Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TOPOLOGICAL OPTIMIZATION OF MULTIPLE LEVEL
ARRAY LOGIC

by

Srinivas Devadas

Memorandum No. UCB/ERL M86/95
12 December 1986

TOPOLOGICAL OPTIMIZATION OF MULTIPLE LEVEL ARRAY LOGIC

by

Srinivas Devadas

Memorandum No. UCB/ERL M86/95

12 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

. TOPOLOGICAL OPTIMIZATION OF MULTIPLE LEVEL ARRAY LOGIC

by

Srinivas Devadas

Memorandum No. UCB/ERL M86/95
12 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

ACKNOWLEDGEMENTS

I am indebted to my research advisor Professor Richard Newton for his
encouragement and support throughout the course of this work. 1 am also grate-
ful to Professors Alberto Sangiovanni-Vincentelli and Carlo H. Sequin for the

interest they ha\)e shown in my research project.

This work is supported in part by the Digital Equipment Corporation, the
Semiconductor Research Corporation, and the Defense Advanced Research Projects
Agency under contract N00039-86-R-0365. Their support is gratefully ack-
nowledged.

All the members of the 'CAD' group” here at Berkeley have helped me in
many ways over the past two years — I wish to especially thank Tony Ma, Karti
Mayaram, Jeff Burns, Fabio Romeo, Albert Wang, George Jacob and Dr. Ruey-sing
Wei.

Last but not the least. I thank Almighty God for unflagging moral support

during the ups and downs in my life at UCB.

ABSTRACT

A generalized topological optimization tool for array based layout styles is
presented. This tool can be used for automated layout synthesis of logic networks
in a variety of technologies and design styles. including static CMOS, static NMOS
and dynamic CMOS Domino structures. Results obtained compare favorably with

technology and design-style-specific synthesis systems.

' The topological optimization tool is a generalized array optimizer, which can
be used for the multiple constrained folding of Programmable Logic Array. Gate
Matrix, Weinberger Array. Multi-Level Matrix, and Storage/Logic Array struc-
tures. The optimizer uses simulated-annealing-based algorithms and performs as
good as or better than existing specialized PLA folding programs and Gate Matrix
folders. The different layout style alternatives allow area-efficient synthesis of
logic circuits in various technologies. Layout for sequential logic in the form of

Storage/Logic Arrays has been automated for the first time.

A multi-processor implementation of the simulated-annealing-based algo-
rithms for generalized array optimization has been developed on the Sequent Bal-
ance 8000 multi-processor. Dynamic windowing and dynamic partitioning
techiques have resulted in an efficient parallel implementation of simulated

annealing.

CHAPTER 1I: INTRODUCTION

CHAPTER 22 ARRAY BASED LAYOUT STRUCTURES

CHAPTER 3: SIMULATED ANNEALING

TABLE OF CONTENTS

1.1 Automatic Layout of Logic Circuits

1.2 Previous Work in Automatic Layout

1.3 Organization of this report

1.4 Results Achieved

2.1 Programmable Logic Array ..

22 Weinbefger Array

2.3 Gate Matrix.

2.4 Multi-Level Matrix

2.5 Storage/Logic Array

2.6 Generalized Array Optimization

2.6.1 Defining the Problem

2.6.2 GENIE: A Generalized Array Optimizer

3.1 Introduction to Simulated Annealing

3.2 Theoretical Results

3.3 Previous Applications:

3.3.1 Logic Partitioning

3.3.2 Global Wiring

3.3.3 Cell Placement

3.3.4 Channel Routing

3.4 Conclusions

CHAPTER 4 GENIE: A GENERALIZED ARRAY OPTIMIZER

w

O 0 O & b

11
14
15
16
17
18
18
20
21
21
22
23
24
26
27

4.1 A Generalized Array Compaction Algorithm......... aesrnamneises :

4.1.1 The problem of generalized array optimization

4.1.2 Array Optimization using simulated annealing

4.1.3 Annealing the Matrix

4.1.4 Generating New States

. 4.1.5 The Cost Function

4.1.6 The Stopping and Inner Loop Criteria

4.1.7 Temperature Profile

4.1.8 Routing the Horizontal Nets

4.1.9 Routing the Vertical Nets - The Final Stage

4.1.10 A Brief Description of Approach 2

4.1.11 Splitting Long Nets

4.1.12 Parameter Extraction

4.1.13 Temperature versus Cost Graphs

4.2 Examples, Comparisons and Implementation

4.2.1 Implementation Details

4.2.2 Comparisons with Existing Tools

4.3 Storage/Logic Array Compaction
4.3.1 Modifications for SLA Compaction

4.3.2 Constraints During the Annealing

4.3.3 Aspect Ratio Sizing

4.3.4 Examples

4.4 Conclusion

CHAPTER 5: WEINBERGER ARRAY AND GATE MATRIX LAYOUT wececrecnee

5.1 Weinberger Array Layout Optimization

5.1.1 Ordering the Gates

5.1.2 Gerierating New States

i

28
28
29
35
36
39
40
41
41
42
44
45
46
47
50
53
56
62
63
65
66
66
70
7
73
75
76

5.1.3 The Cost Function....

5.1.4 Loop Criteria and Temperature Profile......

5.1.5 Ordering the rows

5.1.6 Aspect Ratio Sizing

5.1.7 Merging the Stages

5.1.8 Dealing with large fanin gates

5.2 Gate Matrix Layout Optimization

5.2.1 Ordering the Signals

5.2.2 Expanding the Rows

5.2.3 Dealing with Dense Signals

5.2.4 The P and the N parts of the Gate Matrix

5.3 Examples and Results

5.3.1 Time and Temperature Profiles

5.4 Conclusions

CHAPTER 6 MULTIPROCESSOR IMPLEMENTATION OF SA ALGORITHMS.

6.1 Simulated Annealing on Multiprocessors

6.2 Dynamic Windowing

6.3 Implementation

6.4 Results

i

76
78
78
81
82
82
83
83
85
86
87
87
91
92
94
94
95
96

101

6.5 Conclusions

CHAPTER 7: CONCLUSIONS
REFERENCES '

102
104
106

CHAPTER 1

Introduction

Much work has gone into automiting the integrated circuit design process
over the past few years (e.g. [park79] [new81] [bray85]). Logic synthesis tools
and tools for automatic layout of logic networks are very desirable from a
viewpoint of a fast design turnaround time. However, these automatically gen-
erated designs are invariably less efficient area-wise or speéd-wise than manual
designs, or do not meet critical i:erformance requirements. The large number of
possible design styles, static or dynamic, single MOS or CMOS, complicate the auto-
mation process. In this report, a framework for topological optimization during
automatic logic network layout in the form of array-based structures is presented.
The system produces designs under various constraints and a variety of design
styles resulting designs as good are as good as, or better than, corresponding

manual designs.

1.1. Automatic Layout of Logic Circuits

Given a gate level description, the goal of automatic layout is to synthesize a
corresponding layout implementing the logic in the input description while taking
into account constraints on the area and speed of the finished module. Optimiza-
tion steps are crucial in a automatic layout system to ensure that the resulting

layouts are area and speed efficient.

The automatic layout step involves many decisions. Depending on the tech-
nology. a layout style has to be chosen. Two broad choices exist a standard cell

place and route method[souk81], or adopting a regular array-based layout

style[wein67][lope81] [pati75][h§fm85a][wood79]. Array-based layout styles are
relatively easy to automate but tqpological compaction steps are essential. The
type of electrical design-style chosen is also technology dependent. For example, a
Weinberger arraylwein67] is suitable for single MOS technologies. whereas a Gate
Matrix[lope81] is suitable for cMOS. Multi-level matrices are best for dynamic

cMos or Domino[hofm85a).

Two phases exist in the automatic layout of regular arrays: symbolic topo-
logical compaction and actual layout generation. The logic network is represented
as a symbolic array (a PLA can be represented as a matrix of 0's and 1's and
don’t-connects) and then area-optimized by the topological reordering of the gates
and signals. The topological compaction step is typically the bottleneck as regards -
area optimization. It is important that the tools for area compaction be very
efficient if the resulting design is to compare favorably with manually generated
designs.

Array based layout structures are compacted using a technique known as
folding[wood79.hach80]. Layout generation is performed using tile packing
methods[may083]. The compacted symbolic layout is converted into tiles using a
context-based tiler and the tiles are then stitched together. The tiler makes local

decisions only, since the global compaction step has been taken care of.

1.2. Previous Work in Automatic Layout of Array Structures

Structured forms of ' layout for combinational logic include Weinberger
Arrays[wein67], Programmable Logic Arraysiflei7S] (PLA) and Gate
Matrices[lope81). Sequential logic can be realized as a Storage/Logic Array[pati79]
(SLA). Methods of automatic layout in the form of arrays can be termed as tiled

methods because connection between cells is by abutment. like tiling a floor.

Topological compaction of array based structures is possible by means of a
technique known as folding. Folding comes in two flavors, simple
folding[hofm80.hach80] and multiple folding. In simple folding at most two sig-
nals can occupy the same row. In multiple folding, there is no limit to the number
of signals which can occupy the same row. Constrained folding allows constraints
on where the signals are to appear outside the array. Multiple constrained folding
of PLAs was first proposed by De Michelildemi83] and implemented in program
PLEASURE. PLEASURE row and column folds PLAs under various constraints. Fold-
ing is also possible in Gate Matrices and Weinberger arrays. This is one dimen-
sional folding as opposed to two dimensional PLA folding. Algorithms for optimal
packing on an one dimensional interval have been

investigated[asan82.0hts79.wing82].

Most of proposed algorithms are based on graph-theoretic interpretations and
are eaéily trapped in local minima. These algorithms also bréak in highly con-
strained situations since they bave been designed primarily for the unconstrained
cases. Most algorithms for Gate Matrix layout have no provision for constraints
on the signals and differing sizes of transistors in the matrix. SLAs have resisted
automated implementation until now because of their very complicated st.rﬁcture

and widely varying cell sizes.

1.3. Organization of this report

The six following chapters are organized as follows. Various regular array-
based layout styles are described in Chapter 2 and previous work in topological
compaction of the different structures is reviewed. The combinatorial optimization
techniques known as Simulated Annealing is introduced in Chapter 3, and theoret-

ical work done in the field of probabilistic hill climbing (PHC) algorithms as well

as previous applications of simulated annealing the physical design of integrated

circuits are reviewed.

A generalized array optimization program GENIE, based on simulated anneal-
ing. for two dimensional multiple constrained folding of PLAs. Multi-Level
Matrices. and SLAs is described in Chapter 4. Comparisons with specialized array
compaction prbgrams are drawn. Modified algorithms for one dimensional multi-
ple constrained folding also based on simulated annealing are presented in Chapter
5. These algorithms can be used for Gate Matrix and Weinberger array compac-
tion. The multi-processor implementation of these simulated annealing based algo-
rithms using dynamic windowing and partitioning schemes to preserve the conver-
gence properties of simulated annealing to the global minimum are described in
Chapter 6. Conclusions are drawn and directions for future work indicated in

Chapter 7.

1.4. Results achieved

An automatic layout system consisting of a topological optimization tool,
GENIE, a context based tiler ELECTRA, and a layout generator MEKARRAY[krin86] has
been developed. This system produces efficient layouts and encompasses a wide

range of array based layout styles.

GENIE is a generalized array optimizer which can be used for the multiple
folding of PLAs, as well as for compacting Gate Matrix layouts, SLA, and Wein-
berger arrays. The cells in the array can be of non-uniform sizes and any sort of
constraint can be placed on the input and output terminals. GENIE uses the com-
binatorial optimization technique called Simulated Annealing. Results obtained are
uniformly better than existing specialized array optimizers and folding programs,

particularly when the input locations are constrained. GENIE is the first program

for automated SLA compaction.

GENIE has been compared with a number of existing tools for topological
folding and compaction of array logic. TWIST, a part of the MAMBO
pipeline[hofm85a) is a prc;gram for the folding of multi-level connectivity
matrices. Results up to 50% better than TWIST have been obtained.
PLEASURE[demi83] is a PLA folding program also developed at Berkeley. GENIE typ-
ically produces better results than PLEASURE more 5O in constrained cases which
are more likely in real chip designs. Up to 30% better results have been obtained
in cc;nstrained examples. Detailed comparisons with specialized array compacters

can be found in Chapters 4 & 5.

A multi-processor implementation of the simulated-annealing-based algo-
rithms in the array optimizer GENIE has been developed on the Sequent Balance
8000 multi-processor. Dynamic windowing and dynamic partitioning schemes
have been used to preserve the global convergence properties of simulated-
annealing-based algorithms to the global minimum and efficiences of up to 75%
have been achieved over 8 processors. This implementation is described in Chapter

6.

CHAPTER 2

Array Based Layout Structures

Logic circuits in various technologies and design styles can be implemented as
regular arrays. Array-based layout structures have been extensively used for large
scale integration of MOs logic [wein67.fei75,pati79.lope81]. These structures are
used to retain a reasonably fast design turnaround time and to permit the design
steps to be automated. However, standardized layouts obtained by synthesizing
the logic circuits as arrays are area efficient compared to manual random logic
designs only if topological compaction algorithms are applied. The algorithms do
not change the logic function of the circuit but instead try to find an optimal ord-
ering of gates, signals or transistors, as the case may be. so as to minimize the
eventual area. Compaction is achieved by a process called folding where more than

one signal or more than one gate can occupy a single row or column of the array.

2.1. Programmable Logic Array

Programmable logic arrays (PLA) are two dimensional arrays implementing a
two-level combinational logic f unction{flei7S]. The PLA consists of two planes the
AND plane and the OR plane. The AND plane maps the primary inpuis into min-
terms (product terms) required and the OR plane maps the minterms into the out-
puts. In practice, both these planes are implemented as NOR structures in dynamic
CMOS or NMOS. technologies. An array can be programmed for any arbitrary two
level combinational logic function by the presence or absence of transistors in
various AND or OR locations. The functionality of a PLA can be represented as a 0-1

matrix. PLA folding algorithms work on this symbolic representation using the

information as 1o the presence or absence of transistors at each array node. Vari-

ous architectures exist for implementing PLAs[demi83]).

The area of a PLA is optimized by means of row and column folding[bhach82].
The technique reported in [hach82] is referred to as simple folding. A generaliza-
tion of simplé folding is multiple folding. All previous techniques for PLA folding
rely on a graph theoretic interpretation of the problem. Multiple/simple
constrained/unconstrained folding is possible in PLEASURE[demi83]. In PLEASURE a
column intersection graph (CIG) is defined whose nodes are in one-to-one
correspondence with the columns of the logic array. Nodes have edges between
them if the corresponding columns havé a transistor in the same row. Folded
columns are represented by a directed edge between the two corresponding nodes.
The problem is now to find disjoint clusters of nodes in the graph, fold columns
without creating alternating cycles (alternating cycles render the PLA unimple-
mentable). Constraints on the positions of rows and columns, as well as ordering
constraints on the rows and columns can be handled by this technique. Unfor-
tunately, like most héuristic techniques, this method is easily trapped by local
minima. Good heuristics however ameliorate the problem and PLEASURE produces

area efficient folded PLAs with reasonable cpu time expenditure.

Simulated annealing has been applied 1o the PLA folding
problem[moor85,wong86). In [moor85] heuristics similar to the ones used in PLEAS-
URE are applied initially. but when folding pairs become more difficult to find hill
climbing moves are generated in an effort to escape local minima. [Wong86] gives
an algorithm based on simulated annealing to solve a column folding problem —
their approach cannot be used for general two-dimensional row and column PLA

folding.

2.2. Weinberger Array

Weinberger arrays are one-dimensional structures for standardized layout of
multi-stage combinational logic networks{wein67). In a Weinberger array a gate
occupies a column. and signals occupy rows. The gates are elongated structures
anci the output of the gate can be tapped at any location. Thus, it is not necessary
1o have signals cross each other (similar to ‘the PLA). Figure 2.1 shows a Wein-
berger array from [wein67]. The array usually bas diffusion/metal columns and
poly/metal rows. It is possible to order the gates in a Weinberger array so as to
bave more than one signal occupy a single row. Like in the PLA rows can be folded.
Algorithms for optimal packing on a one dimensional interval bave been
investigated[asan82,0hts79). Asano[asan82] describes an exact algorithm for order-
ing the gates of a one dimensional array to minimize row cardinality. The algo-
rithm searches for an optimal net ordering as opposed to a gate ordering. The gate

-sequence corresponding to the net ordering obtai;led 1s easily constructed.
Optimality-preserving pruning methods, namely branch and bound are used. Oht-
suki et. al[o.hts79] give a graph-theoretic interpretation to the one dimensional
packing problem. Unlike a PLA, the transistors in a Weinberger array may be of
varying sizes. The algorithms mentioned above assume all the transistors are of

| equal sizes and minimize for row cardinality instead of row height. The optimiza-
tion does not include minimizing total net length. Net length may be important

when delay through the circuit must be considered.

Weinberger arrays are area efficient for single Mos (e.g. NMOs, PMOS) technolo-
gies. In a complementary MOS static technology the signals have to drive two
transistors instead of one. Using a Weinberger array this can be accomplished by
duplicating all the signals for the p-channel and n-channel devices but this

reduces area efficiency. A layout style more suitable for a static CMOS technology

is Gate Matrix.

2.3. Gate Matrix

In a Gate Matrix[lope81] the p-channel transistors and n-channel transistors
occﬁpy different halves of the matrix. The transistors are transposed in such a
fashion so all those having a common input are placed on a common polysilicon
line. This common line serves a dual purpose, i.e. it is the gate of many transistors

which lie on the line and it serves as the common contact among the transistors

- . w Vex
252 T 20 o 6 2 B T Yo
= 1%
e e = % S ..
e - -~ . iR 7
5 ¥ 2% XA XA o % Qoex
S ~iy g 3 . -
- < % & gs ; "
- ¢ Z %2 Z A
' /7 Z:';.
» » . »
- G : A4 b A 7
.3, A
o) YA E 7.¢ HOES 9
PC YA XA X G0 0% VA AL XA A s
e’ bR 1tk itz B i
L‘..‘ ‘s ;; h? “:: 2 /A % £
9 . o o8 34 - i v *
. . = 5 ; g . E 2
P & X 7z A AR A A
[% 0 Z A XA A AR AL XA a4
. PuCap 4

LN

] orrumos 2w B3 covxz B cormcT

Fig. 2.1 Weinberger Array

pad

10

which have a common input. The polysilicon lines which are all parallel become
the columns of the gate matrix. The rows are formed by grouping together those
iransistor diffusions which associate with each other in a series or parallel fashion.
The Gate Matrix layout style is the complement of the Weinberger array layout
style in a sense — logic gates occupy rows and signals occupy columns. Thus each
signal drives both the n and p transistors of the gates. Figure 2.2 shows a Gate

Matrix.

The one-dimensional placement algorithms for a Weinberger array apply
equally well to a gate matrix. Here the problem is to find an ordering of signals so
the gates can be maximally folded. However, gate matrices have evolved to sup-
port complex gates like AND-OR-INVERT and pass transistors and the relatively
straightforward techniques described above .have to be modified. Wing et. al
[wing82.w'ing85] give a graph-theoretic algorithm for compacting gate matrix lay-
outs for complex gétw and pass transistors. The technique involves formulating
two assignment functions f and h such that the layout L(f.h) requires the
minimum number of rows as a gate matrix. The function f maps the distinct gates
of the transistors to the columns of the gate matrix and the function & maps the
nets of the circuit to the rows such that all the vertical diffusion runs which con-
nect nets on different rows are rea}inble. A two stage approach is used which first
obtains layout without regard to the vertical constraints and then permutes the

rows to satisfy the constraints.

The algorithms proposed thus far for gate matrix layout have no provision
for constraints on the signal columns. For example. it may be desirable to have an
input signal near the right end of the matrix as opposed to the left end or middle.
Also, like the Weinberger array case, transistors are all assumed to be of the same

size; row cardinality alone is minimized disregarding total row height.

11

concerT
Jststr a8 & 7
vas 13
[}
=
)
9
2l | !} LN
s
& r S -
ot oy
as® (304 Voo
ATy vio REPRESENTATIONAL
LEGDWO
3
———WETAL |rovvsiicon
1 BIT MALF - ADOER DIFFUSION(TRANGISTOR] @CONTACT
DIFFUSIONI CONNECT)

Fig. 2.2 Gate Matrix

2.4. Multi-Level Matrix

A new layout style suitable for NMOs and Domino logic circuits was proposed
by Hofmann[hofm85a). A Multi-Level Matrix (MLM) is a two dimensional struc-
ture like a PLA but supports multi-stage logic circuits unlike a PLA. It is a hybrid
structure having characteristics of both gate matrix and Weinberger array struc-
tures and allows mixing of static and dynamic f upctions; In a MLM more than one
gate can occupy a column (like a gate matrix), and more than one signal can
occupy a row (like a Weinberger array). Figure 2.3a shows a symbolic representa-
tion of a folded MLM. The characters s and S denote a series transistor in the first
and second gates on a column respectively, similarly characters p and P denote
parallel transistors in the first and second gates on 2 column, and the characters o
and O denote output connections. Figure 2.3b shows the actual layout of the MLM

in a technology with two levels of metal interconnect.

12

85338p.85888
cls® e8ceeB8ee08cce 28(8)
c2 e88ceccscBoce
18 .o..........
cl 8.88ccccccce
63 BeosBooeBeoe
7 oSoooooooot..
15 os..........
c2® BeoeBBecccsos
c3s® S.8ccoccessl
20 ..o’........
a0 Seece oee Bo
12 ..P...-..... .o‘(?)
ll .OPOOO.G.O..
lo OOP'....O...
‘ . .w......O..
‘ ooP-oooooOoo
3 OOP.......OI
2 oopooo.ooooo
1 O.P..8.8.000 b0*(6)
£0 . ee0cce8..D88 - b0(7)
16 $.:0cccBeccs cin(8)
1‘ .ooo°oo.o-oo

ssp .
(9) (6) (12)

Fig. 2.3a Multi-Level Matrix

Like a PLA a MLM can be both row and column folded. The intermediate
inputs can be multiply folded without any area penalty. Hofmann et.al[hofm85b]
proposed an algorithm similar to [demi83] for MLM folding. TWIST is a program
for multiple constrained folding of MLMs. Rows are multiply folded in TWIST but
the layout style constrains the columns to be simply folded. The load devices for
an NMOS circuit would be on top or bottom of the matrix as would be the buffers
and clocked load of a Domino circuit. The ordering of signals is significant in
TWIST as delay optimization is performed along with folding. Also. since signals

are ordered relative to the output buffer when columns are folded, the ordering of

13

signals 1o the flipped gate need lo be inverted. The necessity to invert or "flip"
constraints when a column is folded differentiates the folding of these arrays from

other structured arrays like PLAs or gate matrices.

i -5 T e S I nnnnnasn: (B a8 &
» > .
H
¥ B 11 s !
& . H
3.) £
= ot H ~! ? 2
iy

—-

R

Tl

Sty x &

s, Meil iz Me il

5K 1 = 1 h

< = HNE KE H

=, P H
A

™
e P aia el 4RLR RIS
{ Dt bt won feed Lot leve | v

s 13 Bt

4 i

i E - ¥-EW i

g HE TR Y 1)

= R 8 BT Z 1 i
'“ﬁg] [] R] ti

Tmy MRE 11z el I CEE R
Y Y VBRI B | Bl Nz Beis WBEA
- s e 1] 2 -

v i

Fig. 2.3b Layout of Multi-Level Matrix in Fig. 2.3a

14

2.5. Storage/Logic Array

Storage/Logic Arrays were first described in 1975[pati75]. They are a form of
structured logic derived from PLA where the AND and OR planes of the PLA are
folded into a single plane. The SLA supports multi-stage combinational logic with
embedded memory elements. Memory elements are placed on the grid itself and
can be randomly distributed within the SLA logic. Columns may also contain
boolean combinations of state values. Using columns to generate these boolean
expressions permits multiple levels of logic. All columns and rows can be broken

at arbitrary locations.

SLAs are ideally technology independent. That is. one SLA program should be
portable, without change, between different process technologies. Unfortunately.
this is not the case and it becomes necessary to select a particular process and
implementation based on the individual circuit needs[smit82]. For example 2L is
extremely limited in allowing large number of actions being controlled by a row
or column because of poor fanout. NMOS can handle heavy loads. but at the price
of low speed. CMOS overcomes these objections but needs a more complex process

and larger inverters. CMOS SLAs appear the most popular.

An SLA program is a two-dimensional array of symbols that specifies the
placement of cells for a given circuit. The elements of the SLA program are taken
from an SLA cell set which is predefined and dependent on the given technology
which has been chosen. The SLA cell set will include memory elements, inverters,
combinational elements for the folded AND-OR plane, row and column breaks, and
row and column connection cells. The memory elements might be as sophisticated
as a set/reset read/write-enabled master/slave flip-flop or as simple as a set/reset
latch. Figure 2.4 shows a SLA program and the physical realization of an

oscillator[smit82). A more complicated SLA realization of and adder/subtractor is

15

FLIP-FLOP

n L

x
Bl
&
éﬁ

o

Al

=
e

1

b

wn
¢
:‘ .
L)

%
e

Fig. 2.4 SLA program and physical realization of an oscillator

shown in Figure 2.5.

Topologically compacting an SLA is much mox"e difficult than folding a PLA.
The cells in the SLA are of widely differing sizes: one may be ten times the area of
the other. Defining large cells to be multiple cells causes adjacency constraints on
the constituent cells. Ordering constraints on cells exist due to the presence of
inverting buffers (a buffer cannot be placed after a transistor it is feeding into).
PLA optimization techniques fail to produce good results for SLAs. No efficient pro-

gram for automated SLA compaction existed before GENIE.

2.6. Generalized Array Optim.ization'

A generalized array optimizer should perform multiple folding of PLA. Wein-
berger Array. Gate Matrix, MLM. and SLA structures under various constraints. The
array optimizer should minimize for total row and column height and not for row

or column cardinality.

16

L
3 put nmmm lg?
Sy @———%J_l
E “. W St FEEER E g€
%-Po-ii- EC . ".. g,
gt
= K
S
a===0NCrRRARAGGEED kges
B 88 - == gi:;
*8

Fig. 2.5 The USCM adder/subtractor

2.6.1. Defining the Problem

The initial unfolded array can be represented as a matrix, M non-zero ele-
ments denote the existence of a cell in the corresponding array. Each location in
the matrix is a record consisting of four elements: the length of the cell in the
actual array location, the width of the cell, the initial column number of the cell
(in the unfolded matrix) and the initial row number of the cell. (entry.length.

entry.width, entry.hor_net, entry.ver, _net)

Two matrices can be derived from this matrix. Row and Col, the row and
column constraint matrices. Physically, they represent the constraint that
nets/cells may not overlap. The constraint matrices have entries corresponding to
the extent of the horizontal or vertical nets i.e. if a horizontal net extends from

(1.1) o (3.1) the entries Row,;, Row; and Row3; would be incremented by 1. No

17

element of the constraint matrix can be greater than unity.
Row;; S 1forall i, j (1a)
Coly; S 1foral i, j (1v)
The area of a matrix is measured as the sum of row heights times the sum of
column widths. The row height is the maximum of the heights of the cells in the
row and the column width is the maximum of the widths in the column. If no

cells exist on a row the height is obviously zero.

N'
Height = Y max(M;; length)

i=1

Width

NC
Y max (M;; width)
J=1

A =Height * Width
The problem is thus to find an arrangement of cells which satisfies the con-

straint matrix condition (1), and minimizes area A .

2.6.2. GENIE: A Genert;,lized Array Optimizer

GENIE is a generalized array optimization package using simulated-annealing-
based algorithms which performs the above tasks. GENIE needs a symbolic
representation of the array in the form of a connectivity matrix and information
about the sizes of the cells, to produce a compact simply/multiply folded layout.
Adjacency constraints among rows(columns), ordering constraints on
rows(columns), edge constraints on signals and bounded row(column) constraints

are provided for by GENIE.

GENIE is the first program to produce efficient automated SLA implementa-
tions. For the PLA and MLM case GENIE produces better results than the best spe-

cialized folders available for comparison.

18

CHAPTER 3

Simulated Annealing

The subject of combinatorial optimization aims at developing techniques to
find the minimum or maximum values of a function of very many independent
variables. A function, usually 'called the cost function or objective function,
represents a quantitative measure of the quality of the solution. The number of
variables may be of the order of tens of thousands and the number of possible

solutions may be equally large.

Most Qf the combinatorial optimization problems dealing with the physical
design of integrated circuits are NP-complete (nondeterministic, polynomial-time
complete) which means that no method for an exact solution with a computing
effort bounded by a power of N has been found for any of these problems.
Optimal solutions to these prdblems generally require exponentially bounded or
worse computing time. Heuristic methods with computational requirements pro-
portional to small powers of N have been developed for many of these problems.
These techniques are rather problem specific: there is no guarantee that a heuristic
procedure for finding near-optimal solutions for one NP-complete problem will be

effective for another.

3.1. Introduction to Simulated Annealing

Kirkpatrick, Gelatt and Vecchi[kirk83] showed there was a deep and useful
connection between the behavior of systems with many degrees of freedom in
thermal equilibrium at a finite temperature and multivariate or combinatorial

optimization. The analogy drawn is as follows: Atoms in a solid always try to

19

move toward a configuration of lowest possible energy (maximum stability). If a
solid is heal.éd 1o a high temperature and cooled very slowly, wiﬁch is t:he physi-
cal annealing process, the annealed solid has better mechanical properties than the
original, because the atoms are now in a lower energy (more stable) state. Heating
to a high temperature increas&g the thermal motion of atoms in the solid allowing
them to redistribute themselves into a more stable configuration. At a high tem-
perature, the atoms are likely to move to higher energy positions, but as the tem-
perature is lowered, the movement of atoms is restricted to locations of lower
energy. The physical annealing process. for best results, should have a cooling pro-
cess which is very gradual and a-high starting temperature. In the combinatorial
optimization problem, the energy of the configuration corresponds to the cost .
function, thermal motion to randomly generated moves, and the temperature
corresponds to the parameter controlling the acceptance of these moves. While at
a high temperature, hill climbing moves which increase the cost function are
accepted, but the probability of accepting these moves reduces as the temperature
is lowered. Thus the physical annealing process is being simulated to solve the

combinatorial optimization problem.
The general structure of the basic simulated annealing algorithm is shown

below.

T =Ty:
X = Starting Configuration:
while(" cost is changing”) {
for("a certain number of times") {
Generate_New_State(j)
if(accept(c(j).c(X).T) {
} X=j

}
} T = update(T);

Whether or not a new state is accepted is determined by the function accept():

20

accept(c(j).c(i).7) {
change_in_cost = c(j) - c(i):
if (change_in_cost < 0) return(1);
else {
Y = exp(-change_in_cost/T):
R = random(0.1);
if (R <Y) return(1);
else return(0);

There are two loops in the simulated annealing algorithm which correspond to
changing the temperature and generating a number of random states at a given
temperature point. The temperature profile depends on the number of states gen;
erated in the inner loop and the function update. The acceptance function accept

shown is the well known exponential acceptance function, variations exist.

3.2. Theoretical Results

Markov chains have been proposed as.a mathematical model.for simulated
annealing[lund84,gema84.rome84] Using these mathematical models, simulated
annealing has been shown to be a special form of a general class of algorithms
called probabilistic hill climbing algorithms{rome84] having the same asymptotic
properties. The asymptotic propert.ios underline the fact that under certain
assumptions on the number of moves generated by the algorithm at a certain tem-
perature, simulated annealing produces the global optimal solution with probabil-
ity 1.

Romeo et al[rome85] provide results 1o estimate how many steps should be
attempted for each value of T'. These results give necessary conditions to preserve
the global convergence ﬁropenis of the simulated annealing algorithm. One par-
ticular result which gives the expected value of the number of iterations to leave a

state is reproduced from [rome84] below.

21

Proposition: Let i be a state such that P;(T) < 1, where
Py(T) = Gy(T)* F(CyT)
Gi; (T) is the probability of generating state j being in state i and C;; is c(j) - c(i).
The expected value of the number of iterations required to leave i. N is given by
N; = 1/(1=P;(T))
A conservative estimate of the P; (T) is obtained by assuming that C;; is constant
and equal to C,; where k is the worst configuration and [the best configuration

found thus far.

Unfortunately, these results are asymptotic and indicate that an infinite
number of moves have to be generated in order to obtain a globally optimal solu-
tion with probability 1, which is in fact worse than exhaustive search. However,
these results provide information as to what kind of cooling schedules need to be

used in order to obtain ‘good solutions minimizing cpu time requirements{huan86).

3.3. Previous applications

Simulated annealing has been applied to various problems relating to the
physical design of integrated circuits like global wiring[vecc83], cell
placement/sech84.sech85] and channel routing[wong85]. It has also been proposed
as a tool for logic partitioning[kirk83). Techniques used in these applicatiéns are

reviewed.

3.3.1. Logic Partitioning

One of the simplest applications of simulated annealing is logic partitioning.
The problem is to partition a set of modules.-into two or more groups such that

the interconnections between the groups are minimized. Heuristic

22

algorithms[kern70.idu82] have been used to solve this problem.

The annealing begins on a random set of partitions. Moves can be generated
in two ways: (1) two modules in different partilions are interchanged (2) a
module is displaced from one partition to another. The cost function is the total
number of nets across the partitions. In general. it is desirable that the partitioxis
should be of the same size. Moves can be allowed only if this constraint is

satisfied within a tolerance limit.

3.3.2. Global Wiring

Given a placement of modules, the problem is to construct a " global® or
coarse scale routing for each connection from which the ultimate detailed wiring
can be completed[souk81). Package technologies and structured image chips have
prearranged areas of fixed capacity for the wires. For the global routing to be suc-

cessful, it must not call for wire density which exceeds this capacity.

The global routing problem is modeled by lumping all actual pin positions
into a regular grid of N, x by N, points which are treated as sources and sinks of
all connections. The wires are to be routed along the links which connect adjacent

grid points. Pre-placed components are modeled by prefilling some of tbe links.

The problem is to choose paths for routable connections in such a way that
the likelihood of "overfiows” or wires.which don't fit into the eventual detailed
package is minimized. This means that the most uniform possible distribution of
wires plus existing blockages is sought. The objective function used is that which
rewards the most balanced arrangement, and is obtained by calculating the sqxiare
of the numbers of wires on each link of the package. and summing the results

over the links.

23

The path between two points of a connection can be an L-shaped path (a path
with one bend) or a Z-shaped path (a path with one or two bends). The moves can
be L-shaped moves or Z-shaped moves. For the L-shaped moves, F. the objective
function has a relatively sin?ple form. The computational effort required to obtain
a good result for Z-shaped paths is larger than that for L-shaped paths because of
the larger number of states available for each connection. For ti)e same reason, a
better solution can be reached for the wiring problem by allowing Z-shaped paths.
So instead of using time-consuming annealing from high temperatures with the
full set of Z-shaped paths tv./o stago;s of annealing are performed. First, a anneal-
ing from high temperatures is performed using L-shaped paths. Then, the resulting
configuration is used as a starting point for another annealing process using Z-
shaped paths, but only from low temperatures. The time required for gepérating
good solutions is thus modest. Global wiring optimization for 3000 nets on a 11
"by 11 grid required just 2 seconds oﬁ a IBM VM/370 system with a 3033

processor{vecc83].

3.3.3. Cell Placement

Timber Wolf[sech84 .sech85] is a placement and global routing package for
integrated circuits. TimberWolf is a set of programs for standard cell placement,
gate array placement, macro-cell placement and standard cell global routing,
which uses simulated annealing based algori@m. The standard cell placement
program in TimberWolf places standard cells into rows and/or columns in addi-
tion to allowing user-specified macro blocks and pads. The results obtained by

TimberWolf are on the average, better than other existing placement packages.

The TimberWolf prograxh begins with a random initial placement of cells. A

new state is generated by either exchanging two fundamental units or displacing a

24

unit to another location. Moves are randomly generated. New states can also be
generated by orientation changes of standard cells. Interchanges and displacements
are controlled by a range limiter. The range of interchange/displacement of a cell

is dynamically changed during the annealing process.

The objective function inATimberWolf consists of many parts. The net
length calculated as the Manhattan distance between the furthest pins of the net
is one constituent. Since cells can be of different sizes. interchanges may result in
cell overlap. Rather than disallow these moves. the penalty function approach is
used. When two cells overlap a penalty is assessed is which is proportional to the
square of the quantity of linear overlap plus an offset parameter. The objective
function has an additional term which controls block lengths. The sum of the
actual lengths of the cells in a particular block is compared to the actual block
length. A penalty is assessed which is equal to the absolute value of the difference

times a parameter value.

3.3.4. Channel Routing

Wong et allwong85) proposed a scheme for channel routing using simulated
annealing. The basic technique is to find a valid set of partitions (Vl; Vo V,)V;
containing all the nets on track i. where w is the channel width, such that w is
minimized i.e. the number of tracks is minimized.

Moves are generated in three ways: (1) two subnets belonging to different
groups V; and V, can be interchanged. (2) a subnet can be moved from group V;
to group V;. (3) a subnet can be removed from group V; and form a new group
by itself. Vertical and horizontal constraint violations can occur during the
annealing process. (1) leaves the channel width unchanged. (2) may decrease

channel width and (3) increases the channel width.

25

The objective function is as follows:
Cm=wi+)\, *p2+ N *U
where w is the number of groups. p is the longest path in G (m) and A, and A, are
constants. The channel width w obviously has to be minimized. The quadratic
dependence places a higher penalty‘on solutions with large w's and lower penalty
for solutions with small w's. The reason for the second term is that p is a lower
bound on°the number of wiring tracks needed for all the solutions derived from 7

by further merging of subnets. U is defined as

w v
U= Zu,-z where

i=1

¥y =1 —lllz_e‘?,- vl

[is the channel length and |v | is the length of the horizontal segment of subnet
v. Here, u; is the fraction of the track i that is unoccupied. Thus, U is a measure
of the sparsity of all the tracks in the corresponding routing solution. Intuitively,

all good routing solutions are densely packed, and hence have small U values.

The annealing schedule can only start from a valid partition. At each tem-
perature, enough moves are tried until there are either N downhill moves or the
number of moves exceeds 2N where N = Ay * m2. The annealing process is ter-
minated if the number of downhill moves is less than 5% of all the accepted
moves or the temperature is too low. If at any time a solution with d tracks is

reached, which is clearly optimal the annealing is terminated.

This particular application of simulated annealing is interesting but has little
or no practical value because very good heuristic techniques for general multi-
layer channel routing have been developed[brau86] which produce optimal solu-

" tions with small cpu time expenditure.

26

3.4. Conclusions

Simulated annealing has been applied to a variety of NP-complete problems
with‘encouraging results. The only disadvantage with probabilistic hill climbing
algorithms is cpu time expenditure. This can be partly alleviated by intelligent
choices of data structufes (to keep cost evaluation incremental) and annealing
schedules to maximize efficiency. The main advantage of PHC algorithms as

opposed to heuristic algorithms is their relative immunity to local minima traps.

In the next two chapters GENIE, a generalized array optimization package,
which uses simulated annealing based algorithms for the multiple constrained

f olding of PLAs, Gate Matrix, Weinberger Arrays. MLMs and SLA. is described.

27

CHAPTER 4

GENIE: A Generalized Array Optimizer

In this chapter, a generalized, simulated-annealing-based array optimization
scheme is presented that has been applied to PLA, Gate Matrix, Weinberger Array.
and SLA problemsdeva86al. In all cases, the program has obtained as good or
better results than the best tools available to us for comparison. In practical cir-
cuits. where a number of constraints on terminal positions were involved, our new
approach reduced the area of the final layout by up to 50% compared with our
previous best techniques. For results of comparable area, GENIE uses comparable

CPU time to the previous approaches.

The approach begins with a planar connectivity graph which represented the
circuit to be connected. The nodes in the graph represent circuit components, or
tiles, in the final layout and the arcs represent the connections among those com-
ponents. The nodes may represent single transistors, as in the case of a PLA or
domino CMOS implementation, or they may represent collections of transistors and
interconnect, as in the case of flip-flops in a SLA. The scheme is independent of the
nature of the components — it works with a connectivity matrix description of
the circuit and topologically compacts it producing a fully routed result. The
matrix can be of a highly regular PLA-like structure with uniform cell sizes or it
can be a representation of a multi-level logic function in gate matrix form whose
cells are of varying sizes. Constraints can be placed on the positions of various
input and output terminals if required. The constraints may specify a particular
edge for the terminal, a particular fixed location. a particular ordering of termi-

nals, or a combination of these constraints. Terminals may also be required to be

28

available on more than one edge, as in the case of bus-through connections, for
example. Constraints on the aspect ratio of the folded array are also taken into
account during the optimization step. The eventual result will have simply or
multiply folded rows and columns in a2 minimum area configuration: no routing is

necessary.

The basic simulated annealing algorithm was described in the previous
chapter. In the following section the topological compaction algorithm is described.
Illustrative examples are given in Section 4.2 and implementation details are dis-

cussed. Section 4.3 is devoted to Storage/Logic Array compaction.
4.1. A Generalized Array Compaction Algorithm

4.1.1. The problem of generalized array optimization

The problem of generalized array optimization is illustrated in Figure 4.1. An
unfolded general array is shown in Figure 4.1a. Note that the cells in the array are
of varying dimensions. Initially, all tbe signals in the array occupy distinct rows
and columns. It is possible to rearrange the horizontal signals without disrupting
the cell connectivity in the array and fold disjoint vertical signals on to the same
column. Similarly, the vertical signals can be rearranged, so as to fold horizontal
signals on to rows. One folded version of the array is shown in Figure 4.1b. The

array has been both column and row folded.

Since the cells are of varying sizes, merely minimizing row and column cardi-
nality does not guarantee minimum area. This is illustrated in Figure 4.1c, where
_another folded version of the array in Figure 4.1a is shown. Though this result

has the same row and column cardinality as the previous result in Figure 4.1b its

29

area is smaller.

Thus. a generalized array optimization algorithm must take into account the

varying dimensions of the cells.

4.1.2. Array optimization using simulated annealing

The primary difference between the approach described here and the heuristic
folding algorithms developed in the past (e.g. [bach82.chug82.hach80]) is the
existence of hill climbing moves during the optimization process, i.e. moves which
increase the cost of the configuration (worsen the solution) are accepted based on a

random criterion in an effort to escape local minima.

In GENIE the basic structure is a cell. Cells are interconnected by nets. We
intend that the output of GENIE be the input to a tiling program. like
PANDA[mah84] or TINKER[hofm85a), for actual layout. The cell denotes the
existence of a transistor, or a collection of transistors, at that particular location.
Cells may have different sizes depending on the width and length of devices and

existence of multiple devices or internal contacts.

Nets are of two kinds, vertical and horizontal. Cells are connected to two
nets — one horizontal and one vertical. Special pad cells are connected to input
and output nets, including nets that must connect to peripheral load devices, and
they serve as ports. Location of pads are constrained to the periphery of the array
throughout the annealing process. As explained later, cor;straints on the locations

of input and output terminals are implemented as additional pads.

An example of an input to GENIE is shown in Figure 4.2[hofm85a] The con-
nectivity matrix shown in Figure 4.2b has been derived from the Domino CMOS
gate diagram shown in Figure 4.2a. Similar personality matrices can be derived

from gate diagrams for static CMOS/NMOS design styles. In this format, the

30

3 2 T 4 T
]
E |
D | ! |
=]] 1
c [
- I
11 —11
|| 1
A |
(a) Unfolded General Array
l ? 2 4
ot 11l |
- 0) |
c 1
o (.
g1 11 1
N O N I
5
(b) After folding disregarding cell dimensions
’ 3 2 5
"
B N I
| 1 J
1
S
4

(c) After folding taking cell dimensions into account

Fig. 4.1 Generalized Array Optimization

31

.l
5 g . :__<]—
l.
-
2

‘ g4
“ L.
4 < 04
04
- 2
4 ke 4
B4 e — @1 g
B
04 ~_ & 7
F 1
8
l.
8 K

Fig. 4.2(a) Domino CMOS gate diagram.

32

out

27
9
10
25
24
D*
3
20
2
21
1

new 36 27

SceeeSceeeSecccsssccsccevelon
cesoeSceccccscescsOcccccecon
ecessescccsseOBccoccccoscocce
ewmosvescecceccsO88cosoccoccee
OSceccccsoscscccccnscsssccces
SceceeBSccocscscscscsscsscnccces
BeoeoososseccscscscsBescccccccce
SeeevscsscscscsesSececscccsPecee
eOPeccccccscccccccccccaccce
ceeOScccsesscssccscsccsccccssscce
eePeOccoccccscscocccscccccccce
eeODoccvcsocccscscscscsscscncccscce
eo0eS0ccccscscscccsscscscccocsos
ceoocoBceeeSecscscesccescce8.8
ceosesceDecsecscscccsscecssccscsccce
ceccsseSceccscscccscscccsscosce
cececsBSecseBSecscscccceB8occcecs
ceccscesO08ccccccccccocccccan
cessccePecccscccacccccsccon
ceseceesPeOccecccecscsssccce
cevcvessssDceB8cccccccccccosceone
ccesescsceseB0cccsccccoccvcecce
eoecsccsscsseDSB8cecocccccrccee
ceesescssscseSBSecscsoccseDeccee
ccecscccccseseOBcccccccscone
ccssssccsscsscscecDocsccccsccnsne
cescesssssscsscselePecceccocs
esecsccsesscsssssses880ccecccee
ceecescececscscsscscscacsPOcsoccsces
vescecsesscscscsccscsceeeB0cccces
ceecscsccsscncsscssccsccBecccos
veosscccsscsscssscsescece80scce
eceeccccssscscssscssccescsPOcce
vescecccssasscvcssssscscsPecOe
teeceeescsecsescscscsscscce80..

ooo.anooo.otnouo.oﬂcooooso

Fig. 4.2(b) Personality Matrix input to Genie

character s declares that the gate in this column is series, or AND, in nature in its

top level. Similarly the character p declares that the cluster in this column is

parallel, or OR, in nature at its top level. The character o indicates a gate-column

33

output connection to a signal row; the . character indicates that signals are bussed
through this tile without connection to the current gate. The addition of the char-
acter ~ , interpreted to mean toggle. allows two-level logic in a single gate to be
expressed symbolically. Toggling implies the switching between series and parallel
nature in a gate. Two-level structures may need two columns to be represented
and reahzecl A typical set of tiles that these symbols represent for a double-

metal technology is illustrated in Figure 4.3.

The problem of array optimization differs from that of placement because in
the former case routability is a primary consideration. Our result must be fully
routed with the nets perfectly straight and non overlapping. This complicates the
problem since simulated annealing is apt to generate random unacceptable
configurations like overlapped cells, staggered nets or overlapping nets. Cell dis-
placements can cause staggering of nets unless cells are constrained to move only
in a particular direction through 6ut the annealing process. We cannot disallow
these configurations, if the power of simulated annealing is to be exploited fully.
since the convergence properties of simulated annealing aléorithms to the global
optimum improves with the enlargement of the configuration space, but these

configurations are not allowed in the final compacted array.

Three approaches to the compaction problem were tried using different means

of generating new configurations:

(1) Net displacements.

(2) Net and constrained cell displacements.
(3) Unconstrained cell displacements.

In (3) nets at any point may be bent and may overlap each other. Constraining
cell displacements to either the X or Y directions alone in (2) may result in either

the vertical nets or the horizontal nets being staggered and/or overlapping. In the

34

™)

SIGNAL N | ~

OUTPUT

353

......

]
o8 41
HERHEHEN
SPINTIINANL

-

GND

GATE OUTPUT

SIGNAL/

.........

<

GND

ooooooo
................

E = = 0

Basic PARALLEL Tile

Fig. 4.3. Tiles for a double-metal, CMOS Domino implementation

case of (1) the nets are always perfectly straight but they may be overlapping.

-All three approaches were implemented and it was found that (1), where the

horizontal and vertical nets alone are displaced or interchanged with each other,

produced the best results overall. Approach (2) yielded reasonably good results

but was wasteful of CPU time and Approach (3) was discarded almost immedi-

ately as being unacceptable, again for CPU time reasons.

35

Ip (1). there is a three stage compaction process with a first stage of simu-
lated annealing and two stages of routing nets. The routing stages are necessary

for removing cell/net overlaps if they exist. Briefly these steps are:

Anneal_Matrix();
Route_Horizontal Nets();
Route_Vertical Nets():

These three steps are described in detail in the remainder of the section. Approach

(2) is described briefly at the end of the section.

4.1.3. Annealing the matrix

The program begins with the initial configuration of nets. cells, number of
rows and columns, as specified by the unfolded matrix. The objective is to reduce
the total width of the columns and total length of the rows to as great an extent
as possibie. thus minimizing area. In the case of varying cell dimensions the
column width is deemed to be the width of the widest cell on the column and the
row length is the length of the longesf cell in the row, since these cells set the
column or row pitch raspectivelyfAll the primary inputs and outputs which are
constrained to be at any edge of the matrix are terminated by peds. Pads are fixed
cells restricted to lie at the periphery of the array. Adjacency constraints may
also be included. For example, in a PLA the input and its complement should lie
side-by-side in the folded matrix for an efficient implementation. This constraint

to the program takes the form of an extra vertical net connecting two dummy

36

cells in the input and it’s complement rows during annealing.

4.1.4. Generating New States

A new state is generated in this stage of annealing process by either exchang-
ing two fundamental units or moving a unit to another location. The fundamental
units in this case are vertical or horizontal nets. The overlap of horizontal and
vertical nets is penalized, as is cell overlap. The penalty—function approach was
first described in[kirk83). Thus there are four different ways of generating new
states: moving a vertical net and all of its cells on it to another column, inter-
changing two vertical nets on different columns, moving a horizontal net with all
its cells into another row, and interchanging two horizontal nets (i.e. interchanging
all the cells on two nets). Pads are treated the same as cells but are only con-
nected to a horizontal net and hence the x location of a pad can never change.
Pads can be left-pads or right-pads depending on whether they are constrained to
the left or the right of the array. A particular horizontal net may have both left
and right pads if necessary as in the case of bussed through input signals in con-
nectivity matrices. Net interchanges and displacements are illustrated in Figure

4.4a and 4.4b.
The selection of new states is based on the following considerations:
(1) A random number between one and the total number of nets is generated.

(2) A second random number is generated between one and the number of nets

times RATIO1 (typically 5).

(3) If the second number happens to be less than the number of nets and the
nets corresponding to the two numbers happen to be both horizontal or both

vertical then the two nets represented by the two numbers are interchanged.

37

(a) Net Interchange

(b) Net Displacement

(4) Otherwise, the net corresponding to the first number is displaced: vertically

if it is a horizontal net to a new row, horizontally if it is a vertical net to a

new column.

38

The final solution is affected by the ratio of net displacements to net interchanges
ie. the number RATIO1. A value of 5 has been experimentally found to be
effective in all test cases. The area of an array is reduced only by net displace-
ments and not net interchanges. Net interchanges are useful in removing violations
which represent unroutable configurations for example, overlapped nets and over-
lapped cells. Since the goal is a minimum area configuration, net displacements are
in higher proportion.

The displacement of a net to a new row or column is controlled by a range
limiter[séch&S]. which limits the range of displacement of a net either vertically
or horizontally. The new location is selected randomly within the acceptable
range. The range limiter is used because in the latter stages of the annealing the
displacement of a net has very little chance of being accepted unless it is local. So
to generate states which have high probability of being accepted, the range of pos-
sible displacement of a horizontal(vertical) net is gradually reduced from the total
number of columns(rows) at the beginning to a single column(row) when the
temperature approaches zero as a logarithm f t.mction of the temperature. The loga-
rithm function was experimentally found to be very effective. Net interchanges
are also allowed only over a small range toward the end of the annealing process
using the range limiter.

The range limiter is also used for implementing bounded column or bounded

row constraints. The range of displacement or interchange of a gate is restricted to

39

the specified bounds by not generating any states which violate the constraints.

4.1.5. The Cost l:‘unction:

The cost function is made up of several components. The first portion is zotal
net length which is defined as the distance between its extreme cells. Nets may be
weighted differently in which case the cost function is the length times the net
weight. Critical nets, which must be kept short, can be weighted heavily (typi-
cally, 3-5 times higher) so as to minimize their length in the. final layout. As
mentioned above, adjacency constraints embody themselves as vertical nets and

these nets are weighted highly.

The second portion of the cost is the sum of overlap penalties of all the cells.
If a cell or pad is at the same location as any other, a penalty is assessed. This
penalty is the sum of all the cell overlaps times a overlap parameier which is large

(typically, 30-50) so as to obtain a final configuration without any overlaps.

The third portion is the area penalty for increasing the number of rows or
columns in the array. Since the eventual objective is to reduce area, not just wire
length, every time a net moves 10 an empty row(column) a penalty is assessed.
Similarly. a negative penalty, or gain, is assessed if a net moves out of a
row(column) leaving it empty. There is a corresponding area penalty parameter as

in the overlap case (typically 5-10).

The fourth portion is the net overlap penalty. This portion exists because net
overlap is directly related to routability and is assessed for both horizontal and
vertical nets. Two horizontal/vertical nets lying on top of each other represents

an unroutable configuration and hence the configuation is penalized.

The fifth portion is required when cells have non-uniform sizes. At every

stage the width of each column and length of each row is stored. As mentioned

40

before. the width of a column is the width of the widest cell on it; likewise for
rows. If a net displacement or interchange increases oOr decreases the
width(length) of a column(row) then a penalty or gain is assessed similar to the
area penalty. In the case of non-uniform cell width, this serves to minimize the
total width and length of the array, rather than simply the number of rows and

columns, which is what is needed is to minimize area.

4.1.6. The Stopping and Inner Loop Criteria:

A certain number of states (moves) per fundamental unit are generated in
the inner loop. which corresponds to a tempex;ature point in the physical annealing
process. Horizontal and vertical nets represent fundamental units. The best results
were obtained when the cost function attained equilibrium at every temperature
point. However, at high temperatures. equilibrium is attained faster, i.e. in a
fewer number of generated states., hence the number of states per fundamental
. unit is gradually increased from a low value (typically 2) to a high value (typi-
cally 10) near the end of the annealing process. The value is computed an inverse
function of the logarithm of the temperature.

S(T) = S; +(S; - S; P*1og(T)10g(T o)
where S(T') . S;. S; are the present. initial and final values of the number of gen-

erated states in the inner loop. and T is the present temperature.

The annealing process ends when the cost function has not changed for a cer-

41

tain number of temperature points at a sufficiently low temperature.

4.1.7. Temperature Profile

ﬁe function update determines to a certain extent the quality of the final
result. Initially, when the cost of the configuration is increasing the temperature is
decreased quickly. At every step the temperature becomes a fraction ALPHA
(typically 0.8) of what it was at the previous step. This fraction ALPHA is gra-
dually increased to about 0.90 as the rate of increase of the cost function slows
down and begins to decrease. The cost function should attain equilibrium at every
temperature point for best results[rome85). Since equilibrium is reached relatively

quickly at high temperatures, initially the temperature is decreased quickly.

4.1.8. Routing the Horizontal nets

After annealing, the vertical nets and horizontal nets may overlap each other.
A possible overlapped configuration is illustrated in Figure 4.5a. In this second
stage all the overlap of the horizontal nets is removed with the minimum change

in the placement of cells produced by the anneal.

The straightening procedure is as follows. First the horizontal nets are sorted
in the order of decreasing length. All locations are free at the beginning. A net is
picked and if it lies on free locations alone it is fixed in its position along with its
cells. If any of the locations it lies on isn’t free then a new row has to be found
for the net. An attempt is made to place the net in any of the other rows without
altering the x coordinates of its cells and such that there is no resulting overlap
due to this move. If more than one row exists where the net can be placed, the

row whose beight is closest to the present net’s height is chosen. If this is not

42

possible, a new row is added beside the net’s initial row and all the cells of the net
are placed on this new row again without changing their x coordinates. The net
and-the locations are then fixed on this new row. This process is repeated till all

the horizontal nets have been placed.

The result of removing horizontal net overlap in the configuration of Figure

4.5a is shown in Figure 4.5b. Vertical net overlap, however, still exists.

4.1.9. Routing the Vertical Nets - The Final Stage

At the end of this stage the array is compacted. fully routed and all cell and
net overlaps have been eliminated. Typically. the simulated annealing produces a
good placement of cells and horizontal nets minimizing vertical net violations.
However those violations that do exist must be removed. This stage of routing is
more complicated than the previous stage of horizontal net routing as the vertical
nets have to be separated from each other without disturbing the horizontal nets.
Care must be taken while routing these nets that unnecessary columns are not

added.

First the nets are ordered according to decreasing number of cells on the net.
They are routed in this order. As before all locations are freed initially. If the
chosen net and has no overlaps and lies on free locations it is merely iocked in
place. If a violation exists then various columns adjacent and neighboring it are
examined 1o see if the net can be placed on that column without overlapping other
vertical nets and without causing horizontal net overlap. Thus there is a more
stringent condition here for an acceptable column than in the previous case of
acceptable rows. If many columns are available for placing the vertical net the
column closest to the present one is chosen. If more than one column satisfies this

condition. the column whose width is closest to the present net’s width is chosen.

43

(a) Array after Annealing with Overlaps

(v) Horizontal Net Overlap removed

(c) Vertical Net Overlap removed
Fig. 4.5

44

If no existing column satisfies the condition then a new column is added next to
the original location and the net with its cells is placed on the column. The final
result with all overlap removed of the configuration of Figure 4.5a is shown in

Figure 4.5¢c.

The aspect ratio of the folded matrix depends to a certain extent on whether
horizontal net straightening precedes vertical net straightening or vice versa. Rela-
tively speaking, in the former case more rows are folded than in the latter. The
same can be said for column folding in the latter case in comparison to the former.
The order can be decided upon depending on initial row and column sparsity, ini-
~ tial aspect ratio and final desired aspect ratio. The multiplicative row and column
penalty parameters in the cost function also control to a certain extent the relative

number of row and column folds.

4.1.10. A Brief Description of Approach 2

In this approach, two annealing stagw are performed. The generation of
states proceeds differently in the two stages. In the first stage (a) horizontal nets
are displaced vertically or interchanged with other borizontal nets and (b) cells
are displaced horizontally on a row. After the first stage of annealing, the vertical
nets may be staggered and overlapping. but the horizontal nets will be straight
though horizontal overlap may exist. The cost function has an added constituent
in this approach, vertical net stagger. If a net is not straight because all its
attached cells are not in the same column, a penalty is assessed. This penalty is
proportional 1o the horizontal distance between the leftmost and rightmost cells.
After the annealing, all horizontal net overlap is removed using techniques

described earlier in the section.

45

The second stage of annealing atlempts to minimize vertical net stagger and
overlap without causing any borizontal net violations. Generation of states is con-
strained to horizontal cell displacements within the range of the cell's horizontal
net. Displacement within the range of the net ensures that horizontal net overlap
does not occur. Nets are not interchanged. The cost function in this stage is the
vertical net stagger and overlap. Aftér this second annealing stage. vertical net
violations due to vertical nets not being st.r.aight or overlapping are removed and

the compaction process is ended.

4.1.11. Splitting long nets

The minimum possible area after folding is bounded by the length of the
longest nets. horizontal or vertical. One single input feeding to many product
terms in a PLA can constrain the final size of the array even if the rest of the array

is very sparse. Similar problems can occur in other array structures.

A solut.io;'x to this problem for the general case is possible in GENIE b)-' pre-
processing the array to split the nets possessing a number of cells greater than a
threshold value into two or more subnets. Route-through-cells are inserted to
connect up the different subnets. If a horizontal net is split. two route-through-
cells are appended, one to each subnet and connected up by a vertical route net.
Vertical nets can be similarly treated. If the array is a PLA, it now becomes a
pseudo MLM. It has been found that this technique results in large improvements .

over the conventional techniques for sparse PLAs with some long nets. An example

46

El

E
H
L
B

il

(a) Long Vertical Net constraining Folding

]

]

] O

(B[

] 5]

(b) Result after splitting net in two
Fig. 4.6

of how splitting a long net can reduce area is shown in Figure 4.6.

4.1.12. Parameter extraction

The cost function has many components and each component has an associ-
ated weight given by its parameter. For example, the overlap penalty parameter is
typically in the range of 10-50 units and the gain for reducing the number of
rows/columns is in the range of 5-10 units. Finding the absolute best set of
parameters for a array or a given set of arrays is very difficult. The problem is
further compounded by the fact that the efficacy of a particular set of parameters
is dependent on the annealing profile i.e. the number of states generated per tem-

perauire point and the temperature profile. Also. the size and sparsity of arrays is

47

a variable factor affecting the parameter efficacy.

However, it is universally true that provided certain inequalities in parame-
ter values are satisfied, if a sufficient number of states are generated per tempera-
ture point and if the temperature is decreased sufficiently slowly. the quality of
the final solution shows a remarkable insensitivity to the actual parameter values.
When CPU time is a factor and the annealing process is shoﬁ absolute parameter
values become important. The relative values of the row and column gain/penalty
parameters, however, affect the aspect ratio of the final result and this fact is used
to advantage 10 obtain a desirable aspect ratio as is explained in greater detail in'

Section 4.2.2.

With these in mind, extraction of parameters for four different array types
was done for short annealing times. The four different types were small-dense,
small-sparse, large-sparse, and large-dense arrays. The solutions obtained for a
wide range of parameter values are summarized in Table 4.1. The parameter

~ values marked with an asterisk were hardwired into the program.

The table gives normalized sets of values for three parameters. These param-
eters are associated with the gain for reducing rows/columns, the penalty for net
overlap and the penalty for cell overlap. Normalization was done so the percen-
tage chngw in parameter vaiues could be directly found. The absolute values are

1, 10 and 50 respectively.

4.1.13. Temperature versus Cost Graphs

It is interesting to study temperature-cost graphs for an annealing process to
determine the point at which one would like to operate. The marginal utility of

simulated annealing goes down as the temperature profile becomes more and more

48

parameter inl _in2 | in3 ind ind in6é in7
TOW 0 0 0 1 1 1 1°
net 0 1 1 0 0 1 1*
cell 1 0 1 0 1 0 1*

gm0.mat(34/20) 33720 | 34/19 | 34/20 | 32719 [28719 | 28/19 | 28/16
apla.mat(42/22) 25/20 | 24/19 | 29719 | 28/19 | 22/20 | 23/20 | 19/16
xcplal.mat(73/72) | 43/61 | 42/64 | 50/61 45/61 | 33/63 | 31/64 | 27/59

ex15(68/52) 23/52 | 65/52 | 64752 | 60/51 | 42/52 | 41/52 | 37/52
rameter in8 in9 in10 inll in12 inl3 inl4
TOW 1 1 1 1 1 1 1*
net 1 1 0.8 1 1 1 1*
cell 0.2 0.5 1 0.2 0.5 0.8 1*

gm0.mat(34/20) 28/19 28/19 29/18 27/19 27/18 28/17 28/16
apla.mat(42/22) 22/20 21/19 18/17 22/19 21/15 18/19 19/16
xcplal.mat(73/72) | 30/62 28/64 28/60 31/60 30/59 26/60 27/59
ex15(68/52) 42/52 42/52 40/52 41/52 41/52 39/52 37/52

Table 4.1 - Parameter variations

gradual as the solution is getting closer and closer to the global minimum. Ideally,
one operates at a point where the cpu times involved are reasonable, and the solu-
tions being obtained very close to the global minimum. Various temperature
versus cost graphs for different temperature profiles all starting at the same tem-
perature on one particular example are shown in Figure 4.7. In each of these cases,
during the annealing the number of states generated per temperature point was a
constant and is indicated above the corresponding curve. The parameter ALPHA was
-also held constant at 0.90 throughout the annealing process. The final costs are
smaller for the temperature profiles with a larger number of states generated. but
the difference becomes less and less marked as the number of states per tempera-

ture point increases.

49

500

2500 -

Cost

v

650

Temperature

Fig. 4.7 Temperature versus Cost Graphs

50

4.2. Examples, Comparisons and Implementation

In this section we first give illustrative examples of compaction of various
array structures using GENIE. Due to the complexity of the general folding prob-
lem. the only way to measure the performance of a new approach is to compare it
~ with the bst methods known previously. GENIE is compared with existing, special-

ized layout/folding programs.

The Gate-Matrix layout of the CMOS Domino circuit of Figure 4.2 is shown in
Figure 4.8a. The folded Gate Matrix without any constraints is shown in 'Figure
4.8b. Constraining all the inputs to the left of the matrix and all the outputs to
the right of the maﬁk the layout shown in Figure 4.8c was obtained. Measuring
area as the number of rows multiplied by the number of columns and ignoring the
area occupied by peripheral circuits, unconstrained folding reduced the area to 33%
of the original as c<.>mpared to 43% for the constrained case. Additional area is
required for the routing of the inputs/outputs in the first case which can w@ the

total area, including routing, to be larger in the unconstrained result.

While the above example was for CMOs Domino logic, gate structures in static
CMOS or static NMOS can be represented similarly in a multi-level matrix form.
Gates can be two or more levels deep. Multi-level gates do complicate matters

since more than one column may be required for each gate.

The unfolded and folded layouts of a large circuit are shown in Figure 4.9.
There are a total of 647 single-transistor cells in the circuit. The area has been
reduced to almost half (53%) of the original in this case. The final layout was

obtained in approximately 14 minutes on a DECVAX 8600 running Berkeley

UNIX! 4.3. A slightly larger layout was obtained in 8 minutes on the same

-1 UNIX is a Trademark of AT&T Bell Laboratories

51

i
g B
=

(a) Layout of Fig. 4.1 in Domino Gate-Matrix, unfolded.

=5
mca';'faga;—z

a1 T
gg'—g%u

I ‘
= CLF@——:: (—ao=
e e S i

(c) After folding with constraints.

Fig. 4.8. Example of constrained and unconstrained folding with GENIE

52

B

=202

<3

]

=]

p-tpcp-

[=2]

-

o

=<}
s«lyma—-e;qi

g

b

L")

il

S

a3

o

-2

D 81

=]
e i

-0

Fig. 4.9. Unfolded (top) and folded layouts of a large circuit

53

machine.

The combinational part of finite state machines is often implemented as 2
PLA. The flip fiops which store the present state are typically latch transistors
which -are clocked and are usually added to the PLA later. So the inputs and out-
puts corresponding to the state variables have to be constrained to the same side
of the PLA and also ordered to minimize routing. These constraints can often

prove costly in terms of final area.

An alternative is to treat the latch transistors as part of the array itself with
the state variables being intermediate inputs and outputs in a multi-level logic
structure. The litch transistors are thus allowed to floar into the array and no
constraints are placed on the state variables. This is similar to an SLA approach.
The area of an industrial FSM was reduced by 5% by GENIE using this method as
opposed to the former method. In addition, there was a s‘igniﬁcant' reduction in
the length of the critical path through the array. The folded FSM using the 'above
two methods is shown in Figure 4.10. The shéded cells represent the latch
transistors of the flip-flops. In Figure 4.10a the array was folded without the
latch transistors and they were later added. The result of letting the latches float
into the array is shown in Figure 4.10b. The actual layout of the FSM is shown in
Figure 4.10c.

4.2.1. Implementation Details

GENEE is coded in about 5000 lines of C and runs in a VAX?-UNIX environ-

ment.

2 vAX is a Trademark of the Digital Equipment Corporation

54

o e 4 . oo .
& o o
i STet g e =
M e T A T =
Tobteior 2T sSESin

N

b d I P
re

L6

"

$i

€

1
I
e
£
.4 R
1
1
b
T

hd |

- 4= 4

10

= B
f 3 L L=
> [3 By >
- (> &
ar
B arsesiaman
Q
[> - +
T4 . - 8: "
. 4 »n -y
i & . o T
H y c r 5 '
= F | - L L 5 . P
3 =

(a) Latches added after folding (b) Latches added before folding

Pl et
S

(c) Actual layout
Fig. 4.10.

. X”FV" BUY LN

55

The output of the program is a folded connectivily matrix suitable for input
to a context-based tiler for actual layout. Representations for both muitiple and
simply folded rows and columns are used and the representation matrix is

independent of technology.

There are various folding options. The program can be used for any combi-
nation of simple, multiple or no row folding and simple, multiple or no column
folding for both PLAS or multi-level logic blocks. Constraints on the
inputs/outputs can be expressed in the input file using a simple left-right-both

notation.

Typically, dependent on the 'layout tiler of the PLA generator being used there
are constraints on the foldiﬁg. The tiler we have used for generating Domino CMOS
layouts, TINKER, is context-based and produces a layout in a three layer intercon-
nect technology. TINKER requires simple column folding but allows multiple row
folding of the intermediate input/output lines. All the primary inputs/outputs are
necessarily at the edge.of the array. For PLAs. the PANDA[mah84] PLA generator
can be used. The style of PLA produced by PANDA is CMOS static with p-channel

pull-ups as resistive loads.

The final aspect ratio of the folded array may be important to the designer.
It has been found, especially in multi-level structures, that the folded area can
vary to a large extent depending on the relative magnitudes of row and column
folding. There is a trade-off between the desirable aspect ratio and possible folded
area. Note that in Table 4.2 some folded multi-level circﬁits have been only row
folded. In some cases that was because column folding was not possible but in the -
other cases it was found that only row folding gave a smaller final area as com-
pared to equal weights for row and column folding. In MAT7, for example, when

equal weights were given to the row and column gain/penalty parameters, the

56

folded result was 18 rows by 29 columns as compared 1o 16 rows by 31 columns

for only row folding.

Most PLA folding programs do not interleave the AND and OR planes of the
PLA whereas in multi-level logic there is almost no distinction between a series or
a parallel tile: they can exist on the same row or column. GENIE can optionally
interleave th;e AND and OR planes of a PLA or keep them separated. Interleaving

may result in a smaller folded area but the layout generator used must allow it.

One of the features offered by GENIE is good control over aspect ratio using
the multiplicative row-column decrease/increase parameters described in earlier.
" Their relative magnitude can be controlled by the user which alters the final
aspect ratio.

For SLAs or static CMOS/NMOS multi-level blocks. where the cells may have
varying widths, the length-width parameter described earlier is assigned a non
zero value. The effect of this parameter is to minimize total length and total

width instead of minimizing the number of rows or columns.

4.2.2. Comparisons with existing tools

GENIE has been compared with a number of existing tools for topological
folding and compaction of array logic. TwisT[hof m85a,hof m85b] was developed at
the University of California, Berkeley and is a program for the folding of multi-
level connectivity matrices. TWIST can pérform simple column folding and multi-
ple row folding of intermediate inputs and signals can be constrained. The algo-

rithms used by TWIST are similar to the ones presented in[demi83a).

A variety of constrained/unconstrained examples were run on TWIST and

GENEE. The results are tabulated in Table 4.2 showing CPU time on 2 DECVAX

57

MATRIX size Constraints TWIST GENIE GENIE GENIE Area/
nr*nc folded size | folded size | time (sec) | TWIST Area
MATI1 27*15 none 26*11 19°14 57 0.93
MAT2 22*42 none 19°22 18*18 76 0.77
22*42 all inputs left 21*32 21°21 78 0.72
MAT3 30*60 none 2959 30°54 364 0.94
MAT4 109*95 none 74*77 4782 1029 0.67
MATS 78*52 none 58*52 3852 362 0.65
MAT6 85°64 none 66°61 58°41 1062 0.59
MAT? 4731 none 28°31 16*31 312 0.57
MATS 79*55 none 63*44 41°39 624 0.57 .
MAT9 4755 none 30*53 19*44 452 0.52
MATI10 73°72 none 4*67 2462 741 0.50

Table 4.2. Comparison of TWIST and GENIE.

8600. number of initial rows and columns. final number of rows and columns,
initial and final areas with percentages. These exa;xxplw are all considered to be
with uniform cell sizes as TWIST has no special provision for non uniform cell
dimensions. HoweQer. TWIST has additional internal constraints on the ordering of
signals as it performs delay optimization. GENIE performs significantly better than
TWIST and more so in the larger examples. Constraints are also handled better than
TWIST. The CPU time taken for these examples is cost-effective. Area results as
good as those obtained by TWIST can be achieved in much less time; the results
bere are the best we obtained disregarding CPU time as a factor. In all these

examples simple column folding and multiple row folding were allowed.

GENIE is primarily intended for uniform/non uniform cell multi-level matnx
structures. However, it is interesting to compare GENIE with a PLA folding program
like PLEASUREldemi83a.demi83b). A number of examples were run on PLEASURE
and the results are tabulated in Table 4.3. All the examples were run for multiple

row and column folding. GENIE produces better results than PLEASURE; more so in

58

PLA size Constraints PLEASURE GENIE GENIE GENIE Area/
nr*(2*ni+no) folded size | folded size | time (sec) | PLEASURE
PLA1 20°(26+25 none 14*33 17°22 50 0.80
PLA2 30*(16+31) none 29*21 29*19 - 364 0.90
30°(16+31) | some inputs top 29*35 29*31 - 374 0.88
outputs bottom
PLA3 47°(24+12) none 47°28 47°28 615 1.0
47*(24+12) all inputs top 47°32 47°30 626 0.94
PLA4 52°(54+28) none 52*56 52*44 362 0.78
. 52°(54+28) all inputs top 52469 52*58 376 0.84
PLAS 34°(22+2) none 34*18 3417 134 0.94
34%(22+2) some inputs top 34°23 34°20 143 0.87
PLA6 | 211%(64+20) none 211°66 21147 1745 0.71
PLA7 100*(38+16) none 10022 100°20 221 0.91
PLA9 119°%(78+8) none 119*42 119*29 498 0.69
PLA10 | 35°(68+14) none 21°23 3511 280 0.79
PLA11 | 128°(44+16) none 12828 12820 129 0.71
PLA12 | 20°(22+5) none 13°21 20%11 11 0.81

Table 4.3. Comparison of PLEASURE and GENIE for PLA folding.

the constrained cases which are more likely in real chip designs. Another advan-
tage in using GENIE rather than a folding program like PLEASURE for PLA-based
'FSM’s is that we can allow the latch transistors which store the initial state to

float into the array and achieve further compaction as described earlier.

GENIE has also been compared to the PLA folder described in [moor85] which
uses a rule based hill climbing technique. The results of the comparison are tabu-
lated in Table 4.4. GENIE produces equal or better results on all the examples

under the same conditions.

Simulated annealing asymptotically approaches the global optimum of the
configuration space with the increase in the number of states generated per tem-
perature point[rome85). Various solutions can thus be obtained for a given exam-~

ple depending on the inner loop criterion and.temperature profile. GENIE can be

59

PLA size MO-GS MO-GS GENIE GENIE | GENIE Area/
ar*(ni+no) folded size | time (sec) | folded size | time (sec) | MO-GS Area
e =

DK27 [C10°(9+9) 110 2.3 100 6.0 0.91

BENCH2 | 57*(8+18) 918 8.76 855 62 0.93
57%(8+18) 918 8.76 840 161 0.91

SEX 21%(14+21) 266 3.33 231 11.6 0.86
21%(14+21) 266 3.33 210 41.4 0.78

B12 42%(15+9) 525 7.06 525 61 1.0

B3 211%(32+20) 6930 65.12 6330 1745 0.91

Pl 57%(8+18) 918 9.05 855 63 0.93

SHIFT 100°(19+16) 1881 10.11 1400 221 0.74

B4 54%(33+23) 1600 10.35 1404 173 0.87

LUC 26°(8+27) 696 4.72 696 47 1.0

P3 40°(8+14) 532 5.92 520 34 0.97

SPAM1 18%(9+14) 221 2.99 198 9 0.89

ALCOM | 40°(15+38) 672 8.48 500 21 0.74

CLPL 20%(11+5) 168 4.28 140 11 0.83

SIGNET | 119°(39+8) 2895 50.39 2023 498 0.69

MIS] 35%(34+14) 450 7.62 11.1 280 0.62

TS10 128°(22+16) 2944 6.60 1792 129 0.60

Table 4.4. Comparison of GENIE and the MO-GS Folder.

used for short or long runs depending on the CPU time the user wants to spend.
Plots of CPU time versus quality of solution for eight examples are shown in Fig-
ure 4.11 — the first plot gives the solution quality/CPU time results for four PLAs,
and the second plot for four MLMs. The # (bash) points on the eight plots
correspond to the solution/CPU time for PLEASURE and TWIST. The plots indicate
that GENIE produces solutions as good as PLEASURE and TWIST taking more or less
the same order of CPU time. Further and further improvement requires more and
more time as illustrated graphically by the plots. These are typical results and
they span a large range of PLA and MLM sizes. The details on the sizes of the PLAs
and MLMs can be found in Tables 4.2, 4.3 and 4.4. Similar plots were obtained

versus the MO-GS folder.

The entire control logic of the Berkeley SOAR micmprdcesor was synthesised

in two level and multi-level form using GENIE. The results are encouraging, both

60

HAT8 '79 ¢ 85

HAT4 109 ° 95

':V_I-ﬁ-T

|
L

GENIE
1 \ | | L
()-::-’?Oou_y_1 o-x-uooo,y_l
' itz 2% ¢ a2 ' I liaTi0 ¥s ¢ 72
TWIST
B —— GENIE .
L _GENTE # - -
\ | | | | { | |
0 -x 100 o o 4 0 -2~ 1000 o o 4
T pLA1Z '20 * 27 ' T pras s2 ' a2 !
B LEASURE a1 .
P Y
- LEASURE -
{ | | | |
0-x- 40 o o 4 0 -3 700 5 o 4
SOARBIG 268 * 260 ' T pLA8 b11 ¢ 84
N | |[pLEASURE B
~—_ GENE
m PLEASPRE [~ -
| P | !
0 -x- 22000 ¢ o 4 0 -x- 1800 5 .o 4

Fig. 4.11 CPU Time versus Solution Quality Graphs

61

for the PLA and multi-level cases and are summarized in Table 4.4. Note that
PLEASURE actually takes twice the time to fold the large PLA and achieves a poorer
result. The explanation for this is that the operations required to find the cost of
the configuration in GENIE are purely incremental, and are independent,. to a first
order, of the sxze of the array. Hence for very large examples, simulated annealing
is often faster than heuristic algorithms. The CPU time versus solution quality
graph for this large PLA is shown in Figure 4.11 and corresponds to the curve

marked SOAR.BIG.

Most proposed schemes for gate matrix layout using graph theoretic tech-
niques (e.g. [wing85]) cannot bandle the practical constraints of differing size
transistors and fixed input/output terminals. In GENIE bounded column, ordering
and adjacency constraints can be imposed on the signals. For Weinberger arrays.

total net length can be minimized during compaction unlike previous approaches.

FORM size Constraints | folded size | Area Reduction GENIE

nrénc factor time (sec) |

R R ——— — s S T |
PLA/GENIE 260*296 none 106°215 3.43 10740
PLA/PLEASURE 260°296 none 114217 3.15 21100
multi-level/GENIE | 644°561 none 1580248 922 12760

Table 4.4. Performance for both multi-level and two-level
implementation of CMOS SOAR control logic.

62

4.3. Storage/logic Array Compaction

Storage/Logic Arrays were first described in 1975[pati75] and later
extended[pati79]. They are regular structures derived from the Programmable
Logic Array (PLA)[flei75). Unlike PLAs+2 they have the ability to embed storage

functions within the combinational logic array.

SLAs can be constructed from tile sets designed for particular technologies.
Though SLAs have been built in various technologies the CMOS SLAs appear to.be
the most popular. CMOS SLA elements include a single inverter. a double inverter. a
simple NAND gate latch and a pass transistor{smit82). Schottky diodes can be
used as the combinational elemex;ts. Each of these cells is represented as a single
character to the designer. In much the same way as the personality matrix of the
PLA can be manipulated symbolically, the characters representing the SLA elements
can be arranged. Because the layout is very similar to a PLA, it is possible to
employ similar folding and splitting algorithms[demi83ai.demi83b] to optimize
SLA area. But if some of the tiles are quite complex and large (e.g. a D flip-flop)
area utilization suffers dramatically if PLA éptimization techniques are applied
since then the minimum cell pitch is constrained by the largest cell in the tile set.
An alternative approach is to allow cells which are the multiple of some funda-
mental dimension. However if this is done special "blank” and "bender” cells must
be created to route sxgnals So far, SLA designs have been area efficient only while
implementing circuits with a high ratio of combinational logic to active elements
making them more and more like PLAs with external synchronizing logic. Their

embeddedness has thus been lost[hofm85a,hof m85b).

The general algorithm described in Section 3 can be used to minimize the area
of a SLA under various constraints. Since the cells are of varying sizes the

height/length of the array is minimized and not just the row/column cardinality.

63

Also. user-specified critical signals can be made short while minimizing area. This
may be vitally necessary in synchronous system design. Since the algorithm is
technology independent, it can be used irrespective of the complexity of cells in

the SLA.

4.3.1. Modifications for SLA compaction

A relatively simple approach was adopted for gate matrices in defining
column width (row height) as the width (height) of the widest (tallest) cell in the
_column (row) and minimizing for the sum of column widths and row heights.
However this approach assumes that cells on a row (column) cannot encroach on
adjacent rows (columns) whereas in reality this encroachment is allowed and can

reduce area.

This may lead to a situation depicted in Figure 4.12a after the annealing. By
interchanging columns A and B in the array of Figure 4.12a and allowing cells to
encroach on neighboring columns/rows without overlapping other cells, and still
keeping all nets straight, we can reduce the area considerably as shown in

Figure 4.12b.

Therefore. the cost function should calculate the area of a particular
configuration in a more realistic way. Also, it is important for computational
efficiency that this calculation be incremental and restricted to the nets being

displaced/interchanged.

At every stage the necessary width (height) required for every column (row)
. is calculated taking into account the cells on adjacent columns (rows). The
centers of the cells are assumed to be aligned. If a displacement increases the
necessary width of a column or height of a row it is penalized. On the other hand,

if a displacement/interchange decreases the width of a row a gain is accrued.

64

A B Ak

Fig. 4.12 (a) Folding disallowing encroachment (b) allowiné encroachment

Displacements may cause a row or column to become empty of cells. This is the

special case of the height or width becoming zero and is treated as such.

The total length of the nets is a part of the cost function like before. The
associated cost is the length times the net weight. Critical nets, which must be
kept short, can be weighted heavily so as to minimize their length in the final lay-
out. Nets may be kept short even at the expense of increased area if their assigned

weight is large enough. Thus the critical path through the array can be minimized.

Compound cells introduce another complication. All the constituent cells of a
compound cell must eventually lie adjacent to each other in the folded array. But
if the constituent cells are connected to different nets (e.g. the flip-flop cells in
Figure 4.12a. some may be.displaced so they are no longer adjacent to each other.
Two approaches may be taken to solve this problem: the nets can be
displaced/interchanged only simultaneously or we can allow their adjacency con-

straint to be violated by single displacements but penalize any violation. The

65

second approach invariably yields better results since it enlarges the exploration
space. A large enough penalty ensures that the eventual configuration is accept-

able. -

Post processing after the annealing to remove overlap is similar except that if
more than one feasible row exists on which the present overlapped row can be
placed. the row with maximum height is chosen so as to minimize area increase. If
no such rows exist a new row is created next to the present row and the net is
placed on it and locked as before. Similarly, if more than one feasible column

exists the widest is chosen. If none exists a new column is added.

4.3.2. Constraints during the annealing

Input and output terminals can be constrained to any edge of the array using
pads as described earlier. Multiple/compound cells which may be made up of
smaller constituent cells also introduce adjacency constraints for the annealing
phase. The user may require a structured layout style within the array[pati85]
e.g. all the flip-flops lying close to each other with combinational logic surrounding
them. These constraints take the form of net groups or partitions and nets are dis-
placed or interchanged within partitions only. wyich ensures that all nets in a
partition neighbo‘r each .other in the optimized layout. Ordering constraints are

required in the case of directional cells like inverters and buffers. Net interchanges

66

and displacements are such that they do not violate the required ordering.

4.3.3. Aspect Ratio sizing

The aspect ratio of the folde.d arréy may not be desirable in a SLA layout.
Two approaches to aspect ratio sizing can be taken. The first involves partitioning
the initial SLA into smaller parts with minimal interconnections between them.
The sub-arrays can be optimized separately with constraints on the interconnect-
ing signals. Heuristic methods{fidu82.kern70] or a simulated annealing based par-

titioning scheme can be used to find the optimal set of partitions.

The second approach involves modifying the cost function in the a;mealing
step described to control the relative magnitude of row and column folding so as
to achieve a desirable aspect ratio. The penalty for reducing/increasing row height
(column width) can be made higher than column width (row height) if a short,
squat (tall, thin) folded array is required. If this is done more rows (columns) are
folded at the expense of column (row) folds. In the extreme case only row fold-

ing or only column foldinﬁ can be allowed.

4.3.4. Examples

The symbolic folded layout of a representative SLA program illustrating the
use of symbols which has been reproduced from [sﬁxi182] is shown in Figure
4.13a. The asynchronous cells include: 1) a set/reset laich for the memory ele-
ment: 2) an inverter; 3) 1,0SR and + combinational logic cells: 4) row and
column pullup cells; and 5) miscellaneous cells including *,#. and blank cells. The
and * cells are ohmic contacts between rows and columns and are used to

bardwire signals from one position to another. Row and column interconnects are

67

assumed to be always present between cells unless the programmer deletes them.
creating a row or column break, which is indicated by the .solid lines in
Figure 4.13a. The single flip-flop FF occupies 2 columns and 7 rows and the rest
of the cells occupy one row by one column. Neglecting the two blank columns,

which are left for row pullup cells. the area of this folded layout is 130 units.

The unfolded connectivity matrix representation of the SLA with the size of
the flip-flop indicated is shown in Figure 4.13b. This symbolic representation is the
input to the optimization program and has been derived from the folded array

placing every net on 2 unique row or column.

The result of running our optimization program on the unfolded symbolic
representation of Figure 4.13b is shown in Figure 4.13c after expanding the flip-

flop to seven rows. Simple row and column folding was allowed. The folded lay-

out was obtained in 3.1 seconds on a DECVAX 8600 running Berkeley UNIX? 4.3.

The area of this layout is 98 units, 25% smaller than the hand folded array
of Figure 4.13a. For large, sparse examples, or examples with widely varying cell
dimensions area gains over hand optimization will be larger. A larger example
from an industrial source is shown in a optimized form in Figure 4.14. As can be
seen there is wide variation in the sizes of the constituent cells. It is interesting to
note that GENIE clustered big cells together on rows to minimize area. GENIE actu-
ally "rediscovered” the structure present in the netlist. Multiple folding of inter-
mediate inputs was allowed. The folded layout is less than a third the size of ;(.he

original. Multiple folding of intermediate inputs was allowed. It was obtained in

3 UNIX is a Trademark of AT&T Bell Laboratories

68

unfolded 19 10

rl
T2
r3
r4
rS
ré
r7
r8
r9
rl0
rll
rl2
rl3

abcdefghi j
*® 0 ® 00 0 00 I I
® o & o0 I l e oo

couloo.oo-

ooIooo-.oo

FF-.......
o.+.ooo.o.

10."'...0..
oRoo.oo.o.

$......85..

l...ll+0..

size F (7,1)

(b) In unfolded form

(a) SLA realization of a state machine from [smit82]

folded 14 7
abcdhi j
ri1 #...#I1 ri1(6)
rd ..1.01+ r13(5)
r6 -0.+4....
r7 .S0....
r8 1.eteee
r9 .R.O0...
rSa FF..11+
r5b FF.....
rS¢ FF.....
rSd FF.....
rS5e FF.....
r5f FF..... r12(5)
r5g FF.I... r3(4)
r10 *...*II1 r2(6)

- efg
(7) (1) (1)

(c) After automated optimization

Fig. 4.13

69

L L
INRIERII

JULIL
HEHH]

CEHCE

(LU

ot
mmmel mea
J OL0L
Wy

LU
L

r'll"ll 1
|RE[uN|{EE]!

0

a

I

rh—l

{

|
I{RR|NEAN|RE]EE]

['1 [aninniuninn]
ot

['l am

nj o
l

|I==]lll|llll

Lt

nnnEnnnnng
m

i)

r'lf"l
EnnE:
oSl

5

._|]
J]l
nim
t
m i
|
|
il
i

mmimilm

Fig. 4.14 Folded SLA

U IRRINEIRRINRINE] 11
] [NB|EN|ER|RE{EN] LWLl
glERiEniENINE

N

i rcrnd
JLPILILESL LULRTLIILLIL
NImR

:
dﬁ?d“@@ﬁmmr
|£] t
i
]

INEIBEIREINR]
Ot
m

ml-.l

L

ngnEnnnn

N

70

approximately 14 minutes on a DECVAX 8600.

4.4. Conclusions

In this chapter a new technique for generalized array optimization using
simulated annealing was presented. GENIE has proved to be 2 useful tool in
automatic multi-level combinational/sequential logic synthesis in various techno-
logies because of its ability to handle practical constraints like non uniform device
sizes and fixed input/output pads and because of the high quality of the final

results.

It has been shown that a simulated annealing technique can be used to emu-
late folding of array structures ranging from highly-regular PLAs, Weinberger
arrays. SLA's (Storage/Logic Arrays) to multi-level gate matrices. In all cases,
GENIE outperformed our best program to date. In particular, for constrained,
two-l'e\./el logic GENIE over 30% reductions were achieved compared with PLEASURE.
In the case of SLAs. GENIE is the first tool to provide a high-quality embedding of
logic.

It has also been shown that the CPU time requirements of simulated anneal-
ing based algorithms can be reduced to a manageable level, while still producing

solutions of higher quality than heuristic algorithms.

A modified algorithm for one-dimensional Gate Matrix and Weinberger
Array folding, which is more cpu time efficient than the general two dimensional
folding algorithm presented in this chapter, while producing eqnaily good results,

is described in the next chapter.

7

CHAPTER 5

Weinberger Array and Gate Matrix Layout

Multistage logic circuits in various technologies and design styles can be
represented symbolically as Gate Matrices{lope81] or Weinberger Arrays[wein67].
The gate matrix has proved to be an effective layout style for implementing
multi-level combinational functions in CMOS technology. In contrast, Weinberger

arrays produce area efficient layouts for single MOS (e.g. NMOS.PMOS) technologies.

In the gate matrix style the p-transistors and n-transistors are placed in
different halves of the matrix. 'fhe transistors are connected by lines which form
the rows of the matrix. Various algorithms[ohts79.win382.mlyu85] have been
proposed to find an ordering of the signals/columns of the matrix to obtain
minimum row cardinality and an area efficient layout. However, none of these
methods provide for differing size transistors, which means that_ though the row
cardinality may be optimally small. the height/area of the matrix may not be the

minimum possible.

Most proposed methods[wing82,wing85] lack the ability to handle practical
constraints like fixed input and output terminals. In [oh1s79] all the inputs are
restricted to the left of the matrix and all the outputs to the right. Also, good
control over the aspect ratio of the gate matrix[ohts79,wing82,wing85] is not pro-

vided by previous techniques.

Weinberger arrays are one~-dimensional. Optimization algorithms to obtain
the best packing on a one dimensional interval have been
investigated{yosh75)lohts79] [asan82]lmlyu85). However. no previous approach

provides for differing size transistors like in the gate matrix case. Provisions for

72

minimizing total net length or.optimizing circuits with arbitrarily complex gates are

non existent.

In this chapter we present simulated-annealing-based algorithms for gate
matrix and Weinberger array layout which effectively solve all the above
problems[deva86b). These algorithms minimize the area of a Weinberger array
taking into account arbitrary user-specified constraints on any terminal. Bounded
column, ordering, or adjacency constraints can be placed on the input and output
terminals of a gate matrix. Since transistors can be varying sizes the height of the
array/matrix which is proportional to tbe area is minimized and not just the row
cardinality. These techniques can also be used for partitioning the array/matrix
into smaller sub-matrices to achieve a desirable aspect ratio while minimizing
interconnections. Each of the sub-matrices can then be optimized. User-specified
critical signals can be made short or the total net length can be minimized while
minimizing area. The algorithins are technology independent since they operate on
a symbolic layout and can be used irrespective of the complexity of logic gates in
the circuit. Pass transistor structures are supported. A context based tiler then
translates the symbolic layout into CIF (Caltech Intermediate Format). Results

obtained are uniformly good over a wide range of examples.

The layout algorithm for Weinberger arrays is described in the following sec-
tion. Modifications required for gate matrix layout are described in Section 3.2

and Section 5.3 contains illustrative examples.

73

5.1. Weinberger Array Layout Optimization

A typical Weinberger array layout is shown in Figure 5.1a. The two basic
entities of interest are the gate and signal. Note that the gate may occupy one or
more column and more than one signal may occupy a row in the cc;mpacwd Wein-
berger array. The obiective is to find an ordering of gates which minimizes the
overall area. Given a ordering of gates the range of signals mn be determined.
Signals can exist on the same row if their ranges do not overlap. The ordering
must be such that signals can be maximally folded on rows. Constraining a signal

to either or both edges of the array results in expanding its range.

The input to the program is a gate net-list. A gate may be of the simple NAND
or NOR type or may be a more complex AND-OR-INVERT structure. The widths and
lengths of the constituent transistors in the gates may vary widely. The program
generates a symbolic layout area-optimized under the various constraints which is
suitable for input to a tiling program, like TINKER[bof m85a.hof m85b), a context

based tiler which produces the actual layout in CIF.

Juuduuyu

(a) Weinberger Array (b) Gate Matrix
Fig. 5.1

74

An example of an input to the program is shown in Figure 5.2a. It is a list of
logic gates interconnected by nets. Figure 5.2b is the schematic of the gates
described by Figure 5.2a in transistor form..One of the logic gates is a two-level
structure and may require two columns to be realizable. A pass transistor also
exists in the input description. The ordering of input signals of complex gates

determines the number of columns the gate needs to be realized (Section 5.1.5).

Pass transistors are handled by representing the pass transistor as a simple
gate with two input signals attached to the source and gate, and an output signal

attached to the drain as illustrated in Figure 5.2a. The gate net-list is technology

(o1 rl
(sin_1in 2)): ,

-
]
(02 in_4 _l
(s in_3 in_4)):]
il

(03 in_3 _I
(x 2 in_5)):

(o out
(

slin_1

)
(s3in_2)

: inz 4 ° -
in_1 —{ | F in_2

(a) Input gate net-list (b) Transistor schematic
Fig. 5.2

75

independent, however information about the technology and design style is neces-

sary for deriving Lhe transistor schematic and array structure of the net-list.

The algorithm consists of two annealing stages: each with an associated cost
function. New states are randomly generated and their acceptance is governed by

the acceptance criterion described in the previous section. Briefly these steps are:

Order_Gates();
Order_Rows();

In the first stage the gates are ordered in such a fashion as to minimize the max-
imum column -height while satisfying the specified constraints. In the second stage
the best possible arrangement of rows is found so as to minimize the total number
of columns required to realize the gates. This second stage is not necessary when
all the gates are simple or only one level deep as assumed in [asan82). The two
stages can be merged together into a single annealing stage or performed sequen-

tially. These two steps are described in detail in the remainder of the section.

5.1.1. Ordering the gates

The program begins with an initial arbitrary ordering of gates. The objective
of this stage is to reduce the maximum of the heights of the columns to as great
an extent as possible, a MIN-MAX problem. The column height is the sum of the
heights of the transistors existing in the column plus the bus-through signal row
widths. All the primary inputs and outputs and signals which are constrained to
be at any edge of the matrix are terminated by pads. Pads are restricted to the

periphery of the matrix; they are treated as immovable gates.

76

5.1.2. Generating New States:

A new state is generated in this stage of annealing process by exchanging two
fundamental units, in this case, gates. Pads can be left-pads or right-pads depgnd-
ing on whether they are constrained to the left or the right of the array. A partic-
ular signal may have both left and right ;;ads if necessary as in the case of bussed
through input signals in connectivity matrices; Pads cannot be interchanged with

each other or gates in this stage.
The selection of new states is based on the following considerations:

(1) Two random numbers between one and the total number of gates are gen-

erated.

(2) If the range limiter’s condition is satisfied then an attempt is made to inter-

change the gates represented by the two numbers.

A range limiter{sech84] limits the range of interchange of a gate. The range limiter
is used because in the latter stages of the annealing the interchange of two gates
‘has very little chance of being accepted unless it is very local. So to generate
states which have high probability of being accepted the range of possible inter-
change of a gate with another gate is gradually reduced from the total number of
gates at the beginning to only allow neighboring gate interchanges as the tempera-

ture approaches zero.

5.1.3. The Cost Function:

The cost function is the key to any algorithm using simulated annealing. It is

crucial that it be truly representative of the optimization problem.

The most important part is the maximum column height for the given order-

ing of gates. Constraints modify the calculation of this maximum height. The

77

total léngth of the signals is also a part of the cost function, though less impor-
tant. The length of a signal is defined as the number of gates the signal spans; The
associated cost is the length times the net weight. Critical nets. which must be
kept short, can be weighted heavily so as to minimize their length in the final lay-
out. Thus total net length or selected net’s lengths can be minimized while
minimizing area.

The procedure to find the cost of a configuration is shown below.
frocedure find_cost_of _configuration()

cost = 0:
column_heights = 0;
forall(signals) {
1 = infinity:
r=0;
forall(gates attached to signal) {
1 = MIN(gate_column.l);
} r = MAX(gate_column,r):
if(signal is constrained to be on the left)
1 = leftmost_column_num;
if (signal is constrained to be on the right)
r = rightmost_column_num;
cost = cost + (r - 1) * signal_length_weight:
for(col = 1; col <=r;:col =col+1)
column_heights[col] = column_heights{col] + signal_width:

forall(columns)

max_column_height = MAX(column_heights):
cost = cost + max_column_height * paraml:
return(cost);

}

The procedure is essentially calculating the maximum density of the signals
at any particular column with weights on signal widths. The width of a signal is
the width of the widest transistor on it. Constrained signals have to extend to the
edges of the matrix. The relative magnitudes of paraml and signal_length_weight
are important in the case of a tradeoff between making the critical nets short at

the expense of increased area. Typically the weight of non critical signals is zero

78

and highly critical signals can have weights such that they are made short even

with a possible area penalty.

5.1.4. Stopping/Inner Loop Criterion and Temperature Profile

The stopping/inner loop criteria and temperature profiles used are similar to

those described in Section 4.1.6 and 4.1.7.

5.1.5. Ordering the rows

After the first stage, an optimal permutation of gates would have been found
which minimizes the height of the matrix. In the second stage the nets are first
assigned tracks on rows using the Left Edge Algorithm (LEA)hash71]. In the LEA
nets are ordered according to increasing left edge x coordinates and routed in this
order. This is similar to the channel routing problem only no vertical constraints
exist between nets which guarantees that the LEA can route the nets in a number
of rows equal to the maximum density .at all columns. Then the rows and the
signals on them. are permuted such that the gates are realizable in a minimum
number of columns. As mentioned before single level gates like NAND and NOR
require only one column to be realized. But two and higher level structures may
require additional columns if the ordering of the signals to the gate is not of a par-

ticular nature.

Two 2-level gate structures and the ordering of signals which allows realiza-
tion in a single column in our layout style with three layers of interconnect are
illustrated in Figure 5.3. This layout style has two layers of metal interconnect
and a polysilicon layer and uses the basic transistor tiles shown in Figure 4.3. The
valid permutations have been expressed in the form of compact rules. Each rule

has an associated number called the column magnitude which is equal to the

79

maximum number of columns required to realize the gate provided the rule is
satisfied. As an example the rule
{ permutable(a permutable(b ¢)) . 1}
means the following orders are valid for a single column realization of the gate:
(abc)(acb)(bca)(cba)
The ordering (b a ¢) would require more than one column — using the tiles in Fig-
ure 4.3 all the required connections cannot be made by abutment in a single

column.

A single rule may not suffice to span all the whole range of valid orders in
the case of deep structures which can be realized over a range of columns depend-
ing on the ordering of the signals. In that case there will be two or more rules

with different column magnitudes. Rules are stronger than other rules for the

{ permutable(a permutable(b ¢)), 1} I

AL Ok

{ permutable(permutable(a b) permutable(c 8)), 1 }

a &

L1l

Fig. 5.3 2-level gate structures

80

same gate structure if their column magnitude is smaller.

The valid permutations of signals for a large complex gate to be realized in
1.2 and 3 columns are shown in Figure 5.4. Since the depth (or level) of the gate is

4 it can always be realized in 4 columns.

This annealing stage has a different cost function which computes the
number of columns required at any stage given the ordering of rows. It does this
by checking the applicability of the rules to every complex gate. Simple gates are

not considered as they can always be realized in a single column.

For every complex gate the order of input signals is found. This order is
compared against the set of rules for the gate and the strongest satisfied rule
decides the number of columns required for the gate. The cost of the configuration
is proportional to the number of columns or the total width of the columns if

they are of varying widths.

The annealing process in this stage is similar to the first. New states are gen-

_erated by exchanging two fundamental units - in this case rows, as opposed to

~

{ perm(A perm(B C) perm(D E) perm(F G)), 1} Bl —C
{ perm(perm(A B C) perm(D E) perm(F G)), 2 } | L
{ perm(perm(A B C D E) perm(F G)), 3 } B —E

=

1
[S

Fig. 5.4 Rules for a complex gate

81

gates. While exchanging rows all the signals on the corresponding rows are inter-
changed to maintain the row folding. The temperature profile and stopping cri-

teria are identical to the first stage.

5.1.6. Aspect Ratio sizing

The aspect ratio of the folded array may not be desirable. The first stage of
annealing can be modified slightly to find partitions of gates with minimal inter-
connections between them. These partitions, represented as sub-matrices can then

be folded separately with constraints on the interconnecting signals.

The partitioning of the array proceeds as follows. Typically, it would be
desirable to have all the sub-matrices of the same size. A range of sizes for each
sub-matrix is found corresponding to the tolerance o.f sizes specified. Initially the
gates are assigned to partitions arbitrarily without regard to interconnections-and

sizes. The configuration is then annealed.

The cost function in this case consists of two components. The first p;lrt
corresponds to the number of interconnecting signals required between the parti-
tions. The second part is the penalty for too small or too large a sub-matrix size.
If the size of a sub matrix, measured as unfolded area, is not within the range of
tolerable sizes a penalty is.assessed which is proportional to the increment or
decrement. This penalty is added to the cost function. This is vitally necessary as
otherwise the best possible configuration with regard 1o just minimizing intercon-
necting nets is all the gates in one partition which defeats our purpose. This
approach however allows intermediate configurations to have sub-matrix sizes

outside the tolerable range while striving for an optimal solution.

82

5.1.7. Merging the stages

The two stages described earlier in the section can be merged together into a
single annealing stage where the optimum ordering of rows and columns to
minimize area is found simultaneously while satisfying the constraints imposed on
the signals. This corresponds to treating the Weinberger array layoqt problem as a
2-dimensional placement problem rather than as two 1-dimensional ordering

problems like most previous approaches[ohts79.asan82].

This merging is achieved by interchanging gates and rows during the anneal-
ing and using a cost function which is a composite ;>f the cost functions described.
For any particular ordering of gates total beight of the rows is calculated (as in
the first stage) and for any particular ordering of rows the number of required
columns to realize the gates is calculated (as in the second stage). This determines

the area/cost of the configuration.

The merging of the two stages produces results better than the unmerged
stages especially for circuits with a high percentage of complex gates but with
increases in cpu time. The increase is due to the fact that typically more states
have to be generated at each temperature point. The two approaches are compared

in Table 5.2.

5.1.8. Dealing with large fanin gates

A basic limitation to the minimum row cardinality possible is the maximum
fanin of the gates. This could result in an area-inefficient layout if only a few
gates had very large fanins. This is similar to the long net problem in PLA folding
and is handled similarly. A preprocessing step is included in the algorithm which
detects unusually large fanin gates. These gates are split into two gates each with

balf the signals attached to the original gate. During the annealing the two sub-

83

gales are constrained to be adjacent 1o each other at all times. This is necessary for
simple eventual realization. If the sub-gates were not constrained to be adjacent,
one would have to route a signal between the two halves to realize the gate in the

final layout.

5.2. Gate Matrix Layout Optimization

A typical Gate Matrix layout is shown in Figure 5.1b. This layout style is
the complement of the Weinberger array in a sense — gates occupy rows instead of
columns and signals occupy columns instead of rows. A gate may need more than
one row to be realizable and folding implies more than one gate occupying the
same row. The problem is to find the ordering of signals which results in the row
height being minimized. Simultaneous compaction of both the p and the n parts of
the gate matrix is performed (unlike [wing85]) as complex gates can make the
two halves asymmetric. Asymmetry implies that an optimal ordering of signals

for minimizing the n part area may not be optimal for the p part.

5.2.1. Ordering the signals

The algorithm is similar to the merged Weinberger array layout optimization
algorithm except that signals are ordered not gates. The ordering of signals deter-
mines the range of the p and n parts of the gates as well as the number of rows
required to realize the complex gates. Rules for realization in different number of
rows can be formulated for any gate and used to determine the maximum row
cardinality/height given any particular ordering of signals, which in turn deter-

mines the area.

84

The maximum weighted density of rows at any column is minimized using
an annealing step with an appropriate cost function. The procedure

find _cost_of. "_configuration() has to be modified for the gate matrix case.
{procedure find_cost_of_configuration()

cost = 0;
column_heights = 0;
forall(gates) {
1 = infinity:
r=0;
forall(signals attached to gate) {
1 = MIN(signal_column.l);
r = MAX(signal_column.r);

row_magl = find_row_magnitude(p part of gate):

row_mag2 = find_row_magnitude(n part of gate)

total_width = p_part_gate_width * row_magl +

n_part_gate_width * row_mag2;
for(col =1:col <=r;col=col+1){
column_heights[col] = column_heights{col] + total_width:
forall(columns)
max_column_height = MAX(column_heights):

cost = penalty_for_disorder() + max_column_height;
return(cost);

}

The function find_row_magnitude() calculates the number of rows required
to realize the p or n parts of the gate for a particular ordering of columns, apply-
signals. To impose these constraints on the signals, the penalty function approach
is adopted(kirk83). Intermediate configurations may have signal orders violating
the constraints but they are penalized. The penalty assigned for violations is big

enough to ensure that the final solution satisfies the constraints.

Constraining positions of terminals to a particular side of an gate matrix is
vitally necessary in LsI system design. Positions of signal columns can be bounded

in this approach unlike previous approaches[wing85]. Bounded column constraints

85

are very simply implemented by limiting the range of interchange of the con-
strained column to within the specified bounds after finding an initial order which

satisfies the bounding constraints. The generation of states proceeds as follows

(1) A random number between one and the total number of columns is gen-

erated.

(2) A second random number is generated between the two bounds specified on
the column represented by the first number. If the first column happens to |
be within the specified bounds of the column represented by the second

number, an attempt is made to interchange the two columns.

If unspecified. the bounds of a column are the two edges of the matrix. Inputs
and outputs can be constrained to the left/right sides of the matrix with the inter-

mediate signal columns in the middle.

It may be beneficial to bave input signals and their co:ﬁplements next to each
other in the optimized matrix for the easy placement of input buffers. This takes
the form of adjacency constraints on the associated signals. Adjacency constraints
are accommodated by treating the pair of constrained signals as a single compound
signal and interchanging the compound signal with other (possibly compound)

signals. The two constrained signals may also be interchanged with each other.

If all the gates are simple then the optimization is complete after the anneal-

ing; else a post processing step follows.

5.2.2. Expanding the rows

As mentioned earlier, rule formulation for realization of complex gates in
different number of rows in the gate matrix is similar to the Weinberger array

case.

86

Given the layout strategy/rules, after the annealing. the row magnitude (as
opposed to column magnitude in the Weinberger array case) of the strongest
satisfied rule for each complex gate is examined. If the row magnitude is 1, then
tﬁe gate is realizable in one row and nothing is done. If the row magnitude is
greater than 1, row(s) may have to be added to realize the gate. Transistors are
placed on existing adjacent row positions if they are vacant and placement does
not violate the constraints due to folding. else a new row is added next to the
present row and the gate is realized by placing the appropriate transistors on it.
Typically, if the number of complex gates is a small fraction of the total, no ro;ws

are added.

5.2.3. Dealing with dense signals

The counterpart to the large fanin gate problem in Weinberger array optimi-
zation is the dense signal problem in gate matrix compaction. However, this is
slightly simpler as signals can be split or reproduced easier than gates. Signals
feeding into a large number of gates are split into two or more signals, and treated
as distinct nets during the annealing process. They can be constrained to lie next
to each other in the final layout for easy routing, since they will have to be electr-

ically connected if necessary. This splitting of signals can vastly increase foldabil-

ity.

87

5.2.4. The P and the N parts of the Gate Matrix

Previous approaches assume a one 1o one correspondence between the pR and
n parts of a gate matrix and that an optimal ordering of signals for the n part
implies an optimal ordering for the p part as well. This is not true if the circuit
has complex gates. Since the structure of the p and n parts of a complex static
CMOS gate are &mls of each other, a different set of rules may apply for the reali-
zation of the the two parts of the gate in a certain number of columns for a given
layout style. Either a different set of rules can be applied for the p and n parts or
they can be optimized separately. If the latter is the case then routing of signals
between the two parts becomes necessary. The number of layers available for
routing can be two or three, so a multi-layer router like CHAMELEON[brau86] can

be used.

5.3. Examples and Results

Figure 5.5a shows the abstracted symbolic layout of a a static NMOS multi-
level combinational logic circuit with 128 transistors. Series and parallel transis-
tors (the tiles of Figure 4.3) have been symbolically represented as boxes. The
lengths and widths of some transistors are twice the minimum size. While optim-
izing the initial layout all the transistors were assumed 10 be of equal dimensions.
i.e. the row cardinality was minimized disrégarding the individual row widths.
Inputs were constrained to the left of the matrix. The layout was obtained in 20
seconds on a DECVAX 8600 running Berkeley UNIX® 4.3. It's size is 29 by 23

units.

4 UNIX is a Trademark of AT&T Bell Laboratories

88

— R

m 0
1]]
—
— i_
n_m._ m m
o 1]
Mmm il
I I
mwx‘ m m
1] T U
Am:‘ Mm_m
U o

fmml
[==

Eﬂ

ch

m
==

Fig. 5.5a.

89

tH
M

- £ == m|
m=N== == —eh
—ﬁ: /=] r:% =
=== == —
== =
= == ==
= £ £ |

Fig. 5.5b.

' The circuit was abstracted and optimized again but this time the height of
the array, i.e the sum of individual row widths, was minimized. The resulting
layout is shown in Figure 5.5b. This layout has the same row cardinality but its
size is 27 by 25 units, 10% smaller than the previous one. This illustrates the
necessity in providing for non uniform cell dimensions in a gate matrix or Wein-
berger array layout algorithm. If the transistors had been of widely varying the

reduction would have been greater.

The results obtained by optimizing for row cardinality with results obtained
by optimizing for total row height for several circuits as gate matrices and Wein-
berger arrays with a variety of constraints are compared in Table 5.1. (b.c. =
bounded column, ord. = ordering, l.r. = inputs left aﬁd outputs right). The -
transistor lengths and widths varied by about a factor of 3. The results indicate

that area savings of 10-20% are possible.

EXAMPLE | # gates | constraints | # signals | I Row cardinality | 11 Row height | Areall/ | Cpu Time
area ara®___| Area 1 (seconds)
MAT1 none 37 34 0.92 17
25 bc. 4 38 34 0.89 16
ord. 43 39 0.91 34
MAT2 none 40 35 0.87 22
70 b.c. 86 43 39 0.91 21
-ord. 43 40 0.93 42
MAT3 none 31 28 0.90 16
77 b.c. 93 38 34 0.89 16
ord. 36 32 0.89 30
MATA none 52 46 0.88 16
63 b.c. 85 53 47 0.88 16
ord. 59 50 0.85 29
MATS none 44 40 0.91 23
56 b.c. 73 49 44 0.90 21
ord. 47 44 0.93 40
MAT6 none 25 20 0.80 915
561 b.c. 644 25 20 0.80 895
| ord. 28 24 0.85 1650
| ARR1 25 none 48 38 33 0.86 15
L1, 60 54 0.90 17
ARR2 70 none 86 36 32 0.89 25
1.1, 43 38 0.88 27
ARR3 77 none 93 36 30 0.83 16
Lr. 43 36 0.83 18
ARR4 63 none 85 50 45 0.90 19
L.r. : 53 47 0.88 21
ARRS 56 none 73 37 32 0.86 21
Lr. 59 52 0.88 23
ARR6 561 none 644 20 17 0.85 845
L.r. . 26 23 0.87 905
Table 5.1. Comparison of row cardinality with row height optimization
EXAMPLE | # gates | % complex | Initial ALG-1 ALG-1I ALG-] ALG-I
ate area final area | final area | time (sec) | time(sec)
ARR1 25 12 1200 650 650 17 26
ARR2 56 10 4088 2128 2128 22 29
ARR3 56 20 6020 2310 2244 16 26
ARR4 70 35 1232 756 675 16 21
ARRS 28 30 4345 1705 1643 23 31
ARR6 561 10 373520 86420 86122 905 1100

Table 5.2. Comparison of ALG-1 (unmerged) and ALG-II (merged)

91

Cpu time has always been a major concern with simulated annealing
approaches. However, though the number of states generated is large the opera-
tions required per state are minimal. In particular. the procedure
find_cost_of_configuration() has been implemented such that all calculations are
incremental. A very large circuit consisting of 561 gates and 2300 transistors.
which is a multi-level random logic implementation of the Berkeley SOAR micro-
processor controller was partitioned and laid out using this program. The total
run time for partitioning and folding of the partitions was just 203 seconds on a
8600. The circuit was also laid out without partitioning. The area in this mse was
smaller but the aspect ratio may not have been desirable. The run-time in this case
was 905 seconds. As indicated in Table 5.1 very large circuits have been laid out

using this program with reasonable cpu time expenditure.

Table 5.2 compares the merged 2-dimensional approach (ALG-1I) 1o Wein-
berger array layout with the sequential ordering approach (ALG-I). Cpu times,
initial and final areas are given. Number and complexity of gates are also indi-
cated for each circuit. As the results indicate the merged approach does better

when the percentage of complex gates is high.

5.3.1. Solution versus Time & Temperature versus Cost Graphs

One dimensional folding being a simpler problem to solve than the
corresponding two dimensional problem. cpu time requirements are smaller. One
can afford to operate at a temperature profile which just about guarantees optimal-
ity. Figure 5.6a shows the plots of different temperature profiles used for the
example under consideration during the annealing process. Figure 5.6b illustrates
the quality of the solution for ez;ch of the temperature profiles and Figure 5.6¢

illustrates the behavior of the cost function during each of the annealing processes

92

with the corresponding temperature profile.

5.4. Conclusions

New techniques for layout optimization of gate matrices and Weinberger
arréys using simulated annealing have been presented in this chapter. Constraints
can be built into the simulated annealing approach and thus optimization can be
done under a wide variety of constraints. Attractive features of this approach
include the ability to part;tion large matrices into smaller ones to achieve desirable

aspect ratios and selective treatment of signals if necessary.

93

10000 —

States
per

Temp

point

- DWWk O

v

1007% -
Area
of
Solution

Temperatur !
emperature 500

(a) Temperature Profiles

10000 —

Cost

N\

I I | | I |
-1 Temperature Profile 6

(b) Quality of Solutions Obtained

v

v

T t
emperature 800

(c) Cost Profiles
Fig. 5.6

94

CHAPTER 6

Multiprocessor Implementation
of Simulated Annealing Based Algorithms

A parallel implementation of the simulated-annealing-based algorithms of
Chapters 4 & 5 on the Sequent Balance 8000 multi-processor{deva86b] is described
in this chapter. Modifications to the algorithms are necessary to fully exploit
parallelism. These modifications have resulted in an efficient parallel implementa-
tion. The techniques used in this multi-processor implementation can be used to

parallelize simulated annealing over a wide variety of problems.

6.1. Simulated Annealing on Multiprocessors

A multi-processor implementation of the algorithms described in Chapters 4
& 5 using static windowing of gates or signals between the various processors is
relatively simple. Static windowing implies that each processor is allocated a set of
gates/signals in the array — a window is implemented on each processor so it sees
orﬂy a portion of the array. Interchanges within a window do not affect the cost
outside that window, hence window interchanges can proceed in parallel since
they are independent. The acceptance and rejection of states can be performed .
based on the initial and final window costs. Unfortunately, this scheme invari-
ably results in a low-quality solution. Thxs is because constraininé the moves to
within a window violates the simulated annealing paradigm of generating moves
across the entire configuration space and the globally optimal solution cannot be

reached.

Dynamic windowing implies that the portion of the array allocated to each

processor changes with time. Each processor begins with an allocated region in the

95

array corresponding to the window implemented on that processor. but the win-
dows of the processor move after a certain number of states have been generated

within the window.

Dynamic partitioning implies that the allocation of gates/signals to processors
changes with time. In our implementation dynamic partitioning of signals/gates is
achieved by inter-window exchanges, signals belonging to different windows are
interchanged and the cost of the global move is calculated in parallel by all the

"affected” processors.

Both dynamic windowing and dynamic partitioning techniques have been
used in this implementation to increase efficiency, as distinct from previous tech-

niques for multi-processor simulated annealing[cass86 krav86].

6.2. Dynamic windowing

In the uni-processor ver;ion of the algorithm the probability of exchange of
gates throughout the array is uniform especially at high temperatures. This is
important to preserve the global convergence properties of simulated annealing
based algorithms. A static windowing scheme (where every processor is assigned a
certain region in the array which never changes, and with interchanges only
within the window) results in sub-optimal solutions since the probability of

exchange outside the window is zero.

The goal of dynamic windowing is to try to increase and make uniform the
probability of global interchange across the array while maintaining processor
efficiency. Windows implemented on processors do not overlap but move across the
array, so a larger number of different gate interchanges are posible. Dynamic win-
dowing is illustrated in Figure 6.1. Thus after the first window move a gate origi~

nally in window 1 can move to window 3, after two window moves to window 4

96

-] i _ _9
window L—— array

é_

+ /

——— window

array ——)

Fig. 6.1 Dynamic wflrl'dowing

with a probability that can be computed. The probability distribution of possible
column positions of a gate originally in the first column is sthn qualitatively for
the uni-processor (single window) case and the multi-processor (dynamic win-
dowing) case in Figure 6.2. Dynamic windowing causes the probability distribu-
tion in the multi-processor case to smooth out with increasing number of moves

and window movements arid to approach the uni-processor distribution.

6.3. Implementation

Two different cycles are possible during the annealing process. In the first
kind of cycle, each processor generates gate interchanges within its current win-
dow in the array and calculates the window cost. Since the interchange is within
the window. this calculation of net length and signal density is independent of

other processors. Then the first available processor decides the acceptance/rejection

97

Prob.

Position

(a) Uni-processor case

Prob.

Position

Before first window move

Prob.

Position

After first window move

-

Position

Prob

After second window move
(b) Multi-processor case with dynamic windowing

Fig. 6.2 Qualitative probability distributions

of these states sequentially. A window, W, is picked and the overall cost for the
whole configuration is calculated using the old window costs for the other win-
dows. If the move is accepted. W's cost is ui:dated. so the following interchanges
(and windows) picked will now use this new cost for calculation of the total cost.
This is done for'all processor interchanges. The acceptance/rejection process needs
to be sequential because one part of the cost function is the maximum of the sig-
nal densities across the whole array. not just a window. However, the computa-

tions involved are very few, especially in comparison with the computations

98

required to calculate the cost.

In the second kind of cycle, the gate interchanges are not restricted to within
a processor window. A single processor generates a move and the evaluation of the
cost function for this single global move proceeds in parallel for each processor
window. 'Elaborating, each processor .evaluales the portion of the cost accrued
from the signals attached to the gates presently within its current window. If
gates from windows 1 and 3 are interchanged. the densities of signals can change
not only in windows 1 and 3 but also in the window between them, namely win-
dow 2. The total cost is found and the acceptance/rejection of this state is decided
by the first available processor. This single global move uniformly increases the
probability of the gate being in any position in the array. making the probability

distribution more similar to the uni-processor version.

The first kind of cycle. which generates several moves in parallel, is more
efficient in our implementation. However, the second cycle, involving a global
move whose cost is calculated by several processors in parallel, is vital for gen-
erating a high quality solution since it enlargé the configuration space. Dynamic
windowing as described earlier increases the efficiency by decreasing the need for
the second kind of cycle. The windows of the processor are moved 1o the right or
left after a certain number of moves have been generated. The windows can be of

varying sizes during the annéaling process as illustrated in Figure 6.1.

The overall multi-processing algorithm is illustrated in Figure 6.3. The rou-
tine limbo() is a simple loop around which processors spin while idling. The type
of move to be generated, i.e. a inter-window or a set of intra-window moves is
decided by the function decide_move type() depending on the required ratio
between cycles. A synchronization point is provided for initialization of windows

after a window move.

99

while(stopping_criterion() is FALSE) {
while(inner_loop_criterion() is FALSE) {
/t
* Generate new states in each processor and find the cost
* of the states w.r.t the initial configuration.
*/ :
goto genmain;
generate:
gen_state_find_cost(myid, TYPE).
Limbo():
goto window:.

genmain:

gen_state_find_cost(1, TYPE);

wait(till all kids done);
/t .
* Master processor decides whether 1o accept these states or not.
%/
accept_or_reject_states(TEMP);
TYPE = decide_move_type();
goto main;
/* :
* Windows are moved to the left and initialization for next cycle.
&/

window:
initialize_windows(myid)
Llimbo():

goto generate;

main:
initialize_windows(1);
wait(till all kids done);
/* }
* Master processor updates temperature
*/
TEMP = update_temp({ TEMP)

}

Fig. 6.3 Multiprocessor Simulated Annealing

Thus in this scheme, the partition of gates amongst various processors

changes even for a given window configuration due to inter-window exchanges

100

(second cycle) implying dynamic partitioning of gaies between processors. and the
window of each processor also changes with time, implying dynamic windowing

across the array.

The optimal relative frequency of the two diff: erent kinds of cycles, the fre-
quency of window movements and the amount of window movement was empiri-
cally determined over a set of benchmarks. For efficiency reasons the relative fre-
quency of the two different kinds of cycles varies with temperature. At high tem-
peratures, the need for global moves is higher. The lower the temperature, the
smaller the probability that a interchange of gates spanning a large distance will
be accepted - hence the need for such moves is lesser. In fact, in the uni-processor
version of the algorithm, a range-limiter was implemented at lower temperatures
10 generate moves Wwith a high probability of acceptance which effectively
amounted to clustering the gates into partitions. At high temperatures the ratio is
1:1 and as the temperature decreases the number of cycles of the second kind is
decreased to zero. The frequency of window movements is constant throughout -
at every temperature point the number of movements is equal 1o the number of
processors. The windows move to the right by an amount equal to half the win-

dow size.

This windowing and partitioning scheme preserves the convergence properties
of simulated annealing based algorithms to the global optimum by maintaining the

" probability of different’ moves to be similar to that of the uni-processor (uni-

101

window) version.

6.4. Results

Results using dynamic windowing and dynamic partitioning techniques on
some large examples are given in Table 6.1 for 1-8 processors on the Sequent Bal-
ance 8000 multiprocessor. The solution obtained was the same in all cases:; how-
ever the number of states generated is different as indicated. Though dynamic
windowing and partitioning are efficient. more states need to be generated for
larger number of processors to keep the probability of reaching the global
optimum the same. The efficiences have been calculated for equal quality solutions

" and not merely for same inner loop criteria which would be misleading.

It is interesting to note that for example-1 even though 1120 moves were
generated for 8 processors as compared to 640 in the single processor case, the
efficiency is as high as 74.3%. This is because the cost function computation time
depends on to the distance between the gates which are being interchanged. Inter-
changing gates which are further apart involves greater computations while
evaluating the cost of the new configuration. Given a parallel move cycle with
interchanges within each window, the average distance between the gate inter-

changes for a N processor configuration is less than that for a M processor

102

-Table 6.1. Efficiences on the Sequent Multiprocessor

No. of | States per | Time | Final Cost Eff.
procs | temppt | (sec) | %
1 640 742.8 25100 100
2 640 374.1 25110 99.2
3 640 254.6 25110 97.2
4 800 203.5 25090 91.2
5 880 172.7 25100 86.0
6 960 154.8 25110 79.9
7 1040 138.1 25080 76.8
8 1120 124.9 25090 74.3
Example 1
No. of | States per | Time | Final Cost | Eff.
procs temp pt gsec) %
1 560 626.1 21510 100
2 560 316.8 21530 98.8
3 700 213.3 21500 97.8
4 760 169.9 21520 92.1
5 800 144.0 21510 86.9
6 920 129.4 21540 80.6
7 1000 115.4 21500 77.5
8 1050 104.2 21490 75.1
Example 2

configuration if N > M.

6.5. Conclusions

A multi-processor implementation of a simulated-annealing-based algorithm

for a topological optimization problem has been presented in this chapter. New

techniques, namely, dynamic windowing and dynamic partitioning schemes have

been used to preserve the convergence properties of simulated annealing to the glo-

103

bal optimum of the configuration space while achieving hiéh processor utilization.
These techniques can be used for parallel implementations of simulated-

annealing-based algorithms over a wide range of problems.

104

CHAPTER 7

Conclusions

This report has presented a topological optimization 100l for array-based lay-
out styles which can be used in an automated pipeline for synthesizing
combinational/sequential logic circuits in silicon. The array optiinization tool
allows various design and layout styles to be explored, and then the best alterna-
tive for a particular circuit can be chosen. This is in contrast to design and layout
style specific systems which offer virtually no alternatives in the automated syn-

thesis process.

The tool described can be used in the lower end of a silicon compiler, after
the logic has been extracted from high level behavioral or register-transfer level

descriptions and minimized using logic minimization techniques{bray84a,bray84b].

The major topics covered in this report were twofold. Topological compac-
tion algorithms are a key to producing an area-efficient layout. Topological optimi-
zation is performed on array based structures using a technique known as folding.
Folding implies that more than one signal/gate occupies a row or column in a
array. All previous folding algorithms break down for irregular arrays. i.e. arrays
with non uniform cell sizes. A generalized array optimization scheme, which folds
structures ranging from highly regular PLAs, to irregular SLAs was developed and
implemented. Constraining signals to locations in the array is vitally necessary
from a LsI design point of view. The algorithms allow for a variety of constraints
and optimize for minimum area within these constraints. The results obtained are
excellent. The last phase consists of tiling the compacted array. and generating

and actual mask level layout. Context-based tiling[mayo83][hofm85a] is a power-

105

ful tool which separates symbolic compaction and layout generation. After the
array has passed through the tiler, the actual layout is produced by stitching

together the individual tiles in the array.

Simulated annealing has been applied successfully to a wide variety of com-
binatorial optimization problems. A parallel version of simulated annealing for a
topological compaction problem has been ;ieveloped. High processor utilization was
achieved using dynamic windowing and dynamic partitioning techniques. These
techniques are general and can be used to parallelize simulated-annealing-based

algorithms for a wide variety of layout problems.

Approaches to efficient multistage combinational logic synthesis have been
have. been reported in [bray84b.hof m85a). Multistage sequential logic synthesis is
still an open problem. At a high level. decisions regarding the break-up of finite
state machines need 1o be made. At a lower level, each finite state machine can be
synthesised as mat;y sﬁag&s of combinational logic networks feeding into clocked
registers (which store the present state). Placing the sets of registers between the
combinational logic stages. so as to optimiz.e for eventual area and speed of the
synthesised logic is an non-trivial problem. Once a multistage sequential logic
network has been designed at the gate/flip-flop level, the system described here

provides an automatic path for layout of the circuit as a Storage/Logic Array.

106

REFERENCES

[asan82]
T. Asano. "An optimum gate placement algorithm for MOS one-dimensional
arrays." Journal of Digital Systems, vol V1, no 1, 1982.pp 1-28.

[brausé]
D. Braun, J. Burns, S. Devadas, HK. Ma, K. Mayaram, F. Romeo and A.
Sangiovanni- Vincentelli"CHAMELEON: A New Multi-Layer Channel
Router”. 23rd Design Automation. Conference, Las Vegas. 1986.

[bray82]
R. Brayton and C. Mcmullen. "The Decomposition and Factorization of
Boolean Expressions” . Proc. Inzernational Symposium on Circuits and Systems,
May 1982, pp 49-54.

[bray84al
R. Brayton and C. McMullen, "Synthesis and Optimization of Multistage
Logic" . Proc. 1984 International conference on Computer Design , Oct 1984. pp
23-30. .

[bray84b)
R. Brayton et al, "Logic Minimization Algorithms for VLSI synthesis”,
Kluwer Academic Publishers,. 1984.

[bray8s]
R. Brayton et al. "A Micro-processor using the Yorktown Silicon Complier”,
International Conference on Computer Design, October 1985.

[cass86] '
A. Casotto. F. Romeo, and A. Sangiovanni-Vincentelli, " A Parallel Implemen-
tation of Simulated Annealing for Cell Placement”, ICCAD-86 Digest, Nov.
1986.

[chug82]
S. Chuquillanqui and T. Perez Segovia. "PAOLA: A Tool for the Topological
Optimization of Large PLAS", Proc, 19th Design Awtomation Conf.. pp. 300-
306.1982. '

[demi83al
G. De Micheli, "Computer-Aided Synthesis of PLA-Based Systems". PhD
Dissertation, University of California, 1983. (Chapter 4).

[demi83b)
G. De Micheli and A. Sangiovanni-Vincentelli,"Multiple Constrained Folding
of Programmable Logic Arrays : Theory and Applications”, IEEE

107

Transactions on Computer-Aided Design.Vol.CAD-2.No. 3.July 1983

[deva86a)
S. Devadas and A. R. Newton,"GENIE: A Generalized Array Optimizer for
VLSI Synthesis" .23rd Design Automation Conference. Las Vegas. 1986.

[deva86b])
S. Devadas and A. R. Newton, "Topological Optimization of Multiple Level
Array Logic: On Uni and Multi-Processors”, International Conference on
Computer Aided Design, ICCAD-86 Digest, Nov. 1986.

[fidu82]
C. M. Fiduccia, R. M. Mattheyses, "A Linear Time heuristic for improving
Network Partitions,” Proceedings of the 19th D. A. Conf. pp 175-181, June
1982.

[flei75]
H. Fleisher and L. 1. Maissel, "An Introduction to array logic", JBM J. Res.
and Dev., Vol 19., pp. 98-108, March 1975.

[gema84]
S. Geman and D. Geman, " Stochastic Relaxation. Gibbs Distributions, and the
Bayesian Restoration of Images". IEEE Transactions. Pattern Analysis and
Machine Intelligence, Vol 6 pp 721-741.

[geus85]
A. de Geus and W. Cohen, "SOCRATES: A Rule Based System for Optimizing
Combinational Logic”, JEEE Design and Test August 1985. :

[hash71] .
A. Hashimoto and J. Stevens, "Wire routing by optimizing channel assign-
ment." Proc. 8th Design Automation Conf., pp 214-224. 1971.

[hach80] o :

G. D. Hachtel, A. R. Newton, and A. L. Sangiovanni-Vincentelli. " An algo-
rithm for optimal PLA folding" .Proc Int. Circuits and Comp Conf. (New York
NY.).Oct 1980.

[hach82]
G. D. Hachtel, A. R. Newton, and A. L. Sangiovanni-Vincentelli, " An algo-
rithm for optimal PLA folding" JEEE Trans. Computer Aided Design of ICAS, .
vol.1, no 2.Apr 1982

[hofm85a]
M. Hofmann, " Automated Synthesis of Multi-Level Combinational Logic in
CMOS Technology”. PhD Dissertation, University of California, 1985.
(Chapter 1-9).

108

[hofm85b] . .
M. Hofmann and A. R. Newton, "A Domino CMOS Logic Synthesis System ",
Proc 1985 Int. Symp. on Circ. and Syst., Kyoto, Japan.June 1985

[bong74]
S. . Hong, R. G. Cain and D. L. Ostapko, "MINI: A Heuristic approach for
logic optimization". IBM Journal of Res. and Dev., Vol 18, pp 443-458, Sep-
tember 1974.

[kern70]
B. W. Kernighan and S. Lin, " An efficient heuristic procedure for Partitioning
graphs” .The Bell Syst. Tech. journal 492, pp 291-307.

[kirk83a]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by Simulated
Annealing” Science, Vol.220.N. 4598, pp 671-680. 13 May 1983

[krin86)
C. Kring. "MKARRAY: A Tool to Build and Maintain Arrays” U. C. Berkeley,
Internal Report, May 1986.

[krav86]
S. Kravitz and R. Rutenbar, "Multi-processor based placement by simulated
annealing" . 23rd Design Automation Conference, Las Vegas July 1986.

[lund84] .
M. Lundy and A. Mees, "Convergence of the Annealing Algorithm", Simu-
lated Annealing Workshop, Yorktown Heights, April 1984.

[mah84]
G. H. Mah and A. R. Newton. "PANDA: A PLA generator for multiply folded
PLAS", Proc Int. Conf. on Computer-Aided Design 1984, pp 122-124.

[mari85]
C. Marino, "Smalltalk on a RISC - CMOS Implementation”, Masters Report.
Department of EECS, University of California, Berkeley. April 1984.

[mayo83]
R. N. Mayo and J. K. Ousterhout. "Pictures in Parentheses: Combining
Graphics and Procedures in a VLSI Layout Tool", Proc. 20th Design Automa-
tion Conference, pp. 270-276. June 1983. .

[mcc165]
E. J. McCluskey Jr. "Introduction to the Theory of Switching Functions”,
McGraw-Hill, 1965.

[moor85]
T. P. Moore and A. J. De Geus, "Simulated Annealing Controlled by a Rule
Based Expert System” .pp 200-202 Digest of Technical Papers, ICCAD-85.

109

[moor86] '
P. Moore. "Oct Tutorial”, U. C. Berkeley Internal Report, Feb. 1986.

[mlyu85]
M. L. Yu and W. J. Kubitz, "A VLSI Cell Synthesiser with structural con-
straint considerations”, ICCAD Digest 1985, pp 58-61.

[newt81]} :

R. Newton. D. Pederson, A. Sangiovanni-Vincentelli and C. H. Sequin.
"Design Aids for VLSL: The Berkeley Perspective” . JEEE Transactions on Cir-
cuits and Systems, vol CAS-28, no 7, July 1981, pp 666-680.

[ohts79]
T. Ohtsuki. H. Mori, E. S. Kub, T. Kashiwabara, and T. Fujisawa, "One

dimensional logic gate assignment and interval graphs,” IEEE Trans. Circuits
Syst, pp 675-684, Sept 1979.

[park79]
A. C. Parker. D. E. Thomas. D. Siewiorek, M. Barbacci, L. Hafer, G. Lieve and
J. Kim, "The CMU Design Automation System", in ACM IEEE 16th Design
Automation Conference Proceedings 1979.

[pati75])
S. Patil, "An Asynchronous Logic Array", Projed MAC Tech. Memo TM-
62.May 1975.

[pati?9]
S. Patil and T. Welch, "A Programmable Logic Approach to VLSI', IEEE
Trans. on Computers, vol C-28 Sept. 1979, pp 594-601.

[pati85]
S. S. Patil, *Private Communication”.

{rome84]
F. Romeo. and A. Sangiovanni-Vincentelli, "Probabilistic Hill Climbing Algo-
rithms: Properties and Applications.ERL College of Engineering, University of
California, Memorandum No. UCB/ERL M84.,13 March 1984

[rome85]
F. Romeo. and A. Sangiovanni-Vincentelli, "Probabilistic Hill Climbing Algo-
rithms: Properties and Applications.H Fuchs ed. 1985 Chapel Hill Conf. on
VLS, May 1985.

[rude85al
R. Rudell, "ESPRESSO-IIC Users Manual®, U. C. Berkeley Internal Report,
July 1985.

[rude8sb)
R. Rudell and A. Sangiovanni-Vincentelli, "ESPRESSO-MV: Algorithms for

110

Multiple Valued Boolean Minimization”, Proceedings of the Cusiom
Integrated Circuits Conference, May 1985.

[sech84]
C. Sechen and A. Sangiovanni-Vincentelli,"The TimberWolf Placement and
Routing Package" .Proc. 1984 Custom Integrated Circuit Conference,
Rochester May 1984 '

[sech85]
C. Sechen and A. Sangiovanni-Vincentelli,"The TimberWolf Placement and
Routing Package" Journal of Solid State Circuits, May 1985.

[smit82]
K. F. Smith, T. M. Carter and C. E. Hunt, "Structured Logic Design of
Integrated Circuits using the Storage/Logic Array (SLA)." IEEE Journal of
Solid State Circuits vol SC-17, No 2, pp 395-406, April 1982.

[souk81]
1. Soukup. "Circuit Layout”, Proc. of the IEEE, Vol 69, no. 10, October 1981.
pp 1281-1304.)

[vecc83])
M.P. Vecchi and S. Kirkpatrick, ®Global Wiring using Simulated Annealing”,
IEEE Trans. on CAD, Oct. 1983.

[wein67]
A. Weinberger."Large Scale Integration of MOS Complex Logic: A Layout
Method" .JEEE Journal of. Solid-State Circuits, vol SC-2.No 4, pp 182-190,
December 1967.

[wong85]
D. F. Wong, H. W. Leong and C. L. Liu, "A Simulated Annealing Channel
Router”", International Conference on Computer-Aided Design of Integrated
Circuits and Systems, ICCAD-86 Digest, Santa Clara, Nov. 1985.

[wong86]
D. F. Wong, H. W. Leong and C. L. Liu, "Multiple PLA folding using the
method of Simulated Annealing”, Proc. of Custom Integrated Circuit Confer-
ence, May 1986.

[wing82] .
0. Wing." Automated Gate Matrix Layout". Proc. 1982 IEEE Int. Symp. on
Circ. and Sys, Rome, Italy, pp 681-6835.

[wing85]
O. Wing, S. Huang, and R. Wang,"Gate Matrix Layout", JEEE Transactions on
Computer-Aided Design.Vol.CAD-4.No. 3.July 1985

11

[wood79] .
R. A. Wood." A High Density Programmable Logic Array Chip" .JEEE Trans.

on Computers, vol C-28.No 9. pp. 602-608 September 1979

[yosh75]
H. Yoshizawa. H. Kawanishi, and K. Kani, " A Heuristic procedure for order-

ing MOS arrays” .Proc. 12th Design Automation Conference, 1975.pp 384-89

GENIE(1) UNIX Programmer’'s Manual GENIE(1)

NAME

genie — A Generalized Array Optimizer
SYNOPSIS

genie [options] inputfile [> outputfile]
DESCRIPTION .

Genie is a program that performs topological compaction of arrays using a combinatorial
optimization technique called simulated annealing. The primary goal is to optimize the sil-
icon area occupied by the array. The kinds of arrays which can be compacted are PLAs,
Weinberger arrays. Gate matrices, Multi-level matrices and SLAs. Simple/Multiple
constrained/unconstrained folding is supported.

Genie is run in a batch mode. Genie reads the symbolic representation of the array to be
compacted and the constraints under which the compaction is desired from an input file.
Genie also requires a technology file which contains information about the sizes of the con-
stituent cells in the array. Genie produces a compacted array in a symbolic format folded
under the various constraints. Genie can be run for long or short runs depending on the
amount of cpu time the user wishes to spend.

Genie needs a unfolded connectivity matrix description as its input. It produces a
simply/multiply folded matrix compatible with the T inker(1) input format. Both
simply-folded and multiply-folded MLMs can be assembled by the program Tinker.
Tilers for SLAs, Weinberger arrays and Gate matrices will be available in the near future
with Genie output compatibility.

INPUT/OUTPUT
The input to Genie is a matrix with symbolic characters. The characters can be anything.
However, each character size must be specified in the genierech file in syntax that will be
described. Some reserved characters like the . (dot) have special meanings. The . character
implies a connection and no cell at that particular location. Presently. Genie accepts only
unfolded matrices as input, and nets in Genie are implicit. All cells (characters other than
a .) on the same row are assumed to be connected by a horizontal net and all cells on a
column are assumed to be connected by a vertical net. The sizes of the cells has to be
specified in the tech file in the working directory in the simple syntax of

character width length

on separate lines for all the different characters except the . character. An example tech
file is shown below. The technology file should reside in the current working directory and
be called genie.tech.

parallel transistor
pll
P11
cll
series transistor
s11
S11
output device
ol1l
O11
flip flop
FS55
£f55
inverter
155
i55
schottky diodes

7th Edition ' 03/07/85 1

GENIF (1)

OPTIONS

UNIX Programmer’s Manual | GENIE(1)

011
111

bus through
R11
ril

+1
Al
1

bt et

-octr reads the OCT logic view, from the cell called cellName. The view read is optlogic.

This view is normally written by MIS(1).

" —octw writes into the OCT symbolic view, to the cell called cellName. This view is read

by the module generation programs ELECTRA(]) and PLA generators. The view
consists of OCT bags attached to a GENIESTRUCTURE bag.

-gread reads a gate net-list from a text file. The gate net-list is described in a lisp-based

-V

-W

7tb Edition

syntax. Each line in the file describes a gate in the syntax shown below.

(o out (s (p sigl sig2) (p sig3 sig4))):
represents a two level static CMOS gate with output signal out and input signals
sigl thru sigd. s denotes series connections between transistors or branches and p
denotes a parallel connection. This description is converted internally into a con-
nectivity matrix for a static CMOS layout style being used by the GEM module
generator. This connectivity matrix is transparent to the user.

restricts the row folding to being simple. By default, multiple row and column
folding is assumed.

restricts the column folding to being simple. By default. multiple row and column
folding is assumed.

is an option which translates an ESPRESSO file into the Genie format.
is the debug option and is useful only to someone who knows the program.

restricts the folding to be row folding only. no column folding is performed. This
is used for Gate Matrix and Weinberger Array structures.

restricts the folding to be column folding only. no row folding is performed. This
is used for Gate Matrix and Weinberger Array structures.

takes into account the varying sizes of the cells during topological compaction. This
is an expensive option, cpu time wise and should be used only when the cell sizes
vary widely.

Assumes an AND-OR PLA structure, and performs simple/multiple column fold-
ing of the PLA, and ‘constrains the input and the complement to lie adjacent to
each other in the AND plane. No row folding is performed since an AND-OR struc-
ture is assumed and the two planes are not merged.

Identical to the -p option except that the input and complement are not constrained
to lie adjacent to each other. :

is used to control the aspect ratio of the final folded matrix. This implies column
folding is preferable to row folding. Note that this is different from the -c option
in that it allows row folding, simple or multiple. The default is that row folding is
preferable 1o column folding. However, using the specify -i option more control on
the aspect ratio can be obtained. ;

. 03/07/85 2

GENDIl (1)

UNIX Programmer’s Manual GENIE(1)

is used for Domino MLM structures. Domino MLM structures have extra buffer
circuitry. (see input file format).

is the specify option. This can be used to control the CPU time required for the
annealing process, by specifying the number of states per fundamenta] unit per
temperature point. It also allows specification of aspect ratio requirements by the
row and column parameters which are proportional to the preferences associated
with row and column folding.. The five parameters asked for if this option is used
are States_begin, States_end. Row_param. Col_param and Start_temp. States_begin
is the number of states generated per fundamental unit per temperature point in
the beginning of the annealing process and it gradually is changed to States_end
which should always be greater than or equal to States_begin. Row_param and
Col_param are aspect ratio control parameters and should not differ by more than
a factor of 2 or be changed from the default values by more than a factor of 2.
Start_temp is the specified starting temperature Which is calculated internally but
can be changed by the user. The default values for the first four parameters are 1,
1. 10 and 10 respectively. A good choice for obtaining better results without great
increase in cpu time for States_begin and States_end are 1 and 5 respectively. A
good rule of thumb for changing Start_temp while changing States_begin and
States_end is to increase it over the default temperature by the factor of increase in
States_end over its default value.

INPUT FILE FORMAT
An example input file is shown below.

new 42 22

7th Edition

SRC1s<2> = ceeeeens SS....
readRFaccessAl O.cecevceeccccrccenns
3 §0.ceeveescesesanasans
CPIPE1s<7> §.S..S....SSSS.....S..
DSTvalids R - X - JO—
pbusDtoINA P-Peeeereneanes p-..
SRC1equalDST2% .p.cccccocccccceenns
CPIPE1s<7>s P-PD-eSerereasaecese
readRFaccessB1 S TOUUO——
11 +o80.eerecenreneoranes
SRC2equalDST2% ...p-ccccececcrncnnee
SRC2equall6 JR .
Alzerol cereOeceananancsnaenns

18 sesPOueenarenaaacns -
21 . SO.ccccenesenens
SRC1s<2>s ... SeeceeesSaraees
22 . S0......S.5S....
SRC1is<1>* ... «SeeeeeseS.SSuee
SRC1s<0>= ... - S— Seeee
SRC1s<3>* ... - S—
SRC1s<4> = ... T
pbusDtoINAs ... SeeceresSueeesS
Alzeroforce = Ocennernveees
busDtobusAa ... L\ J— -
preadSWPtoA ... POenercecnes
preadPCtoA ..ot Pee-Oeeernene
preadTBtoA ... P
35 e P--0-weePeee
42 C eessesees SeeveeOecee

03/07/85 3

GENIE(1) " UNIX Programmer’'s Manual GENIE(1)

43 C eeeeesenees T« T
. [T
45 e s SR
SRC1s<0> .o S.S.eee.
SRClequalDST2 Seeeees
DSTvalid = .eeeeeeees S.....S
opc2load®s = .eoeeeeeene S.....S
DSTwobusDa2 ...eeeeeeeens 0...
pForwardtoINB ...cceeeeenees Po..
66 e, 0.
68 eeeeeeeeen SO
SRC2equalDST2cceeeeeeeee -S.
SRC2equalléseeeeeeeeeed s.

left CPIPE1s<7># DSTvalids SRC2equalDST2* 42
right pForwardtoINB SRC1s<2> 42

ordered left CPIPE1s <7># DSTvalids

ordered right 42 SRC1s<2>

The unfolded input matrix shown represents a multi-level combinational circuit. The tiles
s and p refer to series and parallel transistors, the tile o represents a output tile. Genie
however, is only concerned with the existence of a tile and its size but not its function.
The constraints on the signals are expressed using a left-right notation. Note that a signal
‘can be constrained to both sides of the array. like 42 in the example. Ordering constraints
can be placed on a set of signals. For example, in the array shown above, CPIPE1s<7>=
has been constrained to lie above DSTvalids on the left band side of the array. Ordering
constraints can be placed only on signals which have been constrained to the left or right
of the array using the left and right declarations. The corresponding left and right declara-
tions must precede the order constraint declaration. For Domino MLM's (-o option) an
extra buffer row is required at the top of matrix which is not counted in the number of
rows specified in the beginning of the file. This extra row indicates the type of buffer s or p
for the gate occupying the column. An example domino MLM is shown below with the
extra buffer row. Domino MLM's can be multiply row and simply column folded.

new 105

SPSpp
sig 01 -
sig_02 Oeuee
sig_03 so...
sig_04 S.S..
sig 05 -P-P-
sig 06 PP
sig_07 .p--p
sig 08 -P-PP
sig 09 .-0..
sig_10 ..50.

For static CMOS circuits, the p.aand n parts of the matrix may need 1o remain separate.
The -s option constrains them to be so. Given a static CMOS MLM, a third number bas to
specified in the new declaration which is the demarcation between the n and p parts of the
"matrix (which is the row_ number corresponding to the last p channel signal). Only row
folding is allowed in this case and the signals on opposite sides of the demarcation never
intermix with each other.

7th Edition 03/07/85 4

GENIE(1) UNIX Programmer’s Manual GENIE(1)

new 1055
sig_01_n p-o.
sig 02_n op..
sig 03_n P-p-
sig 04_n .0.5
sig 05_n P-po
sig 01 _p §.0.
sig 02_p 0S..
sig 03_p s.S.
sig_04_p .0.8
sig 05_p 5.50

The new declaration’s associated numbers are the number of rows. number of columns and
the last n column, namely row S. For pla folding genie directly takes a PLA input file and
converts it into its own format using the -pla option. Thus to fold a PLA in a AND-OR
fashion constraining the input and the complement to lie next to each other in the folded
array one can use

genie -pla inp.pla | genie -p > inp.folded

If constraints are to be specified. the file generated by genie -pla has 1o contain the con-
straint information. the input PLA file cannot contain the constraint information. An
example input pla file is shown below

i3

04

.p4
.ilb in1 in2 in3
.ob outl out2 out3

101 1101

-00 0101

1-0 0010

001 1110

e

This is converted into the Genie input format and folded. The .ilb and .ob declarations
serve 10 name the input and output signals. and all inputs/outputs have to have distinct
names. If the .ilb and .ob declarations dont appear, distinct default names are generated
within Genie for them. The conversion to the Genie input format entails expansion of the
AND plane of the PLA so each input is converted into a signal and its complement. If a
signal or its complement does not feed into any product terms, the signal/complement is

dropped.

OUTPUT FILE FORWVAT
An example output file is shown below. -

new 29 21

7th Edition 03/07/85 5

GENIE(1) UNIX Programmer’s Manual GENIE(1)

(row 0 SRC2equal16 0 DSTtobusDa2 13)

(row 1 pForwardtoINB 0 45 15)

(row 2 CPIPE1s<7> 0)

(row 3660)

(row 4 pbusDtoINAs O preadTBtoA 14)

(row 5 SRC1s<4> 0)

(row 6 SRC1s<0> 0)

(row 7 SRC2equall6s 0 18 7)

(row 8 SRC1s<2>#%0)

(row 9 SRC2equalDST2 0 44 4)

(row 10 SRC1s<2> 0)

(row 11 SRC2equalDST2# 0 readRFaccessB1 2)

(row 12 pbusDtINA 0)

(row 13 11 0 Alzeroforce 9)

(row 14 Alzerol 042 17)

(row 15 DSTvalids O preadPCtoA 14)

(row 16 preadSWPtoA 0)

(row 17 CPIPE1s<7>% 022 10)

(row 18 SRClequalDST2s 0)

(row 19430)

(row20302111)

(row 21 SRC1s<3>20)

(row 22 DSTvalid 0)

(row 23 SRC1s<1>%0)

(row 24 SRClequalDST2 0)

(row 25 68 0 busDtobusAa 14)

(row 26 readRFaccessAl1 0)

(row 27 opc2loads 0 35 8)
(row 28 SRC1s<0>=*0)

(column 9 013)

7th Edition 03/07/85 | 6

GENIE(1) UNIX Programmer’s Manual GENIE(1)

The folded version of the matrix is shown above. Multiple folding of horizontal signals
and simple column folding was done. The fold information is represented below the
matrix in row and col declarations. A row declaration has the form

(row rowNum sigName1 startingColNum1 <sigName2> <startingColNum2>..)
where startingColNum1 is the starting column of the sigNamel. We thus have signal sig-
Name1 beginning at startingColNuml, and sigName2 beginning at startingColNum2. The
columns are numbered from 0 to numCols - 1. The col declarations have no signal names
associated with them, we have

(col colNum startingRowNum1 <startingRowNum2> ...)

which implies that column colNum has a vertical signal starting at startingRowNum1 and
another vertical signal starting at startingRowNum2 and so on. The rows are numbered
from O to numRows -1. In the above output file all the rows including the unfolded ones
have been described with the signal names specified. For example, row 0 has SRC2equallé
starting’ at column O ‘and DSTtobusDa2 beginning at column 13. Column 9 has been
folded with the first vertical signal starting at row O and the second starting at row 13.
Genie's output file contains all the columns in the col declarations but here. for brevity.
the unfolded columns have been omitted.

DIAGNOSTICS
The input routine gives out error messages in case of wrong specification of the input
matrix rows and columns and exits.

SEE ALSO
mKkarray(1) electra(1) mis(1) espresso(1)

AUTHOR
Srinivas Devadas (devadas@®ic.berkeley.edu)

BUGS
The -v option is not fully debugged.

7th Edition 03/07/85 7

	Copyright notice1986
	ERL-86-95 (1 of 2)
	ERL-86-95 (2 of 2)

