
 

 

 

 

 

 

 

 

 

Copyright © 1986, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



STABILITY OF NONLINEAR SYSTEMS WITH THREE

TIME SCALES

by

C. A. Desoer and S. M. Shahruz

Memorandum No. M86/9

9 January 1986



STABILITY OF NONLINEAR SYSTEMS WITH THREE TIME SCALES

by

C. A. Desoer and S. M. Shahruz

Memorandum No. M86/9

9 January 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



STABILITY OF NONLINEAR SYSTEMS WITH THREE TIME SCALES

by

C. A. Desoer and S. M. Shahruz

Memorandum No. M86/9

9 January 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



January 29, 1986

Stability of Nonlinear Systems with Three Time Scales

C. A- Desoer and S. M. Shahruz

Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory

University of California, Berkeley, CA 94720

Abstract

We study the asymptotic stability of a singularly perturbed nonlinear time-

invariant system <L)CI/, which has three vastly different time scales. The system

(§ej/ is approximated by three simpler systems over different time intervals. We

give a straightforward proof of the fact that the asymptotic stability of <QSV is

guaranteed when the equilibrium points of the three simpler systems are

exponentially stable and when the parameters e and v are sufficiently small.
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I. Introduction

We study the stability of a physical system J which is roughly modeled by a

(mathematical) nonlinear time-invariant system <Va (to be called the medium

system): we say roughly to indicate that some aspects of the dynamics of the

physical system j have been neglected. For example, in electrical circuits, &&>

is obtained from y by first neglecting stray capacitors and stray inductors, and

second by approximating large capacitors by constant voltage sources and large

inductors by constant current sources. Let<2)ei/ denote the (mathematical) sys

tem which includes these two classes of additional elements: the small addi

tional elements^are viewed as proportional to e —so e is positive and small —•

and the large ones are viewed as proportional to l/v — so v is positive and

small. Roughly speaking by setting c and v equal to zero, £) cv reduces to <&h :

£)sv is obtained from <2J# by singular perturbation (see, e.g., [Tih.l], [O'Ma.1];

for extensive list of references on singular perturbation see [Kok.1], [Sak.l]).

Systems such as £) ev can be approximated by three simpler systems for

different time scales. The simpler systems are:

i) the fast system, denoted by Q p, whose solution is a good approximation

to the solution of the system^) ev for the fast time scale;

ii) the medium system, denoted by(£>#, which is a good approximation to

the system<y Cl/ for the mid-range time scale;

iii) the slow system, denoted by (^5, which approximates the system Cjsv

for the slow time scale.

The solutions of the simpler systems £)?, <jj#. and (Q$ approximate the

solution of the system Qjev for different time scales; stability of the system cjcv

can be guaranteed when the stability of the systems <>)?, q)m> ^d <?Js is esta

blished.
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Stability of singularly perturbed systems which appear in many areas of

engineering and physics have been studied extensively; for example, Hoppen-

steadt [Hop.l] studied singularly perturbed nonlinear time-varying systems on

]R+, where there is one small parameter £ in the system equation. Later, Hop-

pensteadt [Hop.2] extended his results to the case of nonlinear time-varying sys

tems represented by ordinary differential equations where there are several

small parameters multiplying the derivatives. Habets [Hab.l], Chow [Cho.l],

Grujic [Gru.1], Saberi &: Khalil [Sab.1,2] studied stability of nonlinear singularly

perturbed systems with one small parameter. Khalil [Kha.l] studied stability of

a class of nonlinear multiparameter singularly perturbed systems, assuming

that the mutual ratios of the parameters are bounded from below and above by

positive constants.

Decomposition of autonomous linear systems with multiple time scales

described by A(£), where A() is analytic in £ is carried out in [Cod.1]; this

decomposition is extended to the nonlinear case in [Sil.l]. The input-output

description of linear systems with multiple time scales described by .4(e), B(£),

and C(e) is given in [Sil.2].

The stability problem under consideration here is a generalization of the

stability problem treated in [Des.l] in which a linear time-invariant system with

three time scales (the linear version of the system(£)ev) has been considered.

We choose a parametrization of the time scales of the system z)ev which can

represent many physical situations. We give a geometric interpretation of. the

approximating systems <>)?, q)h, and $$, and give an easy to follow proof of

the fact that the stability of(r)ev follows from the stability of<z)p, e$Af. and qjs

when £ and v are small.
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II. Problem Statement

II. 1. System (?)€V

Let sev denote the state vector corresponding to the system ayEV, and let

sev be decomposed as scv := (x,y ,z). The evolution of the system ^jev starting

at t = 0 from (x°, y°, z°) is governed by the following equations:

£*v'
x=f{x,y,z), x{0)=x°t x(t) e Bx c IRl,
£y =g(x,y,z), y(0) =y°t y(t) e By c JRm, (2.1)
z =vh.(x,y,z), z(0) =z°, z(t) e 5, c ]Rn,

for all t e E+. In (2.1), £ € (0, e0], £0 « 1, and v e (0, y0], ^o « 1. and ^3.,

5^, and 52 are given balls centered at the origin of 3R*. IRm, and 1R71, respec

tively.

Intuitively, since £ is very small, whenever g is nonzero, the velocity y is

very large: so the component y of the state vector ssv is associated with the fast

time scale; since v is very small, whenever h is nonzero, the velocity z is very

small: so the component z of seu is associated with the slow time scale; the com

ponent x of ssv corresponds to the mid-range time scale.

//. 2. Circuit Example

As an example consider a nonlinear time-invariant circuit, Ccv, (see Fig. la)

which contains fast, usual, and slow elements. The fast element is a (linear)

stray capacitor of £ farads, where 0 < £ « 1; the usual element is a linear

inductor of 1 henry; the slow element is a large voltage-controlled capacitor with

C{vc) = v""1 (1 + ac vc)~l, where 0 < y « 1 is a constant in (farads)""1, ac > 0

is a constant in (volt)""1, and vc is the voltage across the capacitor.

The nonlinear resistor r has the characteristic if. = -^-<p{yT), where R is a
R

constant in ohms, <p(-) is strictly increasing with ^'(0) = 1; here if. and vr are

the current through and the voltage across the resistor, respectively.



The equations of the circuit Ccv are

n -
ev

x =-y +z, x(0) = x°, x(t) e 1R,.

^ =x" jf^ yW= y0' y^ €K» (2 2>
2 =-1/1(1 +<XCZ), «(0) =2°, 2(i) >- -L-

for all t e IR+.

//. 3. Assumptions onf, g, and h

We make the following assumptions:

Al) f, g, and h are C1 with respect to their arguments on the ball

B := Bx x By x #3.

By (Al), the system £)cv has a unique local solution t i-> sei/(£) in B, and

the solution is a C1 function of the initial conditions (x°, y°, z°) e B (see, e.g.,

[Die.l, Theorem 10.8.2]). Furthermore, we assume that for all (x°, y°, z°) in

some smaller ball B° :=5Z°X B£ XBz° C B, the solution of the system Sev

stays inside B; the bails B% C Bx, B£ C By, and B$ C i?z are centered at the

origin of IRl, JRm, and IRn, respectively.

^ Dzg{x,y,z) is nonsingular, V (z,y,2) e B.

By (A2), and the implicit function theorem (see, e.g., [Die.l, Theorem

10.2.1])

WZzz '= Kz.V.z) € 5 :flr(x,2/,2) =i?mi, (2.3)

is locally an (Z +n)-dimensional C1 manifold in B (see, e.g., [Boo.l]). In addition,

we assume that the following holds over B:

(x,y,z) eTJT^ <=> g(x,y,z) = i?m,

<=>V =/i(*.*). (2.4)

where / j is a C1 function on i?z X Bz. In other words, we assume that the pair



(x,z) is a global parametrization of the manifoldTT^ on Bx x5z.

A3) The Jacobian of (/ ,g) with respect to (x,y), y '"{ , is nonsingular,
o{x,y)

V (x,y,z) e B.

By (A3), and the implicit function theorem

7TC* :={(*,?/,z) e B :f(x,y,z)=Vl,g(xty,z) = i?mj cTTC^, (2.5)

is locally an n-dimensional C1 manifold in 5. In addition, we assume that the

following holds over B:

(x,y,z) efltz <£=> f(xfy,z) = fy, g(x,y,z) = i?m,

x =h1(z),y =hz{z), (2.6)

where /ij and /12 are C1 functions on i?z: thus 2 is a global parametrization of

the manifoldlKz on Bz.

A4) l?cv := (fy, i9m, i?n) is the unique equilibrium point of the system

^c^ini?, i.e., for (xty,z) e B,

f(x,y,z) =i?t, (2.7a)

g(x,y,z) =T?m, (2.7b)

/i(x,y,2) = tfn, (2.7c)

iff a? =t?i. 2/ = tfm. and 2 =i?n.

By (A4), we have

fl(Vl,Vn) = tfm, (2.8a)

fi^n) = *i, M-O = i?m. (2.8b)

Clearly, if i9cv is an asymptotically stable equilibrium point of the system

foev* then its solution t *-* sev(t) starting at t = 0 from a point in B° tends to

T?cl/ as t -> co.



In what follows, we will show that the asymptotic stability of this equilibrium

point of the system Oev is guaranteed when the equilibrium points of three

simpler systems Op, C?Af. and c>s, to be introduced below, are exponentially

stable.

m. Approximations to 0£

III.l. Systems Op, Sid* anc* %!)$

In the following we introduce the fast, medium, and slow systems denoted

by <Dp, e)#, and (i^, respectively.

System Qjp: In order to study the behavior of the system Osv for t small,

we let t = £T in (2.1), and then let £ = 0; we obtain

|?-= t?£ <=> x(t) =x° =const., (3.1a)

Sp '^r= g(x°> y, z°), y(0) =y°, (3.1b)
•|5_= T?n <=> 2(0 =2° =const. (3.1c)

We define Cjp to be the system represented by the differential equation (3.1b).

We think of the system (Op as the fast-time scale approximation to the sys

tem cjel/ valid for small t.

The fast circuit, Cp, corresponding to the circuit Cev is given in Fig. lb, and

is obtained by open-circuiting the inductor in Cev. The equation of the circuit Cp

is

Cr •%L-= -^9<y). v(o) =y°. (3.2)
Since g (by (Al)) is C1, the system (Dp has a unique local solution in By,

and the solution is a C1 function of (x°, y°, 2°) E B°, where x° and z° are

viewed as parameters. (For C1 dependence of the solution on parameters see,

e.g. [Die.l, Theorem 10.7.4].)
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System ©#: If in (2.1) we want to consider the case £ -* 0 and v -» 0, it

seems natural to consider

x = /(x,y,2°), x(0)=x°, (3.3a)

flr(x,7/,2°)=i?m, (3.3b)

z = t?n <=$> 2(0 = 2° = const. (3.3c)

By (2.4), we can replace the algebraic equation (3.3b) by

V =f1(xtz°l (3.4)

(0

Substituting y from (3.4) into (3.3a) we define Qm to be the system represented

by the following equations:

§xt :
x = f (*. /i(*,2°), 2°), x(0) = x°, . (3.5a)
y =/1(x,2°). (3.5b)

We think of the system £)# as the mid-range time scale approximation to

the system e)ev.

The medium circuit, C#, corresponding to the circuit Ctv is given in Fig. lc,

and is obtained by open-circuiting the stray capacitor and short-circuiting the

i

large capacitor in Ccv. Let <Pi(-) be the inverse function of -=-^(*)i then the
R

equations of the circuit Cy are

fx = -^1(x),x(0)=x°, (3.6a)

°u :\y =*i.(*). (3.6b)
Since / (by (Al)) and / j are C1, the system &h has a unique local solution

in Bx XBy, and the solution is a C1 function of (x°, 2°) € £?z° Xi?2°, where 2° is

viewed as a parameter. By (3.3b) the trajectory corresponding to the solution of

the system $M ties on the manifoldTJt^, V (x°, 2°) E B$ XB£.



System Cjs: In order to study the behavior of the system

large, we let t = —t' in (2.1), and then let v - 0; we obtain

f(x,y,z) =tff,

g(x,y,z) =i?m,

dz

dt
7-= h(x,y,z), 2(0) = 2- „o

By (2.6), we can replace the algebraic equations (3.7a) and (3.7b) by

x =hx(z),

y =^2(2).

<£ev for t

(3.7a)

(3.7b)

(3.7c)

(3.8a)

(3.8b)

Substituting x and y from (3.8a) and (3.8b), respectively, into (3.7c) we define

&§ to be the system represented by the following equations:

<&
x =Mz)>
y =h2(z),
dz

dt
1-=fi(h1(z),h2(z),z),z(0)=zQ.

(3.9a)

(3.9b)

(3.9c)

We think of the system <y$ as the slow-time-scale approximation to the sys

tem tjcv valid for large t.

The slow circuit, C5, corresponding to the circuit CEV is given in Fig. Id, and

is obtained by open-circuiting the stray capacitor and short-circuiting the

inductor in CBV. The equations of the circuit C§ are

Cs' y =2,

^=-]^(z)(l+CXc*), 2(0) =2°.

(3.10a)

(3.10b)

(3.10c)

Since h (by (Al)), filt and /ig are C1, the system Q)s has a unique local

solution in B, and the solution is a C1 function of z° E Bz. By (3.7a) and (3.7b)



the trajectory corresponding to the solution of &§ lies on the manifold

1KZ, V (x°,yQ,z°) e5°.

For future reference, note that by (2.4) and (2.6) for all 2 E Bz, we have

' M*)=/i(M*).*). (3-11)

III.2. Geometric Interpretation

By (2.4), for fixed x° E B$t z° E B* and any y° E B$, y«F := /i(*0, 20)

is the unique equilibrium point of the system <Up, and the point (x0, yBp, 2 )

E IRl X ]Rm x En lies onthe manifoldVtxz. By(2.6), for fixed 20 E 5Z° and any

x° E B?, and hence y° =/^x0, 20), (a£,y;):= (M*°). M*°)) k the

unique equilibrium point of the system <Um, and the point (x® , y* , 2 ) E

]Rl X IRm X En lies on the manifold tKz. Clearly, (tfj, i?m, i?n) is the unique

equilibrium point of the system (Us-

To help visualize the evolution of the systems (up, Um, and c5s. let

£ = m = 71 = 1 (e.g., the circuit example), and let the equilibrium points of the

systems Op, <>$#, and^js De exponentially stable; then we have the situation

depicted on Fig. 2. Starting at t = 0 from a given initial point (x°, y°, 20) E 5°,

the trajectory corresponding to the solution of the fast system Q)p (depicted by

the solid vertical line Q) in Fig. 2) moves down to the point (x°, / i(x°, 20), 2°)

eATxz- Given (x°, 2°) E Bx X Bz, the trajectory corresponding to the solution

of the system <L)# (depicted by the solid line (g) in Fig. 2) starts at the point

(x°, /!(x°, 2°), 20) ETTCaa andwhile lying in the manifoldly with 2 (t) = z°,

converges to the point (/i1(2°), h2(z°), z°) €.°fttz. Given 2° E Bz, the trajec

tory corresponding to the solution of the slow system Q)§ (depicted by the solid

line ® in Fig. 2) starts at the point (/i1(2°), /i2(2°),2°) eH^ and while lying

in the manifold1fRz, drifts to the origin.
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For £ and v sufficiently small, it turns out that the solution of the system

Vcv (the trajectory corresponding to this solution is shown by the dashed line in

Pig. 2) is approximated by the solutions of the systems G/^, c^jtf, and z)s

.described above.

IV. Stability Considerations

IV. 1. Physical Interpretation

We start with an intuitive discussion: assuming that the equilibrium point of

the system &cv, i?EV = (t?j, T?m> i?n) is asymptotically stable, and £q « 1,

v0 « 1, we would expect that the solutions of the systems <>)p, Sm* an<^ &S

are good approximations to the solution of the system QJ sv over appropriate

time intervals. In fact, starting at t = 0 from an initial point (x°, y°, z°) E B°

off the manifold tYtxz, the solution of the system (DEV is close to the solution of

the fast system, <bpj over a short time interval. Refer to Fig. 2 and consider the

trajectory corresponding to the solution of the system £)ei/ (shown by the

dashed line), which is close to the (vertical) trajectory (labeled (l) in Fig. 2)

corresponding to the solution of the system c)p. Next, for (x,y,z) close to the

manifoldlTTz2, the solution of the system ©e„ will be close to the solution of the

medium system, Oj/ (whose trajectory is labeled @ in Fig. 2), provided that

V (x,y,z) E B°, the equilibrium point of the system (Up, yF = fi(x,z) is

(exponentially) stable, i.e., the manifold *\KXZ is (exponentially) stable in B°.

Finally, as t becomes very large, the solution of the system <QSv wtil be close to

that of the slow system, (us (whose trajectory is labeled (5) in Fig. 2), provided

that V (x,z) E Bx X Bz, the equilibrium point of the system G)#,

(x* , y^) = (hi(z), ft2(z)) is (exponentially) stable. For large t, the solution of

the systems <ueu and <&s remain close and converge to i?cl/ = (t?j, i9m, i?n) as

t -» oo, provided that the equilibrium point of the system (y^, (i^j, i?m, i?n) is

-11-



(exponentially) stable.

Thus we expect that, if the equilibrium points of the systems o5p, £)#, and

£s have sufficiently strong stability properties, and if £ > 0 and v > 0 are

sufficiently small, then the system &cv is asymptotically stable.

IV.2. Three Observations

We will have to established relations between the dynamics of the systems

£)p, (2JM> a*1** C/S and the system Qjev. To accomplish this we will need some

inequalities; in particular we will need to know about the vector field of some of

these systems and their behavior near the manifolds defined above. The purpose

of this section is to establish the inequalities (4.4), (4.7), (4.8), (4.9), and (4.12)

given below.

i) Using (3.11), we note that V {x,y,z) E B

\\y -h2(z)\\ < ||y -fx{x,z)\\ + \\J,{x,z) -/^(z), z)\\. (4.1)

Since /i is C1 on Bx X Bz, V (x,z) E Bx X Bz, we have (see, e.g.,[Die.l,

Theorem 8.5.4])

\\fi(x,z) -/1(/i1(2), 2)|| <: K,\\x -M«)I. (4-2)

where

*> %.^uEx*. »^(I-Z)I1- <4-3>

Using (4.2) in (4.1) we conclude that V (x,y,z) E B

\\y -h2{z)\\ ^ \\y -fx{x,z)\\ + Kx\x - hx(z)\\. (4.4)

ii) By (Al), / is C on 5, hence there are positive constants dlt d2, and

d3 such that V (x,y,2) E B

||/ (x,y ,2)|| < d3||x|| + d2\\y\\ + d3||2||. (4.5)
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We can rewrite (4.5) as

\\f(x,y,z)\\ £ djz -Mz)» + «*i|fci(«)l (4-6)

+ d3||j/ - hz(z)\\ + d^\hz(z)\\

+ <*3IM-

Since h2 is C1 on Bz, there is a positive constant <24 such that

||/i2(2)|| ^ d4||2[|; using this inequality and (4.4) in (4.6), for some positive con

stant K2, V (x,y,z) E B, we have

\\f(x,y,z)\\ < K2(\\z\\ + ||x -M*)I + lltf ~M*.*)!). (4.7)

Similarly, since h is C1 on B (by (Al)), for some positive constant A3,

V (x,y,2) E B, we have

||/1(X,7/,2)|| < iT3(||2|| + ||X -M«)ll + b -/l(*.2)||). (4.8)

iii) Since / is C1 on B, V (x,t/,2) E 5, we have

||/(x,y,2)-/(x,/1(x,2), 2)|| < JTjy -/jC*.*)!. (4.9)

where

/T4= sup alZ?2/(*,i/.a)||. (4.10)

Similarly, since h is C1 on 5, for some positive constant A5,

V (x,y,z) E 5, we have

\\h(x,y,z) -hih^z), h2(z), 2)|| <S tf6(||* -M*)|| + IIV -M*)ll). (4.11)

Using (4.4) in (4.11) we have

\Mx,y,z) - MMs), M2). 2)|| ^ AgtU + /TOHx - Mz)I

+ Iv-/i(* .*)!]. (4.12)

In (4.4), (4.7), (4.8), (4.9), and (4.12) we will replace Klt K2, A3, K4, and A5

by K := max (A^, A'g, A3, A4, A5), in order to simplify the later computations.
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IV.3. Three Assumptions on Stability

In the section IV.2, in order to simplify the later computations, we replaced

the constants A*, i = l,...,5, by the single constant K defined above. In the fol

lowing we will introduce three Lyapunov functions Vp, Vjj , and Vs each with two

bounding functions of the class K. (see, e.g., [Hah.l]), and two constants which

appear in the bounds of their derivatives (see, e.g., (4.16), (4.17a), and (4.17b)).

As in the section above, without loss of generality, we replace each pair of the

bounding functions by two bounding functions a(-) and 6 (•) belonging to the

class JL , and each pair of the constants by two constants k and d.

A5) For all (x°, 2°) E B£ XB%, yF =/ ^x0, 2°), the equilibrium point of

the system Op is exponentially stable.

By (A5), there exist positive constants ap and (Up such that

V (x°, 2°) E B$*B$, Vv°£ B$t and V r 2> 0

||Mx°, ^°; t, y°) "Jl{xQ, 2°)|| <; aF e^ly0 -/i(*°. *°)ll. (4.13)

where T n» $f(x°, 2°; t, y°) denotes the ' solution of (3.1b) starting at

$p(x°, 2°; 0, y°) =y° and depending on the parameters x° and 2°. Since g is

C1, by the converse theorem (see, e.g., [Hah.l, Theorem 56.1], [Hab.l, Lemma

2]), there exists a Lyapunov function Vp : B° -*• ]R+, given as follows: choose

Tp = (2 In aF + In 2)/ 2&p, and define

VF(x,y,z) =f^ \\$p(x, z; r, y) -f1(x1z)f dr; (4.14)
then

o(«3/ -/i(*.z)||) * VF(x,y.z) <. 6(||2/ -/,(*.«)!). (4.15)

where the functions a(-) and 6(-) belong to the class A ; furthermore, there

are positive constants k and d such that
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dVF(x,y,z)
dy

dVF(x,y,z)
dx

dVp(x,y,z)
dz

g(x,y,z) f -fc||y -/i(x,2)||2,

<. d\\y-fx{xtz)l

£ d\\y - f x(x tz)\\.

(4.16)

(4.17a)

(4.17b)

A6) For all 2° E B$, (x* , y* ) = (/i1(2°), h2(z0)), the equilibrium point

of the system &m is exponentially stable.

Note that, by (3.11), V z° E B°, y\ =h2(z°) =/1(/i1(2°), 20); hence

(A6) is equivalent to the assumption that V 2° E i?z°, h-^z^) is exponentially

stable equilibrium point of (3.5a); hence, there exist positive constants a^ and

f$M such that V 20 E B%, V x° E 5X°, and V * ^ 0

11^(2°; t, x°) -/i1(2°)|| < a^e-^lx0 -M*0)!, (4.18)

where £ h> $m(z°> *>x°) denotes the solution of (3.5a) starting at

$m(z >®>x ) = x° and depending on the parameter 2°. Since / , and / 1are C1,

by the converse theorem, there exists a Lyapunov function Vy : B£ x B$ -* 1R+,

given as follows: choose 7# = (2 In ay + In 2)/ 2/3#, and define

y1 i &

then

and

VM(x,z) =fQ * \\$M(z; *, x) - hx{z)t dt-

a(\\x -M*)I) * ^(x.z) < 6(«x -M*)ll).

dx

a^(x,2)
dx

/(X./^X.Z), 2) < -fc||x -/L1(2)||2,

< d||x-M2)ll,
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then

and

dVM(x,z)
l d\\x -Ki(z)\. (4.22b)

A7) The equilibrium point of the system ofc, (i?j, i?m, t?n) is expo7ien-

friata/ stable.

Note that, by (2.8b), (A7) is equivalent to the assumption that i9n is

exponentially stable equilibrium point of (3.9c), i.e., there exist positive con

stants as and /S5 such that V 2° E B$, and V t' > 0

I*5<*'.*°)l * as e-^'||Z°||, (4.23)
where t' h» $s(£', 2°) denotes the solution of (3.9c) starting at $5(0, 2°) = 20.

Since h, hlt and h2 are C , by the converse theorem, there exists a Lyapunov

function V5 : B% -» IR+, given as follows: choose Ts = (2 In as + ln2)/ 2/35, an(3i

define

dz

Vs(z)=fQS\\*s(t',z)\\2dt';

a(\\z\\) * Vs(z) < 6(||2||),

dVs(z)
dz

dVs(z)
dz

Hh^z), h2(z), 2) <s -A:||2||2,

ss dilzl.

(4.24)

(4.25)

(4.26)

(4.27)

V. Stability of the System (ysv

V. 1. Stability Result

We are prepared to prove that i?ei/ = (t?j, i9m, i?n) is the asymptotically

stable equilibrium of the system <yKV.

-16-



Theorem: Let (A1)-(A7) hold, then there exist 0 < £0 « 1 and 0 < v0 « 1

such that V £ E (0, £0], V v E (0, i/0], and V (x°, t/°, 2°) e B°,

Vev = (^£t ^m» ^7i )• the equilibrium point of the system Oev is asymptotically

stable.

Proof: We define Vev : B° ->1R+ by

yey(x,i/,2) := Tfe(z) + %(x,z) + VF(x,y,z), (5.1)

and prove that Vsv is a Lyapunov function for the system &cv and -£[2.1] ^ei> <0

along the trajectories corresponding to the solution of (2.1), provided that £ and

v are chosen sufficiently small. We compute £[2.1] Vev

£[2.1] ^(*,!/»z) =1/ —^ [/i(x,y,2) -/i(Mz), /i2(z), 2)

+£n^fI[/(aSiyiaf)_/(St/i(a:iJB)iaf)

+ /(*./i(*.s). 2)]

dVM(x,z) , . .

, a7F(x,y,2)
-f(x,y,z)

dx

I dVF(x,y,z)
e dy

•9(x,y,z)

dVF(x,y,z)
+ v - h(x,ytz) (5.2)

02

Using inequalities (4.11), (4.26), and (4.27) in the first term on the right hand

side of (5.2), inequalities (4.9), (4.21), and (4.22a) in the second term, inequali

ties (4.8) and (4.22b) in the third term, inequalities (4.7) and (4.17d) in the

fourth term, inequality (4.16) in the fifth term, and inequalities (4.8) and (4.17b)

in the sixth term, we obtain

-17-



£>[2.i] Vev(x,y,z) <s -vTAv,

where vT = [I*||f ||x - /i1(2)||, \\y -/^.a)!]. and

- UsdK(2 +K) - Uzv + l)dKvk

A = - ±vdK(2 + K) k - vdK -(1/ + l)dA"

- Uzv + l)dK -(v+i)dK ±r~(v+l)dK

(5.3)

(5.4)

For appropriate values of £ and v, the matrix -4 will be positive definite, for

example for any £ and u satisfying

k/dK

where

v <
1 + dK{2+K)z/4k

=: i/>,

£ < —£-= • £°

Wc = fci/(fc - i/dA) - i^d2X2(2 + tf)2/4,

£c = Jb(2i/ + l)2d2AV4 + A:2y(i/ + l)dtf

+ i/(f + l)(2i/ + l)d3A3/2

+ fci/(i/+ O^A2,

(5.5)

(5.6)

(5.7a)

(5.7b)

the matrix A is positive definite, and £[2.1] Vcv < 0; hence i?e|/ is the asymptoti

cally stable equilibrium point of the system (Oev- •

V.2. Conclusions

We studied the asymptotic stability of the equilibrium point of a singularly

perturbed time-invariant nonlinear system Cjev. Due to the specific model of the

system (ucv, we can approximate it over different time scales by three simpler

systems, Qjp, eJ//, and (Us- We specified the manifolds ifi^g and ctK.z which con

tain solutions of the systems c)# and O5, respectively; this gives the picture in

Fig. 2 when £=m=7i = l. Using an argument similar to that suggested by Habets

-IB-



[Hab.l] we gave a straightforward proof of the fact that the asymptotic stability

of the equilibrium point of the system £)e„ is guaranteed when the exponential

stability of the equilibrium points of the systems (*)p, c/jf» and £)s ls esta

blished and when £ and v are sufficiently small. We gave estimates of £ and v ,

where V £ E (0, £°] and V v E (0, v°] the stabUity result holds. The values

we gave for £ and iP are not the best possible estimates, because in the ine

qualities we systematically used as small a number of positive contants as possi

ble: as a benefit, the details of the proof were quite straightforward.
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figure Captions

Fig.l.(a) The normalized nonlinear time-invariant circuit CBV includes a stray

capacitor of £ farads, an inductor of 1 henry, and a large nonlinear

voltage-controlled capacitor.

(b) The fast circuit, Cp, includes only the stray capacitor.

(c) The medium circuit, Q/, includes only the 1-henry inductor.

(d) The slow circuit, C5, includes only the large capacitor.

Fig.2. Trajectories and equilibrium points of (Up, c)//. (us> Sin^i Ue'ev
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