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ABSTRACT

A generalized topological optimization tool for array based layout styles is

presented. This tool can be used for automated layout synthesis of logic networks

in a variety of technologies and design styles, including static CMOS, static NMOS

and dynamic CMOS Domino structures. Results obuined compare favorably with

technology and design-style-specific synthesis systems.

The topological optimization tool is ageneralized array optimizer, which can

be used for the multiple constrained folding of Programmable Logic Array. Gate

Matrix. Weinberger Array. Multi-Level Matrix, and Storage/Logic Array struc

tures. The optimizer uses simulated-annealing-based algorithms and performs as

good as or better than existing specialized PLA folding programs and Gate Matrix

folders. The different layout style alternatives allow area-efficient synthesis of

logic circuits in various technologies. Layout for sequential logic in the form of

Storage/Logic Arrays has been automated for the first time.

A multi-processor implementation of the simulated-annealing-based algo

rithms for generalized array optimization has been developed on the Sequent Bal

ance 8000 multi-processor. Dynamic windowing and dynamic partitioning

techiques have resulted in an efficient parallel implementation of simulated

annealing.
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CHAPTER 1

Introduction

Much work has gone into automating the integrated circuit design process

over the past few years (e.g. [park79] [newt8l] [bray85]). Logic synthesis tools

and tools for automatic layout of logic networks are very desirable from a

viewpoint of a fast design turnaround time. However, these automatically gen

erated designs are invariably less efficient area-wise or speed-wise than manual

designs, or do not meet critical performance requirements. The large number of

possible design styles, static or dynamic, single MOS or CMOS, complicate the auto

mation process. In this report, a framework for topological optimization during

automatic logic network layout in the form of array-based structures is presented.

The system produces designs under various constraints and a variety of design

styles resulting designs as good are as good as. or better than, corresponding

manual designs.

1.1. Automatic Layout of Logic Circuits

Given a gate level description, the goal of automatic layout is to synthesize a

corresponding layout implementing the logic in the input description while taking

into account constraints on the area and speed of the finished module. Optimiza

tion steps are crucial in a automatic layout system to ensure that the resulting

layouts are area and speed efficient.

The automatic layout step involves many decisions. Depending on the tech

nology, a layout style has to be chosen. Two broad choices exist a standard cell

place and route method[souk8l], or adopting a regular array-based layout



siyle[wein67][lope8l] [Pati75][hofm85a][wood79]. Array-based layout styles are

relatively easy to automate but topological compaction steps are essential. The

type of electrical design-style chosen is also technology dependent. For example, a

Weinberger array[wein67] is suitable for single MOS technologies, whereas a Gate

Matrix[lope8l] is suiuble for CMOS. Multi-level matrices are best for dynamic

CMOS or Domino[hofm85a].

Two phases exist in the automatic layout of regular arrays: symbolic topo

logical compaction and actual layout generation. The logic network is represented

as a symbolic array (a PLA can be represented as a matrix of 6*s and Is and

don't-connects) and then area-optimized by the topological reordering of the gates

and signals. The topological compaction step is typically the bottleneck as regards

area optimization. It is important that the tools for area compaction be very

efficient if the resulting design is to compare favorably with manually generated

designs.

Array based layout structures are compacted using a technique known as

folding[wood79.hach80]. Layout generation is performed using tile packing

methods[mayo83]. The compacted symbolic layout is converted into tiles using a

context-based tiler and the tiles are then stitched together. The tiler makes local

decisions only, since the global compaction step has been taken care of.

1.2. Previous Work in Automatic Layout of Array Structures

Structured forms of layout for combinational logic include Weinberger

Arrays[wein67], Programmable Logic Arrays[flei75] (PLA) and Gate

Matrices[lope8l]. Sequential logic can be realized as aStorage/Logic Array[pati79]
(SLA). Methods of automatic layout in the form of arrays can be termed as tiled

methods because connection between cells is by abutment, liketiling a floor.



Topological compaction of array based structures is possible by means of a

technique known as folding. Folding comes in two flavors, simple

folding[hofm80.hach80] and multiple folding. In simple folding at most two sig

nals can occupy the same row. In multiple folding, there is no limit to the number

of signals which can occupy the same row. Constrained folding allows constraints

on where the signals are to appear outside the array. Multiple constrained folding

of PLAs was first proposed by De Micheli[demi83] and implemented in program

PLEASURE. PLEASURE row and column folds PLAs under various constraints. Fold

ing is also possible in Gate Matrices and Weinberger arrays. This is one dimen

sional folding as opposed to two dimensional PLA folding. Algorithms for optimal
packing on an one dimensional interval have been

investigated[asan82,ohts79.wing82].

Most of proposed algorithms are based on graph-theoretic interpretations and

are easily trapped in local minima. These algorithms also break in highly con

strained situations since they have been designed primarily for the unconstrained

cases. Most algorithms for Gate Matrix layout have no provision for constraints

on the signals and differing sizes of transistors in the matrix. SLAs have resisted
automated implementation until now because of their very complicated structure

and widely varying cell sizes.

13. Organization of this report

The six following chapters are organized as follows. Various regular array-

based layout styles are described in Chapter 2and previous work in topological
compaction of the different structures is reviewed. The combinatorial optimization
techniques known as Simulated Annealing is introduced in Chapter 3. and theoret
ical work done in the field of probabilistic hill climbing (PHC) algorithms as well



as previous applications of simulated annealing the physical design of integrated

circuits are reviewed.

Ageneralized array optimization program GENIE, based on simulated anneal

ing, for two dimensional multiple constrained folding of PLAs. Multi-Level

Matrices, and SLAs is described in Chapter 4. Comparisons with specialized array

compaction programs are drawn. Modified algorithms for one dimensional multi

ple constrained folding also based on simulated annealing are presented in Chapter

5. These algorithms can be used for Gate Matrix and Weinberger array compac

tion. The multi-processor implementation of these simulated annealing based algo

rithms using dynamic windowing and partitioning schemes to preserve the conver

gence properties of simulated annealing to the global minimum are described in

Chapter 6. Conclusions are drawn and directions for future work indicated in

Chapter 7.

1.4. Results achieved

An automatic layout system consisting of a topological optimization tool.

GENIE, a context based tiler ELECTRA. and a layout generator MKARRAY[krin86] has

been developed. This system produces efficient layouts and encompasses a wide

range of array based layout styles.

GENIE is a generalized array optimizer which can be used for the multiple

folding of PLAs. as well as for compacting Gate Matrix layouts. SLA. and Wein

berger arrays. The cells in the array can be of non-uniform sizes and any sort of

constraint can be placed on the input and output terminals. GENIE uses the com

binatorial optimization technique called Simulated Annealing. Results obtained are

uniformly better than existing specialized array optimizers and folding programs,

particularly when the input locations are constrained. GENIE is the first program



for automated SLA compaction.

GENIE has been compared with a number of existing tools for topological

folding and compaction of array logic. TWIST, a part of the MAMBO

pipeline[hofm85a] is a program for the folding of multi-level connectivity

matrices. Results up to 50% better than TWIST have been obtained.

PLEASURE[demi83] is a PLA folding program also developed at Berkeley. GENE typ

ically produces better results than PLEASURE more so in constrained cases which

are more likely in real chip designs. Up to 30% better results have been obtained

in constrained examples. Detailed comparisons with specialized array compacters

can be found in Chapters 4 & 5.

A multi-processor implementation of the simulated-annealing-based algo

rithms in the array optimizer GENIE has been developed on the Sequent Balance

8000 multi-processor. Dynamic windowing and dynamic partitioning schemes

have been used to preserve the global convergence properties of simulated-

annealing-based algorithms to the global minimum and efficiences of up to 75%

have been achieved over 8 processors. This implementation is described in Chapter

6.



CHAPTER 2

Array Based Layout Structures

Logic circuits in various technologies and design styles can be implemented as

regular arrays. Array-based layout structures have been extensively used for large

scale integration of MOS logic [wein67.flei75.pati79.1ope8l]. These structures are

used to retain a reasonably fast design turnaround time and to permit the design

steps to be automated. However, standardized layouts obuined by synthesizing

the logic circuits as arrays are area efficient compared to manual random logic

designs only if topological compaction algorithms are applied. The algorithms do

not change the logic function of the circuit but instead try to find an optimal ord

ering of gates, signals or transistors, as the case may be. so as to minimize the

eventual area. Compaction is achieved by aprocess called folding where more than

one signal or more than one gate can occupy asingle row or column of the array.

2.1. Programmable Logic Array

Programmable logic arrays (pla) are two dimensional arrays implementing a

two-level combinational logic function[flei75]. The PLA consists of two planes the

AND plane and the OR plane. The AND plane maps the primary inputs into min-

terms (product terms) required and the OR plane maps the minterms into the out

puts. In practice, both these planes are implemented as NOR structures in dynamic

CMOS or NMOS technologies. An array can be programmed for any arbitrary two

level combinational logic function by the presence or absence of transistors in

various AND or OR locations. The functionality of aPLA can be represented as a0-1

matrix. PLA folding algorithms work on this symbolic representation using the



information as to the presence or absence of transistors at each array node. Vari

ous architectures exist for implementing PLAs[demi83J.

The area of aPLA is optimized by means of row and column folding[hach82].

The technique reported in [hach82] is referred to as simple folding. A generaliza

tion of simple folding is multiple folding. All previous techniques for PLA folding

rely on a graph theoretic interpretation of the problem. Multiple/simple

constrained/unconstrained folding is possible in PLEASURE[demi83]. In PLEASURE a

column intersection graph (cic) is defined whose nodes are in one-to-one

correspondence with the columns of the logic array. Nodes have edges between

them if the corresponding columns have a transistor in the same row. Folded

columns are represented by a directed edge between the two corresponding nodes.

The problem is now to find disjoint clusters of nodes in the graph, fold columns

without creating alternating cycles (alternating cycles render the PLA unimple-

mentable). Constraints on the positions of rows and columns, as well as ordering

constraints on the rows and columns can be handled by this technique. Unfor

tunately, like most heuristic techniques, this method is easily trapped by local

minima. Good heuristics however ameliorate the problem and PLEASURE produces

area efficient folded PLAs with reasonable cpu time expenditure.

Simulated annealing has been applied to the PLA folding

problem[moor85.wong86]. In [moor85] heuristics similar to the ones used in PLEAS

URE are applied initially, but when folding pairs become more difficult to find hill

climbing moves are generated in an effort to escape local minima. [Wong86] gives
an algorithm based on simulated annealing to solve a column folding problem —

their approach cannot be used for general two-dimensional row and column PLA

folding.



2.2. "Weinberger Array

Weinberger arrays are one-dimensional structures for standardized layout of

multi-stage combinational logic networks[wein67]. In a Weinberger array a gate

occupies a column, and signals occupy rows. The gates are elongated structures

and the output of the gate can be Upped at any location. Thus, it is not necessary

to have signals cross each other (similar to the PLA). Figure 2.1 shows aWein

berger array from [wein67]. The array usually has diffusion/meul columns and

poly/meul rows. It is possible to order the gates in aWeinberger array so as to

have more than one signal occupy asingle row. Like in the PLA rows can be folded.

Algorithms for optimal packing on a one dimensional interval have been

investigated[asan82.ohts79]. Asano[asan82] describes an exact algorithm for order

ing the gates of aone dimensional array to minimize row cardinality. The algo

rithm searches for an optimal net ordering as opposed to a gate ordering. The gate

sequence corresponding to the net ordering obuined is easily constructed.

Optimality-preserving pruning methods, namely branch and bound are used. Oht-

suki et. al[ohts79] give a graph-theoretic interpreution to the one dimensional

packing problem. Unlike aPLA. the transistors in aWeinberger array may be of
varying sizes. The algorithms mentioned above assume all the transistors are of

equal sizes and minimize for row cardinality instead of row height. The optimiza

tion does not include minimizing toul net length. Net length may be important

when delay through the circuit must be considered.

Weinberger arrays are area efficient for single MOS (e.g. NMOS. PMOS) technolo

gies. In a complementary MOS sUtic technology the signals have to drive two

transistors instead of one. Using aWeinberger array this can be accomplished by

duplicating all the signals for the p-channel and n-channel devices but this
reduces area efficiency. A layout style more suiuble for a sutic CMOS technology



is Gate Matrix.

23. Gate Matrix

In a Gate Matrix[lope8l] the p-channel transistors and n-channel transistors

occupy different halves of the matrix. The transistors are transposed in such a

fashion so all those having a common input are placed on a common polysilicon

line. This common line serves a dual purpose, i.e. it is the gate of many transistors

which lie on the line and it serves as the common conuct among the transistors

Q ttrrvmm E3

Fig. 2.1 Weinberger Array
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which have a common input. The polysilicon lines which are all parallel become

the columns of the gate matrix. The rows are formed by grouping together those

transistor diffusions which associate with each other in a series or parallel fashion.

The Gate Matrix layout style is the complement of the Weinberger array layout

style in asense —logic gates occupy rows and signals occupy columns. Thus each

signal drives both the n and p transistors of the gates. Figure 2.2 shows aGau

Matrix.

The one-dimensional placement algorithms for a Weinberger array apply

equally well to agate matrix. Here the problem is to find an ordering of signals so

the gates can be maximally folded. However, gate matrices have evolved to sup

port complex gates like AND-OR-INVERT and pass transistors and the relatively

straightforward techniques described above have to be modified. Wing et. al

[wing82.wing85] give agraph-theoretic algorithm for compacting gau matrix lay

outs for complex gates and pass transistors. The technique involves formulating

two assignment functions / and h such that the layout LtJJi) requires the

minimum number of rows as a gate matrix. The function / maps thedistinct gates

of the transistors to the columns of the gaU matrix and the function h maps the

nets of the circuit to the rows such that all the vertical diffusion runs which con

nect nets on different rows are realizable. A two stage approach is used which first

obuins layout without regard to the vertical constraints and then permutes the

rows to satisfy the constraints.

The algorithms proposed thus far for gate matrix layout have no provision

for constraints on the signal columns. For example, it may be desirable to have an

input signal near the right end of the matrix as opposed to the left end or middle.

Also, like the Weinberger array case, transistors are all assumed to be of the same

size: row cardinality alone is minimized disregarding toul row height.
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2A. Multi-Level Matrix

A new layout style suiuble for NMOS and Domino logic circuits was proposed

by Hofmann[hofm85a]. A Multi-Level Matrix (mlm) is a two dimensional struc

ture like a PLA but supports multi-suge logic circuits unlike a PLA. It is a hybrid

structure having characteristics of both gate matrix and Weinberger array struc

tures and allows mixing of sutic and dynamic functions. In a MLM more than one

gate can occupy a column ( like a gate matrix), and more than one signal can

occupy a row (like aWeinberger array). Figure 2.3a shows asymbolic represenU-

tion of a folded MLM. The characters s and S denote a series transistor in the first

and second gates on a column respectively, similarly characters p and P denote

parallel transistors in the first and second gates on a column, and the characters o

and O denote output connections. Figure 2.3b shows the actual layout of theMLM

in a technology with two levels of meul interconnect.
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28(8)

Like a PLA a MLM can be both row and column folded. The intermediate

inputs can be multiply folded without any area penalty. Hofmann et.al[hofm85b]
proposed an algorithm similar to [demi83] for MLM folding. TWIST is a program

for multiple constrained folding of MLMs. Rows are multiply folded in TWIST but

the layout style constrains the columns to be simply folded. The load devices for

an NMOS circuit would be on top or bottom of the matrix as would be the buffers

and clocked load of a Domino circuit. The ordering of signals is significant in

TWIST as delay optimization is performed along with folding. Also, since signals

are ordered relative to the output buffer when columns are folded, the ordering of
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signals to the flipped gate need to be inverted. The necessity to invert or "flip"

constraints when a column is folded differentiates the folding of these arrays from

other structured arrays like PLAs or gate matrices.

Fig. 2.3b Layout of Multi-Level Matrix in Fig. 2.3a
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2.5. Storage/Logic Array

Storage/Logic Arrays were first described in 1975[pati75]. They are a form of

structured logic derived from PLA where the AND and OR planes of the PLA are

folded into a single plane. The SLA supports multi-suge combinational logic with

embedded memory elements. Memory elements are placed on the grid itself and

can be randomly distributed within the SLA logic. Columns may also contain

boolean combinations of sute values. Using columns to generate these boolean

expressions permits multiple levels of logic. All columns and rows can be broken

at arbitrary locations.

SLAs are ideally technology independent. That is. one SLA program should be

portable, without change, between different process technologies. Unfortunately,

this is not the case and it becomes necessary to select a particular process and

implemenution based on the individual circuit needs[smit82]. For example I2L is

extremely limited in allowing large number of actions being controlled by a row

or column because of poor fanout. NMOS can handle heavy loads, but at the price

of low speed. CMOS overcomes these objections but needs a more complex process

and larger inverters. CMOS SLAs appear the most popular.

An SLA program is a two-dimensional array of symbols that specifies the

placement of cells for a given circuit. The elements of the SLA program are taken

from an SLA cell set which is predefined and dependent on the given technology

which has been chosen. The SLA cell set will include memory elements, inverters,

combinational elements for the folded AND-OR plane, row and column breaks, and

row and column connection cells. The memory elements might be as sophisticated

as a set/reset read/write-enabled master/slave flip-flop or as simple as a set/reset

latch. Figure 2.4 shows a SLA program and the physical realization of an

oscillator[smit82]. A more complicated SLA realization of and adder/subtractor is
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shown in Figure 2.5.

Topologically compacting an SLA is much more difficult than folding a PLA.

The cells in the SLA are of widely differing sizes: one may be ten times the area of

the other. Denning large cells to be multiple cells causes adjacency constraints on

the constituent cells. Ordering constraints on cells exist due to the presence of

inverting buffers ( abuffer cannot be placed after a transistor it is feeding into).
PLA optimization techniques fail to produce good results for SLAs. No efficient pro

gram for automated SLA compaction existed before GENIE.

2.6. Generalized Array Optimization

Ageneralized array optimizer should perform multiple folding of PLA. Wein
berger Array. Gate Matrix. MLM. and SLA structures under various constraints. The
array optimizer should minimize for toul row and column height and not for row

or column cardinality.
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2.6.1. Defining the Problem

The initial unfolded array can be represented as a matrix. M; non-zero ele

ments denote the existence of a cell in the corresponding array. Each location in

the matrix is a record consisting of four elements: the length of the cell in the

actual array location, the width of the cell, the initial column number of the cell

(in the unfolded matrix) and the initial row number of the cell. ( entry.length.

entry.width. entry.horjiet. entry.ver_net)

Two matrices can be derived from this matrix. Row and Col. the row and

column constraint matrices. Physically, they represent the constraint that

nets/cells may not overlap. The constraint matrices have entries corresponding to

the extent of the horizonul or vertical nets i.e. if a horizonul net extends from

(1.1) to (3.1) the entries Rowu. Row2i and Rowzx would be incremented by 1. No
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element of the constraint matrix can be greater than unity.

Row^ < 1 for all i. j (la)

Colij < 1 for all i. j (lb)

The area of a matrix is measured as the sum of row heights times the sum of

column widths. The row height is the maximum of the heights of the cells in the

row and the column width is the maximum of the widths in the column. If no

cells exist on a row the height is obviously zero.

Height = £ max (My length)
i = l

Width = £max {Mti .width )
j = i

A =Height * Width

The problem is thus to find an arrangement of cells which satisfies the con

straint matrix condition (1). and minimizes area A .

2.6.2. GENIE: A Generalized Array Optimizer

GENIE is a generalized array optimization package using simulated-annealing-

based algorithms which performs the above tasks. GENIE needs a symbolic

represenution of the array in the form of aconnectivity matrix and information

about the sizes of the cells, to produce a compact simply/multiply folded layout.

Adjacency constraints among rows(columns). ordering constraints on

rows(columns). edge constraints on signals and bounded row(column) constraints

are provided for by GENIE.

GENIE is the first program to produce efficient automated SLA implemenU-

tions. For the PLA and MLM case GENIE produces better results than the best spe

cialized folders available for comparison.
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CHAPTER 3

Simulated Annealing

The subject of combinatorial optimization aims at developing techniques to

find the minimum or maximum values of a function of very many independent

variables. A function, usually called the cost function or objective function,

represents a quantiutive measure of the quality of the solution. The number of

variables may be of the order of tens of thousands and the number of possible

solutions may be equally large.

Most of the combinatorial optimization problems dealing with the physical

design of integrated circuits are NP-complete (nondeterministic. polynomial-time

.complete) which means that no method for an exact solution with a computing

effort bounded by a power of N has been found for any of these problems.

Optimal solutions to these problems generally require exponentially bounded or

worse computing time. Heuristic methods with compuUtional requirements pro

portional to small powers of Nhave been developed for many of these problems.

These techniques are rather problem specific: there is no guarantee that a heuristic

procedure for finding near-optimal solutions for one NP-complete problem will be

effective for another.

3.1. Introduction to Simulated Annealing

Kirkpatrick. Gelatt and Vecchi[kirk83] showed there was a deep and useful

connection between the behavior of systems with many degrees of freedom in

thermal equilibrium at a finite temperature and multivariate or combinatorial

optimization. The analogy drawn is as follows: Atoms in a solid always try to
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move toward a configuration of lowest possible energy (maximum subility). If a

solid is heated to a high temperature and cooled very slowly, which is the physi

cal annealing process, the annealed solid has better mechanical properties than the

original, because the atoms are now in a lower energy (more suble) sute. Heating

to a high temperature increases the thermal motion of atoms in the solid allowing

them to redistribute themselves into a more suble configuration. At a high tem

perature, the atoms are likely to move to higher energy positions, but as the tem

perature is lowered, the movement of atoms is restricted to locations of lower

energy. The physical annealing process, for best results, should have acooling pro

cess which is very gradual and a high starting temperature. In the combinatorial

optimization problem, the energy of the configuration corresponds to the cost

function, thermal motion to randomly generated moves, and the temperature

corresponds to the parameter controlling the acceptance of these moves. While at

a high temperature, hill climbing moves which increase the cost function are

accepted, but the probability of accepting these moves reduces as the temperature

is lowered. Thus the physical annealing process is being simulated to solve the

combinatorial optimization problem.

The general structure of the basic simulated annealing algorithm is shown

below.

T-T0:
X - Surting_Configuration:
whileCcost is changing") {

forC a ceruin number of times" ) {
Generate_New_State(j)
if(accept(c(j).c(X)J)) {

, x"i:
}
T -update(D:

}

Whether or not anew sute is accepted is determined by the function acceptO:



accept(c(j).c(i)X) {
change_jn_cost = c(j) - c(i):
if (change_jn_cost < 0 ) return(l):
else {

Y = exp(-change_in_cost/r):
R = random(O.l):
if ( R < Y ) return(l):
else return(O):

}
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There are two loops in the simulated annealing algorithm which correspond to

changing the temperature and generating a number of random sutes at a given

temperature point. The temperature profile depends on the number of sUtes gen

erated in the inner loop and the function update. The accepunce function accept

shown is the well known exponential accepunce function, variations exist.

3.2. Theoretical Results

Markov chains have been proposed as a mathematical model for simulated

annealing[lund84.gema84.rome84] Using these mathematical models, simulated

annealing has been shown to be a special form of a general class of algorithms

called probabilistic hill climbing algorithms[rome84] having the same asymptotic

properties. The asymptotic properties underline the fact that under certain

assumptions on the number of moves generated by the algorithm at a certain tem

perature, simulated annealing produces the global optimal solution with probabil

ity 1.

Romeo et oZ[rome85] provide results to estimate how many steps should be

attempted for each value of T. These results give necessary conditions to preserve

the global convergence properties of the simulated annealing algorithm. One par

ticular result which gives theexpected value of the number of iterations to leave a

sute is reproduced from [rome84] below.
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Proposition: Let i be a state such that Pa (T) < 1. where

Pii(I)= CijiT)* fiCijJ)

G-,j (T) is the probability of generating state j being in sute i and Cy isc(j) - c(i).

The expected value of the number of iterations required to leave i. N is given by

Nt = 1/(1-fa CD)

A conservative estimate of the PuiT) is obuined by assuming that C%i is constant

and equal to Cu where k is the worst configuration and I the best configuration

found thus far.

Unfortunately, these results are asymptotic and indicate that an infinite

number of moves have to be generated in order to obuin a globally optimal solu

tion with probability 1. which is in fact worse than exhaustive search. However,

these results provide information as to what kind of cooling schedules need to be

used in order to obuin good solutions minimizing cpu time requirements[huan86].

33. Previous applications

Simulated annealing has been applied to various problems relating to the

physical design of integrated circuits like global wiring[vecc83], cell

placement[sech84.sech85] and channel routing[wong85]. It has also been proposed

as a tool for logic partitioning[kirk83]. Techniques used in these applications are

reviewed.

33.1. Logic Partitioning

One of the simplest applications of simulated annealing is logic partitioning.

The problem is to partition a set of modules into two or more groups such that

the interconnections between the groups are minimized. Heuristic
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algorithms[kern70.fidu82] have been used to solve this problem.

The annealing begins on a random set of partitions. Moves can be generated

in two ways: (l) two modules in different partitions are interchanged (2) a

module is displaced from one partition to another. The cost function is the toul

number of nets across the partitions. In general, it is desirable that the partitions

should be of the same size. Moves can be allowed only if this constraint is

satisfied within a tolerance limit.

33.2. Global Wiring

Given a placement of modules, the problem is to construct a "global" or

coarse scale routing for each connection from which the ultimate deuiled wiring

can be completed[souk8l]. Package technologies and structured image chips have

prearranged areas of fixed capacity for the wires. For the global routing to be suc

cessful, it must not call for wire density which exceeds this capacity.

The global routing problem is modeled by lumping all actual pin positions

into a regular grid of Nx x by N7 points which are treated as sources and sinks of

all connections. The wires are to be routed along the links which connect adjacent

grid points. Pre-placed components are modeled by prefilling some of the links.

The problem is to choose paths for rouuble connections in such a way that

the likelihood of "overflows" or wires which don't fit into the eventual deuiled

package is minimized. This means that the most uniform possible distribution of

wires plus existing blockages is sought. The objective function used is that which

rewards the most balanced arrangement, and is obuined by calculating the square

of the numbers of wires on each link of the package, and summing the results

over the links.

F= f,m?
v = l
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The path between two points of a connection can be an L-shaped path (a path

with one bend) or a Z-shaped path (a path with one or two bends). Themoves can

be L-shaped moves or Z-shaped moves. For the L-shaped moves. F. the objective

function has a relatively simple form. The compuUtional effort required to obuin

a good result for Z-shaped paths is larger than that for L-shaped paths because of

the larger number of sutes available for each connection. For the same reason, a

better solution can be reached for the wiring problem by allowing Z-shaped paths.

So instead of using time-consuming annealing from high temperatures with the

full set of Z-shaped paths two suges of annealing are performed. First, a anneal

ing from high temperatures is performed using L-shaped paths. Then, the resulting

configuration is used as a starting point for another annealing process using Z-

shaped paths, but only from low temperatures. The time required for generating

good solutions is thus modest. Global wiring optimization for 3000 nets on a 11

by 11 grid required just 2 seconds on a IBM VM/370 system with a 3033

processor[vecc83].

33.3. Cell Placement

TimberWolf[sech84.sech85] is a placement and global routing package for

integrated circuits. TimberWolf is a set of programs for standard cell placement,

gate array placement, macro-cell placement and standard cell global routing,

which uses simulated annealing based algorithms. The standard cell placement

program in TimberWolf places standard cells into rows and/or columns in addi

tion to allowing user-specified macro blocks and pads. The results obuined by

TimberWolf are on the average, better than other existing placement packages.

The TimberWolf program begins with a random initial placement of cells. A

new sute is generated by either exchanging two fundamenul units or displacing a
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unit to another location. Moves are randomly generated. New sutes can also be

generated by orienution changes of standard cells. Interchanges and displacements

are controlled by arange limiter. The range of interchange/displacement of a cell

is dynamically changed during the annealing process.

The objective function in TimberWolf consists of many parts. The net

length calculated as the Manhattan disunce between the furthest pins of the net

is one constituent. Since cells can be of different sizes, interchanges may result in

cell overlap. Rather than disallow these moves, the penalty function approach is

used. When two cells overlap a penalty is assessed is which is proportional to the

square of the quantity of linear overlap plus an offset parameter. The objective

function has an additional term which controls block lengths. The sum of the

actual lengths of the cells in a particular block is compared to the actual block

length. A penalty is assessed which is equal to the absolute value of the difference

times a parameter value.

33.4. Channel Routing

Wong et aZ[wong85] proposed a scheme for channel routing using simulated

annealing. The basic technique is to find avalid set of partitions ( V1§ V2. Vv ) Vt

conuining all the nets on track i. where w is the channel width, such that w is

minimized i.e. the number of tracks is minimized.

Moves are generated in three ways: (1) two subnets belonging to different

groups Vj and Vj can be interchanged. (2) asubnet can be moved from group V,-

to group Vj. (3) a subnet can be removed from group Vk and form a new group

by itself. Vertical and horizonul constraint violations can occur during the

annealing process. (1) leaves the channel width unchanged. (2) may decrease

channel width and (3) increases the channel width.
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The objective function is as follows:

C(tt)= w2 + \p * p2 + K * U

where w is the number of groups, p is the longest path in G(it) and \p and \H are

consunts. The channel width w obviously has to be minimized. The quadratic

dependence places a higher penalty on solutions with large w 's and lower penalty

for solutions with small w s. The reason for the second term is that p is a lower

bound on*the number of wiring tracks needed for all the solutions derived from w

by further merging of subnets. V is defined as

w

U = £wi2 where
i=l

«, = l-l/l£«Vilvl
V

I is the channel length and Iv I is the length of the horizonul segment of subnet

v. Here. ut is the fraction of the track i that is unoccupied. Thus. U is a measure

of the sparsity of all the tracks in the corresponding routing solution. Intuitively,

all good routing solutions are densely packed, and hence have small U values.

The annealing schedule can only start from a valid partition. At each tem

perature, enough moves are tried until there are either N downhill moves or the

number of moves exceeds 2N where N = \N * m2. The annealing process is ter

minated if the number of downhill moves is less than 5% of all the accepted

moves or the temperature is too low. If at any time a solution with d tracks is

reached, which is clearly optimal the annealing is terminated.

This particular application of simulated annealing is interesting but has little

or no practical value because very good heuristic techniques for general multi

layer channel routing have been developed[brau86] which produce optimal solu

tions with small cpu time expenditure.
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3.4. Conclusions

Simulated annealing has been applied to a variety of NP-complete problems

with encouraging results. The only disadvantage with probabilistic hill climbing

algorithms is cpu time expenditure. This can be partly alleviated by intelligent

choices of date structures (to keep cost evaluation incremenul) and annealing

schedules to maximize efficiency. The main advanuge of PHC algorithms as

opposed to heuristic algorithms is their relative immunity to local minima traps.

In the next two chapters GENIE, a generalized array optimization package,

which uses simulated annealing based algorithms for the multiple constrained

folding of PLAs, Gate Matrix. Weinberger Arrays. MLMs and SLA. is described.
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CHAPTER 4

GENIE: A Generalized Array Optimizer

In this chapter, a generalized, simulated-annealing-based array optimization

scheme is presented that has been applied to PLA. Gate Matrix. Weinberger Array,

and SLA problems[deva86a]. In all cases, the program has obuined as good or

better results than the best tools available to us for comparison. In practical cir

cuits, where a number of constraints on terminal positions were involved, our new

approach reduced the area of the final layout by up to 50% compared with our

previous best techniques. For results of comparable area. GENIE uses comparable

CPU time to the previous approaches.

The approach begins with a planar connectivity graph which represented the

circuit to be connected. The nodes in the graph represent circuit components, or

tiles, in the final layout and the arcs represent the connections among those com

ponents. The nodes may represent single transistors, as in the case of a PLA or

domino CMOS implemenution. or they may represent collections of transistors and

interconnect, as in the case of flip-flops in a SLA. The scheme is independent of the

nature of the components — it works with a connectivity matrix description of

the circuit and topologically compacts it producing a fully routed result. The

matrix can be of a highly regular PLA-like structure with uniform cell sizes or it

can be a represenution of a multi-level logic function in gate matrix form whose

cells are of varying sizes. Constraints can be placed on the positions of various

input and output terminals if required. The constraints may specify a particular

edge for the terminal, a particular fixed location, a particular ordering of termi

nals, or a combination of these constraints. Terminals may also be required to be
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available on more than one edge, as in the case of bus-through connections, for

example. Constraints on the aspect ratio of the folded array are also Uken into

account during the optimization step. The eventual result will have simply or

multiply folded rows and columns in aminimum area configuration: no routing is

necessary.

The basic simulated annealing algorithm was described in the previous

chapter. In the following section the topological compaction algorithm is described.

Illustrative examples are given in Section 4.2 and implemenUtion deuils are dis

cussed. Section 4.3 is devoted to Storage/Logic Array compaction.

4.1. A Generalized Array Compaction Algorithm

4.1.1. The problem of generalized array optimization

The problem of generalized array optimization is illustrated in Figure 4.1. An

unfolded general array is shown in Figure 4.1a. Note that the cells in the array are

of varying dimensions. Initially, all the signals in the array occupy distinct rows

and columns. It is possible to rearrange the horizonul signals without disrupting

the cell connectivity in the array and fold disjoint vertical signals on to the same

column. Similarly, the vertical signals can be rearranged, so as to fold horizonul

signals on to rows. One folded version of the array is shown in Figure 4.1b. The

array has been both column and row folded.

Since the cells are of varying sizes, merely minimizing row and column cardi

nality does not guarantee minimum area. This is illustrated in Figure 4.1c. where

. another folded version of the array in Figure 4.1a is shown. Though this result

has the same row and column cardinality as the previous result in Figure 4.1b its
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area is smaller.

Thus, a generalized array optimization algorithm must Uke into account the

varying dimensions of the cells.

4.1.2. Array optimization using simulated annealing

The primary difference between the approach described here and the heuristic

folding algorithms developed in the past (e.g. [hach82.chuq82.hach80]) is the

existence of hill climbing moves during the optimization process. i.e. moves which

increase the cost of the configuration (worsen the solution) are accepted based on a

random criterion in an effort to escape local minima.

In GENIE the basic structure is a cell. Cells are interconnected by nets. We

intend that the output of GENIE be the input to a tiling program, like

PANDA[mah84] or TlNKER[hofm85a], for actual layout. The cell denotes the

existence of a transistor, or a collection of transistors, at that particular location.

Cells may have different sizes depending on the width and length of devices and

existence of multiple devices or internal conUcts.

Nets are of two kinds, vertical and horizonul. Cells are connected to two

nets — one horizonul and one vertical. Special pad cells are connected to input

and output nets, including nets that must connect to peripheral load devices, and

they serve as ports. Location of pads are constrained to the periphery of the array

throughout the annealing process. As explained later, constraints on the locations

of input and output terminals are implemented asadditional pads.

An example of an input to GENIE is shown in Figure 4.2[hofm85a] The con

nectivity matrix shown in Figure 4.2b has been derived from the Domino CMOS

gate diagram shown in Figure 4.2a. Similar personality matrices can be derived

from gate diagrams for sutic CMOS/NMOS design styles. In this format, the
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Fig. 4.1 Generalized Array Optimization
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Fig. 4.2(a) Domino CMOS gate diagram.
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character s declares that the gate in this column is series, or AND. in nature in its

top level. Similarly the character p declares that the cluster in this column is

parallel, or OR. in nature at its top level. The character o indicates a gate-column
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output connection to a signal row; the . character indicates that signals are bussed

through this tile without connection to the current gate. The addition of the char

acter ~ . interpreted to mean toggle, allows two-level logic in a single gate to be

expressed symbolically. Toggling implies the switching between series and parallel

nature in a gate. Two-level structures may need two columns to be represented

and realized. A typical set of tiles that these symbols represent for a double-

meul technology is illustrated in Figure 4.3.

The problem of array optimization differs from that of placement because in

the former case rouubility is a primary consideration. Our result must be fully

routed with the nets perfectly straight and non overlapping. This complicates the

problem since simulated annealing is apt to generate random unaccepuble

configurations like overlapped cells, suggered nets or overlapping nets. Cell dis

placements can cause staggering of nets unless cells are constrained to move only

in a particular direction through out the annealing process. We cannot disallow

these configurations, if the power of simulated annealing is to be exploited fully,

since the convergence properties of simulated annealing algorithms to the global

optimum improves with the enlargement of the configuration space, but these

configurations are not allowed in the final compacted array.

Three approaches to the compaction problem were tried using different means

of generating new configurations:

(1) Net displacements.

(2) Net and constrained cell displacements.

(3) Unconstrained cell displacements.

In (3) nets at any point may be bent and may overlap each other. Constraining

cell displacements to either the X or Y directions alone in (2) may result in either

the vertical nets or the horizonul nets being suggered and/or overlapping. In the
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caseof (1) the nets are always perfectly straight but they may be overlapping.

All three approaches were implemented and it was found that (l). where the

horizonul and vertical nets alone are displaced or interchanged with each other,

produced the best results overall. Approach (2) yielded reasonably good results

but was wasteful of CPU time and Approach (3) was discarded almost immedi

ately as being unaccepuble. again for CPU time reasons.
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In (1). there is a three suge compaction process with a first suge of simu-

lated annealing and two suges of routing nets. The routing suges are necessary

for removing cell/net overlaps if they exist. Briefly thesesteps are:

Anneal_Matrix():
Route_Horizontal_Nets();
Route_Vertical_Nets():

These three steps aredescribed in deuil in the remainder of the section. Approach

(2) is described briefly at the end of the section.

4.1.3. Annealing the matrix

The program begins with the initial configuration of nets, cells, number of

rows and columns, as specified by the unfolded matrix. The objective is to reduce

the toul width of the columns and toul length of the rows to as great an extent

as possible, thus minimizing area. In the case of varying cell dimensions the

column width is deemed to be the width of the widest cell on the column and the

row length is the length of the longest cell in the row. since these cells set the

column or row pitch respectively. All the primary inputs and outputs which are

constrained to be at any edge of the matrix are terminated by pads. Pads are fixed

cells restricted to lie at the periphery of the array. Adjacency constraints may

also be included. For example, in a PLA the input and its complement should lie

side-by-side in the folded matrix for an efficient implemenUtion. This constraint

to the program takes the form of an extra vertical net connecting two dummy
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cells in the input and it's complement rows during annealing.

4.1.4. Generating New States

A new sute is generated in this sUge of annealing process by either exchang

ing two fundamenul units or moving a unit to another location. The fundamenul

units in this case are vertical or horizonul nets. The overlap of horizonul and

vertical nets is penalized, as is cell overlap. The penalty-function approach was

first described in[kirk83]. Thus there are four different ways of generating new

sutes: moving a vertical net and all of its cells on it to another column, inter

changing two vertical nets on different columns, moving a horizonul net with all

its cells into another row,and interchanging two horizonul nets (i.e. interchanging

all the cells on two nets). Pads are treated the same as cells but are only con

nected to a horizonul net and hence the x location of a pad can never change.

Pads can be left-pads or right-pads depending on whether they are constrained to

the left or the right of the array. A particular horizonul net may have both left

and right pads if necessary as in the case of bussed through input signals in con

nectivity matrices. Net interchanges and displacements are illustrated in Figure

4.4a and 4.4b.

The selection of new sUtes is based on the following considerations:

(1) A random number between one and the toul number of nets is generated.

(2) A second random number is generated between one and the number of nets

times RATIOl (typically 5).

(3) If the second number happens to be less than the number of nets and the

nets corresponding to the two numbers happen to be both horizonul or both

vertical then the two nets represented by the two numbers are interchanged.



D O D—D

D

I

• EHEKD

EHZKD D •

(a) Net Interchange

(b) Net Displacement

37

(4) Otherwise, the net corresponding to the first number is displaced: vertically

if it is a horizonul net to a new row. horizonully if it is a vertical net to a

new column.
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The final solution is affected by the ratio of net displacements to net interchanges

i.e. the number RATIOl. A value of 5 has been experimenully found to be

effective in all test cases. The area of an array is reduced only by net displace

ments and not net interchanges. Net interchanges are useful in removing violations

which represent unrouuble configurations for example, overlapped nets and over

lapped cells. Since the goal is aminimum area configuration, net displacements are

in higher proportion.

The displacement of a net to a new row or column is controlled by a range

limiter[sech85], which limits the range of displacement of a net either vertically

or horizonully. The new location is selected randomly within the accepUble

range. The range limiter is used because in the latter suges of the annealing the

displacement of anet has very little chance of being accepted unless it is local. So

to generate sutes which have high probability of being accepted, the range of pos

sible displacement of ahorizonuKvertical) net is gradually reduced from the toul

number of columns(rows) at the beginning to a single column(row) when the

temperature approaches zero as alogarithm function ofthe temperature. The loga

rithm function was experimenully found to be very effective. Net interchanges

are also allowed only over a small range toward the end of the annealing process

using the range limiter.

The range limiter is also used for implementing bounded column or bounded

row constraints. The range of displacement or interchange of a gate is restricted to
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the specified bounds by not generating any sutes which violate the constraints.

4.1.5. The Cost Function:

The cost function is made up of several components. The first portion is total

net length which is defined as the distance between its exueme cells. Nets may be

weighted differently in which case the cost function is the length times the net

weight. Critical nets, which must be kept short, can be weighted heavily (typi

cally. 3-5 times higher) so as to minimize their length in the. final layout. As

mentioned above, adjacency constraints embody themselves as vertical nets and

these nets are weighted highly.

The second portion of the cost is the sum ofoverlap penalties of all the cells.

If a cell or pad is at the same location as any other, a penalty is assessed. This

penalty is the sum ofall the cell overlaps times aoverlap parameter which is large

(typically. 30-50) so as to obuin a final configuration without any overlaps.

The third portion is the area penalty for increasing the number of rows or

columns in the array. Since the eventual objective is to reduce area, not just wire

length, every time a net moves to an empty row(column) a penalty is assessed.

Similarly, a negative penalty, or gain, is assessed if a net moves out of a

row(column) leaving it empty. There isa corresponding area penalty parameter as

in the overlap case (typically 5-10).

The fourth portion is the net overlap penalty. This portion exists because net

overlap is directly related to rouubility and is assessed for both horizonul and

vertical nets. Two horizonul/vertical nets lying on top of each other represents

an unrouuble configuration and hence the configuation is penalized.

The fifth portion is required when cells have non-uniform sizes. At every

suge the width of each column and length of each row is stored. As mentioned
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before, the width of a column is the width of the widest cell on it: likewise for

rows. If a net displacement or interchange increases or decreases the

width(length) of a column(row) then a penalty or gain is assessed similar to the

area penalty. In the case of non-uniform cell width, this serves to minimize the

toul width and length of the array, rather than simply the number of rows and

columns, which is what is needed is to minimize area.

4.1.6. The Stopping and Inner LoopCriteria:

A certain number of sutes (moves) per fundamenul unit are generated in

the inner loop, which corresponds to a temperature point in the physical annealing

process. Horizonul and vertical nets represent fundamenul units. The best results

were obuined when the cost function atuined equilibrium at every temperature

point. However, at high temperatures, equilibrium is atuined faster. i.e. in a

fewer number of generated sutes. hence the number of sutes per fundamenul

unit is gradually increased from a low value (typically 2) to a high value (typi

cally 10) near the end of the annealing process. The value is computed an inverse

function of the logarithm of the temperature.

S(T)-Si+(Si- S, )*log(D/log(r0)

where 5(7) .S,. 5/ are the present, initial and final values of the number of gen

erated sutes in the inner loop, and T is the present temperature.

The annealing process ends when the cost function has not changed for a cer-
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tain number of temperature points at a sufficiently low temperature.

4.1.7. Temperature Profile

The function update determines to a cerUin extent the quality of the final

result. Initially, when the cost of the configuration is increasing the temperature is

decreased quickly. At every step the temperature becomes a fraction ALPHA

(typically 0.8) of what it was at the previous step. This fraction ALPHA is gra

dually increased to about 0.90 as the rate of increase of the cost function slows

down and begins to decrease. The cost function should attain equilibrium at every

temperature point for best results[rome85]. Since equilibrium is reached relatively

quickly at high temperatures, initially the temperature is decreased quickly.

4.1.8. Routing the Horizontal nets

After annealing, the vertical nets and horizonul nets may overlap each other.

A possible overlapped configuration is illustrated in Figure 4.5a. In this second

suge all the overlap of the horizonul nets is removed with the minimum change

in the placement of cells produced by the anneal.

The straightening procedure is as follows. First thehorizonul nets are sorted

in the order of decreasing length. All locations are free at the beginning. A net is

picked and if it lies on free locations alone it is fixed in its position along with its

cells. If any of the locations it lies on isn't free then a new row has to be found

for the net. An attempt is made to place the net in any of the other rows without

altering the x coordinates of its cells and such that there is no resulting overlap

due to this move. If more than one row exists where the net can be placed, the

row whose height is closest to the present net's height is chosen. If this is not
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possible, anew row is added beside the net's initial row and all the cells of the net
are placed on this new row again without changing their x coordinates. The net

and the locations are then fixed on this new row. This process is repeated till all

the horizonul nets have been placed.

The result of removing horizonul net overlap in the configuration of Figure

4.5a is shown in Figure 4.5b. Vertical net overlap, however, still exists.

4.1.9. Routing the Vertical Nets - The Final Stage

At the end of this suge the.array is compacted, fully routed and all cell and

net overlaps have been eliminated. Typically, the simulated annealing produces a

good placement of cells and horizonul nets minimizing vertical net violations.

However those violations that do exist must be removed. This suge of routing is

more complicated than the previous suge of horizonul net routing as the vertical

nets have to be separated from each other without disturbing the horizonul nets.

Care must be taken while routing these nets that unnecessary columns are not

added.

First the nets are ordered according to decreasing number of cells on the net.

They are routed in this order. As before all locations are freed initially. If the

chosen net and has no overlaps and lies on free locations it is merely locked in

place. If aviolation exists then various columns adjacent and neighboring it are
examined to see if the net can be placed on that column without overlapping other

vertical nets and without causing hanzontal net overlap. Thus there is a more

stringent condition here for an accepuble column than in the previous case of
accepuble rows. If many columns are available for placing the vertical net the

column closest to the present one is chosen. If more than one column satisfies this

condition, the column whose width is closest to the present net's width is chosen.



(a) Array after Annealing with Overlaps

(b) Horizonul Net Overlap removed

(c) Vertical Net Overlap removed
Fig. 4.5
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If no existing column satisfies the condition then a new column is added next to

the original location and the net with its cells is placed on the column. The final

result with all overlap removed of the configuration of Figure 4.5a is shown in

Figure 4.5c.

The aspect ratio of the folded matrix depends to acertain extent on whether

horizonul net straightening precedes vertical net straightening or vice versa. Rela

tively speaking, in the former case more rows are folded than in the latter. The

same can be said for column folding inthe latter case in comparison to the former.

The order can be decided upon depending on initial row and column sparsity. ini

tial aspect ratio and final desired aspect ratio. The multiplicative row and column

penalty parameters in the cost function also control to acertain extent the relative

number of row and column folds.

4.1.10. A Brief Description of Approach 2

In this approach, two annealing suges are performed. The generation of

sutes proceeds differently in the two suges. In the first sUge (a) horizonul nets

are displaced vertically or interchanged with other horizonul nets and (b) cells

are displaced horizonully on a row. After the first suge of annealing, the vertical

nets may be suggered and overlapping, but the horizonul nets will be straight

though horizonul overlap may exist. The cost function has an added constituent

in this approach, vertical net sugger. If a net is not straight because all its

atuched cells are not in the same column, a penalty is assessed. This penalty is

proportional to the horizonul disunce between the leftmost and rightmost cells.

After the annealing, all horizonul net overlap is removed using techniques

described earlier in the section.
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The second suge of annealing attempts to minimize vertical net sUgger and

overlap without causing any horizonul net violations. Generation of sutes is con

strained to horizonul cell displacements within the range of the cells horizontal

net. Displacement within the range of the net ensures that horizonul net overlap

does not occur. Nets are not interchanged. The cost function in this suge is the

vertical net sugger and overlap. After this second annealing suge. vertical net

violations due to vertical nets not being straight or overlapping are removed and

the compaction process is ended.

4.1.11. Splitting long nets

The minimum possible area after folding is bounded by the length of the

longest nets, horizonul or vertical. One single input feeding to many product

terms in a PLA can constrain the final size of the array even if the rest of the array

is very sparse. Similar problems can occur in other array structures.

A solution to this problem for the general case is possible in GENIE by pre

processing the array to split the nets possessing a number of cells greater than a

threshold value into two or more subnets. Route-through-cells are inserted to

connect up the different subnets. If a horizonul net is split, two route-through-

cells are appended, one to each subnet and connected up by a vertical route net.

Vertical nets can be similarly treated. If the array is a PLA. it now becomes a

pseudo MLM. It has been found that this technique results in large improvements

over the conventional techniques for sparse PLAs with some long nets. An example



(a) Long Vertical Net constraining Folding

(b) Result after splitting net in two
Fig. 4.6

of how splitting a long net can reduce area is shown in Figure 4.6.
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4.1.12. Parameter extraction

The cost function has many components and each component has an associ

ated weight given by its parameter. For example, the overlap penalty parameter is

typically in the range of 10-50 units and the gain for reducing the number of

rows/columns is in the range of 5-10 units. Finding the absolute best set of

parameters for a array or a given set of arrays is very difficult. The problem is

further compounded by the fact that the efficacy of a particular set of parameters

is dependent on the annealing profile i.e. the number of sutes generated per tem

perature point and the temperature profile. Also, the size and sparsity of arrays is
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a variable factor affecting the parameter efficacy.

However, it is universally true that provided ceruin inequalities in parame

ter values are satisfied, if a sufficient number of sutes are generated per tempera

ture point and if the temperature is decreased sufficiently slowly, the quality of

the final solution shows a remarkable insensitivity to the actual parameter values.

When CPU time is a factor and the annealing process is short absolute parameter

values become important. The relative values of the row and column gain/penalty

parameters, however, affect the aspect ratio of the final result and this fact is used

to advanuge to obuin a desirable aspect ratio as is explained in greater detail in

Section 4.2.2.

With these in mind, extraction of parameters for four different array types

was done for short annealing times. The four different types were small-dense,

small-sparse, large-sparse, and large-dense arrays. The solutions obuined for a

wide range of parameter values are summarized in Table 4.1. The parameter

values marked with an asterisk were hardwired into the program.

The Uble gives normalized sets of values for three parameters. These param

eters are associated with the gain for reducing rows/columns, the penalty for net

overlap and the penalty for cell overlap. Normalization was done so the percen-

Uge changes in parameter values could be directly found. The absolute values are

1. 10 and 50 respectively.

4.1.13. Temperature versus Cost Graphs

It is interesting to study temperature-cost graphs for an annealing process to

determine the point at which one would like to. operate. The marginal utility of

simulated annealing goes down as the temperature profile becomes more and more



parameter inl in2 in3 in4 in5 in6 in7

TOW 0 0 0 1 1 1 1»

net 0 1 1 0 0 1 1*

cell 1 0 1 0 1 0 1*

Rm0.mat(34/20) 33/20 34/19 34/20 32/19 28/19 28/19 28/16

apla.mat(42/22) 25/20 24/19 29/19 28/19 22/20 23/20 19/16

xcplal.mat(73/72) 43/61 42/64 50/61 45/61 33/63 31/64 27/59

exl5(68/52) 43/52 65/52 64/52 60/51 42/52 41/52 37/52
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parameter in8 in9 in10 inll inl2 inl3 inl4

row 1 1 1 1 1 1 1*

net 1 1 0.8 1 1 1 1*

cell 0.2 0.5 1 0.2 0.5 0.8 I*

gm0.mat(34/20) 28/19 28/19 29/18 27/19 27/18 28/17 28/16

apla.mat<42/22) 22/20 21/19 18/17 22/19 21/15 18/19 19/16

xcplal.mat(73/72) 30/62 28/64 28/60 31/60 30/59 26/60 27/59

exl5(68/52) 42/52 42/52 40/52 41/52 41/52 39/52 37/52

Table 4.1 - Parameter variations

gradual as the solution is getting closer and closer to the global minimum. Ideally,

one operates at apoint where the cpu times involved are reasonable, and the solu

tions being obuined very close to the global minimum. Various temperature

versus cost graphs for different temperature profiles all starting at the same tem

perature on one particular example are shown in Figure 4.7. In each of these cases,

during the annealing the number of sutes generated per temperature point was a

constant and is indicated above the corresponding curve.The parameter ALPHA was

also held constant at 0.90 throughout the annealing process. The final costs are

smaller for the temperature profiles with a larger number of sutes generated, but

the difference becomes less and less marked as the number of states per tempera

ture point increases.
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Fig. 4.7 Temperature versus Cost Graphs
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4.2. Examples, Comparisons and Implementation

In this section we first give illustrative examples of compaction of various

array structures using GENIE. Due to the complexity of the general folding prob

lem, the only way to measure the performance of anew approach is to compare it

with the best methods known previously. GENIE is compared with existing, special

ized layout/folding programs.

The Gate-Matrix layout of the CMOS Domino circuit of Figure 4.2 is shown in

Figure 4.8a. The folded Gate Matrix without any constraints is shown in Figure

4.8b. Constraining all the inputs to the left of the matrix and all the outputs to

the right of the matrix the layout shown in Figure 4.8c was obuined. Measuring

area as the number of rows multiplied by the number of columns and ignoring the

area occupied by peripheral circuits, unconstrained folding reduced the area to 33%

of the original as compared to 43% for the constrained case. Additional area is

required for the routing of the inputs/outputs in the first case which can cause the

toul area, including routing, to be larger in the unconstrained result.

While the above example was for CMOS Domino logic, gate structures in sutic

CMOS or sutic NMOS can be represented similarly in a multi-level matrix form.

Gates can be two or more levels deep. Multi-level gates do complicate matters

since more than one column may be required for each gate.

The unfolded and folded layouts of a large circuit are shown in Figure 4.9.

There are a toul of 647 single-transistor cells in the circuit. The area has been

reduced to almost half (53%) of the original in this case. The final layout was

obuined in approximately 14 minutes on a DECVAX 8600 running Berkeley

UNIX1 4.3. A slightly larger layout was obUined in 8 minutes on the same

1 UNIX is a Trademark of AT&T Bell Laboratories
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(a) Layout of Fig. 4.1 in Domino Gate-Matrix, unfolded.

(b) After folding but without constraints.
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(c) After folding with constraints.

Fig. 4.8. Example of constrained and unconstrained folding with GENIE
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Fig. 4.9. Unfolded (top) and folded layouts of a large circuit
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machine.

The combinational part of finite state machines is often implemented as a

PLA. The flip flops which store the present state are typically latch transistors

which are clocked and are usually added to the PLA later. So the inputs and out

puts corresponding to the state variables have to be constrained to the same side

of the PLA and also ordered to minimize routing. These constraints can often

prove costly in terms of final area.

An alternative is to treat the latch transistors as part of the array itself with

the state variables being intermediate inputs and outputs in a multi-level logic

structure. The latch transistors are thus allowed to float into the array and no

constraints are placed on the state variables. This is similar to an SLA approach.

The area of an industrial FSM was reduced by 5% by GENIE using this method as

opposed to the former method. In addition, there was a significant reduction in

the length of the critical path through the array. The folded FSM using the above

two methods is shown in Figure 4.10. The shaded cells represent the latch

transistors of the flip-flops. In Figure 4.10a the array was folded without the

latch transistors and they were later added. The result of letting the latches float

into the array is shown in Figure 4.10b. The actual layout of the FSM isshown in

Figure 4.10c.

4.2.1. Implementation Details

GENIE is coded in about 5000 lines of C and runs in a VAX2-UNLX environ

ment.

2 VAX is a Trademark of the Digital Equipment Corporation



(a) Latches added after folding (b) Latches added before folding

(c) Actual layout
Fig. 4.10.
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The output of the program is a folded connectivity matrix suitable for input

to a context-based tiler for actual layout. Representations for both multiple and

simply folded rows and columns are used and the representation matrix is

independent of technology.

There are various folding options. The program can be used for any combi

nation of simple, multiple or no row folding and simple, multiple or no column

folding for both PLAs or multi-level logic blocks. Constraints on the

inputs/outputs can be expressed in the input file using a simple left-right-both

notation.

Typically, dependent on the layout tiler or the PLA generator being used there

are constraints on the folding. The tiler we have used for generating Domino CMOS

layouts. TINKER, is context-based and produces a layout in athree layer intercon

nect technology. TINKER requires simple column folding but allows multiple row

folding of the intermediate input/output lines. All the primary inputs/outputs are

necessarily at the edge-of the array. For PLAs. the PANDA[mah84] PLA generator

can be used. The style of PLA produced by PANDA is CMOS static with p-channel

pull-ups as resistive loads.

The final aspect ratio of the folded array may be important to the designer.

It has been found, especially in multi-level structures, that the folded area can

vary to a large extent depending on the relative magnitudes of row and column

folding. There is atrade-off between the desirable aspect ratio and possible folded

area. Note that in Table 4.2 some folded multi-level circuits have been only row

folded. In some cases that wasbecause column folding was not possible but in the

other cases it was found that only row folding gave a smaller final area as com

pared to equal weights for row and column folding. In MAT7. for example, when

equal weights were given to the row and column gain/penalty parameters, the
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folded result was 18 rows by 29 columns as compared to 16 rows by 31 columns

for only row folding.

Most PLA folding programs do not interleave the AND and OR planes of the

PLA whereas in multi-level logic there is almost no distinction between a series or

a parallel tile: they can exist on the same row or column. GENIE can optionally

interleave the AND and OR planes of a PLA or keep them separated. Interleaving

may result in asmaller folded area but the layout generator used must allow it.

One of the features offered by GENIE is good control over aspect ratio using

the multiplicative row-column decrease/increase parameters described in earlier.

Their relative magnitude can be controlled by the user which alters the final

aspect ratio.

For SLAs or static CMOS/NMOS multi-level blocks, where the cells may have

varying widths, the length-width parameter described earlier is assigned a non

zero value. The effect of this parameter is to minimize total length and total

width instead of minimizing the number of rows or columns.

4.2.2. Comparisons with existing tools

GENIE has been compared with a number of existing tools for topological

folding and compaction of array logic. TWiST[hofm85a.hofm85b] was developed at

the University of California. Berkeley and is a program for the folding of multi

level connectivity matrices. TWIST can perform simple column folding and multi

ple row folding of intermediate inputs and signals can be constrained. The algo

rithms used by twist are similar to the ones presented in[demi83a].

A variety of constrained/unconstrained examples were run on TWIST and

GENIE. The results are tabulated in Table 4.2 showing CPU time on a DECVAX
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MATRIX size

nr*nc

Constraints TWIST
folded size

GENIE
folded size

GENIE
time (sec)

GENIE Area/
TWIST Area

MAT1 27*15 none 26*11 19*14 57 0.93

MAT2 22*42

22*42

none

all inputs left

19*22

21*32

18*18

21*21

76

78

0.77

0.72

MAT3 30*60 none 29*59 30*54 364 0.94

MAT4 109*95 none 74*77 47*82 1029 0.67

MAT5 78*52 none 58*52 38*52 362 0.65

MAT6 85*64 none 66*61 58*41 1062 0.59

MAT7 47*31 none 28*31 16*31 312 0.57

MAT8 79*55 none 63*44 41*39 624 0.57 .

MAT9 47*55 none 30*53 19*44 452 0.52

MAT10 73*72 none 4*67 24*62 741 0.50 1

Table 4.2. Comparison of twist and GENIE.

8600. number of initial rows and columns, final number of rows and columns,

initial and final areas with percentages. These examples are all considered to be

with uniform cell sizes as TWIST has no special provision for non uniform cell

dimensions. However. TWIST has additional internal constraints on the ordering of

signals as it performs delay optimization. GENIE performs significantly better than
TWIST and more so in the larger examples. Constraints are also handled better than

TWIST. The CPU time taken for these examples is cost-effective. Area results as

good as those obtained by TWIST can be achieved in much less time: the results
here are the best we obuined disregarding CPU time as a factor. In all these

examples simple column folding and multiple row folding were allowed.

GENIE is primarily intended for uniform/non uniform cell multi-level matrix

structures. However, it is interesting to compare GENIE with aPLA folding program

like PLEASURE[demi83a.demi83b]. A number of examples were run on PLEASURE

and the results are tabulated in Table 4.3. All the examples were run for multiple

row and column folding. GENIE produces better results than PLEASURE: more so in
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PLA size

nT*(2*ni+no)
Constraints PLEASURE

folded size

GENIE
folded size

GENIE
time (sec)

GENIE Area/
PLEASURE

PLA1 20*C26+25; none 14*33 17*22 50 0.80

PLA2 30*(16+31)

30*(16+31)

none

some inputs top
outputs bottom

29*21

29*35

29*19

29*31

364

• 374

0.90

0.88

PLA3 47*(24+12)

47*(24+12)

none

all inputs top

47*28

47*32

47*28

47*30

615

626

1.0

0.94

PLA4 52*(54+28)

52*(54+28)

none

all inputs top

52*56

52*69

52*44

52*58

362

376

0.78

0.84

PLA5 34*(22+2)

34*(22+2)

none

some inputs top

34*18

34*23

34*17

34*20

134

143

0.94

0.87

PLA6 211*(64+20) none 211*66 211*47 1745 0.71

PLA7 100*(38+16) none 100*22 100*20 221 0.91

PLA9 119*(78+8) none 119*42 119*29 498 0.69

PLA10 35*(68+14) none 21*23 35*11 280 0.79

PLA11 128*(44+16) none 128*28 128*20 129 0.71

PLA12 20*(22+5) none 13*21 20*11 11 0.81

Table 4.3. Comparison of PLEASURE and GENIE for PLA folding.

the constrained cases which are more likely in real chip designs. Another advan

tage in using GENIE rather than a folding program like PLEASURE for PLA-based

FSM's is that we can allow the latch transistors which store the initial state to

float into the array and achieve further compaction asdescribed earlier.

GENIE has also been compared to the PLA folder described in [moor85] which

uses a rule based hill climbing technique. The results of the comparison are tabu

lated in Table 4.4. GENIE produces equal or better results on all the examples

under the same conditions.

Simulated annealing asymptotically approaches the global optimum of the

configuration space with the increase in the number of states generated per tem

perature point[rome85]. Various solutions can thus be obuined for a given exam

ple depending on the inner loop criterion and temperature profile. GENIE can be



59

PLA size

nT*(ni+no)
MO-GS

folded size

MO-GS

time (sec)
GENIE

folded size

GENIE
time (sec)

GENIE Area/
MO-GS Area

DK27 10*(9+9) no 2.3 100 6.0 0.91

BENCH2 57*(8+18)
57*(8+18)

918

918

8.76

8.76

855

840

62

161

0.93

0.91

SEX 21*( 14+21)
21*(14+21)

266

266

3.33

3.33

231

210

11.6

41.4

0.86

0.78

B12 42*(15+9) 525 7.06 525 61 1.0

B3 211*(32+20) 6930 65.12 6330 1745 0.91

PI 57*(8+18) 918 9.05 855 63 0.93

SHIFT 100*(19+16) 1881 10.11 1400 221 0.74

B4 54*( 33+23) 1600 10.35 1404 173 0.87

LUC 26*(8+27) 696 4.72 696 47 1.0

P3 40*(8+14) 532 5.92 520 34 0.97

SPAM1 18*(9+14) 221 2.99 198 9 0.89

ALCOM 40*( 15+38) 672 8.48 500 21 0.74

CLPL 20*(ll+5) 168 4.28 140 11 0.83

SIGNET 119*(39+8) 2895 50.39 2023 498 0.69

MISJ 35*(34+14) 450 7.62 11.1 280 0.62

TS10 128*(22+16) 2944 6.60 1792 129 0.60

Table 4.4. Comparison of GENIE and the MO-GS Folder.

used for short or long runs depending on the CPU time the user wants to spend.

Plots of CPU time versus quality of solution for eight examples are shown in Fig

ure 4.11 —the first plot gives the solution quality/CPU timeresults for four PLAs.

and the second plot for four MLMs. The # (hash) points on the eight plots

correspond to the solution/CPU time for PLEASURE and twist. The plots indicate

that GENIE produces solutions as good as PLEASURE and TWIST taking more or less

the same order of CPU time. Further and further improvement requires more and

more time as illustrated graphically by the plots. These are typical results and

they span a large range of PLA and MLM sizes. The details on the sizes of the PLAs

and MLMs can be found in Tables 4.2. 4.3 and 4.4. Similar plots were obtained

versus the MO-GS folder.

The entire control logic of the Berkeley SOAR microprocessor was synthesised

in two level and multi-level form using GENIE. The results are encouraging, both
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for the PLA and multi-level cases and are summarized in Table 4.4. Note that

PLEASURE actually takes twice the time to fold the large PLA and achieves a poorer

result. The explanation for this is that the operations required to find the cost of

the configuration in GENIE are purely incremental, and are independent, to a first

order, of the size of the array. Hence for very large examples, simulated annealing

is often faster than heuristic algorithms. The CPU time versus solution quality

graph for this large PLA is shown in Figure 4.11 and corresponds to the curve

marked SOAR.BIG.

Most proposed schemes for gate matrix layout using graph theoretic tech

niques (e.g. [wing85]) cannot handle the practical constraints of differing size

Uansistors and fixed input/output- terminals. In GENIE bounded column, ordering

and adjacency constraints can be imposed on the signals. For Weinberger arrays,

total net length can be minimized during compaction unlike previous approaches.

FORM size

nr*nc

Constraints folded size Area Reduction
factor

GENIE

time (sec)

PLA/GENIE
PLA/PLEASURE

260*296

260*296

none

none

106*215

114*217

3.43

3.15

10740

21100

multi-level/GENIE 644*561 none 158*248 9.22 12760

Table 4.4. Performance for both multi-level and two-level
implementation of CMOS SOAR control logic.
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43. Storage/logic Array Compaction

Storage/Logic Arrays were first described in 1975[pati75] and later

extended[pati79]. They are regular structures derived from the Programmable

Logic Array (PLA)[flei75]. Unlike PLAs+2 they have the ability to embed storage

functions within the combinational logic array.

SLAs can be constructed from tile sets designed for particular technologies.

Though SLAs have been built in various technologies the CMOS SLAs appear to be

the most popular. CMOS SLA elements include a single inverter, a double inverter, a

simple NAND gate latch and a pass transistor[smit82]. Schottky diodes can be

used as the combinational elements. Each of these cells is represented as a single

character to the designer. In much the same way as the personality matrix of the

PLA can be manipulated symbolically, the characters representing the SLA elements

can be arranged. Because the layout is very similar to a PLA. it is possible to

employ similar folding and splitting algorithms[demi83ai.demi83b] to optimize

SLA area. But if some of the tiles are quite complex and large (e.g. a D flip-flop)

area utilization suffers dramatically if PLA optimization techniques are applied

since then the minimum cell pitch is constrained by the largest cell in the tile set.

An alternative approach is to allow cells which are the multiple of some funda

mental dimension. However if this is done special "blank" and "bender" cells must

be created to route signals. So far. SLA designs have been area efficient only while

implementing circuits with a high ratio of combinational logic to active elements

making them more and more like PLAs with external synchronizing logic. Their

embeddedness has thus been lost[hofm85a.hofm85b].

The general algorithm described in Section 3 can be used to minimize the area

of a SLA under various constraints. Since the cells are of varying sizes the

height/length of the array is minimized and not just the row/column cardinality.
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Also, user-specified critical signals can be made short while minimizing area. This

may be vitally necessary in synchronous system design. Since the algorithm is

technology independent, it can be used irrespective of the complexity of cells in

the SLA.

43.1. Modifications for SLA compaction

A relatively simple approach was adopted for gate matrices in defining

column width (row height) as the width (height) of the widest (tallest) cell in the

column (row) and minimizing for the sum of column widths and row heights.

However this approach assumes that cells on a row (column) cannot encroach on

adjacent rows (columns) whereas in reality this encroachment is allowed and can

reduce area.

This may lead to a situation depicted in Figure 4.12a after the annealing. By

interchanging columns A and Bin the array of Figure 4.12a and allowing cells to

encroach on neighboring columns/rows without overlapping other cells, and still

keeping all nets straight, we can reduce the area considerably as shown in

Figure 4.12b.

Therefore, the cost function should calculate the area of a particular

configuration in a more realistic way. Also, it is important for computational

efficiency that this calculation be incremental and restricted to the nets being

displaced/interchanged.

At every stage the necessary width (height) required for every column (row)

is calculated taking into account the cells on adjacent columns (rows). The

centers of the cells are assumed to be aligned. If a displacement increases the

necessary width of a column or height of a row it is penalized. On the other hand,

if a displacement/interchange decreases the width of a row a gain is accrued.
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Fig. 4.12 (a) Folding disallowing encroachment (b) allowing encroachment

Displacements may cause a row or column to become empty of cells. This is the

special case of the height or width becoming zero and is treated as such.

The total length of the nets is a part of the cost function like before. The

associated cost is the length times the net weight. Critical nets, which must be

kept short, can be weighted heavily so as to minimize their length in the final lay

out. Nets may bekept short even at the expense of increased area if their assigned

weight is large enough. Thus thecritical path through the array can be minimized.

Compound cells introduce another complication. All the constituent cells of a

compound cell must eventually lie adjacent to each other in the folded array. But

if the constituent cells are connected to different nets (e.g. the flip-flop cells in

Figure 4.12a. some may be displaced so they are no longer adjacent to each other.

Two approaches may be taken to solve this problem: the nets can be

displaced/interchanged only simultaneously or we can allow their adjacency con

straint to be violated by single displacements but penalize any violation. The
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second approach invariably yields better results since it enlarges the exploration

space. A large enough penalty ensures that the eventual configuration is accept

able. •

Post processing after the annealing to remove overlap issimilar except that if

more than one feasible row exists on which the present overlapped row can be

placed, the row with maximum height is chosen so as to minimize area increase. If

no such rows exist a new row is created next to the present row and the net is

placed on it and locked as before. Similarly, if more than one feasible column

exists the widest is chosen. If none exists a new column is added.

43.2. Constraints during the annealing

Input and output terminals can be constrained to any edge of the array using

pads as described earlier. Multiple/compound cells which may be. made up of
smaller constituent cells also introduce adjacency constraints for the annealing

phase. The user may require astructured layout style within the array[pati85]
e.g. all the flip-flops lying close to each other with combinational logic surrounding

them. These constraints take the form ofnet groups orpartitions and nets are dis

placed or interchanged within partitions only, which ensures that all nets in a
partition neighbor each other in the optimized layout. Ordering constraints are

required in the case of directional cells like inverters and buffers. Net interchanges
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and displacements are such that they do not violate the required ordering.

43.3. Aspect Ratio sizing

The aspect ratio of the folded array may not be desirable in a SLA layout.

Two approaches to aspect ratio sizing can be taken. The first involves partitioning

the initial SLA into smaller parts with minimal interconnections between them.

The sub-arrays can be optimized separately with constraints on the interconnect

ing signals. Heuristic methods[fidu82.kern70] or a simulated annealing based par

titioning scheme can be used to find the optimal set of partitions.

The second approach involves modifying the cost function in the annealing

step described to control the relative magnitude of row and column folding so as

to achieve a desirable aspect ratio. The penalty for reducing/increasing row height

(column width) can be made higher than column width (row heigfct) if a short,

squat (tall, thin) folded array is required. If this is done more rows (columns) are

folded at the expense of column (row) folds. In the extreme case only row fold

ing or only column folding can be allowed.

43.4. Examples

The symbolic folded layout of a representative SLA program illustrating the

use of symbols which has been reproduced from [smit82] is shown in Figure

4.13a. The asynchronous cells include: 1) a set/reset latch for the memory ele

ment: 2) an inverter: 3) 1.0.S.R and + combinational logic cells: 4) row and

column pullup cells: and 5) miscellaneous cells including *.#. and blank cells. The

# and * cells are ohmic contacts between rows and columns and are used to

hardwire signals from one position to another. Row and column interconnects are
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assumed to be always present between cells unless the programmer deletes them,

creating a row or column break, which is indicated by the solid lines in

Figure 4.13a. The single flip-flop FF occupies 2 columns and 7 rows and the rest

of the cells occupy one row by one column. Neglecting the two blank columns,

which are left for row pullup cells, the area of this folded layout is 130 units.

The unfolded connectivity matrix representation of the SLA with the size of

the flip-flop indicated is shown in Figure 4.13b. This symbolic representation is the

input to the optimization program and has been derived from the folded array

placing every neton aunique row or column.

The result of running our optimization program on the unfolded symbolic

representation of Figure 4.13b is shown in Figure 4.13c after expanding the flip-

flop to seven rows. Simple row and column folding was allowed. The folded lay

out was obtained in 3.1 seconds on aDECVAX 8600 running Berkeley UNIX3 4.3.

The area of this layout is 98 units. 25% smaller than the hand folded array

of Figure 4.13a. For large, sparse examples, or examples with widely varying cell

dimensions area gains over hand optimization will be larger. A larger example

from an industrial source is shown in aoptimized form in Figure 4.14. As can be

seen there is wide variation in the sizes of the constituent cells. It is interesting to

note that GENIE clustered big cells together on rows to minimize area. GENE actu

ally "rediscovered" the structure present in the netlist. Multiple folding of inter
mediate inputs was allowed. The folded layout is less than athird the size of the

original. Multiple folding of intermediate inputs was allowed. It was obtained in

3UNIX is a Trademarkof AT&T BellLaboratories
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approximately 14 minutes on a DECVAX 8600.

4.4. Conclusions

In this chapter a new technique for generalized array optimization using

simulated annealing was presented. GENIE has proved to be a useful tool in

automatic multi-level combinational/sequential logic synthesis in various techno

logies because of its ability to handle practical constraints like non uniform device

sizes and fixed input/output pads and because of the high quality of the final

results.

It has been shown that a simulated annealing technique can be used to emu

late folding of array structures ranging from highly-regular PLAs. Weinberger

arrays. SLA's (Storage/Logic Arrays) to multi-level gate matrices. In all cases.

GENIE outperformed our best program to date. In particular, for constrained,

two-level logic GENIE over 30% reductions were achieved compared with PLEASURE.

In the case of SLAs. GENIE is the first tool to provide a high-quality embedding of

logic.

It has also been shown that the CPU time requirements of simulated anneal

ing based algorithms can be reduced to a manageable level, while still producing

solutions of higher quality than heuristic algorithms.

A modified algorithm for one-dimensional Gate Matrix and Weinberger

Array folding, which is more cpu time efficient than the general two dimensional

folding algorithm presented in this chapter, while producing equally good results,

is described in the next chapter.
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CHAPTER 5

Weinberger Array and Gate Matrix Layout

Multistage logic circuits in various technologies and design styles can be

represented symbolically as Gate Matrices[lope8l] or Weinberger Arrays[wein67].

The gate matrix has proved to be an effective layout style for implementing

multi-level combinational functions in CMOS technology. In contrast. Weinberger

arrays produce area efficient layouts for single MOS (e.g. NMOS.PMOS) technologies.

In the gate matrix style the p-transistors and n-transistors are placed in

different halves of the matrix. The transistors are connected by lines which form

the rows of the matrix. Various algorithms[ohts79.wing82.mlyu85] have been

proposed to find an ordering of the signals/columns of the matrix to obtain

minimum row cardinality and an area efficient layout. However, none of these

methods provide for differing size transistors, which means that, though the row

cardinality may be optimally small, the height/area of the matrix may not be the

minimum possible.

Most proposed methods[wing82.wing85] lack the ability to handle practical

constraints like fixed input and output terminals. In [ohts79] all the inputs are

restricted to the left of the matrix and all the outputs to the right. Also, good

control over the aspect ratio of the gate matrix[ohts79.wing82.wing85] is not pro

vided by previous techniques.

Weinberger arrays are one-dimensional. Optimization algorithms to obtain

the best packing on a one dimensional interval have been

investigated[yosh75][ohts79] [asan82][mlyu85]. However, no previous approach

provides for differing size transistors like in the gate matrix case. Provisions for
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minimizing total net length or.optimizing circuits with arbitrarily complex gates are

non existent.

In this chapter we present simulated-annealing-based algorithms for gate

matrix and Weinberger array layout which effectively solve all the above

problems[deva86b]. These algorithms minimize the area of a Weinberger array

taking into account arbitrary user-specified constraints on any terminal. Bounded

column, ordering, or adjacency constraints can be placed on the input and output

terminals of a gate matrix. Since transistors can be varying sizes the height of the

array/matrix which is proportional to the area is minimized and not just the row

cardinality. These techniques can also be used for partitioning the array/matrix

into smaller sub-matrices to achieve a desirable aspect ratio while minimizing

interconnections. Each of the sub-matrices can then be optimized. User-specified

critical signals can be made short or the total net length can be minimized while

minimizing area. The algorithms are technology independent since they operate on

a symbolic layout and can be used irrespective of the complexity of logic gates in

the circuit. Pass transistor structures are supported. A context based tiler then

translates the symbolic layout into CDF (Caltech Intermediate Format). Results

obtained are uniformly good over a wide range of examples.

The layout algorithm for Weinberger arrays is described in the following sec

tion. Modifications required for gate matrix layout are described in Section 5.2

and Section 5.3 contains illustrative examples.
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5.1. Weinberger Array Layout Optimization

A typical Weinberger array layout is shown in Figure 5.1a. The two basic

entities of interest are the gate and signal. Note that the gate may occupy one or

morecolumn and more than one signal may occupy a row in the compacted Wein

berger array. The objective is to find an ordering of gates which minimizes the

overall area. Given a ordering of gates the range of signals can be determined.

Signals can exist on the same row if their ranges do not overlap. The ordering

must be such that signals can be maximally folded on rows. Constraining asignal

to either or both edges of the array results in expanding its range.

The input to the program is agate net-list. A gate may be of the simple NAND

or NOR type or may be amore complex AND-OR-INVERT structure. The widths and

lengths of the constituent transistors in the gates may vary widely. The program

generates asymbolic layout area-optimized under the various constraints which is

suitable for input to a tiling program, like TlNKER[hofm85aJiofm85b]. a context

based tiler which producesthe actual layout in CIF.

'

II II II

II II II II 1

mo LL

"IID min.

o:o o_

"III DI
u u u u u u

(a) Weinberger Array (b) Gate Matrix
Fig. 5.1
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An example of an input to the program is shown in Figure 5.2a. It is alist of

logic gates interconnected by nets. Figure 5.2b is the schematic of the gates

described by Figure 5.2a in transistor form. One of the logic gates is a two-level

structure and may require two columns to be realizable. A pass transistor also

exists in the input description. The ordering of input signals of complex gates

determines the number of columns the gate needs to be realized (Section 5.1.5).

Pass transistors are handled by representing the pass transistor as a simple

gate with two input signals attached to the source and gate, and an output signal

attached to the drain as illustrated in Figure 5.2a. The gate net-list is technology

(ol
(s in_l in_2 ));

(o2
(s in_3 in_4 ));

(o3
(k 2 in_5)):

(o out

(s 1 in_l )
(s 3 in_2 )
)):

in_5

(a) Input gate net-list (b) Transistor schematic
Fig. 5.2

|- in_2
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independent, however information about the technology and design style is neces

sary for deriving the transistor schematic and array structure of the net-list.

The algorithm consists of two annealing stages; each with an associated cost

function. New states are randomly generated and their acceptance is governed by

the acceptance criterion described in the previous section. Briefly these steps are:

Order_Gates();
OrderJtowsO;

In the first stage the gates are ordered in such a fashion as to minimize the max

imum column height while satisfying the specified constraints. In the second stage

the best possible arrangement of rows is found so as to minimize the total number

of columns required to realize the gates. This second stage is not necessary when

all the gates are simple or only one level deep as assumed in [asan82]. The two

stages can be merged together into a single annealing stage or performed sequen

tially. These two steps are described in detail in the remainder of the section.

5.1.1. Ordering the gates

The program begins with an initial arbitrary ordering of gates. The objective

of this stage is to reduce the maximum of the heights of the columns to as great

an extent as possible, a MIN-MAX problem. The column height is the sum of the

heights of the transistors existing in the column plus the bus-through signal row

widths. All the primary inputs and outputs and signals which are constrained to

be at any edge of the matrix are terminated by pads. Pads are restricted to the

periphery of the matrix; they are treated as immovable gates.
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5.1.2. Generating New States

A new state is generated in this stage of annealing process by exchanging two

fundamental units, in this case, gates. Pads can be left-pads or right-pads depend

ing on whether they are constrained to the left or the right of the array. Apartic

ular signal may have both left and right pads if necessary as in the case of bussed

through input signals in connectivity matrices. Pads cannot be interchanged with

each other or gates in this stage.

The selection of new states is based on the following considerations:

(1) Two random numbers between one and the total number of gates are gen

erated.

(2) If the range limiter's condition is satisfied then an attempt is made to inter

change the gates represented by the two numbers.

A range limiter[sech84] limits the range of interchange of a gate. The range limiter

is used because in the latter stages of the annealing the interchange of two gates

has very little chance of being accepted unless it* is very local. So to generate

states which have high probability of being accepted the range of possible inter

change of a gate with another gate is gradually reduced from the total number of

gates at the beginning to only allow neighboring gate interchanges as the tempera

ture approaches zero.

5.1.3. The Cost Function:

The cost function is the key to any algorithm using simulated annealing. It is

crucial that it be truly representativeof the optimization problem.

The most important part is the maximum column height for the given order

ing of gates. Constraints modify the calculation of this maximum height. The
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total length of the signals is also a part of the cost function, though less impor

tant. The length of a signal is defined as the number of gates the signal spans. The

associated cost is the length times the net weight. Critical nets, which must be

kept short, can be weighted heavily so as to minimize their length in the final lay

out. Thus total net length or selected nets lengths can be minimized while

minimizing area.

The procedure to find the cost of aconfiguration is shown below.

procedure fi,nd_cost^pf_confi.gurationO

cost - 0:
column_heights = 0;
forall( signals ) {

1» infinity;
r-0;
forall( gates attached to signal ) {

1» MiN(gate_column.l);
r « MAXCgate_column,r);

>if( signal is constrained to be on the left )
1» leftmost_column_num:

if( signal is constrained to be on the right )
r = rightmost_column_num:

. cost « cost +( r - 1 ) * signaljengthjpeight:
for( col - 1; col <- r ;col - col +1 )

column_heights[col] - column_heights[col] +signaljytdth:

foralK columns )
max_columnJieight - MAX(column_heights);

cost = cost + max_column_height * parami'.
return(cost);
}

The procedure is essentially calculating the maximum density of the signals

at any particular column with weights on signal widths. The width of asignal is
the width of the widest transistor on it. Constrained signals have to extend to the

edges of the matrix. The relative magnitudes of paraml and signaljength_weight
are important in the case of atradeoff between making the critical nets short at

the expense of increased area. Typically the weight of non critical signals is zero
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and highly critical signals can have weights such that they are made short even

with a possible area penalty.

5.1.4. Stopping/Inner Loop Criterion and Temperature Profile

The stopping/inner loop criteria and temperature profiles used are similar to

those described in Section 4.1.6 and 4.1.7.

5.1.5. Ordering the rows

After the first stage, an optimal permutation ofgates would have been found

which minimizes the height of the matrix. In the second stage the nets are first

assigned tracks on rows using the Left Edge Algorithm (LEA)[hash7l]. In the LEA

nets are ordered according to increasing left edge x coordinates and routed in this

order. This is similar to the channel routing problem only no vertical constraints

exist between nets which guarantees that the LEA can route the nets in a number

of rows equal to the maximum density at all columns. Then the rows and the

signals on them are permuted such that the gates are realizable in a minimum

number of columns. As mentioned before single level gates like NAND and NOR

require only one column to be realized. But two and higher level structures may

require additional columns if the ordering of the signals to the gate is not of a par

ticular nature.

Two 2-level gate structures and the ordering of signals which allows realiza

tion in a single column in our layout style with three layers of interconnect are

illustrated in Figure 5.3. This layout style has two layers of metal interconnect

and a polysilicon layer and uses the basic transistor tiles shown in Figure 4.3. The

valid permutations have been expressed in the form of compact rules. Each rule

has an associated number called the column magnitude which is equal to the
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maximum number of columns required to realize the gate provided the rule is

satisfied. As an example the rule

{ permutableU permutable(b c)) . 1 }

means the following orders are valid for a single column realization of the gate:

(a b c) (a c b) (b c a) (c b a)

The ordering (b a c) would require more than one column —using the tiles in Fig

ure 4.3 all the required connections cannot be made by abutment in a single

column.

A single rule may not suffice to span all the whole range of valid orders in

the case of deep structures which can be realized over a range of columns depend

ing on the ordering of the signals. In that case there will be two or more rules

with different column magnitudes. Rules are stronger than other rules for the

{ permutableU pennutable(b c)). 1 }

n

{ pennutable(pennuuble(a b) pennutable(c d)), 1 }

Fig. 5.3 2-level gate structures
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same gate structure if their cplumn magnitude is smaller.

The valid permutations of signals for a large complex gate to be realized in

1.2 and 3 columns are shown in Figure 5.4. Since the depth (or level) of the gate is

4 it can always be realized in 4 columns.

This annealing stage has a different cost function which computes the

number of columns required at any stage given the ordering of rows. It does this

by checking the applicability of the rules to every complex gate. Simple gates are

not considered as they can always be realized in a single column.

For every complex gate the order of input signals is found. This order is

compared against the set of rules for the gate and the strongest satisfied rule

decides the number of columns required for the gate. The cost of the configuration

is proportional to the number of columns or the total width of the columns if

they are of varying widths.

The annealing process in this stage is similar to the first. New states are gen

erated by exchanging two fundamental units - in this case rows, as opposed to

{ perm(A perm(B C) perm(D E) penn(F G)), 1 }

{ penn(perm(AB C) perm(D E) penn(FG)), 2 }

{ perm(penn(AB C D E) penn(FG)),3 }

Fig. 5.4 Rules for a complex gate
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gates. While exchanging rows all the signals on the corresponding rows are inter

changed to maintain the row folding. The temperature profile and stopping cri

teria are identical to the first stage.

5.1.6. Aspect Ratio sizing

The aspect ratio of the folded array may not be desirable. The first stage of

annealing can be modified slightly to find partitions of gates with minimal inter

connections between them. These partitions, represented as sub-matrices can then

be folded separately with constraints on the interconnecting signals.

The partitioning of the array proceeds as follows. Typically, it would be

desirable to have all the sub-matrices of the same size. A range of sizes for each

sub-matrix is found corresponding to the tolerance of sizes specified. Initially the

gates are assigned to partitions arbitrarily without regard to interconnections and

sizes. The configuration is then annealed.

The cost function in this case consists of two components. The first part

corresponds to the number of interconnecting signals required between the parti

tions. The second part is the penalty for too small or too large a sub-matrix size.

If the size of a sub matrix, measured as unfolded area, is not within the range of

tolerable sizes a penally is assessed which is proportional to the increment or

decrement. This penalty is added to the cost function. This is vitally necessary as

otherwise the best possible configuration with regard to just minimizing intercon

necting nets is all the gates in one partition which defeats our purpose. This

approach however allows intermediate configurations to have sub-matrix sizes

outside the tolerable range while striving for an optimal solution.



82

5.1.7. Merging the stages •

The two stages described earlier in the section can be merged together into a

single annealing stage where the optimum ordering of rows and columns to

minimize area is found simultaneously while satisfying the constraints imposed on

the signals. This corresponds to treating the Weinberger array layout problem as a

2-dimensional placement problem rather than as two 1-dimensional ordering

problems like most previous approaches[ohts79.asan82].

This merging is achieved by interchanging gates and rows during the anneal

ing and using a cost function which is a composite of the cost functions described.

For any particular ordering of gates total height of the rows is calculated (as in

the first stage) and for any particular ordering of rows the number of required

columns to realize the gates is calculated (as in the second stage). This determines

the area/cost of the configuration.

The merging of the two stages produces results better than the unmerged

stages especially for circuits with a high percentage of complex gates but with

increases in cpu time. The increase is due to the fact that typically more states

have to be generated at each temperature point. The two approaches are compared

in Table 5.2.

5.1.8. Dealing with large f anin gates

A basic limitation to the minimum row cardinality possible is the maximum

fanin of the gates. This could result in an area-inefficient layout if only a few

gates had very large fanins. This is similar to the long net problem in PLA folding

and is handled similarly. A preprocessing step is included in the algorithm which

detects unusually large fanin gates. These gates are split into two gates each with

half the signals attached to the original gate. During the annealing the two sub-
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gates are constrained to beadjacent to each other at all times. This is necessary for

simple eventual realization. If the sub-gates were not constrained to be adjacent,

one would have to route a signal between the two halves to realize the gate in the

final layout.

5.2. Gate Matrix Layout Optimization

A typical Gate Matrix layout is shown in Figure 5.1b. This layout style is

thecomplement of the Weinberger array in a sense —gates occupy rows instead of

columns and signals occupy columns instead of rows. A gate may need more than

one row to be realizable and folding implies more than one gate occupying the

same row. The problem is to find the ordering of signals which results in the row

height being minimized. Simultaneous compaction ofboth the p and the n parts of

the gate matrix is performed (unlike [wing85] ) as complex gates can make the

two halves asymmetric. Asymmetry implies that an optimal ordering of signals

for minimizing the n part area may not be optimal for the p part.

5.2.1. Ordering the signals

The algorithm is similar to the merged Weinberger array layout optimization

algorithm except that signals are ordered not gates. The ordering ofsignals deter

mines the range of the p and n parts of the gates as well as the number of rows

required to realize the complex gates. Rules for realization in different number of

rows can be formulated for any gate and used to determine the maximum row

cardinality/height given any particular ordering of signals, which in turn deter

mines the area.
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The maximum weighted density of rows at any column is minimized using

an annealing step with an appropriate cost function. The procedure

jind_cost_gf_configuration() has to be modified for the gate matrix case.

procedure findjcostj>f_conjigurationO
{

cost = 0;
column_heights « 0;
forall( gates ) {

1 = infinity;
r = 0;
forallC signals attached to gate ) {

1» MIN(signal_column.l):
r = MAX(signal_column.r);

row_magl =jind_rowjpagnitude( p part of gate );
row_mag2 » fi.nd_row_magnitude( n part of gate ):
total_width » p_part_gate_width * row_magl +

n__part_gate_width * row_mag2;
for( col = 1: col <- r ; col « col+ 1 ) {
column_heights[col] =column_heights[col] +total_width:

1
f orall( columns )

max_column_height - MAX(columnJieights);
cost - penalty_/"orjiisorderO + max_column_height:

return(cost);
}

The function find_row_magnitudeO calculates the number of rows required

to realize the p or n parts of the gate for a particular ordering of columns, apply

ing rules to each gate. The cost function also provides for ordering constraints on

signals. To impose these constraints on the signals, the penalty function approach

is adopted[kirk83]. Intermediate configurations may have signal orders violating

the constraints but they are penalized. The penalty assigned for violations is big

enough to ensure that the final solution satisfies the constraints.

Constraining positions of terminals to a particular side of an gate matrix is

vitally necessary in LSI system design. Positions of signal columns can be bounded

in this approach unlike previous approaches[wing85]. Bounded column constraints
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are very simply implemented by limiting the range of interchange of the con

strained column to within the specified bounds after finding an initial order which

satisfies the bounding constraints. The generation of states proceeds as follows

(1) A random number between one and the total number of columns is gen

erated.

(2) A second random number is generated between the two bounds specified on

the column represented by the first number. If the first column happens to

be within the specified bounds of the column represented by the second

number, an attempt is made to interchange the two columns.

If unspecified, the bounds of a column are the two edges of the matrix. Inputs

and outputs can beconstrained to the left/right sides of the matrix with the inter

mediate signal columns in the middle.

It may be beneficial to have inputsignals and their complements next to each

other in the optimized matrix for the easy placement of input buffers. This takes

the form of adjacency constraints on the associated signals. Adjacency constraints

are accommodated by treating the pairof constrained signals as a single compound

signal and interchanging the compound signal with other (possibly compound)

signals. The two constrained signals may also be interchanged with each other.

If all the gates are simple then the optimization is complete after theanneal

ing; else a post processing step follows.

5.2.2. Expanding the rows

As mentioned earlier, rule formulation for realization of complex gates in

different number of rows in the gate matrix is similar to the Weinberger array

case.
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Given the layout strategy/rules, after the annealing, the row magnitude (as

opposed to column magnitude in the Weinberger array case) of the strongest

satisfied rule for each complex gate is examined. If the row magnitude is 1. then

the gate is realizable in one row and nothing is done. If the row magnitude is

greater than 1. row(s) may have to be added to realize the gate. Transistors are

placed on existing adjacent row positions if they are vacant and placement does

not violate the constraints due to folding, else a new row is added next to the

present row and the gate is realized by placing the appropriate transistors on it.

Typically, if the number of complex gates is a small fraction of the total, no rows

are added.

5.2.3. Dealing with dense signals

The counterpart to the large fanin gate problem in Weinberger array optimi

zation is the dense signal problem in gate matrix compaction. However, this is

slightly simpler as signals can be split or reproduced easier than gates. Signals

feeding into a large number of gates are split into two or more signals, and treated

as distinct nets during the annealing process. They can be constrained to lie next

to each other in the final layout for easy routing, since they will have to be electr

ically connected if necessary. This splitting of signals can vastly increase foldabil-

ity.
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5.2.4. The P and the N parts of the Gate Matrix

Previous approaches assume a one to one correspondence between the pR and

n parts of a gate matrix and that an optimal ordering of signals for the n part

implies an optimal ordering for the p part as well. This is not true if the circuit

has complex gates. Since the structure of the p and n parts of a complex static

CMOS gate are duals of each other, a different set of rules may apply for the reali

zation of the the two parts of the gate in a certain number of columns for a given

layout style. Either a different set of rules can be applied for the p and n parts or

they can be optimized separately. If the latter is the case then routing of signals

between the two parts becomes necessary. The number of layers available for

routing can be two or three, so a multi-layer router like CHAMELEON[brau86] can

be used.

53. Examples and Results

Figure 5.5a shows the abstracted symbolic layout of a a static NMOS multi

level combinational logic circuit with 128 transistors. Series and parallel transis

tors (the tiles of Figure 4.3) have been symbolically represented as boxes. The

lengths and widths of some transistors are twice the minimum size. While optim

izing the initial layout all the transistors were assumed to be ofequal dimensions.

i.e. the row cardinality was minimized disregarding the individual row widths.

Inputs were constrained to the left of the matrix. The layout was obtained in 20

seconds on a DECVAX 8600 running Berkeley UNIX4 4.3. It's size is 29 by 23

units.

4 UNIX is a Trademark of AT&T Bell Laboratories
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The circuit was abstracted and optimized again but this time the height of

the array. i.e the sum of individual row widths, was minimized. The resulting

layout is shown in Figure 5.5b. This layout has the same row cardinality but its

size is 27 by 25 units. 10% smaller than the previous one. This illustrates the

necessity in providing for non uniform cell dimensions in a gate matrix or Wein

berger array layout algorithm. If the transistors had been of widely varying the

reduction would have been greater.

The results obtained by optimizing for row cardinality with results obtained

by optimizing for total row height for several circuits as gate matrices and Wein

berger arrays with a variety of constraints are compared in Table 5.1. ( b.c -

bounded column, ord. - ordering. l.r. » inputs left and outputs right). The

transistor lengths and widths varied by about a factor of 3. The results indicate

that area savings of 10-20% are possible.
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EXAMPLE # gates constraints # signals I Row cardinality
aTea %

n Row height
area %

Area 11/
Area I

Cpu Time
(seconds)

MAT1
25

none

b.c

ord.

48

37

38

43

34

34

39

0.92

0.89

0.91

17

16

34

MAT2
70

none

b.c

• ord.

86

40

43

43

35

39

40

0.87

0.91

0.93

22

21

42

MAT3
77

none

b.c

ord.

93

31

38

36

28

34

32

0.90

0.89

0.89

16

16

30

MAT4
63

none

b.c

ord.

85

52

53

59

46

47

50

0.88

0.88

0.85

16

16

29

MAT5
56

none

b.c

ord.

73

44

49

47

40

44

44

0.91

0.90

0.93

23

21

40

MAT6

561

none

b.c

ord.

644

25

25

28

20

20

24

0.80

0.80

0.85

915

895

1650

ARR1 25 none

LT.

48 38

60

32

54

0.86

0.90

15

17

ARR2 70 none

Li.

86 36

43

32

38

0.89

0.88

25

27

ARR3 77 none

Lr.

93 36

43

30

36

0.83

0.83

16

18

ARR4 63 none

l.r.

85 50

53

45

47

0.90

0.88

19

21

ARR5 56 none

Lr.

73 37

59

32

52

0.86

0.88

21

23

ARR6 561 none

l.r.

644 20

26

17

23

0.85

0.87

845

905

Table 5.1. Comparison of row cardinality with row height optimization

EXAMPLE # gates % complex
Bates

Initial

area

ALG-I
final area

ALG-n

final area

ALG-I
time (sec)

—

ALG-n

timeCsec)

ARR1 25 12 1200 650 650 17 26

ARR2 S6 10 4088 2128 2128 22 29

ARR3 56 20 6020 2310 2244 16 26

ARR4 70 35 1232 756 675 16 21

ARR5 28 30 4345 1705 1643 23 31

ARR6 561 10 373520 86420 86122 905 1100

Table 5.2. Comparison of ALG-I (unmerged) and ALG-II (merged)
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Cpu time has always been a major concern with simulated annealing

approaches. However, though the number of states generated is large the opera

tions required per state are minimal. In particular, the procedure

jind_costj>fjconfiguration() has been implemented such that all calculations are

incremental. A very large circuit consisting of 561 gates and 2300 transistors,

which is a multi-level random logic implementation of the Berkeley SOAR micro

processor controller was partitioned and laid out using this program. The total

run time for partitioning and folding of the partitions was just 203 seconds on a

8600. The circuit was also laid out without partitioning. The area in this case was

smaller but the aspect ratio may not have been desirable. The run-time in this case

was 905 seconds. As indicated in Table 5.1 very large circuits have been laid out

using this program with reasonable cpu time expenditure.

Table 5.2 compares the merged 2-dimensional approach (ALG-II) to Wein

berger array layout with the sequential ordering approach (ALG-I). Cpu times,

initial and final areas are given. Number and complexity of gates are also indi

cated for each circuit. As the results indicate the merged approach does better

when the percentage of complex gates is high.

53.1. Solution versus Time & Temperature versus Cost Graphs

One dimensional folding being a simpler problem to solve than the

corresponding two dimensional problem, cpu time requirements are smaller. One

can afford to operate at a temperature profile which just about guarantees optimal-

ity. Figure 5.6a shows the plots of different temperature profiles used for the

example under consideration during the annealing process. Figure 5.6b illustrates

the quality of the solution for each of the temperature profiles and Figure 5.6c

illustrates the behavior of the cost function during each of the annealing processes
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with the corresponding temperature profile.

5.4. Conclusions

New techniques for layout optimization of gate matrices and Weinberger

arrays using Simulated annealing have been presented in this chapter. Constraints

can be built into the simulated annealing approach and thus optimization can be

done under a wide variety of constraints. Attractive features of this approach

include the ability to partition large matrices into smaller ones to achieve desirable

aspect ratios and selective treatment of signals if necessary.
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CHAPTER 6

Multiprocessor Implementation
of Simulated Annealing Based Algorithms

A parallel implementation of the simulated-annealing-based algorithms of

Chapters 4&5 on the Sequent Balance 8000 multi-processor[deva86b] is described

in this chapter. Modifications to the algorithms are necessary to fully exploit

parallelism. These modifications have resulted in an efficient parallel implementa

tion. The techniques used in this multi-processor implementation can be used to

parallelize simulated annealing over a wide varietyof problems.

6.1. Simulated Annealing on Multiprocessors

A multi-processor implementation of the algorithms described in Chapters 4

& 5 using static windowing of gates or signals between the various processors is

relatively simple. Static windowing implies that each processor is allocated a set of

gates/signals in the array —a window is implemented on each processor so it sees

only a portion of the array. Interchanges within a window do not affect the cost

outside that window, hence window interchanges can proceed in parallel since

they are independent. The acceptance and rejection of states can be performed

based on the initial and final window costs. Unfortunately, this scheme invari

ably results in a low-quality solution. This is because constraining the moves to

within a window violates the simulated annealing paradigm of generating moves

across the entire configuration space and the globally optimal* solution cannot be

reached.

Dynamic windowing implies that the portion of the array allocated to each

processor changes with time. Each processor begins with an allocated region in the
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array corresponding to the window implemented on that processor, but the win

dows of the processor move after a certain number of states have been generated

within the window.

Dynamic partitioning implies that the allocation of gates/signals to processors

changes with time. In our implementation dynamic partitioning of signals/gates is

achieved by inter-window exchanges, signals belonging to different windows are

interchanged and the cost of the global move is calculated in parallel by all the

"affected" processors.

Both dynamic windowing and dynamic partitioning techniques have been

used in this implementation to increase efficiency, as distinct from previous tech

niques for multi-processor simulated annealing[cass86.krav86J.

6.2. Dynamic windowing

In the uni-processor version of the algorithm the probability of exchange of

gates throughout the array is uniform especially at high temperatures. This is

important to preserve the global convergence properties of simulated annealing

based algorithms. Astatic windowing scheme (where every processor is assigned a

certain region in the array which never changes, and with interchanges only

within the window) results in sub-optimal solutions since the probability of

exchange outside the window is zero.

The goal of dynamic windowing is to try to increase and make uniform the

probability of global interchange across the array while maintaining processor

efficiency. Windows implemented on processors do not overlap but move across the

array, so a larger number of different gate interchanges are possible. Dynamic win

dowing is illustrated in Figure 6.1. Thus after the first window move a gate origi

nally in window 1can move to window 3. after two window moves to window 4
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window
•> array

T \k

array
<• window

Fig. 6.1 Dynamic windowing

with a probability that can be computed. The probability distribution ofpossible

column positions ofa gate originally in the first column is shown qualiutively for

the uni-processor ( single window ) case and the multi-processor ( dynamic win

dowing ) case in Figure 6.2. Dynamic windowing causes the probability distribu

tion in the multi-processor case to smooth out with increasing number of moves

and window movements arid to approach the uni-processor distribution.

63. Implementation

Two different cycles are possible during the annealing process. In the first

kind of cycle, each processor generates gate interchanges within its current win

dow in the array and calculates the window cost. Since the interchange is within

the window, this calculation of net length and signal density is independent of

other processors. Then the first available processor decides the acceptance/rejection
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Fig. 6.2 Qualitative probability distributions
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of these states sequentially. A window. W. is picked and the overall cost for the

whole configuration is calculated using the old window costs for the other win

dows. If the move is accepted. Ws cost is updated, so the following interchanges

(and windows) picked will now use this new cost for calculation of the total cost.

This is done for all processor interchanges. The acceptance/rejection process needs

to be sequential because one part of the cost function is the maximum of the sig

nal densities across the whole array, not just a window. However, the computa

tions involved are very few. especially in comparison with the computations
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required to calculate the cost.

In the second kind of cycle, the gate interchanges are not restricted to within

aprocessor window. A single processor generates amove and the evaluation of the

cost function for this single global move proceeds in parallel for each processor

window. Elaborating, each processor. evaluates the portion of the cost accrued

from the signals attached to the gates presently within its current window. If

gates from windows 1 and 3 are interchanged, the densities of signals can change

not only in windows 1and 3 but also in the window between them, namely win

dow 2. The total cost is found and the acceptance/rejection of this state is decided

by the first available processor. This single global move uniformly increases the

probability of the gate being in any position in the array, making the probability

distribution more similar to the uni-processor version.

The first kind of cycle, which generates several moves in parallel, is more

efficient in our implementation. However, the second cycle, involving a global

move whose cost is calculated by several processors in parallel, is vital for gen

erating a high quality solution since it enlarges the configuration space. Dynamic

windowing as described earlier increases the efficiency by decreasing the need for

the second kind of cycle. The windows of the processor are moved to the right or

left after a certain number of moves have been generated. The windows can be of

varying sizes during the annealing process as illustrated in Figure 6.1.

The overall multi-processing algorithm is illustrated in Figure 6.3. The rou

tine UmboQ is a simple loop around which processors spin while idling. The type

of move to be generated, i.e. a inter-window or a set of intra-window moves is

decided by the function decide_move_type() depending on the required ratio

between cycles. A synchronization point is provided for initialization of windows

after a window move.



while( stopping_criterion() is FALSE ) {
while( innerJpop_criterion() is FALSE ) {

/*
* Generate new states in each processor and find the cost
* of the states w.r.t the initial configuration.
V

goto genmain;
generate:

gen_state_pidjcost( myid. TYPE ):
limboQ'.
goto window'.

genmain:
gen_stateJJLnd_cost( 1, TYPE );
wait( till all kids done ):

/*
* Master processor decides whether to accept these states or not.
V

acceptjp"_reject_states( TEMP ):
TYPE « decide_movejype0l
goto main;

/»
* Windows are moved to the left and initialization for next cycle.
V

window:

initialize_windows{ myid );
limboQ:
goto generate'.

main:

initialize_windows{ 1 ):
wait( till all kids done );

}
/»
* Master processor updates temperature
»/

TEMP = updateJemp( TEMP ):

}

Fig. 6.3 Multiprocessor Simulated Annealing
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Thus in this scheme, the partition of gates amongst various processors

changes even for a given window configuration due to inter-window exchanges
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(second cycle) implying dynamic partitioning of gates between processors, and the

window of each processor also changes with time, implying dynamic windowing

across the array.

The optimal relative frequency of the two different kinds of cycles, the fre

quency of window movements and the amount of window movement was empiri

cally determined over a set of benchmarks. For efficiency reasons the relative fre

quency of the two different kinds of cycles varies with temperature. At high tem

peratures, the need for global moves is higher. The lower the temperature, the

smaller the probability that a interchange of gates spanning a large distance will

be accepted - hence the need for such moves is lesser. In fact, in the uni-processor

version of the algorithm, a range-limiter was implemented at lower temperatures

to generate moves with a high probability of acceptance which effectively

amounted to clustering the gates into partitions. At high temperatures the ratio is

1:1 and as the temperature decreases the number of cycles of the second kind is

decreased to zero. The frequency of window movements is constant throughout -

at every temperature point the number of movements is equal to the number of

processors. The windows move to the right by an amount equal to half the win

dow size.

This windowing and partitioning scheme preserves the convergence properties

of simulated annealing based algorithms to the global optimum by maintaining the

probability of different moves to be similar to that of the uni-processor (uni-
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window) version.

6.4. Results

Results using dynamic windowing and dynamic partitioning techniques on

some large examples are given in Table 6.1 for 1-8 processors on the Sequent Bal

ance 8000 multiprocessor. The solution obtained was the same in all cases; how

ever the number of states generated is different as indicated. Though dynamic

windowing and partitioning are efficient, more states need to be generated for

larger number of processors to keep the probability of reaching the global

optimum the same. The efficiences have been calculated for equal quality solutions

and not merely for same inner loop criteria which would be misleading.

It is interesting to note that for example-1 even though 1120 moves were

generated for 8 processors as compared to 640 in the single processor case, the

efficiency is as high as 74.3%. This is because the cost function computation time

depends on to the distance between the gates which are being interchanged. Inter

changing gates which are further apart involves greater computations while

evaluating the cost of the new configuration. Given a parallel move cycle with

interchanges within each window, the average distance between the gate inter

changes for a N processor configuration is less than that for a M processor



No. of

procs

States per
temp pt

Time

(sec)
Final Cost Eff.

%

1 640 742.8 25100 100

2 640 374.1 25110 99.2

3 640 254.6 25110 97.2

4 800 203.5 25090 91.2

5 880 172.7 25100 86.0

6 960 154.8 25110 79.9

7 1040 138.1 25080 76.8

8 1120 124.9 25090 74.3

Example 1

No. of

procs

States per
temp pt

Time

(sec)
Final Cost Eff.

%

1 560 626.1 21510 100

2 560 316.8 21530 98.8

3 700 213.3 21500 97.8

4 760 169.9 21520 92.1

5 800 144.0 21510 86.9

6 920 129.4 21540 80.6

7 1000 115.4 21500 77.5

8 1050 104.2 21490 75.1

Example 2

Table 6.1. Efficiences on the Sequent Multiprocessor

configuration if N > M

102

6.5. Conclusions

A multi-processor implementation of a simulated-annealing-based algorithm

for a topological optimization problem has been presented in this chapter. New

techniques, namely, dynamic windowing and dynamic partitioning schemes have

been used to preserve the convergence properties of simulated annealing to the glo-
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bal optimum of the configuration space while achieving high processor utilization.

These techniques can be used for parallel implementations of simulated-

annealing-based algorithms over a wide range of problems.
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CHAPTER 7

Conclusions

This report has presented a topological optimization tool for array-based lay

out styles which can be used in an automated pipeline for synthesizing

combinational/sequential logic circuits in silicon. The array optimization tool

allows various design and layout styles to be explored, and then the best alterna

tive for a particular circuit can be chosen. This is in contrast to design and layout

style specific systems which offer virtually no alternatives in the automated syn

thesis process.

The tool described can be used in the lower end of a silicon compiler, after

the logic has been extracted from high level behavioral or register-transfer level

descriptions and minimized using logic minimization techniques[bray84a.bray84b].

The major topics covered in this report were twofold. Topological compac

tion algorithms are a key to producing an area-efficient layout. Topological optimi

zation is performed on array based structures using a technique known as folding.

Folding implies that more than one signal/gate occupies a row or column in a

array. All previous folding algorithms break down for irregular arrays, i.e. arrays

with non uniform cell sizes. A generalized array optimization scheme, which folds

structures ranging from highly regular PLAs. to irregular SLAs was developed and

implemented. Constraining signals to locations in the array is vitally necessary

from a LSI design point of view. The algorithms allow for a variety of constraints

and optimize for minimum area within these constraints. The results obtained are

excellent. The last phase consists of tiling the compacted array, and generating

and actual mask level layout. Context-based tiling[mayo83][hofm85a] is a power-
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ful tool which separates symbolic compaction and layout generation. After the

array has passed through the tiler, the actual layout is produced by stitching

together the individual tiles in the array.

Simulated annealing has been applied successfully to a wide variety of com

binatorial optimization problems. A parallel version of simulated annealing for a

topological compaction problem has been developed. High processor utilization was

achieved using dynamic windowing and dynamic partitioning techniques. These

techniques are general and can be used to parallelize simulated-annealing-based

algorithms for a wide variety of layout problems.

Approaches to efficient multistage combinational logic synthesis have been

have, been reported in [bray84b<hofm85a]. Multistage sequential logic synthesis is

still an open problem. At a high level, decisions regarding the break-up of finite

state machines need to be made. At a lower level, each finite state machine can be

synthesised as many stages of combinational logic networks feeding into clocked

registers (which store the present state). Placing the sets of registers between the

combinational logic stages, so as to optimize for eventual area and speed of the

synthesised logic is an non-trivial problem. Once a multistage sequential logic

network has been designed at the gate/flip-flop level, the system described here

provides an automatic path for layout of the circuit as aStorage/Logic Array.
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NAME
genie _ a Generalized ArrayOptimizer

SYNOPSIS

genie [options] inputfile [ > outputfile J
DESCRIPTIONGenie is a program that performs topological compaction of arrays using acombinatorial

optimization technique called simulated annealing. The primary goal is to optimize the sil
icon area occupied by the array. The kinds of arrays which can be compacted are PLAs.
Weinberger arrays. Gate matrices. Multi-level matrices and SLAs. Simple/Multiple
constrained/unconstrained folding is supported.

Genie is run in a batch mode. Genie reads the symbolic representation of the array to be
compacted and the constraints under which the compaction is desired from an input file.
Genie also requires a technology file which contains information about the sizes of the con
stituent cells in the array. Genie produces a compacted array in a symbolic format folded
under the various constraints. Genie can be run for long or short runs depending on the
amount of cpu time the user wishes to spend.
Genie needs a unfolded connectivity matrix description as its input. It produces a
simply/multiply folded matrix compatible with the Tinkeril) input format. Both
simply-folded and multiply-folded MLMs can be assembled by the program Tinker.
Tilers for SLAs. Weinberger arrays and Gate matrices will be available in the near future
with Genie output compatibility.

INPUT/OUTPUT
The input to Genie is a matrix with symbolic characters. The characters can be anything.
However, each character size must be specified in the genietech file in syntax that will be
described. Some reserved characters like the . (dot) have special meanings. The . character
implies a connection and no cell at that particular location. Presently. Genie accepts only
unfolded matrices as input, and nets inGenie are implicit. All cells (characters other than
a .) on the same row are assumed to be connected by a horizontal net and all cells on a
column are assumed to be connected by a vertical net. The sizes of the cells has to be
specified in the tech file in the working directory in the simple syntax of

character width length
on separate lines for all the different characters except the . character. An example tech
file is shown below. The technology file should reside in the current working directory and
be called genie.tech.

# parallel transistor
pll
PI 1

cl 1

# series transistor

si 1

SI 1

# output device
ol 1

01 1

# flip flop
F55

f 55

# inverter

155

i55

# schottky diodes
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01 1

1 1 1

# bus through
R 1 1

rl 1

+ 1 1

Al 1

" 1 1

OPTIONS
-octr reads the OCT logic view, from the cell called cellName. The view read is optlogic.

This view is normally written by MIS(l).
-octw writes into the OCT symbolic view, to the cell called cellName. This view is read

by the module generation programs ELECTRA(l) and PLA generators. The view
consists of OCT bags attached to a GENIESTRUCTURE bag.

-gread reads a gate net-list from a text file. The gate net-list is described in a lisp-based
syntax. Each line inthe file describes a gate in the syntax shown below.

(o out (s (p sigl sig2) (p sig3 sig4)));
represents a two level static CMOS gate with output signal out and input signals
sigl thru sig4. s denotes series connections between transistors or branches and p
denotes a parallel connection. This description is converted internally into a con
nectivity matrix for a static CMOS layout style being used by the GEM module
generator. This connectivity matrix is transparent to the user,

-m restricts the row folding to being simple. By default, multiple row and column
folding is assumed.

-I restricts the column folding to being simple. By default, multiple row and column
folding is assumed.

-pla is an option which translates an ESPRESSO file into the Genie format,
-d is the debug option and is useful only to someone who knows the program,
-r restricts the folding to be row folding only, no column folding is performed. This

is used for Gate Matrix and Weinberger Array structures,

-c restricts the folding to be column folding only, no row folding is performed. This
is used for Gate Matrix and Weinberger Array structures,

-v takes into account the varying sizes of the cells during topological compaction. This
is an expensive option, cpu time wise and should be used only when the cell sizes
vary widely,

-p Assumes an AND-OR PLA structure, and performs simple/multiple column fold
ing of the PLA. and constrains the input and the complement to lie adjacent to
each other in the AND plane. No row folding is performed since an AND-OR struc
ture is assumed and the two planes are not merged.

-s Identical to the -p option except that the input and complement are not constrained
to lie adjacent to each other.

-w is used to control the aspect ratio of the final folded matrix. This implies column
folding is preferable to row folding. Note that this is different from the -c option
in that it allows row folding, simple or multiple. The default is that row folding is
preferable to column folding. However, using the specify -i option more control on
the aspect ratio can be obtained.
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-o is used for Domino MLM structures. Domino MLM structures have extra buffer
circuitry, (see input file format).

-i is the specify option. This can be used to control the CPU time required for the
annealing process, by specifying the number of states per fundamental unit per
temperature point. It also allows specification of aspect ratio requirements by the
row and column parameters which are proportional to the preferences associated
with row and column folding.-The five parameters asked for if this option is used
are States_begin. States_end. Row_param. CoLparam and Start_temp. Statesjxigin
is the number of states generated per fundamental unit per temperature point in
the beginning of the annealing process and it gradually is changed to States_end
which should always be greater than or equal to Statesjjegin. Row_param and
CoLparam are aspect ratio control parameters and should not differ by more than
a factor of 2 or be changed from the default values by more than a factor of 2.
Start_temp is the specified starting temperature which is calculated internally but
can be changed by the user. The default values for the first four parameters are 1.
1. 10 and 10 respectively. A good choice for obtaining better results without great
increase in cpu time for Statesjxsgin and States_end are 1 and 5 respectively. A
good rule of thumb for changing Start_lemp while changing Sutes_begin and
States_gnd is to increase it over the default temperature by the factor of increase in
States_gnd over its default value.

INPUT FILE FORMAT
An example input file is shown below.

new 42 22
SRCls<2> .ss....
readRFaccessAl o —

3 so

CPIPEls<7> s.s..s—ssss—js..

DSTvalid* .p.p
pbusDtoINA .p.p p...
SRClequalDST2* .p

CPIPEls<7>* .p.pp...s -..
readRFaccessBl ..o

SRC2equalDST2* ...p—
SRC2equall6 ...p

Alzerol —o

18 ....po
21 so

SRCls<2>« ......s s

22 so s.ss....

SRCls<l>* .s s.ss....
SRCls<0>* . .s s....

SRCls<3>* .—a
SRCls<4> .s.
pbusDtoINA* -s s s

Alzeroforce o

busDiobusAa o -
preadSWPtoA po
preadPCtoA p...o
preadTBtoA —~..p.o ~

35 p..o.-..p...
42 s o....
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43 ..S....0

44 s..o

45 ~..so

SRCls<0> s.s

SRClequalDST2 s
DSTvalid s s

opc21oad* s s
DSTtobusDa2 o...

pForwardtoINB po..
66 ~ so.

68 - so

SRC2equalDST2 s.
SRC2equall6» s.

left CPIPEls<7>* DSTvalid* SRC2equalDST2* 42
right pForwardtoINB SRCls<2> 42
ordered left CPIPEls<7>* DSTvalid*
ordered right 42 SRCls<2>

The unfolded input matrix shown represents amulti-level combinational circuit. The tiles
s and p refer to series and parallel transistors, the tile o represents a output tile. Genie
however, is only concerned with the existence of a tile and its size but not its function.
The constraints on the signals are expressed using a left-right noution. Note that asignal
can be constrained to both sides of the array, like 42 in the example. Ordering constraints
can be placed on a set of signals. For example, in the array shown above. CPIPEls<7>*
has been constrained to lie above DSTvalid* on the left hand side of the array. Ordering
constraints can be placed only on signals which have been constrained to the left or right
of the array using the left and right declarations. The corresponding left and right declara
tions must precede the order constraint declaration. For Domino MLM's ( -o option; an
extra buffer row is required at the top of matrix which is not counted in the number of
rows specified in the beginning of the file. This extra row indicates the type ofbuffer s or p
for the gate occupying the column. An example domino MLM is shown below with the
extra buffer row. Domino MLM's can be multiply row and simply column folded.

new 10 5
spspp

sig_01 ....0

sigj>2 0....

sigj>3 so...

sig_04 S.S..

sig_05 .p.p.

sigj>6 .p.p.

sigj>7 .p..p

sigj>8 .p.pp

sig_09 ..0..

sigJO ..so.

For static CMOS circuits, the p aand n parts of the matrix may need to remain separate.
The -s option constrains them to be so. Given astatic CMOS MLM. athird number has to
specified in the new declaration which is the demarcation between the n and pparts of the
matrix (which is the row number corresponding to the last p channel signal). Only row
folding is allowed in this case and the signals on opposite sides of the demarcation never
intermix with each other.
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sig_01_n p.o.

sigj)2_n op..

sig_03_n p.p.

sig_04_n .O.S

sig_05_n p.po

sig_01_p s.o.

sig_02_p OS..

sig_P3_p S.S.

sig_04_p .O.S

sig_05_p S.SO

The new declaration's associated numbers are the number of rows, number of columns and
the last n column, namely row 5. For pla folding genie directly takes aPLA input file and
converts it into its own format using the -pla option. Thus to fold a PLA m a AND-OR
fashion constraining the input and the complement to lie next to each other in the folded
array one can use
genie -pla inp.pla Igenie -p > inp.folded
If constraints are to be specified, the file generated by genie -pla has to contain the con
straint information, the input PLA file cannot contain the constraint information. An
example input pla file is shown below

.13

.0 4

.p4
.ilb inl in2 in3

.ob outl out2 out3
101 1101

-00 0101

1-0 0010

001 1110

•e

This is converted into the Genie input format and folded. The .ilb and .ob declarations
serve to name the input and output signals, and all inputs/outputs have to have distinct
names. If the .ilb and .ob declarations dont appear, distinct default names are generated
within Genie for them. The conversion to the Genie input format entails expansion of the
AND plane of the PLA so each input is converted into a signal and its complement. If a
signal or its complement does not feed into any product terms, the signal/complement is
dropped.

OUTPUT FILE FOMVT
An example output file is shown below.

new 29 21

P —.0.......
o...p.o...s.

..S...S.SS.S....S..SS

.0 s

....ss....s...p.o....

s

.s p...o
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s..s

.S..O...S

.ss..

P-o ~

P-P p
O.S .0

O O..S

P-P -P--0.
p.—0

p..p...p.so.s..s.ss.

-p
S.O..

...O..S....SO

s

••••5S******••••*••••

S..S.SS..

....s

•S...0 .0

0 ~

....ss..o....pp

S....S...

( row0 SRC2equall6 0 DSTtobusDa2 13 )
( row 1 pForwardtoINB 0 45 15 )
(row2CPIPEls<7> 0)
( row 3 66 0 )
( row 4 pbusDtoINA* 0 preadTBtoA 14 )
(row5SRCls<4> 0)
( row 6 SRCls<0> 0 )
( row 7 SRC2equall6* 0 18 7 )
(row8SRCls<2>*0)
( row 9 SRC2equalDST2 0 44 4 )
( row 10 SRCls<2> 0 )
( row 11 SRC2equalDST2* 0 readRFaccessBl 2 )
( row 12 pbusDtoINA 0 )
( row 13 11 0 Alzeroforce 9 )
( row 14 Alzerol 0 42 17 )
( row 15 DSTvalid* 0 preadPCtoA 14 )
( row 16 preadSWPtoA 0 )
( row 17 CPIPEls<7>* 0 22 10 )
( row 18 SRClequalDST2* 0 )
( row 19 43 0 )
( row 20 3 0 21 11 )
( row 21 SRCls<3>*0)
( row 22 DSTvalid 0 )
(row23SRCls<l>*0)
( row 24 SRClequalDST2 0 )
( row 25 68 0 busDtobusAa 14 )
( row 26 readRFaccessAl 0 )
( row 27 opc21oad* 0 35 8 )
( row 28 SRCls<0>* 0 )
( column 9 0 13 )
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The folded version of the matrix is shown above. Multiple folding of horizontal signals
and simple column folding was done. The fold information is represented below the
matrix in row and col declarations. A row declaration has the form

(row rowNum sigNamel startingColNuml <sigName2> <startmgColNum2>.J
where startingColNuml is the starting column of the sigNamel. We thus have signal sig
Namel beginning at startingColNuml. and sigName2 beginning at startingColNum2. The
columns are numbered from 0 to numCols - 1. The col declarations have no signal names
associated with them, we have

(col colNum startingRowNuml <startingRowNum2> ...)
which implies that column colNum has avertical signal starting at startingRowNuml and
another vertical signal starting at startingRowNum2 and so on. The rows are numbered
from 0 to numRows -1. In the above output file all the rows including the unfolded ones
have been described with the signal names specified. For example, row 0 has SRC2equall6
starting at column 0 and DSTtobusDa2 beginning at column 13. Column 9 has been
folded with the first vertical signal starting at row 0 and the second starting at row 13.
Genie's output file contains all the columns in the col declarations but here, for brevity,
the unfolded columns have been omitted.

DIAGNOSTICS . .
The input routine gives out error messages in case of wrong specification of the mput
matrix rows and columns and exits.

SEE ALSO
mkarray(1) electra(1) mis(1) espresso(1)

AUTHOR
Srinivas Devadas (devadas@ic.berkeley.edu)

BUGS

The -v option is not fully debugged.
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