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Abstract

The linear response of a spatially periodic magnetized Vlasov plasma distribution function is
computed to second order in the electric field. The results for a specific electric field are then compared
with the results of computer simulation for different amplitudes of the electric field. Both trapping and
resonant heating are observed, and both appear to contribute (for the chosen parameters) to limiting the

validity of linear theory at larger electric field amplitudes.
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LINEAR MAGNETIZED PLASMA RESPONSE
TO AN OBLIQUE ELECTROSTATIC WAVE

Introduction

The second order linear response of an unmagnetized Vlasov plasma has been worked out [1]. It
is the purpose of this report to treat the magnetized case. This extension is not difficult conceptually
(provided that the concepts of [1] are understood), but involves quite a bit more algebra than is

encountered in the unmagnetized case.

Also presented here is simulation work showing that the limits of linear theory are imposed by
both trapping (as in the unmagnetized case), and by perpendicular heating. Rough estimates are

provided for the wave amplitudes at which each of these phenomena become important.

Second Order Distribution Function for Oblique Electrostatic Waves

In order to compare the details of linear theory with simulations, the second order perturbed
distribution function fz(v,, v, ) is needed for oblique electrostatic waves. It is computed in essentially
the same way in which f, was calculated for unmagnetized waves in [1]. As before, the model is
1-d periodic with no collisions, and an imposed electric field. Now, however, there is a magnetic
field at an angle 8 to k, so k must be broken up into a k, parallel to the magnetic field, and a k,
perpendicular to the magnetic field. All three components of the velocity must now be considered.
For the purposes of analysis, the components of velocity will be put in cylindrical coordinates, i. e.,
vy, vy, and @. f2 contains all the information necessary for the computation of linear kinetic energy
and mean velocity. The second order perturbed distribution function also shows how the kinetic
energy is distributed between parallel and perpendicular components.

For convenience, the coordinates for the derivation will be chosen with k in the # direction with
the magnetic field at angle § to the Z direction in the z-z plane. The phase angle ¢ will be defined
so that when the magnetic field is in the Z direction, ¢ is the usual angle in the z-y plane with ¢ =0
when the velocity is along the & dirction, and ¢ = 7/2 when the velocity is in the § direction (¢ is

90° out of phase with the phase with respect to position).
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The result is obtained by the method of characteristics, just as in the case of unmagnetized
waves, although now the characteristics are helices rather than straight lines. The final result is

a

z E? 8 e O
Favy,v.) = - I;z?z (k"gv_“- + 1:1”_;—3;:) .

Ja (!ﬁ*) 0 nw, 0
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where the bar denotes averaging over both position and phase. (See Appendix A for the complete
calculation.)

Note that as in the case of the unmagnetized wave, the operator on f, is like a diffusion operator.
In fact, one could make a quasilinear diffusion equation from the equation for df,/dt by substituting
f for f and fo. The form of the operator implies that all else being equal, the diffusion in the v,
direction is greater for larger n.

Since f; is now a function of two variables (v, and v, ), it will not be so useful a diagnostic
in particle simulations due to the noise inherent in trying to fill a two-dimensional space with
only 130,000 particles. Scalar quantities such as the mean parallel velocity, and the parallel and
perpendicular kinetic energies (the mean perpendicular velocity is, of course zero in a magnetized
plasma), are much better suited to be used as diagnostics. Fortunately, they are easy to compute
from the distribution function. Assuming a single-temperature Maxwellian distribution for fo, and

letting p = kv /we, u = vy /vy, 2z = w/kyvy, w = w./kyv; and & = v/k,v; the results are

=1 E? - (v +nw) 1 =2
Y= nmy; 4 szz ZI (e d (v +nw - 2)2 + o \/2_1r du @
_ E2 —u? u(u + nw)
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_ 2\ — nw(u + nw) 1 2
&= 4 kz,\2 Zln(l‘ ) /(u-z+nw)2+az\/2—1r =¥ du (4)

These integrals are well-behaved, and can be evaluated numerically with relative ease.

As with unmagnetized waves, a formula can be derived for f2(¢t — co). The derivation follows
that of f5. The result is

;1 & ( 8 )
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where £ is the Fourier transform of the electric field envelope £.

This last expression is much better suited to numerical comparison, as the particle distribution
function is difficult to obtain accurately at any given instant. As with the instantaneous formulae for
%, €, and £, the integrals for these quantities as t — oo are relatively easy to evaluate numerically
for the electric field envelope which will be used in the simulations.

It is again worth noting the resemblance of this result to those of quasi-linear theory (see, for
instance, Kennel and Engelmann [2]).

Theory for Trapping and Perpendicular Heating Due to
Oblique Electrostatic Waves

Trapping can occur in waves in a magnetized plasma, such as oblique electrostatic waves, as well
as in unmagnetized waves. Another phenomenon, perpendicular heating, is unique to the magnetized
case, and must also be considered. It is the primary goal of this research to find the field strength at
which trapping and perpendicular heating become important. First trapping will be analyzed, then
perpendicular heating.

The basic concept behind trapping is the same in the magnetized case as in the unmagnetized.
The mechanism for a magnetized plasma is, however, somewhat more complicated. Instead of a
single resonant velocity, there are an infinity of them, one corresponding to each harmonic of the
cyclotron frequency. All these resonant velocities satisfy w — k,v; — nw. = 0. In the rest frames of
particles at each of these resonant velocities the wave has the same apparent k, but an apparent
frequency of nw. where n is the harmonic number (in the non-relativistic approximation, a boost
parallel to the magnetic field does not alter the fields). To understand the trapping in the parallel
direction, it is necessary to average the force on a trapped particle over the short time scale (the
gyromotion). From

a=%(ﬁ+ax§) (6)

&l

the equation in the parallel direction is obtained by dotting with the unit vector in the direction of

the magnetic field, b:

o
I
=
o

3o F|a

E(&,t)cosb (7)
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From this point on, the coordinates will be chosen so that B is in the 2 direction, and the electric
field is in the z-z plane. Thus, k-z= kyz(t) + k. z(t). Since we are at the resonant velocity looking
at particles which are at or near resonance, z(t) (the z coordinate of the particle in the resonance
frame) is slowly varying (i.e., v, is small) since it is parallel to the magnetic field, and only z(t) and
y(¢) will be rapidly varying. Only z(t) is of interest, and setting z(t) = X (t) + Lk sin(wet + @) where
X(t) is the guiding center position and therefore slowly varying, gives

E(t) = Befkd-wt)

= Betlkyz+iL X+2524 sin(wet+8)—nuwet)

= Bleithiz+ho X+ng) il 242k sin(wet+6)~n(wet+9)] @)

Averaging this over a gyroperiod (and taking the real part) gives

E = Ecos(kyz + k. X +n4)J, (k::),._) )
<
Thus,
d_ _ g5 koo, 10
Eﬂ" = ;E cosdcos(kyz + k, X + ng)J, . (10)

and for the most deeply trapped particles,

@ , 9 5 kv, ’
okl ——I-n—‘Ecosak"J,,( o ) z

(11)

where z’ is the z-component relative to the bottom of the trapping well. This is the same formula
as for one dimension, except for the factors of cosd and J,. These factors are easy to understand
in physical terms. The cos@ factor exists because of the angle between the electric field and the
direction of motion. It is the component of the electric field along the parallel direction instead of
the entire electric field. The second factor results from the averaging of the electric field over the
particle orbit, which may be comparable to a wavelength in radius.

The same quantities Av;, and A®,, (the maximum trapping width and the cumulative trapping
phase shift) can be extended directly from the one dimensional case to this equation for v;. By direct
analogy,

Avh._zJ'qucoso k;vl)

m k We

(12)

and

AD,, = 4 ‘/ 2 4, EocosblJ, ( k"’*) (13)
Y m

We
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As in the one dimensional case, if either Avy, or Ad;, is small enough, the distribution will seem to
follow the linear theory closely, but in the self-consistent case, A®,, should be the only important

parameter.

As mentioned in the beginning of this section, the magnetic field introduces a new effect:
resonant perpendicular heating {or cooling). The derivation is similar to the derivation for the
trapping, beginning with the same equation of motion (6), but dotting it with ¥, instead of . The

result is
1
(32)

E.'-;J.

&

3o e

E sin 8v Le"("u z+ki X+ng) cos(wet + @) ea‘[—*—-l-" L2 sin(wet+)—n(wet+d)] (14)

Averaging again over a gyroperiod gives

% GF{) = %E’sinecos(knz +k, X +no) ’;“f Ja (k;:’* ) (15)

This formula has some interesting ramifications. For particles which are not trapped, z will
vary fairly rapidly, and the average of the right-hand side will be close to zero. Particles which
are trapped, however, have a limit to the z coordinate, and so the right-hand side may have a
substantial average. This formula is also interesting in the extreme non-linear case because of the J,
factor. Since the argument of the cosine is nearly constant for given particles, it will either gain or
lose energy monoionica.lly until the value of v, approaches a value such that J,(k,v, /w.) vanishes
(except, of course, for the case n = 0). Since the trapping in v, also has a factor of J, in it (Equation
(11)), the effect of the resonance in the perpendicular direction is to reduce the effects of trapping
in the parallel direction, except for the important case of n = 0. Since the effect of this equation is
to reduce the effects of trapping, yet it relies on trapping for its effect, it is somewhat self-limiting.
The following derivation of a condition for linearity does not take this into account, and so should
be quite conservative. At first inspection, it might also seem that the perpendicular damping would
not disappear when the angle of propagation is perpendicular to the direction of the magnetic field.
It is assumed, however, in deriving (15) that the particle being followed is in resonance with the
wave, and since k; is zero for perpendicular propagation, resonance requires that w — nw, = 0. This
is never true for Bernstein modes which are propagating perpendicular to the magnetic field, so the

mode will remain undamped as theory predicts.
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The perpendicular resonance can be said to have become non-linear when the perpendicular
velocity has changed by enough to significantly alter the value of J,(k,v,/w.), or if the particle
picks up perpendicular energy comparable to the thermal energy, i.e. the distribution function is
significantly altered on a scale large enough to affect the bulk plasma, and thereby the dispersion
relation. For a rule of thumb, the factor of cos(k;z + k., X + n¢) can be omited, and the factor of
Jn can be replaced by 1/2 (since the Jy term does not contribute), leaving

d a . e
2 (%) ~ %Esmo- ’;“: (16)

The solution, plugging in E = E,exp(1t) is,

1qE, . nw,

2y A =329 . 17
A ~ P sind - (17)
or
A (k__) o pZksBosing 18)
We T,

For linear theory to hold, this quantity should be much less than 1, but it may hold reasonably well
for larger values since all that is really required is that Av, < w./k, which is a weaker condition
than (18). It should also be noted that the higher values of n are not as important, so for the rule
of thumb, n can be omitted from this formula.

The second condition, that the change in energy be much less than the thermal energy, is derived
trivially from the same formula:

A [('_’i)z] o nIecEosind (19)

v ymk, v¢

Again, n may be omitted for a rule of thumb. The final result is that if

2
%% < min (%,v?) (20)
L

and the trapping condition A®,, < 7 is satisfied, then linear theory will be accurate.

Note that these formulae depend on Eo/7y rather than on +/Ep/y as with the parallel trapping.
Thus for small damping rates and small field amplitudes, the perpendicular heating will cause non-

linear effects before trapping can set in.



Numerical Particle Simulations of Oblique Electrostatic Wave

The same sort of simulation as was done for unmagnetized waves in [1] can also be done for
oblique electrostatic waves. As with the unmagnetized waves, a large number of particles is necessary;
but, unlike the unmagnetized simulation, the distribution function is in two variables — vy and v,.
As before, the field amplitude at which non-linear effects set in is of interest. The situation is not

so simple as for the unmagnetized wave, and so simulation should be a useful adjunct to theory.

Again, the simulation model follows the theoretical model (as described in the previous section.
It is 1-d (with all three velocity components, however), collisionless, and periodic, with a neutral-
izing background charge density representing immobile ions. The initial distribution function fo is
Maxwellian, and the imposed electric field is again E = Eg exp(—1|t|) exp(i(kz — wt)).

The distribution function cannot be as easily plotted and interpreted in this case as it was in the
case of unmagnetized waves, because it is a function of both v; and v, . This problem is compounded
by the fact that the number of particles is not enough to smoothly fill the two-dimensional velocity
space. (Two examples of contour plots of f(v;,v,) will be shown, but, as will be apparent, they are
not as informative as the distribution function plots were for the unmagnetized wave.) The mean
parallel velocity (which, of course, represents direct current drive), the parallel kinetic energy, and
the perpendicular kinetic energy (which can generate current indirectly when collisions are present)
are, however, easily calculated and just as informative as were the mean velocity and kinetic energy
for the unmagnetized wave. Each of these can be calculated from the theory (through through the
numerical evaluation of some well-behaved integrals) and from the simulation both as the imposed

wave is growing exponentially, and as t — oo.

The parameters chosen for these runs are: kyv/w. = 1, k v¢/w. = 2.4 (so kvy/w. = 2.6 and
0 =~ 67°), w/w. = 1.5, v/w. = .25. Five runs were made at differing values of Eg. These values
were chosen such that gFEy/mv.w,. would be equal to 0.125, 0.25, 0.5, 1, and 2 (note that this is
a slightly different normalization from that of the unmagnetized wave simulations — but that the
two can be compared through the formula for A®;,.). As with the unmagnetized simulations, the
parameters were chosen for ease of simulation rather than for realism, and bear no resemblance to

any self-consistent wave.

A least squares fit to a growing exponential with exponent y was made on the last e-folding in

E of the growing part of each the three diagnostics. The purpose of these curves was to obtain a
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more accurate value for the diagnostics (which they did) and to provide an estimate of the error due
to noise which could be used as an estimate of the error of the diagnostics as ¢t — co (which they did
not). The standard deviations of the diagnostics about the fit exponential curve should be a fairly
good measure of the error of any given point on the diagnostic curves. The instantaneous value of
the diagnostics is actually plotted in Figure 1, rather than the value obtained from the least squares
fit, for two reasons: first, the assumption under which it was deemed appropriate in the first place
— that a fixed level of noise was superimposed on a basically correct curve — appears to be false,
and second, the correct curve is expected to deviate from a growing exponential, and thus there
would be a systematic error in using the least square value.

Figure 1 shows the values of the diagnostics obtained from simulation (appropriately normalized)
and the theoretical linear values. All the diagnostics converge toward the linear values quite well
as the field amplitude decreases, except for the parallel energy, which seems to show either an
oscillation with field amplitude, or fairly strong noise. Since another run with a slightly modified
particle loader (bit-reversed in the z-direction instead of the direction parallel to the magnetic field
— see the technical note at the end of this section) yielded values which deviated with similar
amplitude but without sign of oscillation, it seems likely that the error is due to noise caused by
some small systematic error in the loading scheme. This is initially somewhat surprising, given the
large number of particles in the system, but quite reasonable when it is remembered that only a
small fraction of those particles are resonant with the wave. Note also that the perpendicular kinetic
energy decreases with increasing field amplitude. Since perpendicular heating can drive a current
once the effects of collisions are taken into account, this loss of efficiency is important. More will be
said about the results shown in Figure 1.

Figure 2 shows the parallel kinetic energy as a function of time, along with the exponential curve
which was fit to the parallel kinetic energy using least squares, for the lowest amplitude excitation
over the last e-folding of the electric field before ¢ = 0. The estimated error from this least squares
fit is ~3%, which is in fair agreement with the deviation of this diagnostic from theory at ¢t = 0
(~6%), but far smaller than the deviation from theory at ¢t = co. That some low frequency noise is
present is plainly visible. That it is only low frequency and that it exists at all in what should be a

uniform system is more evidence for the noise being the result of systematic error.

Figure 3 shows contour plots of f(v,,v,) before the simulation and at ¢t = co for the highest

excitation amplitude, clearly showing the effects of the wave. Some current drive effect is also clearly



visible.

When Figure 1 is compared with the results of the unmagnetized simulation, it is seen that,
as with the unmagnetized simulation, the linear theory holds up to a certain field amplitude, then
the results start diverging. Applying Formula (13) to the simulation, it is found (setting J, ~ .5)
that A®;,. ranges from 1.67 to 6.67, and that comparable deviation is found at comparable values
of A®;,.. This is a strong confirmation of the validity of Formula (13).

The perpendicular heating condition (20) can aslo be evaluated. The values of the left-hand
side range from 0.19 to 3.08, and the values of the right-hand side (which should both be much
larger than the value of the left-hand side for linearity to be guaranteed) are 0.17 and 1.0. The
good agreement of the simulation with linear theory indicates that either an error was made in the
derivation of the condition (20), or that the many approximations made in deriving (20) were very

conservative.

A mildly surprising feature of the simulation is that the parallel energy increases with increasing
non-linearity. This is easily explained when it is realized that the distribution function is actually
made steeper at some resonances according to linear theory. When trapping sets in, these places do
not steepen.as linear theory predicts, and may even flatten out instead of steepening. Thus these
resonances contribute more heating than expected. This effect does not contribute to the current
drive, as the resonances which ought to steepen the distribution function are primarily at velocities

opposed to the direction of current drive.

Technical note:

Because of the high noise level associated with random loading in this number of phase space
dimensions, the particles were loaded with some care. The velocities in the paralle! direction (rather
than the z direction) were loaded in bit-reversed order, the phase of the perpendicular velocity was
chosen in 3-reversed order, and the magnitude of the perpendicular velocity was chosen in 5-reversed
order. This arrangement should introduce the minimum noise in the parallel direction. (The bit-
reversed loader has fewer problems with recurrence than the 3- and 5- reversed loaders.) See Birdsall
and Langdon (3] for details on bit-reversing.



10

Summary and Conclusions

Linear theory has been used to compute the second order perturbed distribution function for
an oblique electrostatic electron wave both for an exponentially growing wave (Equation (1)) and
for a wave pulse of arbitrary shape (Formula (5)). The results are: for the growing wave

Y

z E? d . 8
f2(vﬂ!vl) = _4' ¢ E;Lﬂlzz (k"%; + 1:‘)—1_%) .

[ g (%f*) (k L. ’:}w" —(?—) fo(”u,”x.)] (21)

(wr — nwe — kywy)2 +42 \ " By, L OV,
and for the wave pulse
- 1 ¢ 0  nw. 0
2= fiame 2 ( "3 oL %)
kv - 4 nw. 0
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[12 (222 1B - e - ko) (b + 22252 ) )] (22

This linear theory has been tested via particle simulation on its predidions regarding several
second order quantities. The electric field varied in time, though it was uniform in space. The
results were in agreement with theory, although the tests have not been self-consistent in the sense
that the electric field was imposed rather than solved for using Poisson’s equation. The onset of
non-linearity was observed, and the threshold level fit the predictions of a simple trapping model.
This model yields two parameters which predict the behavior of the plasma in the presence of oblique
electrostatic waves: the cumulative trapping phase shift

Ad,, = ﬁ‘/ 'ik,EocosaJ,. ("*”‘) (23)
Ty|m We
and the perpendicular energy change
1 qu TWe
NG (24)

If both of these parameters are small, the behavior should be linear, and indeed the results are
consistent with this prediction.

It is fair to say that the one dimensional effects causing non-linearity are now understood. Un-
fortunately, these conclusions cannot be blithely applied to three dimensions. While the cumulative
trapping phase shift and perpendicular energy change are functions only of the electric field strength
and its temporal envelope in one dimension, in three dimensions, the geometry becomes important,

and can considerably alter both parameters.
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Appendix A: Second Order Perturbed Distribution Function for Oblique
Electrostatic Wave

For convenience, the coordinates for the derivation will be chosen with k in the % direction with
the magnetic field at angle 6 to the Z direction in the z-z plane. The phase angle ¢ will be defined
so that when the magnetic field is in the 2 direction, ¢ is the usual angle in the z-y plane with
¢ = 0 when the velocity is along the  dirction, and ¢ = 7/2 when the velocity is in the § direction
(¢ is 90° out of phase with the phase with respect to position). The unperturbed orbit in such a

coordinate system is such that
vo(t') = v, cos(we(t' — t) + $(t)) sinf + v, cosd (al)
z(t') = z(t) + [sm(wc(t' — t) + ¢(t)) — sin (t)] sin @ + v, (¢’ — t) cosd (a2)
$(t) = ¢(t) +w..-(t’ -1) (a3)

with v, and v, constants (recall that k;, = kcosd and k, = ksiné).

The first equation to be solved is

dh __95 0% ad

dt mE ov (ad)
with

E"n = E,;ei(kz—wt) (05)
In cylindrical velocity coordinates, the differential operator becomes

k- 2=1[Ic 8 +kicos¢ k,,sm¢1 6] (a6)
3‘0 1 Sy, 311“ .L a¢

Plugging this operator into the equation for f; and assuming that fo does not depend on ¢, yields

E 0 i(kz—w
%1' -1 g k"&v +°°8¢k.|.3" ]f - gilko=et) (a7)

Plugging in z(¢') and ¢(t’) and solving by the method of characteristics,

fi= __q__E__et'(ka—ut) . {ku% /‘ e,'{zﬂ,cﬂ[sinwwe(t'..t))‘ain¢]+k“v" (' —t)—w(t' —¢)} dr
mk Il /=co

1, / ‘ cos{ -+ welt! — £)) L ESH (e (¢ =)= singHkyuy (¢ =0 -w(¢'-0) dt:}
v, J_o

q Eei(kz-wt)e—i%f‘k sing,.

mk

3
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{ “ ?_& f°° ei[k 1L vy sin(@—weT)—ky vy r4wr] dr
O

+ kJ_ afo / cos(¢ w T)e‘[k'l'v"' m(é-w,r)-hu 0“1‘+Wf] d,r}

= 9 E iho—w) ~i242h sing

mk
Z [ku 8f0 Wc % (k.l.”.l.) ind ./Q H(w—nw.—kyvy)r dr
30“ vy 804_
‘ J, ind o
= ;9 E ha-wt) ~it2 sing n ( we ) 0 | nw _] a8
- zmke € ;w—wc—kav“ kuavu-'- vy av_._ fo ( )

Note that it was necessary to assume Imw > 0, i.e. a growing wave. It will also be useful when
calculating f; to write f; as

= i3 E iko-ut)
h= ‘mEC

ZZ Tn (B428) I (i) eite=mis [k 8 nwci]fo (@)

W - NWe — k"v“ "8, Bv" Yy a’v_]_

Note that the first order perturbed distribution function is a function of the velocity phase angle,
which the zero order distribution function is not.

The equation for the second order perturbed distribution function is

dfz

dat - —E "f‘

= —%E Ree'lk2—wt) . Re (E ) h (a10)

gl

The real part of all quantities being previously implied.
Before integrating the equation, it is best to average over z, as the spatial structure of f5 is of
no interest. It is also assumed at this point that k is real. Now

df __aE;
- 2

3 e [fee)

-2
m

(!.L!.L)J (m;.) i(n-m)¢

- _,i%ew{( )ZZ =

8 nwe
[kuaT“ v, 6v;] fo} (all)

where ¥ = Imw. The velocity phase angle ¢ can also be integrated over now since the phase

structure of f; is of no value in computing the quantities of interest. (One must actually be careful
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The kinetic energy of the wave can now be calculated in order to compare the result with that
of the energy derived from the linear dispersion relation. The kinetic energy can be separated into
parallel and perpendicular components. Starting with the parallel component,

Breaking up f> into two terms, the 8/8v, term can be integrated immediately, yielding zero since
nJn(0) = 0 for all n. Integrating the 8/8v, term by parts and substituting

8  rnw. 0 1
(kngv—“ + ?:-50—;) Jo= —?‘(kﬂvn + nwe) fo (a21)
yields
_EF 1 kv (kyvy +nwe) o [ kovy
= 4 szz Z-/ / (w —nwe — kyyy)? + 42 T ( We ) Joduyv.dv, (a22)
Setting
l v’n +vi
f = e— 3% a23)
’ Vor v (
separates the integrals:

“—-4—. Az Z n w_e ?e t v, du, -

kyvy (K o 1 --",ﬁ,
w ":L(c u-v"k:;sf 4)-72 Voot o (a24)

Setting p = k, v;/w. and y = v, fv; reduces the first integral to
e
f I (—k*v*) e ™ v,dv, = / Tapv)e™ ¥ yay
we ) v¢

= L(p?)e ™ (a25)

The algebra for the second integral can be simplified if some new symbols are introduced. Let

u = vy /v, z = w/kyv, w = w./kyv and a = v/k,v, then the integral becomes
1 u(u + nw)
Vor) wtnw—z)@2+a2

_ 1.l [ (2z—nw)(u—-z+nw)+z(z - nw)~ 0:2
=i+ -/ (u—z+nw)2+a

"'5' du

du

1 %
=1 -
+(mw 2Z)Re‘/2—1r'/u—z+nw—iadu
_'_z(z—mu)--cr2 /
o N —z+nw ia

=1+(nw—2z)ReN(z—nw+ia)+z(z;1::’li

du

ImN(z - nw + ia) (a26)
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Taking the limit as o — 0 for comparison later with the results of the calculation using the linear
dielectric function,

Im N(z — nw + ia) — Im [N(z — nw) + iaN’(z — nw)]
— Im [N(z - nw) - ia(1 + (z — nw)N(z — nw))]

— Im N(z — nw) — a(1 + (z — nw) Re N(z — nw)) (a27)
(where N(z) = 1/v/2Z(z/v/2) and Z is the standard Plasma Dispersion Function) and

ﬂ—’ 2 kz,\z ZI (u?)e* { - z(z — nw) + [2z — nw — z(z — nw)?*] N(z — nw)+

\/g @9'*“‘""”} (a28)

The perpendicular energy is evaluated in much the same way:

1
EL= // Emv?.fz dvy v, dv, do

) 8 nw. 0
4 K Z/v/ (w- ’We‘kn”u)z'*"rz (kng“*l- vy -5-‘0:) 2rfodvyvodv,

= % 5 3 Lp?)e nwwtnw) 1 st

k2X3 < (u— z + nw)? + a3 N
E?2 1 znw )
= T Xn:l,.(,ﬁ)e u {aneN(z - nw +ia) + — ImN(z - nw +za)} (a29)
E? 1 2y —y?
- T e
n
X {—znw + [nw — znw(z — nw)] Re N(z — nw) + "2"2'_;2 "‘(“’“")’} (a30)
The total energy is thus
8 = 8" +SJ_

(kuv“ + wc)Jz (é-'w—"-‘-) a
= e do,

% ! Z// (Fat + ) P( )27rfodvuv¢dv_,_

k223 (w — nwe — kyyy)2 + ‘72

|8

1 o —u?
X zn:I,.(# Je
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. 22 -a? .
{1+2zReN(z-n‘w+za)+ - ImN(z—nw+za)} (a31)
E?2 1 2
= Ty L e
2 3
{1 — 22 4 [22 — 2%(z — nw)]Re N(z — nw) + %‘ / ge‘%("""’) } (a32)

To ensure that the calculation of f2 is correct, the kinetic energy of a electrostatic wave will
now be calculated using the dielectric function:

A

Weaave = %2‘ [% (w Ree) - 60] (033)
and
WLcndcu=WIme"/t%t,)2'dt’ (034)

where W4y, is the wave kinetic energy density and Wir,pnday is the energy which has been absorbed
by the distribution function due to Landau damping. These expressions assume that all changes in
the electric field amplitude are infinitesimally slow, and the result is only the total energy, rather
than f itself. The result will be a completely independent check, however, on the energy as derived
from the second order perturbed distribution function. The result is

E.z 1 w2 oo w w2 W — MW, W - W,
Weoave = 4 k2X2 {1 - k2vi +,,=E_°° [2m - k—f-”? ( kqve )] N( kyve )

x In (ki

(a35)

S
N—
8
|
A
hENl S,
N’
——

where

N(z)= —= d¢ (a36)

and Z is the standard Plasma Dispersion Function. The contour of integration goes under the pole
at ( = z as with the Z function. Use has also been made of the identities

N'(z) = ~(1+zN(2)) (a37)

and

Y L(z)e* =1 (a38)
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To simplify the notation, let z = w/kyve, w = wc/kyvs, and p = k, v;/w,, then

Wewave = ?ﬁ { 1-22+ %:[2.2 - 2%(z — nw)]N(z - nw)I,.(pz)e“‘z} (a39)

The purely kinetic (Landau damping) part of the energy for an exponentially growing wave is

-

Wiandau = —ﬁ—z- . slme (a40)
where 7 is the growth rate. For real argument,
ImN(z) = \/ge-‘} (ad1)
so, setting o = v/kyv,,

Equations (a39) and (a42) sum to Equation (a32), thus verifying it.
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