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TO AN OBLIQUE ELECTROSTATIC WAVE

by

William S. Lawson

Abstract

The linear response of a spatially periodic magnetized Vlasov plasma distribution function is

computed to second order in the electric field. The results for a specific electric field are then compared

with the results of computer simulation for different amplitudes of the electric field. Both trapping and

resonant heating are observed, and both appear to contribute (for the chosen parameters) to limiting the

validity of linear theory at larger electric field amplitudes.
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LINEAR MAGNETIZED PLASMA RESPONSE

TO AN OBLIQUE ELECTROSTATIC WAVE

Introduction

The second order linear response of anunmagnetized Vlasov plasma hasbeenworked out [1]. It

is the purpose of this report to treat the magnetizedcase. This extension is not difficultconceptually

(provided that the concepts of [1] are understood), but involves quite a bit more algebra than is

encountered in the unmagnetized case.

Also presented here is simulation workshowing that the limits of linear theory are imposed by

both trapping (as in the unmagnetized case), and by perpendicular heating. Rough estimates are

provided for the wave amplitudes at which each of these phenomena become important.

Second Order Distribution Function for Oblique Electrostatic Waves

In order to compare the details of linear theory with simulations, the second order perturbed

distribution function /2(vtl, v±) isneeded for oblique electrostatic waves. It iscomputed inessentially

the same way in which fa was calculated for unmagnetized waves in [1]. As before, the model is

1-d periodic with no collisions, and an imposed electric field. Now, however, there is a magnetic

field at an angle 0 to fc, so k must be broken up into a k{] parallel to the magnetic field, and a fcx

perpendicular to the magnetic field. All three components of the velocity must now be considered.

For the purposes of analysis, the components of velocity willbe put in cylindrical coordinates, i. e.,

un, 1/j., and <f>. /2 contains all the information necessary for the computation of linear kinetic energy

and mean velocity. The second order perturbed distribution function also shows how the kinetic

energy is distributed between paralleland perpendicular components.

For convenience, the coordinates for the derivation willbe chosen with k in the x direction with

the magnetic field at angle 0 to the x direction in the x-z plane. The phase angle <f> will be defined

so that when the magnetic field is in the z direction, <j> is the usual angle in the x-y plane with <£ = 0

when the velocity is along the x dirction, and <f> = n/2 when the velocity is in the y direction (<f> is

90° out of phase with the phase with respect to position).
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The result is obtained by the method of characteristics, just as in the case of unmagnetized

waves, although now the characteristics are helices rather than straight lines. The final result is

(fa;,. —nu, (1)

where the bar denotes averaging over both position and phase. (See Appendix A for the complete

calculation.)

Note that as in the case of the unmagnetized wave, the operator on fa is like a difiusion operator.

In fact, one could make a quasilinear difiusion equation from the equation for dfa/db by substituting

/ for fa and fa. The form of the operator implies that all else being equal, the difiusion in the v±

direction is greater for larger n.

Since fa is now a function of two variables (v{] and vx), it will not be so useful a diagnostic

in particle simulations due to the noise inherent in trying to fill a two-dimensional space with

only 130,000 particles. Scalar quantities such as the mean parallel velocity, and the parallel and

perpendicular kinetic energies (the mean perpendicular velocity is, of course zero in a magnetized

plasma), are much better suited to be used as diagnostics. Fortunately, they are easy to compute

from the distribution function. Assuming a single-temperature Maxwellian distribution for /o, and

letting fi= kxvt/u>a » = va/v*» z = wAnv«> w = oje/knvt and a = j/k^vt the results are

1 IS2

and

- — I v* T / 2\ _«a f (u + nw) 1 _ai , /ftv
"»- =;• t• **a|IX* >e MJ (u+L-zr+ctim* 'du (2)

Er 1 y^ r , 2\ -Ma / n«;(tt + nw) 1 _«»
4 AaA£ ^ ' J (u —z + ntu)2 + a2 v27r

These integrals are well-behaved, and can be evaluated numerically with relative ease.

As with unmagnetized waves, a formula can be derived for fa{t —• oo). The derivation follows

that of fa. The result is

4k2m2

[Jn* (*^) &„.^. Ma)|2 (*„_*_+^ /0(v„, Vi)] (5)
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where E is the Fourier transform of the electric field envelope E.

This last expression ismuch better suited tonumerical comparison, as the particle distribution

function isdifficult to obtain accurately at any given instant. Aswiththe instantaneous formulae for

Vii, £||, and €x, the integrals for these quantities as t —• oo are relatively easy toevaluate numerically

for the electric field envelope which will be used in the simulations.

It is again worth noting the resemblance ofthis result to those ofquasi-linear theory (see, for

instance, Kennel and Engelmann [2]).

Theory for Trapping and Perpendicular Heating Due to

Oblique Electrostatic Waves

Trapping can occur in waves in amagnetized plasma, such asoblique electrostatic waves, as well

as inunmagnetized waves. Another phenomenon, perpendicular heating, isunique to themagnetized

case, and must also beconsidered. It is the primary goal ofthis research to find the field strength at

which trapping and perpendicular heating become important. First trapping will be analyzed, then

perpendicular heating.

The basic concept behindtrapping is the same in the magnetized case as in the unmagnetized.

The mechanism for a magnetized plasma is, however, somewhat more complicated. Instead of a

single resonant velocity, there are an infinity of them, one corresponding to each harmonic of the

cyclotron frequency. All these resonant velocities satisfy u —fe^Vj, —nwc —0. In the rest frames of

particles at each of these resonant velocities the wave has the same apparent jfe, but an apparent

frequency of nu>c where n is the harmonic number (in the non-relativistic approximation, a boost

parallel to the magnetic field does not alter the fields). To understand the trapping in the parallel

direction, it is necessary to average the force on a trapped particle over the short time scale (the

gyromotion). From

±0.±(g+9xa) (6)
the equation in the paralleldirection is obtained by dotting with the unit vector in the direction of

the magnetic field, 6:

vn =^Eb
m

= —E{x,t)cosO (7)
m
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From this point on, the coordinates will be chosen so that B is in the z direction, and the electric

field is in the x-z plane. Thus, k •x = knz(t) -f k±x(t). Since we areat the resonant velocitylooking

at particles which are at or near resonance, z(t) (the z coordinate of the particle in the resonance

frame) is slowly varying (i.e., t/u is small) since it is parallel to the magnetic field, and only x(t) and

y(t) will be rapidly varying. Only x(t) is ofinterest, and setting x(t) = X(t) +J£ sin(u;ct+<f>) where

X(t) is the guiding center position and therefore slowly varying, gives

E(t) =&«**—«>

Averaging this over a gyroperiod (and taking the real part) gives

E=£cos(&uz+k±X+n<£)Jn (^~) (9)
Thus,

^«n =̂ Ecoa9coB(k9z+̂ X+n<j>)Jn (^~) (10)
and for the most deeply trapped particles,

-p.,
*** - - ^COS<»Vn(^)|v (11)

where z' is the z-component relative to the bottom of the trapping well. This is the same formula

as for one dimension, except for the factors of cos0 and J„. These factors are easy to understand

in physical terms. The cos0 factor exists because of the angle between the electric field and the

direction of motion. It is the component of the electric field along the parallel direction instead of

the entire electric field. The second factor results from the averaging of the electric field over the

particle orbit, which may be comparable to a wavelength in radius.

Thesame quantities Avtr and A$tr (the maYiimim trapping width and thecumulative trapping

phase shift) can beextended directly from the one dimensional case to this equation for v{i. Bydirect

analogy,

Avtr= 2^

and

qE0-M^U (12)
m '•m

*•— yji*-.«.(sgt) on
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As in the one dimensional case, if either Avtr orA$tP is small enough, the distribution will seem to

follow the linear theory closely, but in the self-consistent case, A$tr should be the only important

parameter.

As mentioned in the beginning of this section, the magnetic field introduces a new effect:

resonant perpendicular heating (or cooling). The derivation is similar to the derivation for the

trapping, beginning with the sameequation of motion (6), but dotting it with v± instead of b. The

result is

= —Esin0v,y(*t)*+*-»••*+»*) cos(a/ct +<f>)ei[t^ sin(Wc*+*)-n(a»e«+*)] /14)
m

Averaging again over a gyroperiod gives

I (1*?) =lEifaOcos(k,z +kxX +Tul>)^Jn (£^) (15)

This formula has some interesting ramifications. For particles which are not trapped, z will

vary fairly rapidly, and the average of the right-hand side will be close to zero. Particles which

are trapped, however, have a limit to the z coordinate, and so the right-hand side may have a

substantial average. This formula is also interesting in the extreme non-linear case because of the Jn

factor. Since the argument of the cosine is nearly constant for given particles, it will either gain or

lose energy monotonically until the value of v± approaches a value such that J„(fciVi/wc) vanishes

(except, of course, for the casen = 0). Sincethe trappingin v{] alsohas a factor of Jn in it (Equation

(11)), the effect of the resonance in the perpendicular direction is to reduce the effects of trapping

in the parallel direction, except for the important case of n = 0. Since the effect of this equation is

to reduce the effects of trapping, yet it relies on trapping for its effect, it is somewhat self-limiting.

The following derivation of a condition for linearity does not take this into account, and so should

be quite conservative. At first inspection, it might also seem that the perpendicular damping would

not disappear when the angle of propagation is perpendicular to the direction of the magnetic field.

It is assumed, however, in deriving (15) that the particle being followed is in resonance with the

wave, and since k{] is zero for perpendicular propagation, resonance requires that w —ruvc —0. This

is never true for Bernstein modes which are propagating perpendicular to the magnetic field, so the

mode will remain undamped as theory predicts.
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The perpendicular resonance can be said to have become non-linear when the perpendicular

velocity has changed by enough to significantly alter the value of Jn(k±v±/wc), or if the particle

picks up perpendicular energy comparable to the thermal energy, i.e. the distribution function is

significantly altered on a scale large enough to affect the bulk plasma, and thereby the dispersion

relation. For a rule of thumb, the factor of cos(fe0z + k±X + ruf>) can be omited, and the factor of

Jn can be replaced by 1/2 (since the Jo term does not contribute), leaving

5«>~£**'-T? (16)
The solution, plugging in E = Eqexp(Tt) is,

A(^)~Ii^si„(9.^i (17)
7 171 «j.

or

EqsulO

|V <"« / J Tymwc

For linear theory to hold, this quantity should be much less than 1, but it may hold reasonably well

for larger values since all that is really required is that Avx < u>c/kx which is a weaker condition

than (18). It should also be noted that the higher values of n arenot as important, so for the rule

of thumb, n can be omitted from this formula.

The second condition, that the change in energy be muchless than the thermal energy, is derived

trivially from the same formula:

Again, n may be omitted for a rule of thumb. The final result is that if

qEQ(x)c

(18)

and the trapping condition A$(r <C tt is satisfied, then linear theory will be accurate.

Note that these formulae depend on JS0/7 ratherthan on -n/So/t as with the parallel trapping.

Thus for small damping rates and small field amplitudes, the perpendicular heatingwill cause non

linear effects before trapping can set in.



Numerical Particle Simulations of Oblique Electrostatic Wave

The same sort of simulation as was done for unmagnetized waves in [1] can also be done for

oblique electrostatic waves. Aswiththeunmagnetized waves, alarge number ofparticles isnecessary;

but, unlike the unmagnetized simulation, the distribution function is in two variables - vB and v±.

As before, the field amplitude at which non-linear effects set in is of interest. The situation is not

so simple as for the unmagnetized wave, and so simulation should be a usefuladjunct to theory.

Again, the simulation model follows the theoretical model (as described in the previous section.

It is 1-d (with all three velocity components, however), collisionless, and periodic, with a neutral

izing background charge density representing immobile ions. The initial distribution function fa is

Maxwellian, and the imposed electric field is again E = E0 exp(-7Jt|) exp(i(kx- wt)).

The distribution function cannot be as easily plotted and interpreted in this case as it was in the

case of unmagnetized waves, because it is a function ofboth vt, and vx> This problem is compounded

by the fact that the number of particles is not enough to smoothly fill the two-dimensional velocity

space. (Two examples of contour plots of f(v[Uv±) will be shown, but, as will be apparent, they are

not as informative as the distribution function plots were for the unmagnetized wave.) The mean

parallel velocity (which, of course, represents direct current drive), the parallel kinetic energy, and

the perpendicularkinetic energy (which can generatecurrent indirectly when collisions are present)

are, however, easily calculated and just as informative as were the mean velocity and kinetic energy

for the unmagnetized wave. Each of these can be calculated from the theory (through through the

numerical evaluation of some well-behaved integrals) and from the simulation both as the imposed

wave is growing exponentially, and as t —♦• oo.

The parameters chosen for these runs are: knvt/ufe = 1> k±vt/u>e = 2.4 (so kvt/uje —2.6 and

9 « 67°), u)/ujc = 1.5, 7/u/c = .25. Five runs were made at differing values of Eq. These values

were chosen such that qEo/mvtwe would be equal to 0.125, 0.25, 0.5, 1, and 2 (note that this is

a slightly different normalization from that of the unmagnetized wave simulations — but that the

two can be compared through the formula for A$tr). As with the unmagnetized simulations, the

parameters were chosen for ease of simulation rather than for realism, and bear no resemblance to

any self-consistent wave.

A least squares fit to a growing exponential with exponent 7 was made on the last e-folding in

E of the growing part of each the three diagnostics. The purpose of these curves was to obtain a
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more accurate value for the diagnostics (whichthey did) and to providean estimate of the errordue

to noise which could be used as an estimate of the error of the diagnostics as t —• co (which they did

not). The standard deviations of the diagnostics about the fit exponential curve should be a fairly

good measure of the error of any given point on the diagnostic curves. The instantaneous value of

the diagnostics is actually plotted in Figure 1, rather than the value obtained from the least squares

fit, for two reasons: first, the assumption under which it was deemed appropriate in the first place

— that a fixed level of noise was superimposed on a basically correct curve — appears to be false,

and second, the correct curve is expected to deviate from a growing exponential, and thus there

would be a systematic error in using the least square value.

Figure 1showsthe valuesof the diagnostics obtainedfromsimulation(appropriately normalized)

and the theoretical linear values. All the diagnostics converge toward the linear values quite well

as the field amplitude decreases, except for the parallel energy, which seems to show either an

oscillation with field amplitude, or fairly strong noise. Since another run with a slightly modified

particle loader (bit-reversed in the ^-direction insteadof the direction parallel to the magnetic field

— see the technical note at the end of this section) yielded values which deviated with similar

amplitude but without sign of oscillation, it seems likely that the error is due to noise caused by

somesmall systematicerror in the loading scheme. This is initially somewhat surprising, given the

large number of particles in the system, but quite reasonable when it is remembered that only a

small fraction of thoseparticles areresonant with the wave. Notealso that the perpendicular kinetic

energy decreases with increasing field amplitude. Since perpendicular heating can drive a current

once the effects of collisions are taken into account, this loss of efficiency is important. More willbe

said about the results shown in Figure 1.

Figure 2 shows the parallel kinetic energy asa function of time, along with the exponential curve

which was fit to the parallel kinetic energy using least squares, for the lowest amplitude excitation

over the last e-folding of the electric field before t = 0. The estimated error from this least squares

fit is ~3%, which is in fair agreement with the deviation of this diagnostic from theory at t = 0

(~6%), but far smaller than the deviation from theory at t = oo. That some low frequency noise is

present is plainly visible. That it is only low frequency and that it exists at all in what should be a

uniform system is more evidence for the noisebeing the result of systematic error.

Figure 3 shows contour plots of f{vl},v±) before the simulation and at £= oo for the highest

excitation amplitude, clearlyshowing the effectsof the wave. Some currentdrive effect is alsoclearly
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visible.

When Figure 1 is compared with the results of the unmagnetized simulation, it is seen that,

as with the unmagnetized simulation, the linear theory holds up to a certain field amplitude, then

the results start diverging. Applying Formula (13) to the simulation, it is found (setting J„ ~ .5)

that A$tP ranges from 1.67 to 6.67, and that comparable deviation is found at comparable values

of A$tP. This is a strong confirmation of the validity of Formula (13).

The perpendicular heating condition (20) can aslo be evaluated. The values of the left-hand

side range from 0.19 to 3.08, and the values of the right-hand side (which should both be much

larger than the value of the left-hand side for linearity to be guaranteed) are 0.17 and 1.0. The

good agreement of the simulation with linear theory indicates that either an error was made in the

derivation of the condition (20), or that the many approximations made in deriving (20) werevery

conservative.

A mildly surprising feature of the simulation is that the parallelenergy increases with increasing

non-linearity. This is easily explained when it is realized that the distribution function is actually

made steeper at some resonances according to linear theory. When trapping sets in, these places do

not steepen as linear theory predicts, and may even flatten out instead of steepening. Thus these

resonances contribute more heating than expected. This effect does not contribute to the current

drive, as the resonances whichought to steepen the distribution function are primarily at velocities

opposed to the direction of current drive.

Technical note:

Because of the high noise level associated with random loading in this number of phase space

dimensions, the particles were loaded withsome care. The velocities in the parallel direction (rather

than the x direction) were loaded in bit-reversed order, the phase of the perpendicular velocity was

chosen in 3-reversed order, andthe magnitude of the perpendicular velocity was chosen in 5-reversed

order. This arrangement should introduce the minimum noise in the parallel direction. (The bit-

reversed loader has fewer problems with recurrence than the 3-and5-reversed loaders.) SeeBirdsall

and Langdon [3] for details on bit-reversing.
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Summary and Conclusions

Linear theory has been used to compute the second order perturbed distribution function for

an oblique electrostatic electron wave both for an exponentially growing wave (Equation (1)) and

for a wave pulse of arbitrary shape (Formula (5)). The results are: for the growing wave

,, . & q2 ^f, d wc 8 \

and for the wave pulse

fa "♦ 7"4Jb2m2

(a;,. —nujt - &i|VH)2 + 72 V 0w„ vx dvx J
(21)

?0
d no/e d

+
'D5wu ' vj- &0:)

[*(i&.)to.-~.-kltf(t,jL*2i£.)Hn..j] m
This linear theory has been tested via particle simulation on its predictions regarding several

second order quantities. The electric field varied in time, though it was iinifbrm in space. The

results were in agreement with theory, although the tests have not been self-consistent in the sense

that the electric field was imposed rather than solved for using Poisson's equation. The onset of

non-linearity was observed, and the threshold level fit the predictions of a simple trapping model.

This model yields two parameterswhich predict the behaviorof the plasma in the presenceof oblique

electrostatic waves: the cumulative trapping phase shift

A$*r = -<

and the perpendicular energy change

—kaEn COS 0Jr,
m

A(t,J)~^ qEo
m

m (23)

(24)

If both of these parameters are small, the behavior should be linear, and indeed the results are

consistent with this prediction.

It is fair to say that the one dimensional effects causing non-linearity are now understood. Un

fortunately, these conclusions cannot be blithely applied to three dimensions. While the cumulative

trapping phase shift and perpendicular energy change are functions only of the electric field strength

and its temporal envelope in one dimension, in three dimensions, the geometry becomes important,

and can considerably alter both parameters.
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Appendix A: Second Order Perturbed Distribution Function for Oblique

Electrostatic Wave

For convenience, the coordinates for the derivation will be chosen with k in the x direction with

the magnetic field at angle 9 to the x direction in the x-z plane. The phase angle <f> will be defined

so that when the magnetic field is in the z direction, <j> is the usual angle in the x-y plane with

0 = 0 when the velocity is along the x dirction, and <f> = n/2 whenthe velocity is in the y direction

(4> is 90° out of phase with the phase with respect to position). The unperturbed orbit in such a

coordinate system is such that

*>»(*') = v±cos(o;c(t/ -1) + <f>(t))sin0 + v„ cos0 (al)

x(tf) = x(t) + — [sm(u>e(t! -t) + <f>{t)) - sin<£(*)] sin0 + vB(tf -1) cos0 (a2)

with vn and vx constants (recall that k{] = kcos9 and k± = ft sin0).

The first equation to be solved is

with

J§ = Eke***-** (a5)

In cylindrical velocity coordinates, the differential operator becomes

k'M=k^^+K™+^rk^*vM (a6)
Plugging this operator into the equation for fa and assuming that fa does not depend on #, yields

S-ifK*-^]*--^ (a7)
Plugging in x(i') and 0(t/) and solving by the method of characteristics,

/. - _JL:5e*'(**-«"0 .(k ^ I* e»<iifi[«»M*-h«'c(*'-0)--«n^+*llui1(«'-t)-u»(<'-«)}dt/
m A: \ "dvn J^

+k^ [' cos(<£+u>c(t' - t))^^W^V-t))-«nWiM*'-*)-<*l*'~*» dt>)

771 ft



{kt— f eil*xvx,fa(*~WeT)~*»wnT+wrldT
^H Jo

+kx|^ f°° COS(0 -WeT)c^*AWA <**(*-'*eT)-k}ivtT+<*T) dT\
_± ?.ei{^-^>t)e-i^- sin0x

m ft

12

_ j (fcici \ -»n^ _ _ _
=_,ife^-^-^-*V±l*il_ L, » +-Si »1/o {a8)

m ft *—' a;—nwc —ftfl v() [ cwfl vx avx J

Note that it was necessary to assume Imu; > 0, i.e. a growing wave. It will also be useful when

calculating fa to write fa as

fa = -.i±Ei(>>*-<*t)
m ft

Note that the first order perturbed distribution function is a function of the velocity phase angle,

which the zero order distribution function is not.

The equation for the second order perturbed distribution function is

dt m ' dvJl

=-±ERee^k'-^ •Re (ft •-j^\ fa (alO)

The real part of all quantities being previouslyimplied.

Before integrating the equation, it is best to average over x, as the spatial structure of fa is of

no interest. It is also assumed at this point that ft is real. Now

-_t-g E<**)($. d\y^y-M "« )Jm\ «* )e
m2k \\ dv)^^ u- nwe - ft„v0

where y = Imw. The velocity phase angle <f> can also be integrated over now since the phase

structure of fa is of no value in computing the quantitiesof interest. (One must actually be careful
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todenote<f>(t)as4>(to)+wc{t-*0)andaverageover4>(to)ybuttheendresultisthesame.)The

differentialoperatorcanberewrittenas

rd,ddkxsm<f>d

(ol2)

Integratingover<£willeliminatethed/d<f>termsothatonlytwointegralsmustbecalculated:

Jo2*-*""

and

r2*

jfcos^<»—>*^=i(^^-i+Ui)
Usingthese,thesumsovermcanbeevaluated:

m

y"JmW-(*.m-1+6nm+l)=^±lM±^ZlM

Pluggingthesein,

=-JnW Z

<tt~*2*ft2m2
EA5nwed\

^(*e)
u—nu/c—ftnVp\"dv$vxdv±J

V-/,dnu>ed\

r-na/e-ft,,!;,,)2+72\"cfy,wxdvx/

Nowtakingtherealpart,

dfa&q2
dt4k2m2

2-rt

,2nr« x27e:

andso

Ah.-J=T•pjpi;[h^+—-^J•

*(**•)2(fc,*+=«!»)^..j -Vn)2+72V&»**>xdvj.y (u/r—nwe

(al3)

(al4)

(al5)

(alt)

(al7)

(al8)

(al9)
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The kinetic energy of the wavecan now be calculated in orderto compare the result with that

of the energy derived from the linear dispersion relation. The kinetic energy can be separatedinto

parallel and perpendicular components. Starting with the parallel component,

£|i = // ^mv2f2dvrivxdvx (a20)

Breaking up fa into two terms, the d/dvx term can be integrated immediately, yielding zero since

njn(0) = 0 for all n. Integrating the d/dvn term by parts and substituting

(*£+?&)h=-i(v»+nw-)/o (a21)
yields

* *. i w/ wv>+^c) j, /^ fd d (o22)

Setting

separates the integrals:

JE2

5,1 4 ft*A2

/

•»-M,al -3L?

k?/^)?*-*-
Vii(Vii+»*'c) 1 -•&,.. u~a\

(a,-««.-*„„»)*+72^. '*' (024)
Setting /x = kxvt/we and y = vx/vt reduces the first integral to

JJI (^) $>'$ »x<i»x -JAM*-* ydy
= /n(M2)e-»' (a25)

The algebra for the second integral can be simplified if some new symbols are introduced. Let

u =s Vn/vj, z = ut/kyVt, w = a;c/ft,|t;t and a = y/k^vt then the integral becomes

1 f u(u + nw) -4-j
y/2icj {u +nw-z)2+ a?e

_ 1 f (2z —nw)(u —z + nw) +z(z —nw) —a2 _j£
VStt 7 (u - 2+mi/)2 +a2

=l +(nti;-22)Re-i= / — -du
V2tt J u— z + nw — «a

z(z —nw) —a? 1 /* e"V
t Im .— / r

<* V 2ir J u — 2 + nty — u
du

=1+(mv - 2z) Re N(z -nw + ia) + Z^Z ~nw) ~— 1mN(z - nw +ia) (a26)
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Taking the limit as a —• 0 for comparison later with the results of the calculation using the linear

dielectric function,

ImN(z —nw+ia) —• Im [N(z —nw) + iaN'(z —nw)]

—• Im [N(z - nw) —ia(l + (2 —n«/)JV(2 —nw))]

-• ImiV(2 - nw) - a(l + (2 - nw) ReJV(2 - nw)) (a27)

(where iV(z) = lfy/2Z(z/y/2) and Z is the standard Plasma Dispersion Function) and

s* -* T ft2!^ 537»^2)e"Ma I1 - *(*"nw)+ t2z - nw - z<z """J2] W* "nt£,)+
/|2(2-nti;)e.i(z.ww)aj (a2g)

The perpendicular energy is evaluated in much the same way:

Sx =// ^mvlfadv^vxdvxa\f>

4 k2 ^ JJ (w-nwe- fc[|Vii)2 +72 \ &>n vx £t/x/

Er / 2\ -«a /" n»(» + ttw) 1 __*i ,
nVM ' J (ti-2 +nu;)2 +a2v^r

£I„(M2)e"113 {nu;ReiV(2 -nw +ia) +Z?~1mN{z-nw +ia)} (a29)
n

x{-znw +[nw-znw(z-nw)]ReN{z-nw) +̂ ^e~^z-nw)2\ (a30)

The total energy is thus

€ = £n+£x

=-*£y ff (fc°v"+""'̂ (*g") fr» +aa-g-U*,.^«

=TP^?yy (»-^-^)»+7'*rii"h>'^

tf2 1

4 fc2A2 -

£? 1 -

4 ft2A2

E2 1



16

{z2-a2 1
1+ 22ReiV(2 - nw+ ia) + ImJV(2 - nw+ ia) > (a31)

* ' £/«(/x2)e-*'.
4 fc2A2

|l - 22 +[22 - z2(z -nw)]ReN(z -nw) +̂*/|e"*(*-nw>' j (o32)

To ensure that the calculation of fa is correct, the kinetic energy of a electrostatic wave will

now be calculated using the dielectric function:

Wwaw =~ [^(WRfi€) -€0] (a33)
and

WLandau =uIme•J ^- tf (a34)
where Wwave is the wave kinetic energydensity and WLandau is the energywhich has been absorbed

by the distribution function due to Landau damping. These expressions assume that all changes in

the electric field amplitude are infimtesimally slow, and the result is only the total energy, rather

than fa itself. The result will be a completely independent check, however, on the energy as derived

from the second order perturbed distribution function. The result is

W —
4 ft2A2

"•(??)-(-¥)}
where

'«> p-C3/2

"^WvLt^* (o36)

and Z is the standard Plasma Dispersion Function. The contour of integration goes under the pole

at £ = 2 as with the Z function. Use has also been made of the identities

JV/(2) = -(l + 2JV(2)) (a37)

and

£/n(2)e-* =l (a38)



17

To simplify the notation, let 2 = u/k^vt, w = a/c/ftnvt, and fi = ftxvt/u/c, then

W^mhi =^ToW U-** +5>* - *2(* - mp)]JV(* - nti;)/n(/i2)e-^ 1 (o39)4 *2A2 v n ^

The purely kinetic (Landau damping) part of the energy for an exponentially growing wave is

E!2 u)
^Landau = -J Im€ (<z40)

where 7 is the growth rate. For real argument,

hnN(z) =y|e"* (a41)

so, setting a = y/k^vt,

fl2 1

4 ft2A2

Equations (a39) and (a42) sum to Equation (a32), thus verifying it.
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