must be garbage collected by conventional techniques.

Ordered relations pose a special problem in our environment, and we propose
to change OB trees slightly to cope with the situation. In particular, each place
there is a counter in the original proposal [STON83b] indicating the number of
descendent tuple-identifiers, the counter must be replaced by the following:

counter-1 : same as counter
flag : the danger bit

Any inserter or deleter in an OB tree will set the danger flag whenever he updates
counter-1. Any OB tree accessor who reads a date item with the danger flag set
must interrupt the algorithm and recompute counter-1 (by descending the tree).
Then he reascends updating counter-1 and resetting the flag. After this interlude,
he continues with his computation. In this way the next transaction "fixes up" the
structure left dangling by the previous inserter or deleter, and OB-trees now work
correctly.

5.3.7. Vacuuming the Disk
Any record with BXID and EXID of committed can be written to an optical

disk or other long term repository. Moreover, any records with an BXID or EXID
corresponding to an aborted transaction can be discarded. The job of a "vacuum"
demon is to perform these two tasks. Consequently, the number of magnetic disk
records is nearly equal to the number with EXID equal to null (i.e. the magnetic
disk holds the current "state" of the datebase). The archival store holds historical
records, and the vacuum demon can ensure that ALL archival records are valid.
Hence, the run-time POSTGRES system need never check for the validity of
archived records.

The vacuum process will first write a historical record to the archival store,
then insert a record in the IID archival index, then insert a record in any archival
key indexes, then delete the record from magnetic disk storage, and finaly delete
the record from any magnetic disk indexes. If a crash occurs, the vacuum process
can simply begin at the start of the sequence again.

If the vacuum process promptly archives historical records, then one requires
disk space for the currently valid records plus a small portion of the historical
records (perhaps about 1.2 times the size of the currently valid datebase) Addition
ally, one should be able to maintain good physical clustering on the attribute for
which ordering is being attempted on the magnetic disk date set because there is
constant turnover of records.

Some users may wish recently updated records to remain on magnetic disk To
accomplish this tuning, we propose to allow a user to instruct the vacuum as fol
lows:

vacuum rel-name where QUAL

A reasonable qualification might be:

27

vacuum rel-name where rel-name.tmax < now - 20 days

In this case, the vacuum demon would not remove records from the magnetic disk
representetion ofrel-name until the qualification became true.

5.3.8. Version Management
Versions will be implemented by allocating a differential file [SEVR76] for

each separate version. The differential file will contain the tuples added to or sub
tracted from the base relation. Secondary indexes will be built on versions to
correspond to those on the base relation from which the version is constructed.

The algorithm to process POSTQUEL commands on versions is to begin with
the differential relation corresponding to the version itself. For any tuple which
satisfies the qualification, the v-IID ofthe inspected tuple must be remembered on
a list of "seen IID's" [WOOD83]. If a tuple with an IID on the "seen-id" list is
encountered, then it is discarded. As long as tuples can be inspected in reverse
chronological order, one will always notice the latest version ofa tuple first, and
then know to discard earlier tuples. If the version is built on top of another ver
sion, then continue processing in the differential file of the next version. Ulti
mately, a base relation will be reached and the process will stop.

If a tuple in a version is modified in the current version, then it is treated as
a normal update. If an update to the current version modifies a tuple in a previous
version or the base relation, then the IID ofthe replaced tuple will be placed in the
v-IID field and an appropriate tuple inserted into the differential file for the ver
sion. Deletes are handled in a similar fashion.

To merge a version into a parent version then one must perform the following
steps for eachrecord in the new version validat time T:

1) if it is an insert, then insert record into older version
2) if it is a delete, then delete the record in the older version
3) if it is a replace, then do an insert and a delete

There is a conflict if one attempts to delete an already deleted record. Such cases
must be handled external to the algorithm. The tactics in [GARC84] may be help
ful in reconciling these conflicts.

An older version can be rolled forward into a newer version by performing the
above operations and then renaming the older version.

6. SUMMARY

POSTGRES proposes to support complex objects by supporting an extendible
type system for defining new columns for relations, new operators on these
columns, and new access methods. This facility is appropriate for fairly "simple"
complex objects. More complex objects, especially those with shared subobjects or
multiple levels of nesting, should use POSTGRES procedures as their definition
mechanism. Procedures will be optimized by caching compiled plans and even
answers for retrieval commands.

Triggers and rules are supported as commands with "always" and "demand"
modifiers. They are efficiently supported by extensions to the locking system. Both

28

forward chaining and backward chaining control structures are provided within
the date manager using these mechanisms. Our rules system should prove attrac
tive when there are multiple rules which might apply in any given situation.

Crash recovery is simplified by not overwriting date and then vacuuming
tuples to an archive store. The new storage system is greatly simplified from
current technology and supports time-oriented access and versions with little
difficulty. The major cost of the storage system is the requirement to push dirty
pages of date to stable storage at commit time.

An optical disk is used effectively as an archival medium, and POSTGRES
has a collection of demons running in the background. These can effectively utilize
otherwise idle processors. Custom hardware could effectively provide stable main
memory, support for the LOG relation, and support for run-time checking oftuple
validity.

Lastly, these goals are accomplished with no changes to the relational model
at all. At the current time coding of PQSTGRES is just beginning. We hope to
have a prototype running in about a year.

29

[ADIB80]

[AFSA85]

[ALLM76]

[ASTR76]

[ATKI84]

[BUNE79]

[CL0C81]

[CODD70]

[COPE84]

[DERR85]

[DEWI85]

[ESWA75]

[GARC84]

[HELD75]

[GUTM84]

REFERENCES

Adiba, M.E. and Lindsay, B.G., "Datebase Snapshots," IBM
San Jose Res. Tech. Rep. RJ-2772, March 1980.
Afasarmanesh, H., et. al., "An Extensible Object-Oriented
Approach to Datebase for VLSI/CAD," Proc. 1985 Very Large
Date Base Conference, Stockholm, Sweden, August 1985.
Allman, E., et. al., "Embedding a Relational Data Sub
language in a General Purpose Programming Language,"
Proc 1976 ACM-SIGPLAN-SIGMOD Conference on Data, Salt
Lake City, Utah, March 1976.
Astrhan, M. et. al., "System R: A Relational Approach to
Data," ACM-TODS, June 1976.
Atkinson, M.P. et. al., "Progress with Persistent Program
ming," in Datebase, Role and Structure (ed. P. Stocker), Cam
bridge Univeristy of Press, 1984.
Bunemann, P. and demons, E., "Efficiently Monitoring Rela
tional Date Bases," ACM-TODS, Sept. 1979.

Clocksin, W. and Mellish, C, "Programming in Prolog,"
Springer-Verlag, Berlin, Germany, 1981.
Codd, E., "A Relational Model of Date for Large Shared Data
Bases," CACM, June 1970.
Copeland, G. and D. Maier, "Making Smalltalk a Datebase
System," Proc. 1984 ACM-SIGMOD Conference on Manage
ment of Date, Boston, Mass. June 1984.
Derritt, N., Personal Communication, HP Laboratories,
October 1985.

DeWitt, D.J. and Carey, M.J., "Extensible Datebase Systems,"
Proc. 1st International Workshop on Expert Date Bases,
Kiowah, S.C., Oct 1984.

Eswaren, K., "A General Purpose Trigger Subsystem and Its
Inclusion in a Relational Date Base System," IBM Research,
San Jose, Ca., RJ 1833, July 1976.
Garcia-Molina, H., et. al., "Date-Patch: Integrating Incon
sistent copies of a Database after a Partition," Tech. Rep.
TR# 304, Dept. Elec. Eng. and Comp. Sci., Princeton Univ.,
1984.

Held, G. et. al., "INGRES: A Relational Date Base System,"
Proc 1975 National Computer Conference, Anaheim, Ca.,
June 1975.

Gutman, A., "R-trees: A Dynamic Index Structure for Spatial
Searching," Proc. 1984 ACM-SIGMOD Conference on
Management of Data, Boston, Mass. June 1984.

30

[JARK85]

[KATZ85]

[KUNG84]

[LORI83]

[LUM85]

[R0BI81]

[ROWE79]

[ROWE82]

[ROWE85]

[SELT79]

[SEVR76]

[STON75]

[STON76]

[ST0N81]

[STON83a]

Jarke, M. et. al., "Data Constructors: On the Integration of
Rules and Relations," Proc. 1985 Very Large Data Base
Conference, Stockholm, Sweden, August 1985.
Katz, R.H., Information Management for Engineering Design,
Springer-Verlag, 1985.
Kung, R. et. al., "Heuristic Search in Datebase Systems,"
Proc. 1st International Workshop on Expert Date Bases,
Kiowah, S.C., Oct 1984.

Lorie, R., and Plouffe, W., "Complex Objects and Their Use in
Desing Transactions," Proc. Eng. Design Applications of
ACM-IEEE Date Base Week, San Jose, CA, May 1983.

Lum, V., et. al., "Design of an Integrated DBMS to Support
Advanced Applications," Proc. Int. Conf. on Foundations of
Date Org., Kyoto Univ., Japan, May 1985.
Robinson, J., "The K-D-B Tree: A Search Structure for Large
Multidimensional Indexes," Proc. 1981 ACM-SIGMOD
Conference on Management of Date, Ann Arbor, Mich., May
1981.

Rowe, L.A. and Shoens, K., 'Date Abstraction, Views, and
Updates in Rigel," Proc. 1979 ACM-SIGMOD Conference on
Management of Date, Boston, MA, May 1979.
Rowe, L.A. and Shoens, K. "FADS - A Forms Application
Development System," Proc. 1982 ACM-SIGMOD Conference
on Management of Date, Orlando, FL, June 1982.
Rowe, L., "Fill-in-the-Form Programming," Proc. 1985 Very
Large Date Base Conference, Stockholm, Sweden, August
1985.

Selinger, P. et. al., "Access Path Selection in a Relational
Data Base System," Proc 1979 ACM-SIGMOD Conference on
Management of Date, Boston, Mass., June 1979.
Severence, D., and Lohman, G., "Differential Files: Their
Application to the Maintenance of large Databases," ACM-
TODS, June 1976.

Stonebraker, M., "Implementation of Integrity Constraints
and Views by Query Modification," Proc. 1975 ACM-SIGMOD
Conference, San Jose, Ca., May 1975.
Stonebraker, M., et. al. "The Design and Implementation of
INGRES," ACM-TODS, September 1976.
Stonebraker, M., "Operating System Support for Datebase
Management," CACM, July 1981.
Stonebraker, M., et. al., "Performance Analysis of a Distri
buted Data Base System," Proc. 3th Symposium on Reliability
in Distributed Software and Data Base Systems, Clearwater,
Fla, Oct. 1983

31

[STON83b]

[STON83c]

[STON84a]

[STON84b]

[STON85a]

[STON85b]

[STON85cl

[STON86]

[TICH82]

[TSIC82]

[ULLM85]

[WONG84]

[WOOD83]

[ZANI83]

Stonebraker, M., "Document Processing in a Relational Data
base System," ACM TOOIS, April 1983.
Stonebraker, M., et. al., "Application of Abstract Date Types
and Abstract Indexes to CAD Date," Proc. Engineering Appli
cations Stream of 1983 Date Base Week, San Jose, Ca., May
1983.

Stonebraker, M. et. al., "QUEL as a Date Type," Proc. 1984
ACM-SIGMOD Conference on Management of Date, Boston,
Mass., June 1984.

Stonebraker, M. and Rowe, L.A., "PORTALS: A New Applica
tion Program Interface," Proc. 1984 VLDB Conference, Singa
pore, Sept 1984.

Stonebraker, M., "Extending a Date Base System with Pro
cedures," (submitted for publication).

Stonebraker, M., "Triggers and Inference in Data Base Sys
tems," Proc. Islamoora Conference on Expert Data Bases,
Islamoora, Fla., Feb 1985, to appear as a Springer-Verlag
book.

Stonebraker, M. et. al., "An Analysis of Rule Indexing Imple
mentations in Data Base Systems," (submitted for publica
tion)

Stonebraker, M., "Inclusion of New Types in Relational Date
Base Systems," Proc. Second International Conference on
Date Base Engineering, Los Angeles, Ca., Feb. 1986.
Tichy, W.F., "Design, Implementation, and Evaluation of a
Revision Control System, Proc. 6th Int. Conf. on Soft. Eng.,
Sept 1982.

Tsichritzis, D.C. "Form Management," CACM 25, July 1982.
Ullman, J., "Implementetion of Logical Query Languages for
Date Bases," Proceedings of the 1985 ACM-SIGMOD Interna
tional Conference on Management of Date, Austin, TX, May
1985.

Wong, E., et al., "Enhancing INGRES with Deductive Power,"
Proceedings of the 1st International Workshop on Expert
Date Base Systems, Kiowah SC, October 1984.
WoodfiU, J. and Stonebraker, M., "An Implementetion of
Hypothetical Relations," Proc. 9th VLDB Confernece,
Florence, Italy, Dec. 1983.

Zaniolo, C, "The Datebase Language GEM," Proc. 1983
ACM-SIGMOD Conference on Management of Data, San Jose,
Ca., May 1983.

32

The POSTGRES Data Model*

Lawrence A. Rowe
Michael R. Stonebraker

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

The design of the POSTGRES data model
is described. The data model is a relational
model that has been extended with abstract
data types including user-defined operators and
procedures, relation attributes of type pro
cedure, and attribute and procedure inheri
tance. These mechanism can be used to simu
late a wide variety of semantic and object-
oriented data modeling constructs including
aggregation and generalization, complex
objects with shared subobjects, and attributes
that reference tuples in other relations.

1. Introduction

This paper describes the data model for
POSTGRES, a next-generation extensible data
base management system being developed at
the University of California [23]. The data
model is based on the idea of extending the
relational model developed by Codd [5] with
general mechanisms that can be used to simu
late a variety of semantic data modeling con
structs. The mechanisms include: 1) abstract
data types (ADTs), 2) data of type procedure,
and 3) rules. These mechanisms can be used to
support complex objects or to implement a

* This research was supported by the National
Science Foundation under Grant DCR-8507256 and
the Defense Advanced Research Projects Agency
(DoD), Arpa Order No. 4871, monitored by Space
and Naval Warfare Systems Command under Con
tract N00039-84-C-0089.

shared object hierarchy for an object-oriented
programming language [17]. Most of these
ideas have appeared elsewhere [21,22,24,25].

We have discovered that some semantic
constructs that were not directly supported can
be easily added to the system. Consequently,
we have made several changes to the data
model and the syntax of the query language
that are documented here. These changes
include providing support for primary keys,
inheritance of data and procedures, and attri
butes that reference tuples in other relations.

The major contribution of this paper is to
show that inheritance can be added to a rela
tional data model with only a modest number
of changes to the model and the implementa
tion of the system. The conclusion that we
draw from this result is that the major con
cepts provided in an object-oriented data model
(e.g., structured attribute types, inheritance,
union type attributes, and support for shared
subobjects) can be cleanly and efficiently sup
ported in an extensible relational database
management system. The features used to sup
port these mechanisms are abstract data types
and attributes of type procedure.

The remainder of the paper describes the
POSTGRES data model and is organized as fol
lows. Section 2 presents the data model. Sec
tion 3 describes the attribute type system. Sec
tion 4 describes how the query language can be
extended with user-defined procedures. Section
5 compares the model with other data models
and section 6 summarizes the paper.

2. Data Model

A database is composed of a collection of
relations that contain tuples which represent
real-world entities (e.g., documents and people)
or relationships (e.g., authorship). A relation
has attributes of fixed types that represent pro
perties of the entities and relationships (e.g.,

33

the title of a document) and a primary key.
Attribute types can be atomic (e.g., integer,
floating point, or boolean) or structured (e.g.,
array or procedure). The primary key is a
sequence of attributes of the relation, when
taken together, uniquely identify each tuple.

A simple university database will be used
to illustrate the model. The following com
mand defines a relation that represents people:

create PERSON (Name = char[25],
Bixthdate = date, Height = int4,
Weight = int4, StreetAddress = char[25],
City = char[25], State = char[2])

This command defines a relation and creates a
structure for storing the tuples.

The definition of a relation may option
ally specify a primary key and other relations
from which to inherit attributes. A primary
key is a combination of attributes that
uniquely identify each tuple. The key is
specified with a key-clause as follows:

create PERSON (...)
key (Name)

Tuples must have a value for all key attri
butes. The specification of a key may option
ally include the name of an operator that is to
be used when comparing two tuples. For
example, suppose a relation had a key whose
type was a user-defined ADT. If an attribute of
type box was part of the primary key, the com
parison operator must be specified since
different box operators could be used to distin
guish the entries (e.g., area equals or box
equality). The following example shows the
definition of a relation with a key attribute of
type box that uses the area equals operator
(AE) to determine key value equality:

create PICTURE(Title = char[25], Item = box)
key (Item using AE)

• Data inheritance is specified with an
inherits-clause. Suppose, for example, that
people in the university database are employ
ees and/or students and that different attri
butes are to be defined for each category. The
relation for each category includes the PER-
SON attributes and the attributes that are
specific to the category. These relations can be
defined by replicating the PERSON attributes
in each relation definition or by inheriting
them for the definition of PERSON. Figure 1
shows the relations and an inheritance

hierarchy that could be used to share the
definition of the attributes. The commands
that define the relations other than the PER
SON relation defined above are:

create EMPLOYEE (Dept = char[25],
Status = int2, Mgr = char[25],
JobTitle = char[25], Salary = money)

inherits (PERSON)

create STUDENT (Sno = char[12],
Status = int2, Level = char[20])

inherits (PERSON)

create STUDEMP (IsWorkStudy = bool)
inherits (STUDENT, EMPLOYEE)

A relation inherits all attributes from its
parent(s) unless an attribute is overriden in
the definition. For example, the EMPLOYEE
relation inherits the PERSON attributes
Name, Birthdate, Height, Weight, StreetAd
dress, City, and State. Key specifications are
also inherited so Name is also the key for
EMPLOYEE.

Relations may inherit attributes from
more than one parent. For example, STU
DEMP inherits attributes from STUDENT and
EMPLOYEE. An inheritance conflict occurs
when the same attribute name is inherited
from more than one parent (e.g., STUDEMP
inherits Status from EMPLOYEE and STU
DENT). If the inherited attributes have the
same type, an attribute with the type is

Figure 1: Relation hierarchy.

34

included in the relation that is being denned.
Otherwise, the declaration is disallowed.1

The POSTGRES query language is a gen
eralized version of QUEL [13], called POST
QUEL. QUEL was extended in several direc
tions. First, POSTQUEL has a from-clause to
define tuple-variables rather than a range
command. Second, arbitrary relation-valued
expressions may appear any place that a rela
tion name could appear in QUEL. Third, tran
sitive closure and execute commands have
been added to the language [14]. And lastly,
POSTGRES maintains historical data so POST
QUEL allows queries to be run on past data
base states or on any data that was in the
database at any time. These extensions are
described in the remainder of this section.

The from-clause was added to the
language so that tuple-variable definitions for
a query could be easily determined at compile-
time. This capability was needed because
POSTGRES will, at the user's request, compile
queries and save them in the system catalogs.
The from-clause is illustrated in the following
query that lists all work-study students who
are sophomores:

retrieve (SE.name)
from SE in STUDEMP
where SE.IsWorkStudy

and SE.Status = "sophomore"

The from-clause specifies the set of tuples over
which a tuple-variable will range. In this
example, the tuple-variable SE ranges over the
set of student employees.

A default tuple-variable with the same
name is defined for each relation referenced in
the target-list or where-clause of a query. For
example, the query above could have been
written:

1 Most attribute inheritance models have a
conflict resolution rule that selects one of the
conflicting attributes. We chose to disallow inheri
tance because we could not discover an example
where it made sense, except when the types were
identical. On the other hand, procedure inheritance
(discussed below) does use a conflict resolution rule
because many examples exist in which one pro
cedure is prefered.

retrieve (STUDEMP.name)
where STUDEMPJsWorkStudy

and STUDEMP.Status = "sophomore"

Notice that the attribute IsWorkStudy is a
boolean-valued attribute so it does not require
an explicit value test (e.g.,
STUDEMPJsWorkStudy = "true").

The set of tuples that a tuple-variable
may range over can be a named relation or a
relation-expression. For example, suppose the
user wanted to retrieve all students in the
database who live in Berkeley regardless of
whether they are students or student employ
ees. This query can be written as follows:

retrieve (S.name)
from S in STUDENT*
where S.city = "Berkeley"

The "*" operator specifies the relation formed
by taking the union of the named relation (i.e.,
STUDENT) and all relations that inherit attri
butes from it (i.e., STUDEMP). If the "*"
operator was not used, the query retrieves only
tuples in the student relation (i.e., students
who are not student employees). In most data
models that support inheritance the relation
name defaults to the union of relations over
the inheritance hierarchy (i.e., the data
described by STUDENT* above). We chose a
different default because queries that involve
unions will be slower than queries on a single
relation. By forcing the user to request the
union explicitly with the W*M operator, he will
be aware of this cost.

Relation expressions may include other
set operators:

delim $$

union ($union$), intersection ($inter$), and
difference (—). For example, the following
query retrieves the names of people who are
students or employees but not student employ
ees:

retrieve (S.name)
from S in (STUDENT $union$ EMPLOYEE)

Suppose a tuple does not have an attribute
referenced elsewhere in the query. If the refer
ence is in the target-list, the return tuple will

35

not contain the attribute.2 If the reference is in
the qualification, the clause containing the
qualification is "false".

POSTQUEL also provides set comparison
operators and a relation-constructor that can
be used to specify some difficult queries more
easily than in a conventional query language.

delim off

For example, suppose that students could have
several majors. The natural representation for
this data is to define a separate relation:

create MAJORS(Sname = char[25],
Mname = char[25])

where Sname is the student's name and
Mname is the major. With this representation,
the following query retrieves the names of stu
dents with the same majors as Smith:

retrieve (Ml.Sname)
from Ml in MAJORS
where {(x.Mname) from x in MAJORS

where x.Sname = Ml.Sname}
C {(x.Mname) from x in MAJORS

where x.Sname="Smith"}

The expressions enclosed in set symbols ("{...}")
are relation-constructors.

The general form of a relation-
constructor3 is

{(target-list) from from-clause
where where-clause}

which specifies the same relation as the query
retrieve (target-list)
from from-clause
where where-clause

Note that a tuple-variable defined in the outer
query (e.g., Ml in the query above) can be used
within a relation-constructor but that a tuple-
variable defined in the relation-constructor
cannot be used in the outer query.
Redefinition of a tuple-variable in a relation

2 The application program interface to
POSTGRES allows the stream of tuples passed back
to the program to have dynamically varying columns
and types.

3 Relation constructors are really aggregate
functions. We have designed a mechanism to sup
port extensible aggregate functions, but have not yet
worked out the query language syntax and seman
tics.

constructor creates a distinct variable as in a
block-structured programming language (e.g.,
PASCAL). Relation-valued expressions
(including attributes of type procedure
described in the next section) can be used any
place in a query that a named relation can be
used.

Database updates are specified with con
ventional update commands as shown in the

• following examples:
I* Add a new employee to the database. */
append to EMPLOYEE(name = value,

age = value,...)

/* Change state codes using
MAP(01dCode, NewCode). */

replace P(State = MAP.NewCode)
from P in PERSON*
where P.State = MAP.OldCode

/* Delete students born before today. */
delete STUDENT
where STUDENT-Birthdate < "today"

Deferred update semantics are used for all
updates commands.

POSTQUEL supports the transitive clo
sure commands developed in QUEL'" [14]. A
"*" command continues to execute until no
tuples are retrieved (e.g., retrieve*) orupdated
(e.g., append*, delete*, or replace*). For
example, the following query creates a relation
that contains all employees who work for
Smith:

retrieve* into SUBORD(E.Name, E.Mgr)
from E in EMPLOYEE, S in SUBORD
where E.Name = "Smith"

or E.Mgr = S.Name

This command continues to execute the
retrieve-into command until there are no
changes made to the SUBORD relation.

Lastly, POSTGRES saves data deleted
from or modified in a relation so that queries
can be executed on historical data. For exam
ple, the following query looks for students who
lived in Berkeley on August 1,1980:

retrieve (S.Name)
from S in STUDENTfAugust 1,1980*1
where S.City = "Berkeley"

The date specified in the brackets following the
relation name specifies the relation at the
designated time. The date can be specified in
many different formats and optionally may

36

include a time of day. The query above only
examines students who are not student employ
ees. To search the set of all students, the
from-clause would be

...from S in STUDENTTAugust l, 19801

Queries can also be executed on all data
that is currently in the relation or was in it at
some time in the past (i.e., all data). The fol
lowing query retrieves all students who ever
lived in Berkeley:

retrieve (S.Name)
from S in STUDENTf]
where S.City = "Berkeley"

The notation "[]" can be appended to any rela
tion name.

Queries can also be specified on data that
was in the relation during a given time period.
The time period is specified by giving a start-
and end-time as shown in the following query
that retrieves students who lived in Berkeley
at any time in August 1980:

retrieve (S.Name)
from S in STUDENWAugust 1,1980",

"August 31,1980"]
where S.City = "Berkeley"

Shorthand notations are supported for all
tuples in a relation up to some date (e.g.,
STUDENT*[,"August 1, 1980V) or from some
date to the present (e.g., STUDENT*rAugust
1,1980",]).

The POSTGRES default is to save all
data unless the user explicitly requests that
data be purged. Data can be purged before a
specific data (e.g., before January 1, 1987) or
before some time period (e.g., before six months
ago). The user may also request that all his
torical data be purged so that only the current
data in the relation is stored.

POSTGRES also supports versions of rela
tions. A version of a relation can be created
from a relation or a snapshot. A version is
created by specifying the base relation as
shown in the command

create version MYPEOPLE from PERSON

that creates a version, named MYPEOPLE,
derived from the PERSON relation. Data can
be retrieved from and updated in a version just
like a relation. Updates to the version do not
modify the base relation. However, updates to
the base relation are propagated to the version

unless the value has been modified. For exam
ple, if George's birthdate is changed in
MYPEOPLE, a replace command that changes
his birthdate in PERSON will not be pro
pagated to MYPEOPLE.

If the user does not want updates to the
base relation to propagate to the version, he
can create a version of a snapshot. A snapshot
is a copy of the current contents of a relation
[1]. A version of a snapshot is created by the
following command:

create version YOURPEOPLE
from PERSON["now"]

The snapshot version can be updated directly
by issuing update commands on the version.
But, updates to the base relation are not pro
pagated to the version.

A merge command is provided to merge
changes made to a version back into the base
relation. An example of this command is

merge YOURPEOPLE into PERSON

that will merge the changes made to YOUR
PEOPLE back into PERSON. The merge com
mand uses a semi-automatic procedure to
resolve updates to the underlying relation and
the version that conflict [10].

This section described most of the data
definition and data manipulation commands in
POSTQUEL. The commands that were not
described are the commands for defining rules,
utility commands that only affect the perfor
mance of the system (e.g., define index and
modify), and other miscellaneous utility com
mands (e.g., destroy and copy). The next sec
tion describes the type system for relation
attributes.

3. Data Types
POSTGRES provides a collection of

atomic and structured types. The predefined
atomic types include: int2, int4, float4, float8,
bool, char, and date. The standard arithmetic
and comparison operators are provided for the
numeric and date data types and the standard
string and comparison operators for character
arrays. Users can extend the system by adding
new atomic types using an abstract data type
(ADT) definition facility.

All atomic data types are defined to the
system as ADTs. An ADT is defined by speci
fying the type name, the length of the internal

37

representation in bytes, procedures for convert
ing from an external to internal representation
for a value and from an internal to external
representation, and a default value. The com
mand

define type int4 is (InternalLength = 4,
InputProc = CharToInM,
OutputProc = Int4ToChar, Default = w0")

defines the type int4 which is predefined in the
system. CharTolnU and IntdToChar are pro
cedures that are coded in a conventional pro
gramming language (e.g., C) and defined to
the system using the commands described in
section 4.

Operators on ADT's are defined by speci
fying the the number and type of operands, the
return type, the precedence and associativity of
the operator, and the procedure that imple
ments it. For example, the command

define operator "+"(int4, int4) returns int4
is (Proc = Plus, Precedence = 5,

Associativity = left")

defines the plus operator. Precedence is
specified by a number. Larger numbers imply
higher precedence. The predefined operators
have the precedences shown in figure 2. These
precedences can be changed by changing the
operator definitions. Associativity is either left
or right depending on the semantics desired.
This example defined an operator denoted by a
symbol (i.e., "+"). Operators can also be

Precedence Operators

80 t
70 not — (unary)

60 */

50 + — (binary)

40 < s > a

30 = *

20 and

10 or

Figure 2: Predefined operators precedence.

denoted by identifiers as shown below.
Another example of an ADT definition is

the following command that defines an ADT
that represents boxes:

define type box is (InternalLength = 16,
InputProc = CharToBox,
OutputProc = BoxToChar, Default = "")

The external representation of a box is a char
acter string that contains two points that
represent the upper-left and lower-right
corners of the box. With this representation,
the constant

"20,50:10,70"

describes a box whose upper-left corner is at
(20, 50) and lower-right corner is at (10, 70).
CharToBox takes a character string like this
one and returns a 16 byte representation of a
box (e.g., 4 bytes per x- or y-coordinate value).
BoxToChar is the inverse of CharToBox

Comparison operators can be denned on
ADTs that can be used in access methods or
optimized in queries. For example, the
definition

define operator AE(box,box) returns bool
is (Proc = BoxAE, Precedence = 3,

Associativity = "left", Sort = BoxArea,
Hashes, Restrict = AERSelect,
Join = AEJSelect, Negator = BoxAreaNE;

defines an operator "area equals" on boxes. In
addition to the semantic information about the
operator itself, this specification includes infor
mation used by POSTGRES to build indexes
and to optimize queries using the operator.
For example, suppose the PICTURE relation
was defined by

create PICTURE(Title = char[], Item = box)

and the query

retrieve (PICTURE .all)
where PICTUREJtem AE M50,100:100,50"

was executed. The Sort property of the AE
operator specifies the procedure to be used to
sort the relation if a merge-sort join strategy
was selected to implement the query. It also
specifies the procedure to use when building an
ordered index (e.g., B-Tree) on an attribute of
type box. The Hashes property indicates that
this operator canbe used to build a hash index
on a box attribute. Note that either type of
index can be used to optimize the query above.
The Restrict and Join properties specify the

38

procedure that is to be called by the query
optimizer to compute the restrict and join selec-
tivities, respectively, of a clause involving the
operator. These selectivity properties specify
procedures that will return a floating point
value between 0.0 and 1.0 that indicate the
attribute selectivity given the operator. Lastly,
the Negator property specifies the procedure
that is to be used to compare two values when
a query predicate requires the operator to be
negated as in

retrieve (PICTURE.aU)
where not (PICTURE.Item

AE "50,100:100.50")

The define operator command also may
specify a procedure that can be used if the
query predicate includes an operator that is not
commutative. For example, the commutator
procedure for "area less than" {ALT) is the pro
cedure that implements "area greater than or
equal" (AGE). More details on the use of these
properties is given elsewhere [25].

Type-constructors are provided to define
structured types (e.g., arrays and procedures)
that can be used to represent complex data.
An array type-constructorcan be used to define
a variable- or fixed-size array. A fixed-size
array is declared by specifying the element
type and upper bound of the array as illus
trated by

create PERSON(Name = char[25])

which defines an array of twenty-five charac
ters. The elements of the array are referenced
by indexing the attribute by an integer
between 1 and 25 (e.g., "PERSONName[4F
references the fourth character in the person's
name).

A variable-size array is specified by omit
ting the upper bound in the type constructor.
For example, a variable-sized array of charac
ters is specified by "chart]." Variable-size
arrays are referenced by indexing the attribute
by an integer between 1 and the current upper
bound of the array. The predefined function
size returns the current upper bound.
POSTGRES does not impose a limit on the size
of a variable-size array. Built-in functions are
provided to append arrays and to fetch array
slices. For example, two character arrays can
be appended using the concatenate operator
("+") and an array slice containing characters
2 through 15 in an attribute named x can be

fetched by the expression "x[2:15]."

The second type-constructor allows values
of type procedure to be stored in an attribute.
Procedure values are represented by a sequence
of POSTQUEL commands. The value of an
attribute of type procedure is a relation
because that is what a retrieve command
returns. Moreover, the value may include
tuples from different relations (i.e., of different
types) because a procedure composed of two
retrieve commands returns the union of both
commands. We call a relation with different
tuple types a multirelation. The POSTGRES
programming language interface provides a
cursor-like mechanism, called a portal, to fetch
values from multirelations [23]. However, they
are not stored by the system (i.e., only rela
tions are stored).

The system provides two kinds of pro
cedure type-constructors: variable and
parameterized. A variable procedure-type
allows a different POSTQUEL procedure to be
stored in each tuple while parameterized
procedure-types store the same procedure in
each tuple but with different parameters. We
will illustrate the use of a variable procedure-
type by showing another way to represent stu
dent majors. .Suppose a DEPARTMENT rela
tion was defined with the following command:

create DEPARTMENT(Name = char[25],
Chair = char[25],...)

A student's major(s) can then be represented by
a procedure in the STUDENT relation that
retrieves the appropriate DEPARTMENT
tuple(s). The Majors attribute would be
declared as follows:

create STUDENTC, Majors = postquel,...)

Data type postquel represents a procedure-type.
The value in Majors will be a query that
fetches the department relation tuples that
represent the student's minors. The following
command appends a student to the database
who has a double major in mathematics and
computer science:

append STUDENT(Name = "Smith",
Majors =

"retrieve (D.all)
from D in DEPARTMENT
where D.Name = "Math"

or D.Name = "CS"")

39

A query that references the Majors attri
bute returns the string that contains the
POSTQUEL commands. However, two nota
tions are provided that will execute the query
and return the result rather than the
definition. First, nested-dot notation implicitly
executes the query as illustrated by

retrieve (S.Name, S.Majora.Name)
from S in STUDENT

which prints a list of names and majors of stu
dents. The result of the query in Majors is
implicitly joined with the tuple specified by the
rest of the target-list. In other words, if a stu
dent has two majors, this query will return two
tuples with the Name attribute repeated. The
implicit join is performed to guarantee that a
relation is returned.

The second way to execute the query is to
use the execute command. For example, the
query

execute (S.Majore)
from S in STUDENT
where S.Name = "Smith"

returns a relation that contains DEPART
MENT tuples for all of Smith's majors.

Parameterized procedure-types are used
when the query to be stored in an attribute is
nearly the same for every tuple. The query
parameters can be taken from other attributes
in the tuple or they may be explicitly specified.
For example, suppose an attribute in STU
DENT was to represent the student's current
class list. Given the following definition for
enrollments:

create ENROLLMENT(Student = char[25],
Class = char[25])

Bill's class list can be retrieved by the query

retrieve (ClassName = E.Class)
from E in ENROLLMENT
where E.Student = "Bill"

This query will be the same for every student
except for the constant that specifies the
student's name.

A parameterized procedure-type could be
defined to represent this query as follows:

define type classes is
retrieve (ClassName = E.Class)
from E in ENROLLMENT
where E.Student = $.Name

end

The dollar-sign symbol ("$") refers to the tuple
in which the query is stored (i.e., the current
tuple). The parameter for each instance of this
type (i.e., a query) is the Name attribute in the
tuple in which the instance is stored. This
type is then used in the create command as
follows

create STUDENT(Name = char[25],....
ClassList = classes)

to define an attribute that represents the
student's current class list. This attribute can
be used in a query to return a list of students
and the classes they are taking:

retrieve (S.Name, S.ClassList.ClassName)

Notice that for a particular STUDENT tuple,
the expression "$.Namen in the query refers to
the name of that student. The symbol "$" can
be thought of as a tuple-variable bound to the
current tuple.

Parameterized procedure-types are
extremely useful types, but sometimes it is
inconvenient to store the parameters explicitly
as attributes in the relation. Consequently, a
notation is provided that allows the parameters
to be stored in the procedure-type value. This
mechanism can be used to simulate attribute
types that reference tuples in other relations.
For example, suppose you wanted a type that
referenced a tuple in the DEPARTMENT rela
tion denned above. This type can be defined as
follows:

define type DEPARTMENT(int4) is
retrieve (DEPARTMENT.all)
where DEPARTMENT.oid = $1

end

The relation name can be used for the type
name because relations, types, and procedures
have separate name spaces. The query in type
DEPARTMENT will retrieve a specific depart
ment tuple given a unique object identifier
(oid) of the tuple. Each relation has an impli
citly defined attribute named oid that contains
the tuple'8 unique identifier. The oid attribute
can be accessed but not updated by user
queries. Oid values are created and main
tained by the POSTGRES storage system [26].
The formal argument to this procedure-type is
the type of an object identifier. The parameter
is referenced inside the definition by "$n"
where n is the parameter number.

40

An actual argument is supplied when a
value is assigned to an attribute of type
DEPARTMENT. For example, a COURSE
relation can be defined that represents infor
mation about a specific course including the
department that offers it. The create com
mand is:

create COURSE(Title = char[25],
Dept = DEPARTMENT,...)

The attribute Dept represents the department
that offers the course. The following query
adds a course to the database:

append COURSE!
Title = "Introductory Programming",
Dept = DEPARTMENT(D.oid))

from D in DEPARTMENT
where D.Name = "computer science"

The procedure DEPARTMENT called in the
target-list is implicitly defined by the "define
type" command. It constructs a value of the
specified type given actual arguments that are
type compatible with the formal arguments, in
this case an int4.

Parameterized procedure-types that
represent references to tuples in a specific rela
tion are so commonly used that we plan to pro
vide automatic support for them. First, every
relation created will have a type that
represents a reference to a tuple implicitly
defined similar to the DEPARTMENT type
above. And second, it will be possible to assign
a tuple-variable directly to a tuple reference
attribute. In other words, the assignment to
the attribute Dept that is written in the query
above as

... Dept = DEPARTMENT(D.oid)...

can be written as

... Dept = D ...

Parameterized procedure-types can also
be used to implement a type that references a
tuple in an arbitrary relation. The type
definition is:

define type tuple(char[], int4) is
retrieve ($l.all)
where $l.oid = $2

end

The first argument is the name of the relation
and the second argument is the oid of the
desired tuple in the relation. In effect, this
type defines a reference to an arbitrary tuple in
the database.

The procedure-type tuple can be used to
create a relation that represents people who
help with fund raising:

create VOLUNTEER(Person = tuple,
TimeAvailable = integer,...)

Because volunteers may be students, employ
ees, or people who are neither students nor
employees, the attribute Person must contain a
reference to a tuple in an arbitrary relation.
The following command appends all students to
VOLUNTEER:

append VOLUNTEER(
Person = tuple(relation(S), S.oid))

from S in STUDENT*

The predefined function relation returns the
name of the relation to which the tuple-
variable S is bound.

The type tuple will also be special-cased
to make it more convenient. Tuple will be a
predefined type and it will be possible to assign
tuple-variables directly to attributes of the
type. Consequently, the assignment to Person
written above as

... Person = tuple(relation(S), S.oid)...

can be written

... Person = S ...

We expect that as we get more experience with
POSTGRES applications that more types may
be special-cased.

4. User-Defined Procedures

This section describes language constructs
for adding user-defined procedures to POST
QUEL. User-defined procedures are written in
a conventional programming language and are
used to implement ADT operators or to move a
computation from a front-end application pro
cess to the back-end DBMS process.

Moving a computation to the back-end
opens up possibilities for the DBMS to precom-
pute a query that includes the computation.
For example, suppose that a front-end applica
tion needed to fetch the definition of a form
from a database and to construct a main-
memory data structure that the run-time forms
system used to display the form on the termi
nal screen for data entry or display. A conven
tional relation database design would store the
form components (e.g., titles and field
definitions for different types of fields such as

41

scalar fields, table fields, and graphics fields) in
many different relations. An example database
design is:

create FORM(FormName,...)

create FIELDS(FormName, FieldName,
Origin, Height, Width,
FieldKind, ...)

create SCALARFIELD(FormName,
FieldName, DataType,
DisplayFormat,...)

create TABLEFIELD(FormName,
FieldName, NumberOfRows,...)

create TABLECOLUMNS(FormName,
FieldName, ColumnName, Height,
Width, FieldKind,...)

The query that fetches the form from the data
base must execute at least one query per table
and sort through the return tuples to construct
the main-memory data structure. This opera
tion must take less than two seconds for an
interactive application. Conventional rela
tional DBMS's cannot satisfy this time con
straint.

Our approachto solving this problem is to
move the computation that constructs the
main-memory data structure to the database
process. Suppose the procedure MakeForm
built the data structure given the name of a
form. Using the parameterized procedure-type
mechanism defined above an attribute can be
added to the FORM relation that stores the
form representation computed by this pro
cedure. The commands

define type formrep is
retrieve (rep = MakeForm($.FormName))

end
addattribute (FormName,...,

FormDataStructure = formrep)
to FORM

define the procedure type and add an attribute
to the FORM relation.

The advantage of this representation is
that POSTGRES can precompute the answer to
a procedure-type attribute and store it in the
tuple. By precomputing the main-memory data
structure representation, the form can be
fetched from the database by a single-tuple
retrieve:

retrieve (x = FORM.FormDataStructure)
where FORM.FormName = "foo"

The real-time constraint to fetch and display a

form can be easily met if all the program must
do is a single-tuple retrieve to fetch the data
structure and call the library procedure to
display it. This example illustrates the advan
tageof moving a computation (i.e., constructing
a main-memory data structure) from the appli
cation process to the DBMS process.

A procedure is defined to the system by
specifying the names and types of the argu
ments, the return type, the language it is writ
ten in, and where the source and object code is
stored. For example, the definition

define procedure AgelnYears(date) returns int4
is (language = "C", filename = "AgelnYears")

defines a procedure AgeJnYears that takes a
date value and returns the age of the person.
The argument and return types are specified
using POSTGRES types. When the procedure
is called, it is passed the arguments in the
POSTGRES internal representation for the
type. We plan to allow procedures to be writ
ten in several different languages including C
and Lisp which are the two languages being
used to implement the system.

POSTGRES stores the information about
a procedure in the system catalogs and dynam
ically loads the object code when it is called in
a query. The following query uses the
AgelnYears procedure to retrieve the names
and agesof all people in the example database:

retrieve (P.Name,
Age = AgeInYears(P.Birthdate))

from P in PERSON*

User-defined procedures can also take
tuple-variable arguments. For example, the
following command defines a procedure, called
Comp, that takes an EMPLOYEE tuple and
computes the person's compensation according
to some formula that involves several attri
butes in the tuple (e.g., the employee's status,
job title, and salary):

define procedure Comp(EMPLOYEE)
returns int4 is (language = "C",
filename = "Compl")

Recall that a parameterized procedure-type is
defined for each relation automatically so the
type EMPLOYEE represents a reference to a
tuple in the EMPLOYEE relation. This pro
cedure is called in the following query:

42

retrieve (E.Name, Compensation = Comp(E))
from E in EMPLOYEE

The C function that implements this procedure
is passed a data structure that contains the
names, types, and values of the attributes in
the tuple.

User-defined procedures can be passed
tuples in other relations that inherit the attri
butes in the relation declared as the argument
to the procedure. For example, the Comp pro
cedure denned for the EMPLOYEE relation
can be passed a STUDEMP tuple as in

retrieve (SE.Name,
Compensation = Comp(SE))

from SE in STUDEMP

because STUDEMP inherits data attributes
from EMPLOYEE.

The arguments to procedures that take
relation tuples as arguments must be passed in
a self-describing data structure because the
procedure can be passed tuples from different
relations. Attributes inherited from other rela
tions may be in different positions in the rela
tions. Moreover, the values passed for the
same attribute name may be different types
(e.g., the definition of an inherited attribute
may be overridden with a different type). The
self-describing data structure is a list of argu
ments, one per attribute in the tuple to be
passed, with the following structure

(AttrName, AttrType, AttrValue)

The procedure code will have to search the list
to find the desired attribute. A library of rou
tines is provided that will bide this structure
from the programmer. The library will include
routines to get the type and value of an attri
bute given the name of the attribute. For
example, the following code fetches the value of
the Birthdate attribute:

GetValueCBirthdate")

The problem of variable argument lists arises
in all object-oriented programming languages
and similar solutions are used.

The model for procedure inheritance is
nearly identical to method inheritance in
object-oriented programming languages [20].
Procedure inheritance uses the data inheri
tance hierarchy and similar inheritance rules
except that a rule is provided to select a pro
cedure when an inheritance conflict arises. For
example, suppose that a Comp procedure was

defined for STUDENT as well as for
EMPLOYEE. The definition of the second pro
cedure might be:

define procedure Comp(STUDENT)
returns int4 is (language = "C",
filename = "Comp2")

A conflict arises when the query on STUDEMP
above is executed because the system does not
know which Comp procedure to call (i.e., the
one for EMPLOYEE or the one for STU
DENT). The procedure called is selected from
among the procedures that take a tuple from
the relation specified by the actual argument
STUDEMP or any relation from which attri
butes in the actual argument are inherited
(e.g., PERSON, EMPLOYEE, and STUDENT).

Each relation has an inheritance pre
cedence list (IPL) that is used to resolve the
conflict. The list is constructed by starting
with the relation itself and doing a depth-first
search up the inheritance hierarchy starting
with the first relation specified in the
inherits-clause. For example, the inherits-
clause for STUDEMP is

... inherits (STUDENT, EMPLOYEE)

and its IPL is

(STUDEMP, STUDENT,
EMPLOYEE, PERSON)

PERSON appears after EMPLOYEE rather
than after STUDENT where it would appear
in a depth-first search because both STUDENT
and EMPLOYEE inherit attributes from PER
SON (see figure 1). In other words, all but the
last occurrence of a relation in the depth-first
ordering ofthe hierarchy is deleted.4

When a procedure is called and passed a
tuple as the first argument, the actual pro
cedure invoked is the first definition found with
the same name when the procedures that take
arguments from the relations in the ILP of the
argument are searched in order. In the exam
ple above, the Comp procedure denned for
STUDENT is called because there is no

*We are using a rule that is similar to the rule
for the new Common Lisp object model [4]. It is ac
tually slightly morecomplicated than described here
in order to eliminate some nasty cases that arise
when there are cycles in the inheritance hierarchy.

43

procedure named Comp defined for STUDEMP
and STUDENT is the next relation in the IPL.

The implementation of this procedure
selection rule is relatively easy. Assume that
two system catalogs are denned:

PROCDEF(ProcName, ArgName, Procld)
IPURelatioiiName, IPLEntry, SeqNo)

where PROCDEF has an entry for each pro
cedure defined and IPL maintains the pre
cedence lists for all relations. The attributes in
PROCDEF represent the procedure name, the
argument type name, and the unique identifier
for the procedure code stored in another cata
log. The attributes in IPL represent the rela
tion, an IPL entry for the relation, and the
sequence number for that entry in the IPL of
the relation. With these two catalogs, the
query to find the correct procedure for the call

Comp(STUDEMP)

is5

retrieve (P.ProcId)
from P in PROCDEF, I in IPL
where P.ProcName = "Comp"

and LRelationName = "STUDEMP"
and I.IPLEntry = P.ArgName
and I.SeqNo = MIN(I.SeqNo

by LRelationName
where I.IPLEntry = P.ArgName

and P.ProcName = "Comp"
and LRelationName = "STUDEMP")

This query can be precomputed to speed up pro
cedure selection.

In summary, the major changes required
to support procedure inheritance is 1) allow
tuples as arguments to procedures, 2) define a
representation for variable argument lists, and
3) implement a procedure selection mechanism.
This extension to the relational model is rela
tively straightforward and only requires a
small number of changes to the DBMS imple
mentation.

5. Other Data Models

This section compares the POSTGRES
data model to semantic, functional, and object-
oriented data models.

tion.

This query uses a QUEL-style aggregate func-

Semantic and functional data models
[8,11,16,18,19,27] do not provide the flexibility
provided by the model described here. They
cannot easily represent data with uncertain
structure (e.g., objects with shared subobjects
that have different types).

Modeling ideas oriented toward complex
objects [12,15] cannot deal with objects that
have a variety of shared subobjects.
POSTGRES uses procedures to represent
shared subobjects which does not have limita
tion on the types of subobjects that are shared.
Moreover, the nested-dot notation allows con
venient access to selected subobjects, a feature
not present in these systems.

Several proposals have been made to sup
port data models that contain non-first normal
form relations [3,7,9]. The POSTGRES data
model can be used to support non-first normal
form relations with procedure-types. Conse
quently, POSTGRES seems to contain a super
set of the capabilitiesof these proposals.

Object-oriented data models [2,6] have
modeling constructs to deal with uncertain
structure. For example, GemStone supports
union types which can be used to represent
subobjects that have different types [6]. Shar
ing of subobjects is represented by storing the
subobjects as separate records and connecting
them to a parent object with pointer-chains.
Precomputed procedure values will, in our
opinion, make POSTGRES performance com
petitive with pointer-chain proposals. The pre-
formance problem with pointer-chains will be
most obvious when an object is composed of a
large number of subobjects. POSTGRES will
avoid this problem because the pointer-chain is
represented as a relation and the system can
use all of the query processing and storage
structure techniques available in the system to
represent it. Consequently, POSTGRES uses a
different approach that supports the same
modeling capabilities and an implementation
that may have better performance.

Finally, the POSTGRES data model could
claim to be object-oriented, though we prefer
not to use this word because few people agree
on exactly what it means. The data model pro
vides the same capabilities as an object-
oriented model, but it does so without discard
ing the relational model and without having to
introduce a new confusing terminology.

44

6. Summary
The POSTGRES data model uses the

ideas of abstract data types, data of type pro
cedure, and inheritance to extend the rela
tional model. These ideas can be used to simu
late a variety of semantic data modeling con
cepts (e.g., aggregation and generalization). In
addition, the same ideas can be used to support
complex objects that have unpredicatable com
position and shared subobjects.

References

M. E. Adiba and B. G. Lindsay, "Database
Snapshots", Proc. 6th Int. Conf. on Very
Large Databases, Montreal, Canada, Oct.
1980, 86-91.

T. Anderson and et. al., "PROTEUS:
Objectifying the DBMS User Interface",
Proc. Int. Wkshp on Object-Oriented
Database Systems, Asilomar, CA, Sep.
1986.

D. Batory and et.al., "GENESIS: A
Reconfigurable Database Management
System", Tech. Rep. 86-07, Dept. of Comp.
Sci., Univ. ofTexas at Austin, 1986.

D. B. Bobrow and et.al.,
"COMMONLOOPS: Merging Lisp and
Object-Oriented Programming", Proc.
1986 ACM OOPSLA Conf., Portland, OR,
Sep. 1986,17-29.

E. F. Codd, "A Relational Model of Data
for Large Shared Data Bases", Comm. of
the ACM, JUNE 1970.

G. Copeland and D. Maier, "Making
Smalltalk a Database System", Proc. 1984
ACM-SIGMOD Int. Conf. on the Mgt. of
Data, June 1984.

P. Dadam and et.al., "A DBMS Prototype
to Support Extended NF2 Relations: An
Integrated View on Flat Tables and
Hierarchies", Proc. ACM-SIGMOD Conf.
on Mgt. of Data, Washington, DC, May
1986.

U. Dayal and et.al., "A Knowledge-
Oriented Database Management System",
Proc. Islamorada Conference on Large
Scale Knowledge Base and Reasoning

Systems, Feb. 1985.

9. U. Deppisch and et.al., "A Storage System
for Complex Objects", Proc. Int. Wkshp on
Object-Oriented Database Systems,
Asilomar, CA, Sep. 1986.

10. H. Garcia-Molina and et.al., "DataPatch:
Integrating Inconsistent Copies of a
Database after a Partition", Tech. Rep.
Tech. Rep.# 304, Dept. Elec. Eng. and
Comp. Sci., Princeton, NJ, 1984.

11. M. Hammer and D. McLeod, "Database
Description with SDM", ACM-Trans.
Database Systems, Sep. 1981.

12. R. Haskins and R. Lorie, "On Extending
the Functions of a Relational Database
System", Proc. 1982 ACM-SIGMOD
Conference on Management of Data,
Orlando, FL, JUNE 1982.

13. G. Held, M. R. Stonebraker and E. Wong,
"INGRES - A Relational Data Base
System", Proc. AFIPS NCC, 1975, 409-
416.

14. R. Kung and et.al., "Heuristic Search in
Database Systems", Proc. 1st
International Workshop on Expert Data
Bases, Kiowah, SC, Oct. 1984.

15. R. Lorie and W. Plouffee, "Complex
Objects and Their Use in Design
Transactions", Proc. Engineering Design
Applications Stream of ACM-IEEE Data
Base Week, San Jose, CA, May 1983.

16. J. Myloupoulis and et.al., "A Language
Facility for Designing Database Intensive
Applications", ACM-Trans. Database
Systems, JUNE 1980.

17. L. A. Rowe, "A Shared Object Hierarchy",
Proc. Int. Wkshp on Object-Oriented
Database Systems, Asilomar. CA, Sep.
1986.

18. D. Shipman, "The Functional Model and
the Data Language Daplex", ACM-Trans.
Database Systems, Mar. 1981.

19. J. Smith and D. Smith, "Database
Abstractions: Aggregation and
Generalization", ACAf Trans. Database
Systems, JUNE 1977.

20. M. Stefik and D. G. Bobrow, "Object-
Oriented Programming: Themes and
Variations", The Al Magazine 6, 4

45

(Winter 1986), 40-62.

21. M. R. Stonebraker and et. al., "QUEL as
a Data Type", Proc. 1984 ACM-SIGMOD
Conf. on the Mgt. ofData, May 1984.

22. M. R. Stonebraker, 'Triggers and
Inference in Data Base Systems", Proc.
Islamorada Conference on Large Scale
Knowledge Base and Reasoning Systems,
Feb. 1985.

23. M. R. Stonebraker and L. A. Rowe, "The
Design of POSTGRES", Proc. 1986 ACM-
SIGMOD Int. Conf. on the Mgt. of Data,
June 1986.

24. M. R. Stonebraker, "Object Management
in POSTGRES Using Procedures", Proc.
Int. Wkshp on Object-Oriented Database
Systems, Asilomar, CA, Sep. 1986.

25. M. R. Stonebraker, "Inclusion of New
Types in Relational Data Base Systems",
Proc. Second Int. Conf. on Data Base
Eng., Los Angeles, CA, Feb. 1986.

26. M. R. Stonebraker, "POSTGRES Storage
System", Submitted for publication, 1987.

27. C. Zaniola, "The Database Language
GEM", Proc. 1983 ACM-SIGMOD
Conference on Management of Data, San
Jose, CA., May 1983.

46

A RULE MANAGER FOR RELATIONAL DATABASE SYSTEMS

Michael Stonebraker, Eric Hanson and SpyrosPotamianos

EECS Department
University of California

Berkeley, Ca., 94720

Abstract

This paper explains the rules subsystem that is being implemented in the
POSTGRES DBMS. It is novel in several ways. First, it gives to users the capa
bility of defining rules as well as data to a DBMS. Moreover, depending on the
scope of each rule denned, optimization is handled differently. This leads to good
performance both in the case that there are many rules each of small scope and a
few rules each oflarge scope. In addition, rules provide either a forward chaining
control flow or a backward chaining one, and the system will choose the control
mechanism that optimizes performance in the cases that it is possible. Further
more, priority rules can be defined, thereby allowing a user to specify rules systems
that have conflicts. This use of exceptions seems necessary in many applications.
Lastly, our rule system can provide database services such as views,protection,
integrity constraints, and referential integrity simply by applying the rules system
in a particular way. Consequently, no special purpose code need be included to
handle these tasks.

1. INTRODUCTION

There has been considerable interest in integrating data base managers and
software systems for constructing expert systems (e.g. KEE [INTE85], Prolog
[CLOC81], and OPS5 [FORG81]). Although it is possible to provide interfaces
between such rule processing systems and data base systems (e.g. [ABAR86,
CERI86]), such interfaces will only perform well if the rule system can easily iden
tify a small subset of the data to load into the working memory of the rule
manager. Such problems have been called "partitionable" Our interest is in a
broad classof expert systems which are not partitionable.

An example of such a system would be an automated system for trading
stocks on some securities exchange. The trading program would want to be alerted
if a variety of data base conditions were true, e.g. any stock was trading exces
sively frequently, any stock or group of stocks was going up or down excessively

This research was sponsored by the National Science Foundation under Grant DMC-
8504633 and by the Navy Electronics Systems Command under contract N00039-84-C-0039.

rapidly, etc. It is evident that the trading program does not have any locality of
reference in a large data base, and there is no subset of the data base that can be
extracted. Moreover, even if one could be identified, it would be out of date very
quickly. For such problems, rule processing and data processing must be more
closely integrated.

There are many mechanisms through which this integration can take place.
In this paper we indicate a rather complete rules system which is quite naturally
embedded in a general purpose data base manager. This next-generation system,
POSTGRES, is described elsewhere [STON86a]; hence we restrict our attention in
this paper solely to the rules component.

There are three design criteria which we strive to satisfy. First, we propose a
rule system in which conflicts (or exceptions [BORG85]) are possible. The classic
example is the rule %%all birds fly" along with the conflicting exception
~penguins are birds which do not fly" Another example ofconflicting rules is the
situation that all executives have a wood desk. However, Jones is an executive
who uses a steel desk. It is our opinion that a rule system that cannot support
exceptions is of limited utility.

The second goal ofa rule system is to optimize processing ofrules in two very
different situations. First, there are applications where a large number of rules
are potentially applicable at any one time, and the key performance issue is the
time required to identify which rule or rules to apply. The automated stock trader
is an example application of a rule system with a large number of rules each of
narrow scope. Here, the system must be able to identify quickly which (of perhaps
many) rules apply at a particular point in time. On the other hand, there are
applications where the amount ofoptimization used in the processing ofexception
ally complex rules is the key performance indicator. The rule whereby one derives
the ANCESTOR relation from a base relation

PARENT (person, offspring)
is an example ofthis situation. Here, processing the rule in order to satisfy a user
query to the ANCESTOR relation is the key task to optimize. A general purpose
rules system mustbe able to perform well in both kinds ofsituations.

The third goal of a rules system embedded in a data manager should be to
support as many data base services as possible. Candidates services include
integrity control, referential integrity, transition constraints, and protection. As
noted in [STON82], the code needed to perform these tasks correspond to small spe
cial purpose rules systems. A robust rules system should be usable for these inter
nal purposes, and the POSTGRES rules system achieves this goal.

In Section 2 of this paper we discuss the syntax of POSTGRES rules and the
semantics desired from a rule processing engine. Then, in Section 3 we discuss two
optimization issues; First, the time at which a rule can be awakened can be
varied, and provides a valuable opportunity for performance improvement. Secon
darily, the mechanism that is used to %%fire" rules can be used at multiple granu
larities, and will be a second optimizationm possibility. Then in Section 4 we
sketch the algorithms to be run at various times in rule processing. Lastly, Sec
tion 5 indicates how our rules system can be used to support views, protection, and
integrity control subsystems.

48

2. POSTGRES RULE SEMANTICS

2.1. Syntax of Rules
POSTGRES supports a query language, POSTQUEL, which borrows heavily

from its predecessor, QUEL [HELD75]. The main extensions are syntax to deal
with procedural data, extended data types, rules, versions and time. The language
is described elsewhere [STON86a, ROWE87], and here we give only one example to
motivate our rules system. The following POSTQUEL command sets the salary of
Mike to the salary ofBill using the standard EMP relation:

replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Mike" andE.name = "Bill"

POSTGRES allows any such POSTQUEL command to be tagged with three
special modifiers which change its meaning. Such tagged commands become rules
and canbe used in a variety ofsituations as will be presently noted.

The first tag is "always" which is shown below modifying the above POST
QUEL command.

always replace EMP (salary = E.salary) using E in EMP
whereEMP.name = "Mike" andE.name = "Bill"

The semantics of this rule is that the associated command should logically appear
to run forever. Hence, POSTGRES must ensure that any user who retrieves the
salary of Mike will see a value equal to that of Bill. One implementation will be to
wake up the above command whenever Bill's salary changes so the salary altera
tion can be propagated to Mike. This implementation resembles previous proposals
[ESWA76, BUNE79] to support triggers, and efficient wake-up services are a chal
lenge to the POSTGRES implementation. Asecond implementetion will be to delay
evaluating the rule until a user requests the salary of Mike. With this implemen
tation, rules appear to utilize a form of "lazy evaluation" [BUNE821.

If a retrieve command is tagged with "always" it becomes a rule which
functions as an alerter. For example, the following command will retrieve Mike's
salary whenever it changes.

always retrieve (EMP.salary) where EMP.name = "Mike"

The second tag which can be applied to any POSTQUEL command is
"refuse". For example, the above retrieve command can be turned into this
second kind of rule as follows:

refuse retrieve (EMP.salary) where EMP.name = "Mike"
The semantics ofa refuse command is that it should NEVER be run. Hence, if any
subsequent request for Mike's salary occurs, POSTGRES should refuse to access it.
More precisely, the semantics of any command with a refuse modifier is that the
indicated operation cannot be done to any tuple which satisfies the qualification.
For qualifications spanning more than one relation, the qualification is true if
values for the tuple inquestion are substituted into the qualification and the result
evaluates to true. Syntactically, append and delete commands do not contain a
target list when tagged with "refuse", while replace and retrieve commands con
tain only a list of attributes.

49

Rules with a refuse modifier are generally useful for protection purposes; for
example the following rule denies Bill access to Mike's salary.

refuse retrieve (EMP.salary) where EMP.name = "Mike"
and user() = "Bill"

In this command, userO is a POSTGRES function which returns the login name of
the user who is running the current query. Commands with a refuse modifier are
also useful for integrity control when tagged to update commands. For example,
the following rule refuses to insert employees who earn more than 30000.

refuse append to EMP where EMP.salary > 30000
One final example illustrates integrity control using a refuse modifier. The follow
ing rule disallows the deletion of a department as long as there is at least one
employee working in the department. This corresponds to one situation that arises
in referential integrity [DATE81].

refuse delete DEPT where DEPT.dname = EMP.dept

The final tag which can be applied to a POSTQUEL command is the modifier
"one-time". For example:

one-time replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Mike" andE.name = "Bill"

The semantics of this command is that it should be done exactly once when the
qualification is true. In this case, the effect is exactly the same as ifthe command
was submitted directly with no modifier. However, the following example shows
the utility ofthis kind ofrule in providing so-called %%one shots''.

one-time retrieve (EMP.salary) where EMP.name = "Mike"
and timeO > = *% April 15''

This command will be run once at some time subsequent to April 15th to retrieve
Mike's salary.

There is great leverage in these three simple rule constructs. However the
semantics of always and one-time commands present a problem as explored in the
next subsection.

2.2. Semantics of Always and One-time Rules
Always and one-time rules share a common semantic problem which can be

illustrated by the following rules that provide a salary for Mike,
always replace EMP (salary = E.salary) using E in EMP
where E.name = "Fred"
and EMP.name = "Mike''

always replace EMP (salary = E.salary) using E in EMP
where E.name = "Bill"
and EMP.name = %%Mike''

There are several possible outcomes which might be desired from this collection of
commands. The first option would be to reject this set of rules because it consti
tutes an attempt to assign two different values to the salary of Mike. Moreover,
these two commands could be combined into a single POSTQUEL update, e.g.:

50

always replace EMP (salary = E.salary)
where EMP.name = "Mike"
and(E.name = "Bill" orE.name = "Fred")

Such updates are non-functional and are disallowed by most data base systems
(e.g INGRES [RTI85]) which detect them at run time and abort command process
ing. Hence the first semantics for always and onetime rules would be to demand
functionality and refuse to process non-functional collections.

Of course functionality is not always desirable for a collection of rules. More
over, as noted in [KUNG84], there are cases where non-functional updates should
also be allowed in normal query processing. Hence, we now turn to other possible
definitions for this rule collection.

The second definition would be to support random semantics. If both rules
were run repeatedly, the salary of Mike would cycle between the salary of Bill and
that of Fred. Whenever, it was set to one value the other rule would be run to
change it back. Hence, a retrieve command would see one salary or the other
depending on which rule had run most recently. With random semantics, the user
should see one salary or the other, and POSTGRES should ensure that no compu
tation time is wasted in looping between the values.

The third possibility would be to support union semantics for a collection of
rules. Since POSTQUEL supports columns of a relation of data type procedure,
one could define salary as a procedural field. Hence, commands in POSTQUEL
would be the value ofthis field and would generate the ultimate field value when
executed. In the salary field for Mike, the following two commands would appear:

retrieve (EMP.salary) where EMP.name = "Bill"
retrieve (EMP.salary) whereEMP.name = *%Fred"

If Mike's salary was retrieved, both Fred's salary and Bill's salary would be
returned. Hence, when multiple rules can produce values, a user should see the
union ofwhat the rules produce if union semantics are used.

To support exceptions, one requires a final definition of the semantics of rules,
namely priority semantics. In this situation, a priority order among the rules
would be established by tagging each with a priority. Priorities are unsigned
integers in the range 0to 15, and may optionally appear at the end of a command,
e.g:

always retrieve (EMP.salary) where EMP.name = "Mike" at priority = 7
If a priority is not specified by a user, then POSTGRES assumes a default of 0.
When more than one rule can produce a value, POSTGRES should use the rule
with highest priority. For example, suppose the priority for the %%Fred" rule is 7
and for the "Bill" rule is 5. Using priority semantics the salary ofMike should
be equal to the salary of Fred.

Since one of the goals of the POSTGRES rules systems is to support excep
tions, we choose to implement priority semantics. Hence a user can optionally
specify the relative priorities of any collection of tagged commands that he intro
duced and the highest priority rule will be used. If multiple rules have the same
priority then POSTGRES chooses to implement random semantics for conflicting
rules, and can return the result specified by any one ofthem.

51

In summary, POSTGRES will implement priority semantics and use the
highest priority rule when multiple ones apply. Moreover, if multiple rules have
the same priority, POSTGRES will use random semantics. It would have been pos
sible (in fact easy) to insist on functional semantics. However, we feel that this is
a less useful choice for rule driven applications.

Notice that collections of rules can be defined which produce a result which
depends on the order ofexecution of the rules. For example, consider the following
rules:

always delete EMP where EMP.salary = 1000

always replace EMP (salary = 2000)
where EMP.name = "Mike"

If Mike receives a salary adjustment from 2000 to 1000, then the delete would
remove him while the replace would change his salary back to 2000. The final out
come is clearly order sensitive. If these commands were run concurrently from an
application program, then two outcomes are possible depending on which command
happened to execute first. POSTGRES does not alter these semantics in any way.
Hence, rules are awakened in a POSTGRES determined order, and the ultimate
result may depend on the order of execution.

It is also possible for a user to define ill-formed rule systems, e.g.:
always replace EMP (salary = 1.1 *E.salary) using E in EMP
where EMP.name = "Mike"
andE.name = "Fred"

always replace EMP (salary = 1.1 *E.salary) using E in EMP
where EMP.name = **Fred''
and E.name = **Mike''

This set ofrules says Fred makes 10 percent more than Mike who in turn makes
10 percent more than Fred. Clearly, these rules will never produce a salary for
either Mike or Fred. In these situations, the goal of POSTGRES is to avoid going
into an infinite loop. The algorithms we use are discusses in Sections 5 and 6.

We now turn to a discussion of the optimization tactics which POSTGRES
employs.

3. OPTIMIZATION OF RULES

3.1. Time of Awakening of Always and Once Commands
Consider the following collection of rules:

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = **Mike''
andE.name = "Bill"

. always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"
andE.name = "Fred"

Clearly Mike's salary must be set to Bill's which must be set to Fred's. If the

52

salary of Fred is changed, then the second rule can be awakened to change the
salary of Bill which can be followed by the first rule to alter the salary of Mike. In
this case an update to the data base awakens a collection of rules which in turn
awaken a subsequent collection. This control structure is known as forward
chaining, and we will term it early evaluation. The first option available to
POSTGRES is to perform early evaluation of rules, and a forward chaining control
flow will result.

Asecond option is to delay the awakening of either of the above rules until a
user requests the salary of Bill or Mike. Hence, neither rule will be run when
Fred's salary is changed. Rather, if a user requests Bill's salary, then the second
rule must be run to produce it on demand. Similarly, if Mike's salary is requested,
then the first rule is run to produce it requiring in turn the second rule to be run
to obtain needed data. This control structure is known as backward chaining,
and we will term it late evaluation. The second option available to POSTGRES is
to delay evaluation of a rule until a user requires something it will write. At this
point POSTGRES must produce the needed answer as efficiently as possible using
an algorithm to be described in Section 5, and a backward chaining control flow
will result.

Clearly, the choice of early or late evaluation has important performance
consequences. If Fred's salary is updated often and Mike's and Bill's salaries are
read infrequently, then late evaluation is appropriate. If Fred does not get fre
quent raises, then early evaluation may perform better. Moreover, response time to
a request to read Mike's salary will be very fast if early evaluation is selected,
while late evaluation will generate a considerably longer delay in producing the
desired data. Hence, response time to user commands will be faster with early
evaluation.

The choice of early or late evaluation is an optimization which POSTGRES
will make internally in all possible situations. However, there are two important
restrictions which limit the available options.

The first concerns indexing. Fields for which there are late rules cannot be
indexed, because there is no way ofknowing what values to index. Hence, a secon
dary index on the salary column of EMP cannot be constructed if there are any
late rules which write salary data. On the other hand, early rules are compatible
with indexes on fields which they update.

A second restriction concerns the mixing oflate and early rules. Consider, for
example, the situation where the Bill-to-Mike salary rule is evaluated early while
the Fred-to-Bill salary rule is evaluated late. Aproblem arises when Fred receives
a salary adjustment. The rule to propagate this adjustment on to Bill will not be
awakened until somebody proposes to read Bill's salary. On the other hand, a
request for Mike's salary will retrieve the old value because there is no way for the
Bill-to-Mike rule to know that the value of Bill's salary will be changed by a late
rule. To avoid this problem, POSTGRES must ensure that no late rules write any
data objects read by early rules.

To deal with these two restrictions, POSTGRES takes the following precau
tions. Every column of a POSTGRES relation must be tagged as "indexable" or
"non-indexable". Indexable columns cannot be written by late rules, while non-
indexable columns permit late writes. To ensure that no late rule writes data read

53

by an early rule, POSTGRES enforces the restriction that early reads cannot access
data from non-indexable columns. To support this, the POSTGRES parser produces
two lists of columns, those in the target list to the left of an equals sign and those
appearing elsewhere in the rule. These lists are the write-set and read-set respec
tively for a rule. If the read-set contains an indexable field, we teg the rule %*read
I". Similarly, a rule that writes an indexed field is tagged "write I". For non-
indexed fields, the corresponding tegs are "read NI" and "write NI". Table 1
shows the allowable execution times for the various rule tegs. The consequences of
Table 1 are that some rules are not allowable, some must be evaluated early, some
mustbe evaluated late, and some can beevaluated at either time. This last collec
tion can be optimized by POSTGRES. In a well designed date base we expect most
rules to read indexed fields for fast access. Hence, if they write non-indexable
fields they are optimizable.

To achieve further optimization, POSTGRES can temporarily change the time
ofevaluation ofany late rule to %%temporarily early" if the rule does notread any
date written bya late rule. Similarly, an early rule can be changed to temporarily
late if it does not write an indexed field or an object read by an early rule. If at
some subsequent time these conditions become false, then the rule must revert
from its temporary stetus back to its permanent stetus.

An unfortunate consequence ofTable 1 is that permanent stetus of all inserts
and deletes is early, since all relations will have at least one indexable field. More
over, we will make no effort in the initial implementetion to support moving either
kind of command to temporarily late.

Within these constraints and considerations, POSTGRES will attempt to
optimize the early versus late decision on a rule by rule basis. Not only will a
decision be made when a rule is first inserted, but also an asynchronous demon,
REVEILLE/TAPS (Rule Evaluation Either earLy or LatE for the Trigger Applica
tion Performance System), will run in background to make decisions on which
rules should be converted temporarily or permanently from late to early execution

rule stetus Time of Awakening

read I write NI early or late
read NI write I not permitted
read I write I early
read NI write NI late

Time of Rule Awakening

Table 1

54

and vice-versa. The architecture of REVEILLE/TAPS is currently under investiga
tion.

3.2. Granularity of Locking for Refuse and Always Rules
POSTGRES must wake-up rules at appropriate times and perform specific pro

cessing with them. In [STON86b] we analyzed the performance of a rule indexing
structure and various structures based on physical marking (locking) of objects.
When the average number of rules thatcovered a particular tuple was low, locking
was preferred. Moreover, rule indexing could not be easily extended to handle
rules with join terms in the qualification. Because we expect there will be a small
number ofrules which cover each tuple in practical applications, we are utilizing a
locking scheme.

When a rule is installed into the date base for either early or late evaluation,
POSTGRES is run in a special mode and sets appropriate locks at the individual
attribute level or at the tuple level. There are a total of 13 kinds of locks which
will be detailed in the next section. These locks differ from normal read and write
locks in several ways. First, normal locks are set and released at high frequency
and exist in relatively small numbers. When a crash occurs, the lock table is not
needed because recovery can be accomplished solely from the log. Hence, virtually
all systems utilize a main memory lock table for normal locks. On the other hand,
locks set by rules exist in perhaps vast numbers since POSTGRES must be
prepared to accommodate a large collection of rules. Secondly, locks are set and
reset at fairly low frequency. They are only modified when rules are inserted,
deleted, their time of evaluation is changed, or in certain other cases to be
explained. Lastly, ifa crash occurs one must not lose the locks set by rules. The
consequences of losing rule locks is the requirement that they be reinstalled in the
date base and recovery time will become unacceptebly long.'As a result, rule locks
must persist over crashes.

Because of these differences, we are storing rule locks as normal date in
POSTGRES tuples. This placement has a variety of advantages and a few disad
vantages. First, they are automatically persistent and recoverable and space
management for a perhaps large number of locks is easily dealt with. Second,
since they are stored date, POSTGRES queries can be run to retrieve their values.
Hence, queries can be run of the form %*If I update Mike's salary, what rules will
be affected?" This is valuable in providing a debugging and query environment
for expert system construction. The disadvantage of storing the locks on the date
records is that setting or resetting a lock requires writing the data page. Hence,
locks associated with rules are expensive to set and reset.

Like normal locks, there is a phantom problem to contend with. For example,
consider the rule to set Mike's salary to be the same as Bill's. If Bill is not yet an
employee, then the rule has no effect. However, when Bill is hired, the rule must
be awakened to propagate his salary. Setting locks on tuples and attributes will
not accomplish the desired effect because one can only lock actual data read or
written. To deal with phantoms, POSTGRES also sets rule locks on each index
record that is read during query processing and on a "stub record" which it
inserts in the index to denote the beginning and end of a scan. Whenever a data
record is inserted into a POSTGRES relation, appropriate index records must be

55

added to each existing secondary index. The POSTGRES run time system must
note all locks held on index records which are adjacent to any inserted secondary
index record. Not only must these locks be inherited by the corresponding date
record, but also they must be inherited by the secondary index record itself. The
above mechanism must be adjusted slightly to work correctly with hashed secon
dary indexes. In particular, a secondary index record must inherit all locks in the
same hash bucket. Hence, "adjacent'' mustbe interpreted to mean "in the same
hash bucket". This mechanism is essentially the same one used by System R to
detect phantoms. Although cumbersome and somewhat complex, it appears to
work and no other alternative is readily available. Since POSTGRES supports
user-defined secondary indexes [STON86d], this complexity must be dealt with by
index code written by others.

Locks may be set at attribute or record level granularity as noted above.
However, there are situations where lock escalation may be desirable. For exam
ple, consider the rule:

always replace EMP (salary = avg (EMP.salary where EMP.dept = **shoe''))
where EMP.name = "Mike"

This rule will read the salaries of all shoe department employees to compute the
aggregate. Rather than setting alarge number of attribute or record level locks, it
may be preferable to escalate to a relation level lock. Hence, all rule locks can
also be set at the relation level. In this case they become tuple level locks set on
the tuple in the RELATION relation which exists for the particular relation to be
locked. A lock can be set only on a column of a relation by setting a tuple level
lock on the appropriate row in the ATTRIBUTE relation.

POSTGRES will choose either fine granularity or coarse granularity as an
optimization issue. It can either escalate after it sets too many fine granularity
locks or guess at the beginning ofprocessing based on heuristics. The current wis
dom for conventional locks is to escalate after a certain fixed number of locks have
been set [GRAY78, KOOI82]. For simplicity in the first implementetion,
POSTGRES will guess one granularity for the rule in advance and set either
record or table level locks for the rule. The extension to multiple concurrent granu
larities is left as a future enhancement.

The decision on lock granularity in this new context has a crucial perfor
mance implication. In particular, one does not know what record level locks will be
observed during the processing ofa query plan until specific tuples are inspected.
Hence, if late evaluation is used, one or more additional queries may be run to pro
duce values needed by the user query. Consequently, in addition to the user's
plan, N extra plans must be run which correspond to the collection of N late rules
that are encountered. These N+l queries are all optimized separately when
record level locks are used. Moreover, these plans may awaken other plans which
are also independently optimized.

On the other hand, if all locks are escalated to the relation level, the query
optimizer knows what late rules will be utilized and can generate a composite
optimized plan for the command as discussed in Section 6. This composite plan is
very similar to what is produced by query modification [STON75] and is a
simplified version of the sort ofprocessing in [ULLM85]. It will sometimes result
in a more efficient total execution. However, setting relation level locks has an

56

important performance disadvantage. For example, if the rules noted earlier that
set Mike's and Bill's salaries are escalated to the relation level, then ALL incom
ing commands will use the rules whether or not they read Mike's or Bill's salary.
This will result in considerable wasted overhead in using rules which don't apply.
Like the decision ofearly versus late evaluation, the decision oflock granularity is
a complex optimization problem. Initial investigation [HONG871 suggests that
record level locking is preferred in a large variety of cases; however a more
detailed study is underway.

Unfortunately, there appears to be no way to prioritize two commands which
lock at different granularities. Hence, priorities can only be established for collec
tions of table locking rules or record lockingrules.

4. SETTING LOCKS

4.1. Introduction

POSTGRES rules are supported by setting various kinds oflocks as noted in
the previous section. One-time rules are the same as always rules except that
there is an automatic deletion ofthe rule when a successful firing takes place. The
only special case code required for one-time commands pertains to ones which have
a time clause present. For those, POSTGRES will perform an insert into a calen
dar relation and have a system demon which will wake up periodically and see if
there are rules in calendar to awaken. Consequently, we will concentrate on
always and refuse rules.

When an early rule is installed, it must set early read and early write locks
on all objects that it reads and writes respectively. Moreover, late rules must set
similar late read and late write locks. However, it will be desirable to distinguish
three different kinds of read locks for the following three situations.

Consider the rule which propagates Fred's salary on to Bill, i.e:
always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"
andE.name = "Fred"

If this rule is evaluated early and Fred's salary changes, then this rule must be
awakened to propagate the change on to Bill. Clearly, no new objects will be read
or written because of this salary adjustment. Hence, the recalculation of Bill's
salary is the only task which must be accomplished, and no locks will change.
Fred's salary field will be marked with an Rl lock to indicate this cheapest mode of
rule wake-up.

On the other hand, suppose that Bill does not exist as an employee yet. Obvi
ously, this rule will not be able to give Bill a salary. However, at the time he is
inserted, the rule must be awakened to give him a salary. In this case, the rule
must be run but the only locks affected will be on the tuple just inserted. This
second wake-up mode is indicated by placing an R2 lock on the name of Bill.
Lastly, if Fred is not yet an employee, then clearly the rule cannot propagate a
salary on to Bill. When Fred is inserted, the rule must wake up to do the
appropriate salary modification and must also set locks on records in the data base
other than the one just updated. This third wake-up mode is indicated by placing

57

an R3 lock on the name of Fred.

As aresult, always commands can set the following locks:
ER1: early read lock -- cheapestwake-up
ER2: earlyread lock - more expensive wake-up
ER3: earlyread lock - most expensive wake-up
EW : early write lock
LR1: late read lock--cheapest wake-up
LR2: late read lock -- more expensive wake-up
LR3: late read lock - most expensive wake-up
LW : late write lock

Refuse rules will set late read locks in the same way as always commands.
However, they must also set a special kind of write lock on objects they would pro
pose to change. These locks are:

RR: refuse retrieve
RA: refuse append
RD: refuse delete
RU: refuse update
RE: refuse execute

The next three subsections discusses now these 13 kinds of locks get set.

4.2. Set-up Needed
When a refuse or always command is entered bya user, the query tree for the

new rule must be decorated with a read marker or a write marker on certain
nodes. For each node which corresponds to an attribute in some relation, the
parser must place markers as follows:

read markers:

Rl: attributes on right hand side ofan assignment in the target list
R2: any attribute in the qualification with the same

tuple variable as the relation being updated
R3: other attributes in qualification

write markers:

W :all attributes on left hand side ofa target listassignment for always commands
RA: the relation affected for refuse append command
RD: the relation affected for refuse delete commands
RE: all attributes in the target list for refuse execute commands
RR: all attributes in the target list for refuse retrieve commands
RU: all attributes in the target list for refuse replace commands

If a field name appears more than once in the qualification then each marker must
identify the particular node in the tree that it is associated with.

Lastly, the parser must tag the rule with "early" "late" "either" or
return an error message according to Table 1 ofthe previous section.

58

4.3. Insertion of Rules

REVEILLE/TAPS will make the early/late decision for always commands with
a stetus of "either", and the lock granularity decision for all rules. Ifacomplete
scan of any relation is done, table level locking will be used. Otherwise,
REVEILLE/TAPS canfreely choose the granularity. Then, POSTGRES will insert
an entry into a system relation holding rules and change the decorations in the
parse tree to EW, ER1, ER2, and ER3 for early rules and LW, LR1, LR2, and LR3
for late rules. The command will now be optimized and then executed normally.
During each scan of a relation, the attributes being accessed will be identified in
the plan. Hence, a marker for each attribute along with its attribute number and
the rule identifier can be packaged into a "lock structure" In addition, the lock
structure must include the rule priority for write locks. If relation granularity has
been chosen, then this lock structure will be placed in the RELATION relation
tuple for this particular relation. Moreover, if early evaluation is used, then the
rule will be run to update appropriate data values. First, the negation of all the
higher priority rules must be ANDed onto the rule qualification.

If record level granularity has been selected, the lock structure will be put on
each tuple accessed in the secondary index used in the scan. Additionally, a "stub
record" will be inserted in the index at each end of the scan giving an "end of
scan'' marker and the date value ofthe end ofthe scan. Lastly, the read locks in
the lock structure will be placed on each data tuple accessed independent of
whether it actually satisfies the qualification. In addition, the write locks in the
lock structure are placed on the date records that would actually be updated by the
rule. However, if the rule being processed is a refuse command or an always com
mand with late execution, write locks are installed but no updates ofdate records
are actually performed, and the insertion of the rule is now complete. Ifthe rule is
an always command with early execution, POSTGRES must calculate the proposed
date values and place them in the date records if there is no higher priority EW
lock already on this field.

4.4. Deletion of a Rule

To delete a rule, the run-time system must execute the rule in a special mode
to find all the read and write locks set on behalf ofthe rule. Then, it must update
all such date and index records to remove the locks. Finally, other rules with EW
locks on fields written by the deleted rule must be awakened.

5. RECORD LEVEL LOCK PROCESSING

The execution routines in POSTGRES must perform certain actions when a
tuple is retrieved, modified, deleted, inserted or executed. These actions make use
of a common module called the "rule manager" where much of the algorithm
resides. We discuss the tuple level routines followed by the rule manager.

5.1. Tuple Processing
When a tuple is inserted, the appropriate keys must be inserted into all secon

dary indexes. These secondary index records plus the data record must inherit all
appropriate lock structures as noted in the previous section. Now the tuple with
all its proposed lock structures should be passed to the rule manager.

59

When a tuple is to be deleted, the tuple together with all its locks will be
passed to the rule manager for processing. When a collection of fields in a tuple
are retrieved or executed, the appropriate fields and their lock structures must be
passed to the rule manager.

When a tuple is modified, all the changes must be installed in the appropriate
secondary indexes and new locks must be inherited as in the case of insertions. In
addition, all lock structures that were deleted by the index deletions must be
noted. Adate structure will be passed to the rule manager consisting of:

the old values of the updated fields
the locks to be deleted from the updated fields
the new values of the updated fields
the continuing locks on the updated fields
the locks to be added to the updated fields
the fields which are not being updated

5.2. The Rule Manager
The rule manager processes inserted, deleted, retrieved, executed, and

replaced tuples and returns a revised tuple or an error message to. the execution
routine. For inserts and deletes, it looks at all fields. For each one with a lock, it
does the action indicated in Tables 2 and 3 below. For retrieves and executes, it
looks only at the fields retrieved or executed, and does the action indicated in the
tebles below. For replaces, things are a bit more complex. It should process the
refuse replace locks first according to Table 2. Then, it should process all the con
tinuing locks on the updated fields according to the replace column in Table 3.
The last step is to process the new locks and the no longer valid locks using the
append and delete columns respectively in Table 3.

In Table 3 there are no actions to take when LR1 or LR2 locks are observed; hence
their is no row for them and they need never be set. In Tables 2 and 3, the sym
bols have the following meaning:

Refuse-Lock retrieve execute replace delete append

RR a

RE a

RU a

RD a

RA a

Actions for Refuse Locks

Table 2

60

Always-Lock retrieve execute delete append replace

EW b c

LW d d

ER1 e e f

ER2 g

ER3orLR3 h 1 J

Actions for Always Locks

Table 3

a: Generate an error message for the executor if the tuple satisfies the
qualification.

b: Check if the tuple actually satisfies the rule. If not remove the EW lock. Take
the value returned by the highest priority rule and put it in the tuple. If the
highest priority rule is a delete, then remove the tuple.

c: Refuse the offered value unless it is made on behalf of the rule holding the lock
or a higher priority rule.

d: substitute the current tuple into the query plan for the rule and run the rule as
a retrieve command. Take the first returned value and plug it into the tuple as a
value, thereby implementing random semantics. For example, consider a query to
retrieve the salary of Bill and a late rule that ensures Bill's salary is the same as
that of Fred, i.e.:

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill" andE.name = "Fred"

In this case the user read ofthe salary field will conflict with the LW lock from the
rule. The rule will be turned into the following retrieve command:

retrieve (salary = E.salary)
where "Bill" = "Bill" andE.name = "Fred"

The salary ofthe first Fred to be returned is placed in the record returned by the
rule manager.

e: All records that have an ER1 lock must have an ER3 lock elsewhere in the
tuple. In the case that a delete or insert occurs, the field having an ER3 lock will
also be deleted or inserted and the processing appropriate to that stronger lock will
have precedence.

f: Substitute the proposed tuple into the rule and run it as a normal command to
update appropriate data items.

g: Substitute the new value of the tuple into the rule and see if the rule evaluates

61

to true. If not remove the EW locks for the fields in this tuple associated with the
ER2 lock. Execute step b: to find a replacement value for the field.

h: In this case some locks may have to be deleted. Hence, substitute the values for
the current tuple into the rule, add on the qualification

and object-identifier = "this-tuple"
and execute it in "rule deletion" mode to find the locks to delete. The second
step is to reinsert locks on date items that can be found from duplicates of the
deleted date item. To perform this function, the rule should be run in *%rule inser
tion' ' mode with the the following qualification appended:

and object-identifier not equal "this tuple"

For example, consider the Fred-to-Bill salary rule above and suppose that
Fred is deleted. The first step is to run the following command in rule deletion
mode:

alwaysreplace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"
and "Fred" = "Fred" andE.OID = "Fred's OID"

The second step is to run the following command in rule insertion mode.
always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"
andE.name = "Fred" andE.OID != "Fred's OID"

i: In this case some locks may have to be inserted. Hence, substitute the new tuple
into the rule and execute it in "rule insertion" mode. Place locks and date
values in records as appropriate.

j: Do both h: and i:

The transformations in i: and j: can be performed in parallel with processing
the remainder of the query as long as the rule runs with an effective command
identifier which is the same as the current command. This will ensure that the
command does not see any of the modifications performed by rule processing. The
details of why the POSTGRES storage system supports this parallelism are con
tained in [STON87a]. Alternatively, these modifications can be executed at the
conclusion of a user command by saving them in virtual memory or in a file. If the
user command writes data on a substantial number of fields holding ER3 or LR3
locks belonging to a single rule, then it may be advantageous to simply delete and
reinstell the complete rule. In the first implementetion we will process
modifications synchronously at the end of a command, leaving the other options as
future optimizations.

If both read and write locks are held on a single field by different rules, then
care must be exercised concerning the order of execution. The rule manager must
construct a dependency graph to control processing order. In this graph an arc is
placed from any rule holding a LW lock on a field to all the rules holding LR1,
LR2 or LR3 locks. If this graph is a tree, then process the rules from root to leaf.

62

If the graph is not a tree, then the rules involved in the loop are probably not well
formed, and an error message will be signaled.

6. PROCESSING RELATION LEVEL LOCKS
When POSTGRES begins to process a user command which involves a relation

R, it must process all the locks held at the relation level on R. To do so, it checks
whether the proposed command is reading or writing any field on which a rule
holds a lock and uses Tables 4 and 5 to resolve the conflict: In Tables 4 and 5 the
symbols denote the following actions:

k: Add the negation of the rule qualification to the query qualification and con
tinue.

1: The action to teke is a little different depending onwhether the rule holding the
EW lock isanappend, replace or delete command. If it is an append, then do noth
ing. If it is a delete, then AND the negation of the delete qualification to the

Refuse-Lock retrieve execute replace delete append

RR k

RE k

RU k

RD k

RA k

Table Level Refuse Locks

Table 4

Always-Lock retrieve execute delete append replace

EW 1 1 1

LW m m

ER1 n n n

ER2 n n n

ER3 n n n

Table Level Always Locks

Table 5

63

user's command. If it is a replace, then two commands must be run. The first one
results from ANDing the rule qualification onto the command and replacing
appropriate fields in the user's target list with target list entries from the rule.
The second command results from ANDing the negation ofthe rule qualification to
the user's command. When multiple EW locks occur, process the highest priority
one first. Then proceed iteratively with the next highest one, applying it to the
modified command for deletes and to the second command resulting from replace
rules.

m: Since only replace commands can hold LW locks, the action to take here is to
run two commands. The first results by ANDing the rule qualification to the user
retrieval and substituting the rule target list for appropriate elements of the user's
target list. The second command results from ANDing the negation of the rule
qualification onto the user command.

n: Wake up the rule after the user qualification has been ANDed onto it to refresh
its values.

When both read and write locks are held on a column of a relation by
different rules, then care must again be exercised in choosing the order of rule
evaluation. Construct a dependency graph as in the previous section and process
the rules in the appropriate order. If the graph is nota tree, signal an error.

7. DATA BASE SERVICES

7.1. Views

POSTGRES supports undatable views using procedural fields as explained in
[STON87bl. However, the rules system can be used to construct two other kinds of
views, partial views, and read-only views. A read-only view is specified by
creating a relation, say VIEW, and then defining the rule:

always retrieve into VIEW (any-target-list)
where airy-qualification

This rule can be executed either early or late if all accessed fields are indexable.
Otherwise, the permanent stetus of the rule is late and REVEILLE/TAPS may
temporarily move it to early if no other rule performs late writes on date this rule
reads. Late evaluation leads to conventional view processing by query
modification, while early evaluation will cause the view to be physically material
ized. In this latter case, updates to the base relation will cause the materialization
to be invalidated and excessive recomputation of the whole view will be required.
In the future we hope to avoid this recomputation and instead incrementally
update the result of the procedure. The tactics of [BLAK86] are a step in this
direction.

On the other hand, partial views are relations which have a collection ofreal
date fields and additionally a set of fields which are expected to be supplied by
rules. Such views can be specified by as large a number of rules as needed. More
over, priorities can be used to resolve conflicts. As a result partial views can be
utilized to define relations which are impossible with a conventional view

64

mechanism. Such extended views have some of the flavor proposed in [IONN84].
Moreover, all retrieves to such relations function correctly. Updates to such

relations are processed as conventional updates which install actual date values in
their fields, as long as all the rules are evaluated late.

7.2. Integrity Control
Integrity control is readily achieved by using delete rules. For example the

following rule enforces the constraint that all employees earn more than 3000:
delete always EMP where EMP.salary < 3000

Since this is an early rule, it will be awakened whenever a user installs an over
paid employee and the processing is similar to that of current integrity control sys
tems [STON75].

Referential integrity is easily accomplished using the mechanisms we have
defined. The modes that refuse insertions and deletions can be accomplished with
refuse rules as noted in Section 2.1. The other modes can all be accomplished
using always rules.

7.3. Protection

Protection is normally specified by refuse rules which have a userO in the
qualification. The only abnormal behavior exhibited by this application of the rules
system is that the system defaults to "open access". Hence, unless a rule is
stated to the contrary, any user can freely access and update all relations.
Although a cautious approach would default to "closed access", it is our experi
ence that open access is just as reasonable.

A useful future extension would be a rule which hides data items by return
ing an incorrect value. For example, consider the following rule:

hide EMP (salary = 0)
where EMP.name = "Mike"
anduserO = "Sam"

This rule should be evaluated just like a refuse rule except it must return the
value in its qualification instead of the one in the date record. This would allow
the protection system to lie to users, rather than simply allow or decline access to
objects. Such a facility allows greatly expanded capabilities over ordinary protec
tion systems.

8. CONCLUSIONS
This paper has presented a rules system with a considerable number of advan

tages. First, the rule system consists of tagged query language commands. Since
a user must learn the query language anyway, there is marginal extra complexity
to contend with. In addition, specifying rules as commands which run indefinitely
appears to be an easy paradigm to grasp. Moreover, rules may conflict and a prior
ity system can be used to specify conflict resolution.

Two different optimizations were proposed for the implementation. The first
optimization concerns the time that rules are evaluated. If they are evaluated
early, then a forward chaining control flow results, while late evaluation leads to

65

backward chaining. Response time considerations, presence or absence ofindexes,
and frequency of read and write operations will be used to drive REVEILLE/TAPS
which will decide on a case by case basis whether to use early evaluation. Study of
the organization of this module is underway. In addition, the locking granularity
can be either at the tuple level or at the relation level. Tuple level locking will
optimize the situation where alarge number of rules exist each with a small scope.
Finding the one or ones that actually apply from the collection that might apply is
efficiently accomplished. On the other hand, relation level locking will allow the
query optimizer to construct plans for composite queries, and more efficient global
plans will certainly result. Hence, we accomplish our objective of designing a rule
system which can be optimized for either case. Lastly, the rule system was shown
to be usable to implement integrity control, a novel protection system and to sup
port access to two different kinds of views.

However, much work remains to be done. Optimizing the updating of locks
when date items change is complex and possibly slow. Deleting and reinserting
locks should be optimized better. Moreover, the implementetion is complex and
difficult to understand. Hence, a simpler implementetion would be highly desir
able. In general, a mechanism to update the result of a procedure is required
rather than simply invalidating it and recomputing it. The efforts of [BLAK86]
are a start in this direction, and we expect to search for algorithms appropriate to
our environment. Moreover, it is a frustration that the rule system cannot be used
to provide view update semantics. The general idea would be to provide a rule to
specify the mapping from base relations to the view and then another rule(s) to
provide the reverse mapping. Since it is well known that non-invertible view
definitions generate situations where there is no unambiguous way to map back
ward from the view to base relations, one must require an extra semantic
definition of what this inverse mapping should be. We hope to extend our rules
system so it can be used to provide both directions of this mapping rather than
only one way. Lastly, we are searching for a clean and efficient way to eliminate
the annoying restrictions ofour rule system, including the fact that priorities can
not be used with different granularity rules, and some rules are forced to a specific
time of awakening.

REFERENCES

[ABAR86] Abarbanel, R. and Williams, M., "A Relational Representa
tion for Knowledge Bases," Proc. 1st International Confer
ence on Expert Datebase Systems, Charleston, S.C., April
1986.

[BLAK86] Blakeley, J. et. al., "Efficiently Updating Materialized
Views," Proc. 1986 ACM-SIGMOD Conference on Manage
ment of Data, Washington, D.C., May 1986.

[BORG85] Borgida, A., "Language Features for Flexible Handling of
Exceptions in Information Systems," ACM-TODS, Dec. 1985.

[BUNE79] Buneman, P. and demons, E., "Efficiently Monitoring Rela
tional Data Bases," ACM-TODS, Sept. 1979.

66

[BUNE82]

[CERI86]

[CL0C81]

[DATE81]

[ESWA76]

[F0RG81]

[GRAY78]

[HELD751

[HONG87]

[INTE85]

[IONN84]

[KOOI82]

[KUNG84]

[RTI85]

[ROWE87]

[STON75]

[STON82]

Buneman, P. et. al., "An Implementetion Technique for
Datebase Query Languages," ACM-TODS, June 1982.

Ceri, S. et. al., "Interfacing Relational Databases and Prolog
Efficiently," Proc 1st International Conference on Expert
Datebase Systems, Charleston, S.C., April 1986.
Clocksin, W. and Mellish, C, "Programming in Prolog,"
Springer-Verlag, Berlin, Germany, 1981.
Date, C, "Referential Integrity," Proc. Seventh Interna
tional VLDB Conference, Cannes, France, Sept. 1981.

Eswaren, K., "Specification, Implementation and Interac
tions of a Rule Subsystem in an Integrated Database Sys
tem," IBM Research, San Jose, Ca., Research Report RJ1820,
August 1976.
Forgy, C, "The OPS5 User's Manual," Carneigie Mellon
Univ., Technical Report, 1981.

Gray, J., "Notes on Data Base Operating Systems," IBM
Research, San Jose, Ca., RJ 2254, August 1978.
Held, G. et. al., "INGRES: A Relational Date Base System,"
Proc 1975 National Computer Conference, Anaheim, Ca.,
June 1975.

Hong, C, "An Analysis of Rule Locking Granularities,"
Master's Report, Computer Science Division, University of
California, Berkeley, Ca., 1987.
IntelliCorp, "KEE Software Development System User's
Manual," IntelliCorp, MountainView, Ca., 1985.
Ionnidis, Y. et. al., "Enhancing INGRES with Deductive
Power," Proceedings of the 1st International Workshop on
Expert Date Base Systems, Kiowah SC, October 1984.
Kooi, R. and Frankfurth, D., "Query Optimization in
INGRES," Datebase Engineering, Sept. 1982.
Kung, R. et. al., "Heuristic Search in Datebase Systems,"
Proc. 1st International Conference on Expert Systems,
Kiowah, S.C., Oct. 1984.

Relational Technology, Inc., "INGRES Reference Manual,
Version 4.0" Alameda, Ca., November 1985.

Rowe, L. and Stonebraker, M., "The POSTGRES Date
Model," (submitted for publication).
Stonebraker, M., "Implementation of Integrity Constraints
and Views by Query Modification," Proc. 1975 ACM-
SIGMOD Conference, San Jose, Ca., May 1975.

Stonebraker, M. et. al., "A Rules System for a Relational
Date Base Management System," Proc. 2nd International
Conference on Databases, Jerusalem, Israel, June 1982.

67

[STON86al

[STON86W

[STON86cl

[STON86d]

[STON87a]

[STON87b]

[ULLM85]

Stonebraker, M. and Rowe, L., "The Design ofPOSTGRES,"
Proc. 1986 ACM-SIGMOD Conference on Management of
Date, Washington, D.C., May 1986.
Stonebraker, M. et. al., "An Analysis of Rule Indexing
Implementations in Data Base Systems," Proc. 1st Interna
tional Conference on Expert Date Base Systems, Charleston,
S.C., April 1986.
Stonebraker, M., "Object Management in POSTGRES using
Procedures," Proc. 1986 International Workshop on Object-
oriented Datebase Systems, Asilomar, Ca., Sept 1986. (avail
able from IEEE)

Stonebraker, M., ** Inclusion of New Types in Relational Date
Base Systems," Proc. IEEE Date Engineering Conference,
Los Angeles, Ca., Feb. 1986.
Stonebraker, M., "The POSTGRES Storage System," (sub
mitted for publication).
Stonebraker, M. et. al., "Extending a Relational Data Base
System with Procedures,'' ACM-TODS (to appear).
Ullman, J., "Implementation of Logical Query Languages for
Databases," ACM-TODS, Sept. 1985.

68

THE DESIGN OF THE POSTGRES STORAGE SYSTEM

Michael Stonebraker

EECS Department
University of California

Berkeley, Ca., 94720

Abstract

This paper presents the design of the storage system for the POSTGRES date
base system under construction at Berkeley. It is novel in several ways. First, the
storage manager supports transaction management but does so without using a
conventional write ahead log (WAL). In fact, there is no code to run at recovery
time, and consequently recovery from crashes is essentially instantaneous. Second,
the storage manager allows a user to optionally keep the entire past history of
date base objects by closely integrating an archival storage system to which histor
ical records are spooled. Lastly, the storage manager is consciously constructed as
a collection of asynchronous processes. Hence, a large monolithic body of code is
avoided and opportunities for parallelism can be exploited. The paper concludes
with a analysis of the storage system which suggests that it is performance com
petitive with WAL systems in many situations.

1. INTRODUCTION

The POSTGRES storage manager is the collection of modules that provide
transaction management and access to date base objects. The design of these
modules was guided by three goals which are discussed in turn below. The first
goal was to provide transaction management without the necessity of writing a
large amount of specialized crash recovery code. Such code is hard to debug, hard
to write and must be error free. If it fails on an important client of the date
manager, front page news is often the result because the client cannot access his
date base and his business will be adversely affected. To achieve this goal,
POSTGRES has adopted a novel storage system in which no date is ever overwrit
ten; rather all updates are turned into insertions.

The second goal of the storage manager is to accomodate the historical state of
the data base on a write-once-read-many (WORM) optical disk (or other archival
medium) in addition to the current state on an ordinary magnetic disk. Conse
quently, we have designed an asynchronous process, called the vacuum cleaner

This research was sponsored by the Navy Electronics Systems Command under con
tract N00039-84-C-0039.

69

which moves archival records offmagnetic disk and onto an archival storage sys
tem.

The third goal of the storage system is to take advantage of specialized
hardware. In particular, we assume the existence of non-volatile main memory in
some reasonable quantity. Such memory can be provide through error correction
techniques and a battery-back-up scheme or from some other hardware means. In
addition, we expect to have a few low level machine instructions available for spe
cialized uses to be presently explained. We also assume that architectures with
several processors will become increasingly popular. In such an environment,
there is an opportunity to apply multiple processors to running the DBMS where
currently only one is utilized. This requires the POSTGRES DBMS to be changed
from the monolithic single-flow-of-control architectures that are prevalent today to
one where there are many asynchronous processes concurrently performing DBMS
functions. Processors with this flavor include the Sequent Balance System
[SEQU85], the FIREFLY, and SPUR[HILL85].

The remainder of this paper is organized as follows. In the next section we
present the design of our magnetic disk storage system. Then, in Section 3 we
present the structure and concepts behind our archival system. Section 4 continues
with some thoughts on efficient indexes for archival storage. Lastly, Section 5
presents a performance comparison between our system and that of a conventional
storage system with a write-ahead log (WAL) [GRAY78].

2. THE MAGNETIC DISK SYSTEM

2ol. The Transaction System
Disk records are changed by date base transactions, each ofwhich is given a

unique transaction identifier (XID). XIDs are 40 bit unsigned integers that are
sequentially assigned starting at 1. At 100 transactions per second (TPS),
POSTGRES has sufficient XIDs for about 320 years ofoperation. In addition, the
remaining 8 bits of a composite 48 bit interaction identifier (IID) is a command
identifier (CID) for each command within a transaction. Consequently, a transac
tion is limited to executing at most 256 commands.

In addition there is a transaction log which contains 2 bits per transaction
indicating its stetus as:

committed

aborted
in progress

A transaction is started by advancing a counter containing the first unassigned
XID and using the current contents as a XID. The coding of the log has a default
value for a transaction as "in progress" so no specific change to the log need be
made at the start of a transaction. A transaction is committed by changing its
status in the log from "in progress" to "committed" and placing the appropriate
disk block of the log in steble storage. Moreover, any date pages that were
changed on behalf of the transaction must also be placed in steble storage. These
pages can either be forced to disk or moved to stable main memory if any is avail
able. Similarly, a transaction is aborted by changing its stetus from "in progress"
to "aborted".

70

The tail of the log is that portion of the log from the oldest active transaction
up to the present. The body of the log is the remainder of the log and transac
tions in this portion cannot be "in progress" so only 1 bit need be allocated. The
body of the log occupies a POSTGRES relation for which a special access method
has been built. This access method places the stetus of 65536 transactions on each
POSTGRES 8K disk block. At 1 transaction per second, the body increases in size
at a rate of 4 Mbytes per year. Consequently, for light applications, the log for the
entire history of operation is not a large object and can fit in a sizeable buffer pool.
Under normal circumstances several megabytes of memory will be used for this
purpose and the stetus of all historical transactions can be readily found without
requiring a disk read.

Inheavier applications where the body of the log will not fit in main memory,
POSTGRES applies an optional compression technique. Since most transactions
commit, the body of the log conteins almost all "commit" bits. Hence, POSTGRES
has an optional bloom filter [SEVR76] for the aborted transactions. This tactic
compresses the buffer space needed for the log by about a factor of 10. Hence, the
bloom filter for heavy applications should be accomodatable in main memory.
Again the run-time system need not read a disk block to ascertain the stetus of
any transaction. The details of the bloom filter design are presented in [STON861.

The tail of the log is a small date structure. If the oldest transaction started
one day ago, then there are about 86,400 transactions in the tail for each 1 tran
saction per second processed. At 2bits per entry, the tail requires 21,600 bytes per
transaction per second. Hence, it is reasonable to put the tail of the log in steble
main memory since this will save the pages containing the tail of the log from
being forced to disk many times in quick succession as transactions with similar
transaction identifiers commit.

2.2. Relation Storage
When a relation is created, a file is allocated to hold the records ofthat rela

tion. Such records have no prescribed maximum length, so the storage manager is
prepared to process records which cross disk block boundaries. It does so by allo
cating continuation records and chaining them together with a linked list. More
over, the order of writing of the disk blocks of extra long records must be carefully
controlled. The details ofthis support for multiblock records are straightforward,
and we do not discuss them further in this paper. InitiaUy, POSTGRES is using
conventional files provided by the UNIX operating system; however, we may
reassess this decision when the entire system is operational. If space in a file is
exhausted, POSTGRES extends the file by some multiple of the 8K page size.

If a user wishes the records in a relation to be approximately clustered on the
value of a designated field, he must declare his intention by indicating the
appropriate field in the following command

cluster rel-name on {(field-name using operator)}
POSTGRES will attempt to keep the records approximately in sort order on the
field name(s) indicated using the specified operator(s) to define the linear ordering.
This will allow clustering secondary indexes to be created as in [ASTR76].

71

Each disk record hasa bit mask indicating which fields are non-null, and only
these fields are actually stored. In addition, because the magnetic disk storage sys
tem is fundamentally a versioning system, each record conteins an additional 8
fields:

OID a system-assigned unique record identifier
Xmin the transaction identifier ofthe interaction inserting the record
Tmin the commit time ofXmin (the time at which the record became valid)
Cmin the command identifier ofthe interaction inserting the record
Xmax the transaction identifier ofthe interaction deleting the record
Tmax the commit time ofXmax (the time at which the record stopped being valid)
Cmax the command identifier ofthe interaction deleting the record
PTR a forward pointer

When a record is inserted it is assigned a unique OID, and Xmin and Cmin are set
to the identity of the current interaction, the remaining five fields are left blank.
When a record is updated, two operations teke place. First, Xmax and Cmax are
set to the identity of the current interaction in the record being replaced to indi
cate that it is no longer valid. Second, a new record is inserted into the date base
with the proposed replacement values for the date fields. Moreover, OID is set to
the OID of the record being replaced, and Xmin and Cmin are set to the identity of
the current interaction. When a record is deleted, Xmax and Cmax are set to the
identity of thecurrent interaction in the record to be deleted.

When a record is updated, the new version usually differs from the old version
in only a few fields. In order to avoid the space cost of a complete new record, the
following compression technique has been adopted. The initial record is stored
uncompressed and called the anchor point Then, the updated record is
differenced against the anchor point and only the actual changes are stored. More
over, PTR is altered on the anchor point to point to the updated record, which is
called a delta record. Successive updates generate a one-way linked list ofdelte
records off an initial anchor point. HopefuUy most delte record are on the same
operating system page as the anchor point since they will typically be small
objects.

It is the expectation that POSTGRES would be used as a local data manager
in a distributed data base system. Such a distributed system would be expected to
maintain multiple copies of all important POSTGRES objects. Recovery from hard
crashes, i.e. one for which the disk cannot be read, would occur by switching to
some other copy of the object. In a non-distributed system POSTGRES will allow a
user to specify that he wishes a second copy of specific objects with the command:

mirror rel-name

Some operating systems (e.g. VMS [DEC86] and Tandem [BART81]) already sup
port mirrored files, so special DBMS code will not be necessary in these environ
ments. Hopefully, mirrored files will become a standard operating systems service
in most environments in the future.

2.3. Time Management
The POSTGRES query language, POSTQUEL allows a user to request the

salary of Mike using the following syntax.

72

retrieve (EMP.salary) where EMP.name = "Mike"
To support access to historical tuples, the query language is extended as follows:

retrieve (EMP.salary) using EMP[T1 where EMP.name = "Mike"
The scope of this command is the EMP relation as of a specific time, T, and Mike's
salary will be found as of that time. A variety of formats for T will be allowed, and
a conversion routine will be called to convert times to the 32 bit unsigned integers
used internally. POSTGRES constructs a query plan to find qualifying records in
the normal fashion. However, each accessed tuple mustbe additionally checked for
validity at the time desired in the user's query. In general, a record is valid at
time T if the following is true:

Tmin < T and Xmin is a committed transaction and either:
Xmax is not a committed transaction or
Xmax is null or
Tmax > T

In fact, to allow a user to read uncommitted records that were written by a
different command within his transaction, the actual test for validity is the follow
ing more complex condition.

Xmin = my-transaction and Cmin != my-command and T = "now"
or

Tmin < T and Xmin is a committed transaction and either:
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null or
Tmax > T or

If T is not specified, then T = "now" is the default value, and a record is valid at
time, "now" if

Xmin = my-transaction and Cmin != my-command
or

Xmin is a committed transaction and either
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or
Xmax is null

More generally, Mike's salary history over a range of times can be retrieved
by:

retrieve (EMP.Tmin, EMP.Tmax, EMP.salary)
usingEMP[T1,T2] where EMP.name = "Mike"

This command will find all salaries for Mike along with their starting and ending
times as long as the salary is valid at some point in the interval, [Tl, T2]. In gen
eral, a record is valid in the interval [T1,T21 if:

Xmin = my-transaction and Cmin != my-command and T2 >= "now"
or

Tmin < T2 and Xmin is a committed transaction and either:
(Xmax is not a committed transaction and Xmax != my-transaction) or
(Xmax = my-transaction and Cmax = my-command) or

73

Xmax is null or
Tmax > Tl

Either Tl or T2 can be omitted and the defaults are respectively Tl = 0 and T2 =
+infinity

Special programs (such as debuggers) may want to be able to access uncom
mitted records. To facilitate such access, we define a second specification for each
relation, for example:

retrieve (EMP.salary) using all-EMP[Tl where EMP.name = "Mike"
An EMP record is in all-EMP at time T if

Tmin < T and (Tmax > T or Tmax = null)
Intuitively, all-EMP[T] is the set of all tuples committed, aborted or in-progress at
timeT.

Each accessed magnetic disk record must have one of the above tests per
formed. Although each test is potentially CPU and I/O intensive, we are not
overly concerned with CPU resources because we do not expect the CPU to be a
significant bottleneck in next generation systems. This point is discussed further
in Section 5. Moreover, the CPU portion of these tests can be easily committed to
custom logic or microcode or even a co-processor ifit becomes a bottleneck.

There will be little or no I/O associated with accessing the stetus of any tran
saction, since we expect the transaction log (or its associated bloom filter) to be in
main memory. We turn in the next subsection to avoiding I/O when evaluating
the remainder of the above predicates.

2.4. Concurrency Control and Timestamp Management
It would be natural to assign a timestamp to a transaction at the time it is

started and then fill in the timestemp field of each record as it is updated by the
transaction. Unfortunately, this would require POSTGRES to process transactions
logically in timestamp order to avoid anomolous behavior. This is equivalent to
requiring POSTGRES to use a concurrency control scheme based on timestemp
ordering (e.g. [BERN80]. Since simulation results have shown the superiority of
conventional locking [AGRA85], POSTGRES uses instead a standard two-phase
locking policy which is implemented by a conventional main memory lock table.

Therefore, Tmin and Tmax must be set to the commit time ofeach transaction
(which is the time at which updates logically take place) in order to avoid anomo
lous behavior. Since the commit time of a transaction is not known in advance,
Tmin and Tmax cannot be assigned values at the time that a record is written.

We use the following technique to fill in these fields asynchronously.
POSTGRES contains a TIME relation in which the commit time of each transac
tion is stored. Since timestamps are 32 bit unsigned integers, byte positions 4<j
through 4*j + 3 are reserved for the commit time of transaction j. At the time a
transaction commits, it reads the current clock time and stores it in the appropri
ate slot of TIME. The tail of the TIME relation can be stored in stable main
memory to avoid the I/O that this update would otherwise entail.

Moreover, each relation in a POSTGRES date base is tagged at the time it is
created with one of the following three designations:

74

no archive: This indicates that no historical access to relations is required.

light archive: This indicates that an archive is desired but little access to it
is expected.

heavy archive: This indicates that heavy use will be made ofthe archive.

For relations with "no archive" stetus, Tmin and Tmax are never filled in, since
access to historical tuples is never required. For such relations, only POSTQUEL
commands specified for T = "now" can be processed. The validity check for T =
"now" requires access only to the POSTGRES LOG relation which should be con
tained in the buffer pool. Hence, the test consumes no I/O resources.

If "light archive" is specified, then access to historical tuples is allowed.
Whenever Tmin or Tmax must be compared to some specific value, the commit
time of the appropriate transaction is retrieved from the TIME relation to make
the comparison. Access to historical records will be slowed in the "light archive"
situation by this requirement to perform an I/O to the TIME relation for each
timestamp value required. This overhead will only be tolerable ifarchival records
are accessed a very small number oftimes in their lifetime (about 2-3).

In the "heavy archive" condition, the run time system must look up the com
mit time ofa transaction as in the "light archive" case. However, it then writes
the value found into Tmin or Tmax, thereby turning the read of a historical record
into a write. Any subsequent accesses to the record will then be validateble
without the extra access to the TIME relation. Hence, the first access to an
archive record will be costly in the "heavy archive" case, but subsequent ones will
will incur no extra overhead.

In addition, we expect to explore the utility of running another system demon
in background to asynchronously fill in timestamps for "heavy archive" relations.

2.5. Record Access
Records canbe accessed by a sequential scan ofa relation. In this case, pages

of the appropriate file are read in a POSTGRES determined order. Each page con
teins a pointer to the next and the previous logical page; hence POSTGRES can
scan a relation by following the forward linked list. The reverse pointers are
required because POSTGRES can execute query plans either forward or backward.
Additionally, on each page there is a line table as in [STON76] containing pointers
to the starting byte ofeach anchor point record on that page.

Once an anchor point is located, the delte records linked to it can be con
structed by following PTR and decompressing the date fields. Although decompres
sion is a CPU intensive task, we feel that CPU resources will not be a bottleneck
in future computers as noted earlier. Also, compression and decompression of
records is a task easily committed to microcode or a separate co-processor.

An arbitrary number of secondary indexes can be constructed for any^base
relation. Each index is maintained by an access method, and provides keyed
access on a field or a collection of fields. Each access method must provide all the
procedures for the POSTGRES defined abstraction for access ^J^. Jhese
include get-record-by-key, insert-record, delete-record, etc. The POSTGRES run

75

time system will call the various routines of the appropriate access method when
needed during query processing.

Each access method supports efficient access for a collection of operators as
noted in [STON86al. For example, B-trees can provide fast access for any of the
operators:

Since each access method may be required to work for various date types, the col
lection of operators that an access methods will use for a specific date type must be
registered as an operator class. Consequently, the syntax for index creation is:

index on rel-name is index-name ({key-i with operator-class-i})
using access-method-name and performance-parameters

The performance-parameters specify the fill-factor to be used when loading the
pages of the index, and the minimum and maximum number of pages to allocate.
The following example specifies a B-tree index on a combined key consisting of an
integer and a floating point number.

index on EMP is EMP-INDEX (age with integer-ops, salary with float-ops)
using B-tree and fill-factor = .8

The run-time system handles secondary indexes in a somewhat unusual way.
When a record is inserted, an anchor point is constructed for the record along with
index entries for each secondary index. Each index record contains a key(s) plus a
pointer to an entry in the line table on the page where the indexed record resides.
This line table entry in turn points to the byte-offset ofthe actual record. This sin
gle level ofindirection allows anchor points to be moved on a date page without
requiring maintenance of secondary indexes.

When an existing record is updated, a delte record is constructed and chained
onto the appropriate anchor record. If no indexed field has been modified, then no
maintenance ofsecondary indexes is required. If an indexed field changed, then an
entry is added to the appropriate index containing the new key(s) and a pointer to
the anchor record. There are no pointers in secondary indexes directly to delta
records. Consequently, a delte record can only be accessed by obtaining its
corresponding anchor point and chaining forward.

The POSTGRES query optimizer constructs plans which may specify scanning
portions ofvarious secondary indexes. The run time code to support this function
is relatively conventional except for the fact that each secondary index entry points
to an anchor point and a chain of delta records, all of which must be inspected.
Valid records that actually match the key in the index are then returned to higher
level software.

Use of this technique guarantees that record updates only generate I/O
activity in those secondary indexes whose keys change. Since updates to keyed
fields are relatively uncommon, this ensures that few insertions must be performed
in the secondary indexes.

Some secondary indexes which are hierarchical in nature require disk pages
to be placed in steble storage in a particular order (e.g. from leaf to root for page
splits in B+-trees). POSTGRES will provide a low level command

76

order block-1 block-2

to support such required orderings. This command is in addition to the required
pin and unpin commands to the buffer manager.

3. THE ARCHIVAL SYSTEM

3.1. Vacuuming the Disk
An asynchronous demon is responsible for sweeping records which are no

longer valid to the archive. This demon, called the vacuum cleaner, is given
instructions using the following command:

vacuum rel-name after T

Here T is a time relative to "now". For example, the following vacuum command
specifies vacuuming records over 30 days old:

vacuum EMP after "30 days"

The vacuum cleaner finds candidate records for archiving which satisfy one of the
following conditions:

Xmax is non empty and is a committed transaction and "now" - Tmax > = T
Xmax is non empty and is an aborted transaction
Xmin is non empty and is an aborted transaction

In the second and third cases, the vacuum cleaner simply reclaims the space occu
pied by such records. In the first case, a record must be copied to the archive
unless "no-archive" stetus is set for this relation. Additionally, if "heavy-archive"
is specified, Tmin and Tmax must be filled in by the vacuum cleaner during
archiving if they have not already been given values during a previous access.
Moreover, if an anchor point and several delte records can be swept together, the
vacuuming process will be more efficient. Hence, the vacuum cleaner will gen
erally sweep a chain ofseveral records to the archive at one time.

This sweeping must be done very carefully so that no data is irrecoverably
lost. First we discuss the format of the archival medium, then we turn to the
sweeping algorithm and a discussion of its cost.

3.2. The Archival Medium
The archival storage system is compatible with WORM devices, but is not res

tricted to such systems. We are building a conventional extent-based file system
on the archive, and each relation is allocated to a single file. Space is allocated in
large extents and the next one is allocated when the current one is exhausted. The
space allocation map for the archive is kept in a magnetic disk relation. Hence, it
is possible, albeit very costly, to sequentially scan the historical version of a rela
tion.

Moreover, there are an arbitrary number of secondary indexes for each rela
tion in the archive. Since historical accessing patterns may be different than
accessing patterns for current data, we do not restrict the archive indexes to be the
same as those for the magnetic disk data base. Hence, archive indexes must be
explicitly created using the following extension of the indexing command:

index on {archive} rel-name is index-name ({key-i with operator-class-i})

77

using access-method-name and performance-parameters
Indexes for archive relations are normally stored on magnetic disk. However, since
they may become very large, we will discuss mechanisms in the next section to
support archive indexes that are partly on the archive medium.

The anchor point and a collection of delte records are concatenated and writ
ten to the archive as a single variable length record. Again secondary index
records must be inserted for any indexes defined for the archive relation. An index
record is generated for the anchor point for each archive secondary index. More
over, an index record must be constructed for each delte record in which a secon
dary key has been changed.

Since the access paths to the portion of a relation on the archive may be
different than the access paths to the portion on magnetic disk, the query optim
izer must generate two plans for any query that requests historical date. Of
course, these plans can be executed in parallel ifmultiple processors are available.
In addition, we are studying the decomposition of each of these two query plans
into additional parallel pieces. Areport on this subject is inpreparation [BHID87].

3.3. The Vacuum Process

Vacuuming is done in three phases, namely:
phase 1: write an archive record and its associated index records
phase 2: write a new anchor point in the current date base
phase 3: reclaim the space occupied by the old anchor point and its delte

records

If a crash occurs while the vacuum cleaner is writing the historical record in phase
1, then the date still exists in the magnetic disk date base and will be revacuumed
again at some later time. If the historical record has been written but not the
associated indexes, then the archive will have a record which is reachable only
through a sequential scan. Ifa crash occurs after some index records have been
written, then it will be possible for the same record to be accessed in a magnetic
disk relation and in an archive relation. In either case, the duplicate record will
consume system resources; however, there are no other adverse consequences
because POSTGRES is a relational system and removes duplicate records during
processing.

When the record is safely stored on the archive and indexed appropriately, the
second phase of vacuuming can occur. This phase entails computing a new anchor
point for the magnetic disk relation and adding new index records for it. This
anchor point is found by starting at the old anchor point and calculating the value
of the last delte that satisfies

"now" - Tmax > = T

by moving forward through the linked list. The appropriate values are inserted
into the magnetic disk relation, and index records are inserted into all appropriate
index. When this phase is complete, the new anchor point record is accessible
directly from secondary indexes as well as by chaining forward from the old anchor
point. Again, ifthere is a crash during this phase a record may be accessible twice
in some future queries, resulting in additional overhead but no other consequences.

78

The last phase of the vacuum process is to remove the original anchor point
followed by all delte records and then to delete all index records that pointed to
this deleted anchor point. If there is a crash during this phase, index records may
exist that do not point to a correct date record. Since the run-time system must
already check that date records are valid and have the key that the appropriate
index record expects them to have, this situation can be checked using the same
mechanism.

Whenever there is a failure, the vacuum cleaner is simply restarted after the
failure is repaired. It will re-vacuum any record that was in progress at some later
time. If the crash occurred during phase 3, the vacuum cleaner could be smart
enough to realize that the record was already safely vacuumed. However, the cost
of this checking is probably not worthwhile. Consequently, failures will result in a
slow accumulation ofextra records in the archive. We are depending on crashes to
be infrequent enough that this is not a serious concern.

We now turn to the cost of the vacuum cleaner.

3.4. Vacuuming Cost
We examine two different vacuuming situations. In the first case we assume

that a record is inserted, updated K times and then deleted. The whole chain of
records from insertion to deletion is vacuumed at once. In the second case, we
assume that the vacuum is run after K updates, and a new anchor record must be
inserted. In both cases, we assume that there are Zsecondary indexes for both the
archive and magnetic disk relation, that no key changes are made during these K
updates, and that an anchor point and all its delte records reside on the same
page. Table 1 indicates the vacuum cost for each case. Notice that vacuuming
consumes a constant cost. This rather surprising conclusion reflects the fact that a
new anchor record can be inserted on the same page from which the old anchor
point is being deleted without requiring the page to be forced to stable memory m
between the operations. Moreover, the new index records can be inserted on the
same page from which the previous entries are deleted without an intervening I/O.
Hence, the cost PER RECORD of the vacuum cleaner decreases as the length of the

whole chain K updates

archive-writes 1+Z 1+Z
disk-reads 1 1
disk-writes 1+Z 1+Z

I/O Counts for Vacuuming
Table 1

79

chain, K, increases. As long as an anchor point and several delte records are vacu
umed together, the cost should be marginal.

4. INDEXING THE ARCHIVE

4.1. Magnetic Disk Indexes
The archive can be indexed by conventional magnetic disk indexes. For

example, one could construct a salary index on the archive which would be helpful
in answering queries of the form:

retrieve (EMP.name) using EMP [,] where EMP.salary = 10000
However, to provide fast access for queries which restrict the historical scope of
interest, e.g:

retrieve (EMP.name) using EMP [1/1/87,] where EMP.salary = 10000
a standard salary index will not be of much use because the index will return all
historical salaries ofthe correct size whereas the query only requested a small sub
set. Consequently, in addition to conventional indexes, we expect time-oriented
indexes to be especially useful for archive relations. Hence, the two fields, Tmin
and Tmax, are stored in the archive as a single field, I, of type interval. An R-tree
access method [GUTM841 can be constructed to provide an index on this interval
field. The operators for which an R-tree can provide fast access include overlaps
and "contained-inw. Hence, if these operators are written for the interval date
type, an R-tree can be constructed for the EMP relation as follows:

index on archive EMP is EMP-INDEX (I with interval-ops)
using R-tree and fill-factor = .8

This index can support fast access to the historical state of the EMP relation at
any point in time or during a particular period.

To utilize such indexes, the POSTGRES query planner needs to be slightly
modified. Note that POSTGRES need only run a query on an archive relation if
the scope of the relation includes some historical records, Hence, the query for an
archive relation must be of the form:

...using EMP[T]

or

...using EMP[T1,T2]
The planner converts the first construct into:

...where T conteined-in EMP.I

and the second into:

...where interval(Tl,T2) overlaps EMP.I
Since all records in the archive are guaranteed to be valid, these two qualifications
can replace all the low level code that checks for record validity on the magnetic
disk described in Section 2.3. With this modification, the query optimizer can use
the added qualification to provide a fast access path through an interval index if
one exists.

80

Moreover, we expect combined indexes on the interval field along with some
date value to be very attractive, e.g:

index on archive EMP is EMP-INDEX
(I with interval-ops, salary with float-ops)
using R-tree and fill-factor = .8

Since an R-tree is a multidimensional index, the above index supports intervals
which exist in a two dimensional space of time and salaries. A query such as:

retrieve (EMP.name) using EMP[T1,T2] where EMP.salary = 10000

will be turned into:

retrieve (EMP.name) where EMP.salary = 10000
and interval(Tl,T2) overlaps EMP.I

The two clauses ofthe qualification define another interval in two dimensions and
conventional R-tree processing of the interval can be performed to use both
qualifications to advantage.

Although date records will be added to the archive at the convenience ofthe
vacuum cleaner, records will be generally inserted in ascending time order. Hence,
the poor performance reported in [ROUS85] for R-trees should be averted by the
nearly sorted order in which the records will be inserted. Performance tests to
ascertain this speculation are planned. We now turn to a discussion of R-tree
indexes that are partly on both magnetic and archival mediums.

4.2. Combined Media Indexes

We begin with a small space calculation to illustrate the need for indexes that
use both media. Suppose a relation exists with 10**6 tuples and each tuple is
modified 30 times during the lifetime of the application. Suppose there are two
secondary indexes for both the archive and the disk relation and updates never
change the values of key fields. Moreover, suppose vacuuming occurs after the 5th
delte record is written, so there are an average of3 delte records for each anchor
point. Assume that anchor points consume 200 bytes, delte records consume 40
bytes, and index keys are 10 bytes long.

With these assumptions, the sizes in bytes of each kind of object are indicated
in Table 2. Clearly, 10**6 records will consume 200 mbytes while 3 x 10**6 delte
records will require 120 mbytes. Each index record is assumed to require a four
byte pointer in addition to the 10 byte key; hence each of the two indexes will take
up 14 mbytes. There are 6 anchor point records on the archive for each of the
10**6 records each concatenated with 4 delte records. Hence, archive records will
be 360 bytes long, and require 2160 mbytes. Lastly, there is an index record for
each ofthe archive anchor points; hence the archive indexes are 6 times as large as
the magnetic disk indexes.

Two points are evident from Table 2. First, the archive can become rather
large. Hence, one should vacuum infrequently to cut down on the number of
anchor points that occur in the archive. Moreover, it might be desirable to
differentially code the anchor points to save space. The second point to notice is
that the archive indexes consume a large amount ofspace on magnetic disk, if the

81

object mbytes

disk relation anchor points 200
deltas 120
secondary indexes 28

archive 2160
archive indexes 168

Sizes of the Various Objects
Table 2

target relation had three indexes instead of two, the archive indexes would con
sume a greater amount of space than the magnetic disk relation. Hence, we
explore in this section date structures that allow part of the index to migrate to
the archive. Although we could alternatively consider index structures that are
entirely on the archive, such as those proposed in [VITT85], we believe that com
bined media structures will substantially outperform structures restricted to the
archive. We plan performance comparisons to demonstrate the validity of this
hypothesis.

Consider an R-tree storage structure in which each pointer in a non-leaf node
of the R-tree is distinguished to be either a magnetic disk page pointer or an
archive page pointer. Ifpointers are 32 bits, then we can use the high-order bit for
this purpose thereby allowing the remaining 31 bits to specify 2**31 pages on mag
netic disk or archive storage. If pages are 8K bytes, then the maximum size ofan
archive index is 2**44 bytes (about 1.75 x 10**13 bytes), clearly adequate for
almost any application. Moreover, the leaf level pages of the R-tree contain key
values and pointers to associated data records. These date pointers can be 48 bytes
long, thereby allowing the data file corresponding to a single historical relation to
be 2**48 bytes long (about 3.0 x 10**14 bytes), again adequate for most applica
tions.

We assume that the archive may be a write-once-read-many (WORM) device
that allows pages to be initially written but then does not allow any overwrites of
the page. With this assumption, records can only be dynamically added to pages

82

that reside on magnetic disk. Table 3 suggests two sensible strategies for the
placement ofnew records when they are not entirely contained inside some R-tree
index region corresponding to a magnetic disk page.

Moreover, we assume that any page that resides on the archive contains
pointers that in turn point only to pages on the archive. This avoids having to
contend with updating an archive page which contains apointer to amagnetic disk
page that splits.

Pages in an R-tree can be moved from magnetic disk to the archive as long as
they contain only archive page pointers. Once a page moves to the archive, it
becomes read only. A page can be moved from the archive to the magnetic disk if
its parent page resides on magnetic disk. In this case, the archive page previously
inhabited by this page becomes unusable. The utility of this reverse migration
seems limited, so we will not consider it further.

We turn now to several page movement policies for migrating pages from
magnetic disk to the archive and use the parameters indicated in Table 4 in the
discussion to follow. The simplist policy would be to construct a system demon to
"vacuum" the index by moving the leaf page to the archive that has the smallest
value for Tmax, the left-hand end of its interval. This vacuuming would occur
whenever the R-tree structure reached a threshold near its maximum size of F disk
pages. A second policy would be to choose aworthy page to archive based both on
its value ofTmax and on percentege fullness ofthe page. In either case, insertions
would be made into the R-tree index at the lower left-hand part of the index while

pi allocate to the region which has to be expanded the least
P2 allocate to the region whose maximum time has to beexpanded the least

Record Insertion Strategies
Table 3

F number of magnetic disk blocks usable for the index
U update frequency ofthe relation being indexed
L record size in the index being constructed
B block size of magnetic disk pages

Parameters Controlling Page Movement
Table 4

83

the demon would be* archiving pages in the lower right hand part of the index.
Whenever an intermediate R-tree node had descendents all on the archive, it could
in turn be archived by the demon.

For example, ifBis 8192 bytes, Lis 50 bytes and there is a five year archive
of updates at a frequency, Uof 1update per second, then 1.4 x 10**6 index blocks
will be required resulting in a four level R-tree. F of these blocks will reside on
magnetic disk and the remainder will be on the archive. Any insertion or search
will require at least 4 accesses to one or the other storage medium.

Athird movement policy with somewhat different performance characteristics
would be to perform "batch movement". In this case one would build a magnetic
disk R-tree until its size was F blocks. Then, one would copy the all pages of the
R-tree except the root to the archive and allocate a special "top node" on magnetic
disk for this root node. Then, one would proceed to fill up a second complete R-tree
of F-l pages. While the second R-tree was being built, both this new R-tree and the
one on the archive would be searched during any retrieval request. All inserts
would, of course, be directed to the magnetic disk R-tree. When this second R-tree
was full, it would be copied to the archive as before and its root node added to the
existing top node. The combination might cause the top node to overflow, and a
conventional R-tree split would be accomplished. Consequently, the top node
would become a conventional R-tree ofthree nodes. The filling process would start
again on a 3rd R-tree of F-3 nodes. When this was full, it would be archived and
its root added to the lower left hand page of the 3 node R-tree.

Over time, there would continue to be two R-trees. The first would be com
pletely on magnetic disk and periodically archived. As long as the height of this
R-tree at the time it is archived is a constant, H, then the second R-tree ofheight,
HI, will have the bottom H-l levels on the archive. Moreover, insertions into the
magnetic disk portion of this R-tree are always on the left-most page. Hence, the
pages along the left-side of the tree are the only ones which will be modified; other
pages can be archived if they point entirely to pages on the archive. Hence, some
subcoUection of the pages on the top Hl-H+1 levels remain on the magnetic disk.
Insertions go always to the first R-tree while searches go to both R-trees. Of
course, there are no deletions to be concerned with.

Again ifBis 8192 bytes, Lis 50 bytes and F is 6000 blocks, then Hwill be 3
and each insert will require 3 magnetic disk accesses. Moreover, at 1 update per
second, a five year archive will require a four level R-tree whose bottom two levels
will be on the archive and a subcoUection ofthe top 2 levels of100-161 blocks will
be on magnetic disk. Hence, searches will require descending two R-trees with a
total depth of 7levels and will be about 40 percent slower than either of the single
R-tree structures proposed. On the other hand, the very common operation of
insertions will be approximately 25 percent faster.

5. PERFORMANCE COMPARISON

5.1. Assumptions
In order to compare our storage system with a conventional one based on

write-ahead logging (WAL), we make the following assumptions.

84

1) Portions ofthe buffer pool may reside in non-volatile main memory

2) CPU instructions are not a critical resource, and thereby only I/O operations are
counted.

The second assumption requires some explanation. Current CPU technology is
driving down the cost of a MIP at a rate of a factor of two every couple of years.
Hence, current low-end workstations have a few MIPs of processing power. On the
other hand, disk technology is getting denser and cheaper. However, disks are not
getting faster at a significant rate. Hence, one can stffl only expect to read about
30 blocks per second off of a standard disk drive. Current implementations of data
base systems require several thousand instructions to fetch a page from the disk
followed by 1000-3000 instructions per date record examined on that page. As a
simple figure of merit, assume 30000 instructions are required to process a disk
block. Hence, a 1 MIP CPU will approximately balance a single disk. Currently,
workstations with 3-5 MIPs are available but are unlikely to be configured with 3-
5 disks. Moreover, future workstations (such as SPUR and FIREFLY) wiU have
10-30 MIPs. Clearly, they wiU not have 10-30 disks unless disk systems shift to
large numbers of SCSI oriented single platter disks and away from current SMD
disks.

Put differently, a SUN 3/280 costs about $5000 per MIP, while an SMD disk
and controUer costs about $12,000. Hence, the CPU cost to support a disk is much
smaller than the cost ofthe disk, and the major cost ofdate base hardware can be
expected to be in the disk system. As such, ifan installation is found to be CPU
bound, then additional CPU resources can be cheaply added until the system
becomes balanced.

We analyze three possible situations:
large-SM: anample amount of steble main memory isavailable
smaU-SM: a modest amount ofsteble main memory is available
no-SM: no steble main memory is availble

In the first case we assume that enough stable main memory is available for
POSTGRES and a WAL system to use so that neither system is required to force
disk pages to secondary storage at the time that they are updated. Hence, each
system will execute a certain number of I/O operations that can be buffered m
steble memory and written out to disk at some convenient time. We count the
number of such non-forced I/O operations that each system will execute, assum
ing all writes cost the same amount. For both systems we assume that records do
not cross page boundaries, so each update results in a single page write. Moreover,
we assume that each POSTGRES delta record can be put on the same page as its
anchor point. Next, we assume that transactions are a single record insertion,
update, deletion or an aborted update. Moreover, we assume there are two secon
dary indexes on the relation affected and that updates fail to alter either key field.
Lastly, we assume that a write ahead log will require 3 log records (begin transac
tion, the date modification, and end transaction), with a total length of 400 bytes.
Moreover, secondary index operations are not logged and thereby the log records
for 10 transactions will fit on a conventional 4K log page.

85

In the second situation we assume that a modest amount of steble main
memory is available. We assume that the quantity is sufficient to hold only the
tail of the POSTGRES log and the tail of theTIME relation. In a WAL system, we
assume that steble memory can buffer a conventional log turning each log write
into one that need not be synchronously forced out to disk. This situation (small-
SM) should be contrasted with the third case where no steble memory at all is
available (no-SM). In this latter cases, some writes must be forced to disk by both
types of storage systems.

In the results to follow we ignore the cost that either kind of system would
incur to mirror the date for high availability. Moreover, we are also ignoring the
WAL cost associated with checkpoints. In addition, we assume that a WAL system
never requires a disk read to access the appropriate un-do log record. We are also
ignoring the cost of vacuuming the disk in the POSTGRES architecture.

5.2. Performance Results
Table 5 indicates the number ofI/O operations each of the four types of tran

sactions must execute for the assumed large-SM configuration. Since there is
ample steble main memory, neither system must force any date pages to disk and
only non-forced I/Os must be done. An insert requires that a data record and two
index records be written by either system. Moreover, l/10th of a log page will be
filled by the conventional system, so every 10 transactions there wiU be another
log page which must be eventually written to disk. In POSTGRES the insertions
to the LOG relation and the TIME relation generate an I/O every 65536 and 2048
transactions respectively, and we have ignored this small number in Table 5. Con
sequently, one requires 3 non-forced I/Os in POSTGRES and 3.1 in a conventional
system. The next two columns in Table 1 can be similarly computed. The last
column summarizes the I/Os for an aborted transaction. In POSTGRES the
updated page need not be rewritten to disk. Hence, no I/Os are strictly necessary;
however, in all liklihood, this optimization will not be implemented. AWAL sys
tem will update the data and construct a log record. Then the log record must be
read and the date page returned to its original value. Again, a very clever system
could avoid writing the page out to disk, since it is identical to the disk copy.
Hence, for both systems we indicate both the optimized number of writes and the
non-optimized number. Notice in Table 5 that POSTGRES is marginaUy better
than a WAL system except for deletes where it is dramatically better because it
does not delete the 2 index records. We now turn to cases where POSTGRES is
less attractive.

Table 6 repeats the I/O counts for the small-SM configuration. The WAL
configuration performs exactly as in Table 5 while the the POSTGRES date pages
must now be forced to disk since insufficient stable main memory is assumed to
hold them. Notice that POSTGRES is still better in the total number ofVO opera
tions; however the requirement to do them synchronously will be a major disad
vantage.

Table 7 then indicates the I/O counts under the condition that NO stable main
memory is available. Here the log record for a conventional WAL system must be
forced to disk at commit time. The other writes can remain in the buffer pool and

86

Insert Update Delete Abort

WAL-force
WAL-no-force

0

3.1

0

1.1

0

3.1

0

0.1 or 1.1

POSTGRES-force
POSTGRES-non-force

0

3

0

1

0

1

0

Oorl

I/O Counts for the Primitive Operations
large-SM Configuration

Table 5

Insert Update Delete Abort

WAL-force 0
WAL-no-force 3.1

0

1.1

0

3.1

0

0.1 or 1.1

POSTGRES-force 3
POSTGRES-non-force 0

1

0

1

0

Oor 1

0

I/O Counts for the Primitive Operations
small-SM Configuration

Table 6

be written at a later time. In POSTGRES the LOG bit must be forced out to disk
along with the insert to the TIME relation. Moreover, the date pages must be
forced as in Table 6. In this case POSTGRES is marginally poorer in the total
number of operations; and again the synchronous nature ofthese updates will be a
significant disadvantage.

In summary, the POSTGRES solution is preferred in the large-SM
configuration since all operations require less I/Os. In Table 6 the total number of
I/Os is less for POSTGRES; however, synchronous I/O is required. Table 7 shows a
situation where POSTGRES is typically more expensive. However, group commits
[DEWI84] could be used to effectively convert the results for either type of system
into the ones in Table 6. Consequently, POSTGRES should be thought ofas fairly
competitive with current storage architectures. Moreover, it has a considerable

87

Insert Update Delete Abort

WAL-force
WAL-no-force

1 1

3 1

1

3

1

Oor 1

POSTGRES-force
POSTGRES-non-force

5 3

0 0

3

0

1

Oorl

I/O Counts for the Primitive Operations
no-SM Configuration

Table 7

advantage over WAL systems in that recovery time will be instantaneous while
requiring a substantial amount oftime in a WAL architecture.

6. CONCLUSIONS
This paper has described the storage manager that is being constructed for

POSTGRES. The main points guiding the design of the system were:

1) instantaneous recovery from crashes

2) ability to keep archival records onan archival medium

3) housekeeping chores should be done asynchronously

4) concurrency control based on conventional locking

The first point should be contrasted with the standard write-ahead log (WAL)
storage managers in widespread use today.

In engineering application one often requires the past history of the date base.
Moreover, even in business appUcations this feature is sometimes needed, and the
now famous TP1 benchmark assumes that the appUcation will maintain an
archive. It makes more sense for the date manager to do this tesk internally for
appUcations that require the service.

The third design point has been motivated by the desire to run multiple con
current processes if there happen to be extra processors. Hence storage manage
ment functions can occur in parallel on multiple processors. Alternatively, some
functions can be saved for idle time on a single processor. Lastly, it allows
POSTGRES code to be a collection of asynchronous processes and not a single large
monoUthic body of code.

The final design point reflects our intuitive belief, confirmed by simulations,
that standard locking is the most desirable concurrency control strategy.

88

Moreover, it should be noted that read-only transactions can be optionally coded to
run as of some point in the recent past. Since historical commands set no locks,
then read-only transactions wiU never interfere with transactions performing
updates or be required to wait. Consequently, the level of contention in a
POSTGRES date base may be a great deal lower than that found in conventional
storage managers.

The design ofthe POSTGRES storage manager has been sketched and a brief
analysis of its expected performance relative to a conventional one has been per
formed. If the analysis is confirmed in practice, then POSTGRES will give similar
performance compared to other storage managers while providing the extra service
of historical access to the date base. This should prove attractive in some environ
ments.

At the moment, the magnetic disk storage manager is operational, and work
is proceeding on the vacuum cleaner and the layout of the archive. POSTGRES is
designed to support extendible access methods, and we have implemented the B-
tree code and wiU provide R-trees in the near future. Additional access methods
can be constructed by other parties to suit their special needs. When the remain
ing pieces of the storage manager are complete, we plan a performance "bakeoff"
both against conventional storage managers as well as against other storage
managers (such as [CARE86, COPE84]) with interesting properties.

REFERENCES

[AGRA85]

[ASTR761

[BART81]

[BERN80]

[BHID87]

[CARE86]

[COPE84]

[DEC86]

Agrawal, R. et. al., "Models for Studying Concurrency Control
Performance Alternatives and Implications,,, Proc. 1985
ACM-SIGMOD Conference on Management of Date, Austin,
Tx., May 1985.

Astrahan, M. et. al., "System R: A Relational Approach to
Date," ACM-TODS, June 1976.
Bartlett, J., ttA Non-STOP Kernel," Proc. Eighth Symposium
on Operating System Principles," Pacific Grove, Ca., Dec.
1981.

Bernstein, P. at. al., "Concurrency Control in a System for
Distributed Databases (SDD-1)," ACM-TODS, March 1980.

Bhide, A., "Query Processing in Shared Memory Multiproces
sor Systems," (in preparation).
Carey, M. et. al., "Object and File Management in the
EXODUS Datebase System," Proc. 1986 VLDB Conference,
Kyoto, Japan, August 1986.
Copeland, G. and D. Maier, "Making Smalltalk a Datebase
System," Proc. 1984 ACM-SIGMOD Conference on Manage
ment of Date, Boston, Mass. June 1984.

Digital Equipment Corp., "VAX/VMS V4.0 Reference
Manual," Digital Equipment Corp., Maynard, Mass., June
1986.

89

[DEWI84]

[GRAY78]

[GUTM841

[fflLL86]

[ROUS85]

[SEQU85]

[SEVR761

[STON761

[STON861

[STON86a]

[VTTT85]

Dewitt, D. et. al., "Implementetion Techniques for Main
Memory Datebase Systems," Proc. 1984 ACM-SIGMOD
Conference on Management of Date, Boston, Mass., June
1984.

Gray, J., "Notes on Date Base Operating Systems," IBM
Research, San Jose, Ca., RJ1879, June 1978.
Gutman, A., "R-trees: A Dynamic Index Structure for Spatial
Searching," Proc. 1984 ACM-SIGMOD Conference on
Management of Data, Boston, Mass. June 1984.
HiU, M., et al. "Design Decisions in SPUR," Computer Maga
zine, vol.19, no.ll, November 1986.
RoussoupouUs, N. and Leifker, D., "Direct Spatial Search on
Pictorial Databases Using Packed R-trees," Proc. 1985 ACM-
SIGMOD Conference on Management of Data, Austin, Tx.,
May 1985.

Sequent Computer Co., "The SEQUENT Balance Reference
Manual," Sequent Computers, Portland, Ore., 1985.
Severance, D., and Lohman, G., "Differential Files: Their
AppUcation to the Maintenance of large Databases," ACM-
TODS, June 1976.

Stonebraker, M., et. al. "The Design and Implementetion of
INGRES," ACM-TODS,September 1976.
Stonebraker, M. and Rowe, L., "The Design of POSTGRES,"
Proc. 1986ACM-SIGMOD Conference on Management of
Date, Washington, D.C., May 1986.
Stonebraker, M., "Inclusion of New Types in Relational Date
Base Systems," Proc. Second International Conference on
Date Base Engineering, Los Angeles, Ca., Feb. 1986.
Vitter, J., "An Efficient I/O Interface for Optical Disks,"
ACM-TODS, June 1985.

90

t
A Shared Object Hierarchy1

Lawrence A. Rowe

Computer Science Division, EECS Department
University of California

Berkeley, CA 94720

Abstract

This paper describes the design and proposed implementation of a
shared object hierarchy. The object hierarchy is stored in a relational data
base and objects referenced by an appUcation program are cached in the
program's address space. The paper describes the database representation
for the object hierarchy and the use of POSTGRES, a next-generation rela
tional database management system, to implement object referencing
efficiently. The shared object hierarchy system will be used to implement
OBJFADS, an object-oriented programming environment for interactive
multimedia database applications, that will be the programming interface to
POSTGRES.

1. Introduction

Object-oriented programming has received much attention recently as a
new way to develop and structure programs [12,30]. This new programming
paradigm, when coupled with a sophisticated interactive programming
environment executing on a workstation with a bit-mapped display and
mouse, improves programmer productivity and the quality of programs they
produce.

A program written in an object-oriented language is composed of a col
lection of objects that contain data and procedures. These objects are organ
ized into an object hierarchy. Previous implementations of object-oriented
languages have required each user to have his or her own private object

t This research was supported by the National Science Foundation under
Grant DCR-8507256 and the Defense Advanced Research Projects Agency (DoD),
Arpa Order No. 4871, monitored by Space and Naval Warfare Systems Command
under Contract N00039-84-C-0089.

91

hierarchy. In other words, the object hierarchy is not shared. Moreover, the
object hierarchy is usually restricted to main memory. The LOOM system
stored object hierarchies in secondary memory [14], but it did not allow
object sharing. These restrictions limit the applications to which this new
programming technology canbe applied.

There are two approaches to building a shared object hierarchy capable
ofstoring a large number ofobjects. The first approach is to build an object
data manager [2,9-11,17,20,35]. In this approach, the data manager stores
objects that a program can fetch and store. The disadvantage of this
approach is that a complete database management system (DBMS) must be
written. A query optimizer is needed to support object queries (e.g., "fetch
all foo objects where field bar is bas"). Moreover, the optimizer must sup
port the equivalent ofrelational joins because objects can include references
to other objects. A transaction management system is needed to support
shared access and to maintain data integrity should the software or
hardware crash. Finally, protection and integrity systems are required to
control access to objects and to maintain data consistency. These modules
taken together account for a large fraction of the code in a DBMS. Pro
ponents of this approach argue that some of this functionality can be
avoided. However, we beUeve that eventually all of this functionality will
be required for the same reasons that it is required in a conventional data
base management system.

The second approach, and the one we are taking, is to store the object
hierarchy in a relational database. The advantage of this approach is that
we do not have to write a DBMS. A beneficial side-effect is that programs
written in a conventional programming language can simultaneously access
the data stored in the object hierarchy. The main objection to this approach
has been that the performance of existing relational DBMS's has been
inadequate. We beUeve this problem will be solved by using POSTGRES as
the DBMS on which to implement the shared hierarchy. POSTGRES is a
next-generation DBMS currently being implemented at the University of
California, Berkeley [31]. It has a number of features, including data of
type procedure, alerters, precomputed procedures and rules, that can be used
to implement the shared object hierarchy efficiently.

Figure 1 shows the architecture of the proposed system. Each applica
tion process is connected to a database process that manages the shared
database. The application program is presented a conventional view of the
object hierarchy. As objects are referenced by the program, a run-time sys
tem retrieves them from the database. Objects retrieved from the database

92

Application
Process

POSTGRES

Server

Application
Process

Datebase

Application
Process

Figure 1. Process architecture.

are stored in an object cache in the application process so that subsequent
references to the object will not require another database retrieval. Object
updates by the application are propagated to the database and to other
processes that have cached the object.

93

Other research groups are also investigating this approach
[1,5,16,21,22,28]. The main difference between our work and the work of
these other groups is the object cache in the application process. They have
not addressed the problem of maintaining cache consistency when more
than one application process is using an object. Research groups that are
addressing the object cache problem are using different implementation
strategies that will have different performance characteristics [17,18,20].

This paper describes how the OBJFADS shared object hierarchy wiU be
implemented using POSTGRES. The remainder of this paper is organized
as follows. Section 2 presents the object model. Section 3 describes the
database representation for the shared object hierarchy. Section 4 describes
the design ofthe object cache including strategies for improving the perfor
mance of fetching objects from the datebase. Section 5 discusses object
updating and transactions. Section 6 describes the support for selecting and
executing methods. And lastly, section 7 summarizes the paper.

2. Object Hierarchy Model
This section describes the object hierarchy model. The model is based

on the Common Lisp Object System (CLOS) [7] because OBJFADS is being
implemented in Common Lisp [29].

An object can be thought ofas a record with named slots. Each slot has
a data type and a default value. The data type can be a primitive type (e.g.,
Integer) or a reference to another object.1 The type ofan object is called the
class ofthe object. Class information (e.g., slot definitions) is represented by
another object called the class object.2 A particular object is also called an
instance and object slots are also called instance variables.

A class inherits data definitions (i.e., slots) from another class, called a
superclass, unless a slot with the same name is defined in the class. Figure
2 shows a class hierarchy (i.e., type hierarchy) that defines equipment in an
integrated circuit (IC) computer integrated manufacturing database. [26].

1An object reference is represented by an object identifier (objid) that uniquely
identifies the object.

2The term class is used ambiguously in the literature to refer to the type of an
object, the object that represents the type (i.e., the class object), and the set ofob
jects ofa specific type. We will indicate the desired meaning in the surrounding
text.

94

Figure 2: Equipment class hierarchy.

Each class is represented by a labelled node (e.g., Object, Equipment, Fur
nace, etc.). The superclass of each class is indicated by the solid line with
an arrowhead. By convention, the top of the hierarchy is an object named
Object. In this example, the class Tylan, which represents a furnace pro
duced by a particular vendor, inherits slots from Object, Equipment, and
Furnace.

As mentioned above, the class is represented by an object. The type of
these class objects is represented by the class named Class. In other words,
they are instances of the class Class. The InstanceOf relationship is
represented by dashed lines in the figure. For example, the class object
Equipment is an instance of the class Class. Given an object, it is possible
to determine the class of which it is an instance. Consequently, slot

95

definitions and, as described below, procedures that operate on the object
can be looked-up in the class object. For completeness, the type of the class
named Class is a class named MetaClass.

Figure 3 shows class definitions for Equipment, Furnace, and Tylan.
The definition of a class specifies the name of the class, the meteclass, the
superclass, and the slots. The meteclass is specified explicitly because a
different meteclass is used when the objects in the class are to be stored in
the database. In the example, the class Tylan inherits all slots in Furnace
and Equipment (i.e., Location, Picture, DateAcquired, NumberOfTubes, and
MaxTemperature).

Class Equipment
MetaClass Class

Superclass Object
Slots

Location Point

Picture Bitmap

DateAcquired Date

Class Furnace

MetaClass Class

Superclass Equipment
Slots

NumberOfTubes Integer
MaxTemperature DegreesCelsius

Class Tylan
MetaClass Class

Superclass Furnace
Slots

Figure 3: Class definitions for equipment.

96

Variables can be defined that are global to all instances of a class.
These variables, called class variables, hold data that represents information
about the entire class. For example, a class variable NumberOfFurnaces
can be defined for the class Furnace to keep track of the number of furnaces.
Class variables are inherited just like instance variables except that inher
ited class variables refer to the same memory location. For example, the
slot named NumberOfFurnaces inherited by Tylan and Bruce refer to the
same variable as the class variable in Furnace.

Procedures that manipulate objects, called methods, take arguments of
a specific class (i.e., type). Methods with the same name can be defined for
different classes. For example, two methods named area can be defined: one
that computes the area ofa box object and one that computes the area ofa
circle object. The method executed when a program makes a call on area is
determined by the class of the argument object. For example,

area(x)

calls the area method for box if x is a box object or the area method for circle
if it is a circle object. The selection of the method to execute is called
method determination.

Methods are also inherited from the superclass of a class unless the
method name is redefined. Given a function call wf(x)", the method invoked
is determined by the following algorithm. Follow the InstanceOf relation
ship from x to determine the class of the argument. Invoke the method
named f defined for the class, if it exists. Otherwise, look for the method in
the superclass of the class object. This search up the superclass hierarchy
continues until the method is found or the top of the hierarchy is reached in
which case an error is reported.

Figure 4 shows some method definitions for Furnace and Tylan. Fur
naces in an IC fabrication facility are potentiaUy dangerous, so they are
locked when they are not in use. The methods Lock and UnLock disable
and enable the equipment. These methods are defined for the class Furnace
so that all furnaces will have this behavior. The argument to these methods
is an object representing a furnace.3 The methods CompileRecipe and
LoadRecipe compile and load into the furnace code that, when executed by

3The argument name self was chosen because it indicates which argument is
the object.

97

method Lock(self: Furnace)

• • •

method UnLock(self: Furnace)

method CompileRecipe(self: Tylan, recipe: Text)
• • •

method LoadRecipe(self: Tylan, recipe: Code)
• • •

Figure 4: Example method definitions.

the furnace, will process the semiconductor wafers as specified by the recipe
text. These methods are defined on the Tylan class because they are
different for each vendor's furnace. With these definitions, the class Tylan
has four methods because it inherits the methods from Furnace.

Slot and method definitions can be inherited from more than one super
class. For example, the Tylan class can inherit slots and methods that indi
cate how to communicate with the equipment through a network connection
by including the NetworkMixin class in the Ust of superclasses.4 Figure 5
shows the definition of NetworkMixin and the modified definition of Tylan.
With this definition, Tylan inherits the slots and methods from Network
Mixin and Furnace. A name conflict arises if two superclasses define slots
or methods with the same name (e.g., Furnace and NetworkMixin might
both have a slot named Status). A name conflict is resolved by inheriting
the definition from the first class that has a definition for the name in the
superclass list. Inheriting definitions from multiple classes is called multi
ple inheritance.

4 The use of the suffix Mixin indicates that this object defines behavior that is
added to or mixed into other objects. This suffix is used by convention to make it
easier to read and understand an object hierarchy.

98

Class NetworkMixin

MetaClass Class

Superclass Object
Instance Variables

HostName Text

Device Text

Methods

SendMessage(self: NetworkMixin; msg: Message)
ReceiveMessage (self: NetworkMixin) returns Message

Class Tylan
MetaClass Class
Superclass Furnace NetworkMixin

Figure 5: Multiple inheritance example.

3. Shared Object Hierarchy Database Design
The view of the object hierarchy presented to an application program is

one consistent hierarchy. However, a portion of the hierarchy is actually
shared among all concurrent users of the database. This section describes
how the shared portion ofthe hierarchy will be stored in the database.

Shared objects are created by defining a class with metaclass DBClass.
All instances of these classes, called shared classes, are stored in the data
base. A predefined shared class, named DBObject, is created at the top of
the shared object hierarchy. The relationship between this class and the
other predefined classes is shown in figure 6. All superclasses of a shared
object class must be shared classes except DBObject. This restriction is
required so that all definitions inherited by a shared class will be stored in
the database.

The POSTGRES data model supports attribute inheritance, user-defined
data types, data of type procedure, and rules [25,31] which are used by
OBJFADS to create the database representation for shared objects. System
catalogs are defined that maintain information about shared classes. In
addition, a relation is defined for each class that contains a tuple that

99

Figure 6: Predefined classes.

represents each class instance. This relation is called the instance relation.
OBJFADS maintains four system catelogs to represent shared class

information: DBObject, DBClass, SUPERCLASS, and METHODS. The
DBObject relation identifies objects in the database:

CREATE DBObjectdnstance, Class)

where

Instance is the objid of the object.
Class is the objid of the class object of this instance.

This catalog defines attributes that are inherited by all instance relations.
No tuples are inserted into this relation (i.e., it represents an abstract class).
However, all shared objects can be accessed through it by using transitive
closure queries. For example, the following query retrieves the objid of all
instances:

100

RETRIEVE (DBObject*.Instance)

The asterisk indicates closure over the relation DBObject and all other rela
tions that inherit attributes from it.

POSTGRES maintains a unique identifier for every tuple in the data
base. Each relation has a predefined attribute that contains the unique
identifier. While these identifiers are unique across all relations, the rela
tion that contains the tuple cannot be determined from the identifier. Con
sequently, we created our own object identifier (i.e., an objid) that specifies
the relation and tuple. A POSTGRES user-defined data type, named objid,
that represents this object identifier will be implemented. Objid values are
represented by an identifier for the instance relation {relid) and the tuple
{oid). Relid is the unique identifier for the tuple in the POSTGRES catalog
that stores information about database relations (i.e., the RELATION rela
tion). Given an objid, the following query will fetch the specified tuple:

RETRIEVE (o.all)

FROM o IN relid

WHERE o.oid = oid

This query will be optimized so that fetching an object instance will be very
efficient.

The DBClass relation contains a tuple for each shared class:

CREATE DBClass(Name, Owner) INHERITS (DBObject)

This relation has an attribute for the class name {Name) and the user that
created the class {Owner). Notice that it inherits the attributes in DBObject
(i.e., Instance and Class) because DBClass is itself a shared class.

The superclass list for a class is represented in the SUPERCLASS rela
tion:

CREATE SUPERCLASS(Class, Superclass, SeqNum)

where

Class is the name of the class object.
Superclass is the name of the parent class object.
SeqNum is a sequence number that specifies the inheritance order in

the case that a class has more than one superclass.
The superclass relationship is stored in a separate relation because a class
can inherit variables and methods from more than one parent (i.e., multiple
inheritance). The sequence number is required to implement the name
conflict resolution rule.

101

Methods are represented in the METHODS relation:

CREATE METHODS(Class, Name, Source, Binary)

where

Class is the objidof the class that defines the method.
Name is the name of the method.
Source is the source code for the method.
Binary is the relocatable binary code for the method.

Method code is dynamically loaded into the appUcation program as needed.
Method determination and caching are discussed below.

Object instances are represented by tuples in the instance relation that
has an attribute for each instance variable. For example, if the classes
Equipment, Furnace, and Tylan shown in figure 3 were defined with mete
class DBClass, the relations shown in figure 7 would be created in the data
base. When an OBJFADS application creates an instance of one of these
classes, a tuple is automatically appended to the appropriate instance rela
tion. Notice that to create a shared class, the superclass of Equipment must
be changed to DBObject.

The POSTGRES data model uses the same inheritance conflict rules for
attributes that CLOS uses so attribute inheritance can be implemented in
the database system. If the rules were different, OBJFADS would have to
simulate data inheritance in the database or POSTGRES would have to be
changed to allow user-defined inheritance rules as in CLOS.

CREATE Equipment(Location, Picture, DateAcquired)
INHERITS (DBObject)

CREATE Furnace(NumberOfTubes, MaxTemperature)
INHERITS (Equipment)

CREATE TylanO
INHERITS (Furnace)

Figure 7: Shared object relations.

102

Thus far, we have not described how OBJFADS data types (i.e., Com
mon Lisp data types) are mapped to POSTGRES data types. Data types wiU
be mapped between the two environments as specified by type conversion
catalogs. Most programming language interfaces to database systems do not
store type mapping information in the database [3,4,6,23,24,27]. We are
maintaining this information in catalogs so that user-defined data types in
the database can be mapped to the appropriate Common Lisp data type.

The type mapping information is stored in three catalogs: TYPEMAP,
OFTOPG, and PGTOOF. The TYPEMAP catalog specifies a type mapping
and procedures to convert between the types:

CREATE TYPEMAP(OFType, PGType, ToPG, ToOF)

where

OFType is an OBJFADS type.
PGType is a POSTGRES type.
ToPG is a procedure that converts from the OBJFADS type to the

POSTGRES type.
ToOF is a procedure that converts from the POSTGRES type to

the OBJFADS type.
The table in figure 8 shows the mapping for selected Common Lisp types.
Where possible, Common Lisp values are converted to equivalent
POSTGRES types (e.g., fixnum to int4). In other cases, the values are con
verted to a print representation when they are stored in the database and
recreated by evaluating the print representation when they are fetched into
the program (e.g., symbols and functions). We expect over time to build-up
a set of user-defined POSTGRES types that will represent the commonly
used Common Lisp types (e.g., list, random-state, etc.). However, we also
expect application data structures to be designed to take advantage of the
natural database representation. For example, it makes more sense to store
a list as a separate relation with a common attribute (e.g., a PO# that joins
a purchase order with the line items it contains) than as an array of objids
in the database.

Class variables are more difficult to represent than class information
and instances variables. The straightforward approach is to define a rela
tion CVARS that contains a tuple for each class variable:

CREATE CVARS(Class, Variable, Value)

where Class and Variable uniquely determine the class variable and Value
represents the current value of the variable. This solution requires a union

103

Common Lisp

fixnum

float

(simple-array
string-char)

symbol

(local) object

POSTGRES

int4

float

char[]

chart]

chart]

Description

4 byte integer.

4 byte floating point number.

Variable length character string.

A string that
symbol (e.g.,
x).

represents the
twx" for the symbol

A string that contains a function
call that will recreate the object
when executed.

Figure 8: Data type mapping examples.

type mechanism because the attribute values in different tuples may have
different types. POSTGRES does not support union types because they
violate the relational tenet that all attribute values must have the same
type.

Two other representations for class variables are possible with
POSTGRES. First, a separate relation can be defined for each class that
contains a single tuple that holds the current values of all class variables.
For example, the following relation could be denned for the Furnace class:

FurnaceCVARS(NumberOfFurnaces)

Unfortunately, this solution introduces representational overhead (the extra
relation) and requires another join to fetch the slots in an object. Moreover,
it does not take advantage of POSTGRES features that can be used to
update the count automatically.

The second alternative uses POSTGRES rules. A rule can be used to
define an attribute value that appears to the application as if it was stored
[34]. For example, the following command defines a rule that computes the
number of furnaces:

104

REPLACE ALWAYS Furnace*(
NumberOfFurnaces = COUNT{Furnace*.Instance})

A reference to FurnaceltumberOfFurnaces will execute the COUNT aggre
gate to compute the current number of furnaces. The relation variable Fur
nace* in the aggregate specifies that tuples in Furnace and all relations that
inherit date from Furnace (e.g., Tylan and Bruce) are to be counted. With
this representation, the database maintains the correct count. Notice that
the command replaces this value in Furnace* which causes the rule to be
inherited by all relations that inherit date from Furnace. The disadvantage
of this approach is that the COUNT aggregate is executed every time the
class variable is referenced.

POSTGRES provides another mechanism that can be used to cache the
answer to this query so that it does not have to be recomputed each time the
variable is referenced. This mechanism allows the application designer to
request that a rule be evaluated early (i.e., precomputed) and cached in the
appropriate relation. In other words, the furnace count will be cached in the
relations Furnace, Tylan, and Bruce so that references to the variable will
avoid recomputation. Updates to Furnace or subclasses of Furnace wiU
cause the precomputed value to be invaUdated. POSTGRES will recompute
the rule off-Une or when the class variable is next referenced whichever
comes first.

Class variables that are not computable from the database can be
represented by a rule that is assigned the current value as illustrated in the
following command:

REPLACE ALWAYS Furnace(x = current value)

Given this definition, a reference to Furnace.x in a query will return the
current value of the class variable. The variable is updated by redefining
the rule. We plan to experiment with both the single tuple relation and
rule approaches to determine which provides better performance.

This section described the object hierarchy model and a database design
for storing it in a relational database. The next section describes the appli
cation process object cache and optimizations to improve the time required
to fetch an object from the database.

4. Object Cache Design
The object cache must support three functions: object fetching, object

updating, and method determination. This section describes the design for
efficiently accessing objects. The next section describes the support for

105

object updating and the section following that describes the support for
method determination.

The major problem with implementing an object hierarchy on a rela
tional database system is the time required to fetch an object. This problem
arises because queries must be executed to fetch and update objects and
because objects are decomposed and stored in several relations that must be
joined to retrieve it from the database. Three strategies will be used to
speed-up object fetch time: caching, precomputation, and prefetching. This
section describes how these strategies will be implemented

The application process will cache objects fetched from the database.
The cache will be similar to a conventional Smalltalk run-time system [13].
An object index will be maintained in main memory to aUow the run-time
system to determine quickly if a referenced object is in the cache. Each
index entry will contain an object identifier and the main memory address
of the object. All object references, even instance variables that reference
other objects, will use the object identifier assigned by the database (i.e., the
instance attribute). These indirect pointers may slow the system down but
they avoid the problem of mapping addresses when objects are moved
between main memory and the database.5 The object index will be hashed to
speed-up object referencing.

Object caching can speed-up references to objects that have already
been fetched from the database but it cannot speed-up the time required to
fetch the object the first time it is referenced. The implementation strategy
we will use to solve this problem is to precompute the memory representa
tion of an object and to cache it in an OBJFADS catalog:

CREATE PRECOMPUTED(Objid, ObjRep)

where

Objid is the object identifier.
ObjRep is the main memory object representetion.

Suppose we are given the function RepObject that takes an object identifier
and returns the memory representation of the object. Notice that the
memory representation includes class variables and data type conversions.
An application process could execute RepObject and store the result back in

5Most Smalltalk implementations use a similar scheme and it does not appear
to be a bottleneck.

106

the PRECOMPUTED relation. This approach does not work because the
precomputed representation must be changed if another process updates the
object either through an operation on the object or an operation on the rela
tion that contains the object. For example, a user could run the following
query to update the values of MaxTemperature in all Furnace objects:

REPLACE Furnace*(MaxTemperature = newvalue)

This update would cause all Furnace objects in PRECOMPUTED to be
changed.6

A better approach is to have the DBMS process execute RepObject and
invalidate the cached result when necessary. POSTGRES supports precom
puted procedure values that can be used to implement this approach. Query
language commands can be stored as the value of a relation attribute. A
query that calls RepObject to compute the memory representation for the
object can be stored in PRECOMPUTED.Objrep:

RETRIEVE (MemRep = RepObject($Objid))

$Objid refers to the object identifier of the tuple in which this query is
stored (i.e., PRECOMPUTED.Objid). To retrieve the memory representa
tion for the object with objid "Furnace-123," the following query is executed:

RETRIEVE (object = PRECOMPUTED.ObjRep.MemRep)
WHERE PRECOMPUTED.objid = t,Furnace-123"

The nested dot notation {PRECOMPUTED.ObjRep.MemRep) accesses values
from the result tuples of the query stored in ObjRep [36]. The constant
wFurnace-123" is an external representation for the objid (i.e., the Furnace
object with oid 123). Executing this query causes RepObject to be called
which returns the main memory representation of the object.

This representation by itself does not alter the performance of fetching
an object. The performance can be changed by instructing the DBMS to
precompute the query in ObjRep (i.e., to cache the memory representation of
the object in the PRECOMPUTED tuple). If this optimization is performed,
fetching an object turns into a single relation, restriction query that can be
efficiently implemented. POSTGRES supports precomputation of query
language command values similar to the early evaluation of rules described

6Furnace objects cached in an application process must also be invalidated.
Object updating, cache consistency, and update propagation are discussed in the
next section.

107

above.7 Database values retrieved by the commands will be marked so that
if they are updated, the cached result can be invalidated. This mechanism
is described in greater detail elsewhere [32,33].

The last implementation strategy to speed-up object referencing is pre
fetching. The basic idea is to fetch an object into the cache before it is refer
enced. The HINTS relation maintains a Ust of objects that should be pre
fetched when a particular object is fetched:

CREATE HINTS(FetchObject, HintObject, Application)

When an object is fetched from the database by an application {Application),
all HintObject for the FetckObject will be fetched at the same time. For
example, after fetching an object, the following query can be run to prefetch
other objects:

RETRIEVE (obj = p.ObjRep.MemRep)
FROM p IN PRECOMPUTED, h IN HINTS
WHERE p.Objid = h.HintObject

AND h.FetchObject = fetched-object-identifier
AND h.Application = application-name

This query fetches objects one-at-a-time. We will also investigate precom
puting collections ofobjects, so called composite objects [30]. The idea is to
precompute a memory representation for a composite object (e.g., a form or
procedure definition that is composed of several objects) and retrieve all
objects into the cache in one request. This strategy may speed-up fetching
large complex objects with many subobjects.

We believe that with these three strategies object retrieval from the
database can be implemented efficiently. Our attention thus far has been
focussed on speeding up object fetching from the database. We will also
have to manage the limited memory space in the object cache. An LRU
replacement algorithm will be used to select infrequently accessed objects to
remove from the cache. We will also have to implement a mechanism to
"pin down" objects that are not accessed frequently but which are critical to
the execution of the system or are time consuming to retrieve.

7 The POSTGRES server checks that the command does not update the date-
base and that any procedures called in the command do not update the database so
that precomputing the command will not introduce side-effects.

108

This section described strategies to speed-up object fetching. The next
section discusses object updating.

5. Object Updating and Transactions
This section describes the run-time support for updating objects. Two

aspects ofobject updating are discussed: how the database representation of
an object is updated (datebase concurrency and transaction management)
and how the update is propagated to other application processes that have
cached the object.

The run-time system in the application process specifies the desired
update mode for an object when it is fetched from the database into the
object cache. The system supports four update modes: local-copy, direct-
update, deferred-update, and object-update. Local-copy mode makes a copy
of the object in the cache. Updates to the object are not propagated to the
database and updates by other processes are not propagated to the local
copy. This mode is provided so that changes are valid only for the current
session.

Direct-update mode treats the object as though it were actually in the
datebase. Each update to the object is propagated immediately to the data
base. In other words, updating an instance variable in an object causes an
update query to be run on the relation that represents instances of the
object. A conventional database transaction model is used for these updates.
Write locks are acquired when the update query is executed and they are
released when it finishes (i.e., the update is a single statement transaction).
Note that read locks are not acquired when an object is fetched into the
cache. Updates to the object made by other processes are propagated to the
cached object when the run-time system is notified that an update has
occurred. The notification mechanism is described below. Direct-update
mode is provided so that the appUcation can view 'live data."

Deferred-update mode saves object updates until the application expli
citly requests that they be propagated to the database. A conventional tran
saction model is used to specify the update boundaries. A begin transaction
operation can be executed for a specific object. Subsequent variable accesses
will set the appropriate read and write locks to ensure transaction atomicity
and recoverabiUty. The transaction is committed when an end transaction
operation is executed on the object. Deferred-update mode is provided so
that the application can make several updates atomic.

The last update mode supported by the system is object-update. This
mode treats all accesses to the object as a single transaction. An intention-

109

to-write lock is acquired on the object when it is first retrieved from the
database. Other processes can read the object, but they cannot update it.
Object updates are propagated to the database when the object is released
from the cache. This mode is provided so that transactions can be expressed
in terms of the object, not the database representation. However, note that
this mode may reduce concurrency because the entire object is locked while
it is in the object cache.

Thus far, we have only addressed the issue of propagating updates to
the database. The remainder of this section will describe how updates are
propagated to other processes that have cached the updated object. The
basic idea is to propagate updates through the shared database. When a
process retrieves an object, a database alerter [8] is set on the object that
will notify the process when it is updated by another process. When the
alerter is trigger by another process, the process that set the alerter is
notified. The value returned by the alerter to the process that set it is the
updated value ofthe object. Note that the precomputed value ofthe object
memory representetion will be invaUdated by the update so that it will
have to be recomputed by the POSTGRES server. The advantage of this
approach is that the process that updates an object does not have to know
which processes want to be notified when a particular object is updated.

The disadvantages of this approach are that the database must be
prepared to handle thousands of alerters and the time and resources
required to propagate an update may be prohibitive. Thousands of alerters
are required because each process wiU define an alerter for every object in
its cache that uses direct-, deferred-, or object-update mode. An alerter is
not required for local-copy mode because database updates by others are not
propagated to the local copy. POSTGRES is being designed to support large
databases of rules so this problem is being addressed.

The second disadvantage is the update propagation overhead. The
remainder of this section describes two propagated update protocols, an
alerter protocol and a distributed cache update protocol, and compares them.
Figure 9 shows the process structure for the alerter approach. Each applica
tion process (AP) has a database process called its POSTGRES server (PS).
The POSTMASTER process (PM) controls all POSTGRES servers. Suppose
that AP. updates an object in the database on which M ^ N AFs have set
an alerter. Figure 10 shows the protocol that is executed to propagate the
updates to the other AFs. The cost of this propagated update is:

110

Appl Appl
Process Process

1 2

POSl ORES POSTGRES

Server Server

1 2

• •

• • •

POSTMASTER

Figure 9. Process structure for the alerter approach.

2M +1 process-to-process messages

1 database update

1 catalog query

1 object fetch

The object fetch is avoidable if the alerter returns the changed value. This
optimization works for small objects but may not be reasonable for large
objects.

The alternative approach to propagate updates is to have the user
processes signal each other that an update has occurred. We call this
approach the distributed cache update approach. The process structure is
similar to that shown in figure 9, except that each AP must be able to
broadcast a message to all other AP's. Figure 11 shows the distributed
cache update protocol. This protocol uses a primary site update protocol. If
AP. does not have the update token signifying that it is the primary site for

111

1. AP- updates the datebase.

2. PS. sends a message to PM indicating
which alerters were tripped.

3. PM queries the alerter catalog to determine
which PS's set the alerters.

4. PM sends a message to PS- for each alerter.
j

5. Each PS- sends a message to AP- indicating
that the alerter has been tripped!.

6. Each PS. refetches the object.

Figure 10. Propagated update protocol for the alerter approach.

1. AP- acquires the update token for the
object.

2. AP. updates the database.

3. AP- broadcasts to all AFs that the object
has been updated.

4. Each AP. that has the object in its cache
refetches it.

Figure 11. Propagated update protocol for the distributed cache approach.

the object, it sends a broadcast message to all AFs requesting the token.
The AP that has the token sends it to AP-. Assuming that APj does not
have the update token, the cost of this protocol is:

112

2 broadcast messages

1 process-to-process message

1 database update
1 object fetch

One broadcast message and the process-to-process message are eliminated if
AP. already has the update token. The advantage of this protocol is that a
multicast protocol can be used to implement the broadcast messages in a
way that is more efficient than sending N process-to-process messages. Of
course, the disadvantage is that AFs have to examine all update signals to
determine whether the updated object is in its cache.

Assume that the database update and object fetch take the same
resources in both approaches and that the alerter catalog is cached in main
memory so the catalog query does not have to read the disk in the alerter
approach. With these assumptions, the comparison of these two approaches
comes down to the cost of 2 broadcast messages versus 2M process-to-process
messages. If objects are cached in relatively few AFs (i.e., M << N) and
broadcast messages are efficient, the distributed cache update appears
better. On the other hand, if M is larger, so the probability of doing 2
broadcasts goes up, and broadcasts are inefficient, the alerter approach
appears better. We have chosen the alerter approach because an efficient
multicast protocol does not exist but the alerter mechanism wiU exist in
POSTGRES. If this approach is too slow, we will have to tune the alerter
code or implement the multicast protocol.

This section described the mechanisms for updating shared objects. The
last operation that the run-time system must support is method determina
tion which is discussed in the next section.

6. Method Determination

Method determination is the action taken to select the method to be
executed when a procedure is called with an object as an argument. Con
ventional object-oriented systems implement a cache of recently called
methods to speed-up method determination [12]. The cache is typically a
hash table that maps an object identifier of the receiving object and a
method name to the entry address of the method to be executed. If the
desired object and method name is not in the table, the standard look-up
algorithm is invoked. In memory resident Smalltalk systems, this strategy
has proven to be very good because high hit ratios have been achieved with
modest cache sizes (e.g., 95% with 2K entries in the cache) [19].

113

We will adapt the method cache idea to a database environment. A
method index relation will be computed that indicates which method should
be called for each object class and method name. The data will be stored in
the DM relation denned as follows:

CREATE DM(Class, Name, DefClass)

where

Class is the class of the argument object.
Name is the name of the method called.
DefClass is the class in which the method is defined.

Given this relation, the binary code for the method to be executed can be
retrieved from the database by the following query:

RETRIEVE (m.Binary)
FROM m IN METHODS, d IN DM
WHERE m.Class = d.DefClass

AND d.Class = argument-class-objid
AND d.Name = method-name

The DM relation can be precomputed for all classes in the shared object
hierarchy and incrementally updated as the hierarchy is modified.

Method code wiU be cached in the application process so that the data
base will not have to be queried for every procedure call. Procedures in the
cache will have to be invalidated if another process modifies the method
definition or the inheritance hierarchy. Database alerters wiU be used to
signal object changes that require invalidating cache entries. We will also
support acheck-in/check-out protocol for objects so that production programs
can isolate their object hierarchy from changes being made by application
developers [15].

This section described a shared index that will be used for method
determination.

7. Summary
This paper described a proposed implementation of a shared object

hierarchy in a POSTGRES database. Objects accessed by an application
program are cached in the application process. Precomputation and pre
fetching are used to reduce the time to retrieve objects from the database.
Several update modes were defined that can be used to control concurrency.
Database alerters are used to propagate updates to copies ofobjects in other
caches. A number of features in POSTGRES will be exploited to implement
the system, including: rules, POSTQUEL data types, precomputed queries

114

and rules, and database alerters.

References

1. R. M. Abarbanel and M. D. Williams, A Relational Representation for
Knowledge Bases, Unpublished manuscript, Apr. 1986.

2. H. Afsarmanesh and et. al., "An Extensible, Object-Oriented Approach
to Databases for VLSI/CAD", Proc. 11th Int. Conf. on VLDB, Aug.
1985.

3. A. Albano and et. al., "Galileo: A Strongly-Typed, Interactive
Conceptual Language", ACM Trans. Database Systems, June 1985,
230-260.

4. E. Allman and et. al., "Embedding a Relational Data Sublanguage in a
General Purpose Programming Language", Proc. of a Conf. on Data:
Abstraction, Definition, and Structure, SIGPLAN Notices,, Mar. 1978.

5. T. Anderson and et. al., "PROTEUS: Objectifying the DBMS User
Interface", Proc. Int. Wkshp on Object-Oriented Database Systems,
Asilomar, CA, Sep. 1986.

6. M. P. Atkinson and et. al., "An Approach to Persistent Programming",
Computer Journal 26, 4 (1983), 360-365.

7. D. Bobrow and G. Kiczales, "Common Lisp Object System
Specification", Draft X3 Document 87-001, Am. Nat. Stand. Inst.,
February 1987.

8. O. P. Buneman and E. K. demons, "Efficiently Monitoring Relational
Databases", ACM Trans. Database Systems, Sep. 1979, 368-382.

9. G. Copeland and D. Maier, "Making Smalltalk a Database System",
Proc. 1984 ACM-SIGMOD Int. Conf. on the Mgt. ofData, June 1984.

10. U. Dayal and et.al., "A Knowledge-Oriented Database Management
System", Proc. Islamorada Conference on Large Scale Knowledge Base
and Reasoning Systems, Feb. 1985.

11. N. P. Derrett and et.al., "An Object-Oriented Approach to Data
Management", Proc. 1986 IEEE Spring Compcon, 1986.

12. A. Goldberg and D. Robson, Smalltalk-80: The Language and its
Implementation, Addison Wesley, Reading, MA, May 1983.

115

13. T. Kaehler, "Virtual Memory for an Object-Oriented Language", Byte
6, 8 (Aug. 1981).

14. T. Kaehler and G. Krasner, "LOOM - Large Object-Oriented Memory
for SmaUtalk-80 Systems", in Smalltalk-80: Bits of History, Words of
Advice, G. Krasner (editor), Addison Wesley, Reading, MA, May 1983.

15. R. Katz, "Managing the Chip Design Datebase", Computer Magazine
16,12 (Dec. 1983).

16. J. Kempf and A. Snyder, "Persistent Objects on a Database", Report
STL-86-12, Sftw. Tech. Lab., HP Labs, Sep. 1986.

17. S. Khoshanfian and P. Valduriez, "Sharing, Persistence, and Object
Orientation: A Database Perspective", DB-106-87, MCC, Apr. 1987.

18. G. L. Krablin, "Building Flexible Multilevel Transactions in a
Distributed Persistent Environment", Persistence and Data Types,
Papers for the Appin Workshop, U. ofGlasgow, Aug. 1985.

19. G. Krasner, ed., Smalltalk-80: Bits of History, Words of Advice,
Addison Wesley, Reading, MA, May 1983.

20. D. Maier and J. Stein, "Development of an Object-Oriented DBMS",
Proc. 1986 ACM OOPSLA Conf, Portland, OR, Sep. 1986.

21. F. Maryanski and et.al„ 'The Date Model Compiler: a Tool for
Generating Object-Oriented Database Systems", Unpublished
manuscript, Elect. Eng. Comp. Sci. Dept., Univ. ofConnecticut, 1987.

22. N. Meyrowitz, "Intermedia: The Architecture and Construction of an
Object-Oriented Hypermedia System and Applications Framework",
Proc. 1986 ACMOOPSLA Conf, Portland, OR, Sep. 1986,186-201.

23. J. Mylopoulos and et.al., "A Language Facility for Designing
Interactive Database-Intensive Systems", ACM Trans. Database
Systems 10, 4 (Dec. 1985).

24. L. A. Rowe and K. A. Shoens, "Data Abstraction, Views, and Updates
in Rigel", Proc. 1979 ACM-SIGMOD Int. Conf on the Mgt. ofData,
Boston, MA, May 1979.

25. L. A. Rowe and M. R. Stonebraker, "The POSTGRES Data Model", to
appear in Proc. 13th VLDB Conf, Britton, England, Sep. 1987.

26. L. A. Rowe and C. B. Williams, "An Object-Oriented Database Design
for Integrated Circuit Fabrication", submitted for pubUcation, Apr.
1987.

116

27. J. Schmidt, "Some High Level Language Constructs for Data of Type
Relation", ACM Trans. Database Systems 2, 3 (Sep. 1977), 247-261.

28. A. H. Skarra and et. al., "An Object Server for an Object-Oriented
Datebase System", Proc. Int. Wkshp on Object-Oriented Database
Systems, Asilomar, CA, Sep. 1986.

29. G. L. Steele, Common Lisp - The Language, Digital Press, 1984.
30. M. Stefik and D. G. Bobrow, "Object-Oriented Programming: Themes

and Variations", The Al Magazine 6, 4 (Winter 1986), 40-62.

31. M. R. Stonebraker and L. A. Rowe, "The Design of POSTGRES", Proc.
1986 ACM-SIGMOD Int. Conf. on the Mgt. of Data, June 1986.

32. M. R. Stonebraker, "Object Management in POSTGRES Using
Procedures", Proc. Int. Wkshp on Object-Oriented Database Systems,
Asilomar, CA, Sep. 1986.

33. M. R. Stonebraker, "Extending a Relational Data Base System with
Procedures", to appear ACM TOD, 1987.

34. M. R. Stonebraker, E. Hanson and C. H. Hong, "The Design of the
POSTGRES Rules System", IEEE Conference on Data Engineering, Los
Angeles, CA, Feb. 1987.

35. S. M. Thatte, "Persistent memory: A Storage Architecture for Object-
Oriented Database Systems", Proc. Int. Wkshp on Object-Oriented
Database Systems, Asilomar, CA, Sep. 1986.

36. C. Zaniola, "The Database Language GEM", Proc. 1983 ACM-SIGMOD
Conference on Management ofData, San Jose, CA., May 1983.

117

	Copyright notice1986
	ERL-86-85

