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Abstract

Simulated annealing proposed by Kirckpatrick et al. has proven to be an

effective technique to solve general combinatorial optimization problems. Its

derivation was based heavily on the analogy between combinatorial optimization

problems and the annealing process in physics.

A mathematical model of the operations of Simulated Annealing is needed to

understand the essential features which guarantee the algorithm to perform

efficiently and to improve the speed of execution. Markov chains are proposed as

mathematical models of the simulated annealing algorithm. Using these models, it

has been possible to prove that, under certain assumptions on the rules used by

the algorithm to generate the configurations of the problem and on the time spent

at each temperature, the simulated annealing algorithm generates a global

optimum solution with probability one.

This result has made possible the definition of a general class of algorithms

with the same statistical properties: the class of probabilistic hill-climbing

methods. The mathematical properties of this class are presented and rules on the

selection of annealing schedules are obtained from these properties.
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CHAPTER 1

Introduction

The problem of finding the optimum of a function defined on a countable

solution space, referred as a combinatorial optimization problem, is of crucial impor

tance in the solution of many problems arising in a great variety of different

applications ranging from engineering to economics. More formally a combina

torial optimization problem is defined as follows: Given a problem and the space

of admissible solutions S. each of them with a given value of a cost function, find

the best solution with respect to a given cost function. Well known examples of

combinatorial optimization problem that arise quite often are Traveling Salesman

[LLK85], Bin Packing, Graph Coloring, Graph Partitioning. [GaJ79].

Combinatorial optimization problems are classified according to the computa

tional complexity of the best known algorithm used to determine an optimal solu

tion. Such a classification partitions combinatorial optimization problems into two

classes. The first one consists of problems for which a deterministic algorithm is

known whose worst-case complexity is polynomial in the number of variables of

the problem. The class is called P. Problems for which a deterministic algorithm

with polynomial worst-case complexity is not known, are members of the second

class called NP. While it is clear that P £ NP no formal proof of P C NP has

been found. There exists a subclass of NP called NP-complete class with the pro

perty that every element in the class can be reduced to any other member by

means of a polynomial time transformation [Coo7l]. The existence of the NP-

complete class is of remarkable importance since the discovery of a deterministic

algorithm with polynomial worst-case complexity that solves one of the problem



in the class will solve in polynomial time all the other problems in the class.

Unfortunately the great majority of problems that are of interest in practical

applications belongs to the NP-complete class [Kar72] [GaJ79].

The methods used to solve combinatorial optimization problems can be sub

divided into exact and heuristic. Exact methods are those that are guaranteed to

produce a solution with the best possible value of the cost function. Branch and

bound, and integer programming techniques are examples of exact methods.

Because of the NP nature of many of the interesting problems, the computation

time necessary to solve them exactly grows fast and the size of problems of prac

tical interest is usually large enough to require prohibitive computing times.

Heuristic methods are in general much faster than exact ones but are not

guaranteed to obtain the best possible solution. In general only approximations of

the optimal solution are obtained. The difference in cost between the obtained

solution and the best one establishes the quality of the heuristic method. Heuris

tics are of two different types: Methods that compute the solution constructively

starting from raw data and methods that iteratively improve an existing solution.

In practice both the methods are present in a real heuristic algorithm.

While constructive methods are obviously closely related to characteristics of

the problem to be solved, iterative improvement algorithms exhibit the following

common structure: Starting from an initial configuration say jo. jQ£S. a

sequence of configurations is generated until a satisfactory one is found. The rules

according to which a new configuration is generated and the algorithm terminates,

specify the algorithm. Often the search terminates with a local minimum, i.e.

with a configuration j such that if we denote by c(y ) the cost of / and by S(j)

the set of configurations that can be generated from j by the algorithm in one

step. c(j)^c(j),-Vj €£(/). This is often due to the fact that heuristic algo-



rithms have a local view of the problem. Often these algorithms are called

"greedy", since the strategy they implement is to select moves which reduce"max

imally" the cost are accepted.

To avoid this behavior, randomizing algorithms (e.g. [Sch80]) can be devised

which generate the next configuration randomly. The configuration is recorded as

a new temporary solution if its cost is lower than the present temporary solution.

The algorithm terminates after a certain number of moves has been carried out.

Randomizing algorithms perform well if the number of optimal solutions is fairly

high, since the probability of stopping at an optimum is proportional to the ratio

between the number of optimal configurations and the number of total

configurations. Note that randomizing algorithms can "climb hills", i.e., moves

that generate configurations of higher cost than the present one are accepted.

Simulated annealing as proposed by Kirckpatrick et al. [KGV83], allows "hill

climbing" moves but these moves are accepted according to a certain criterion

which takes the cost into consideration and not blindly as randomizing algo

rithms. The controlling mechanism is based on the observation that combinatorial

optimization problems with a large configuration space exhibit properties similar

to physical processes with many degrees of freedom.

In particular, bringing a fluid into a low energy state such as growing a cry

stal, has been considered in [KGV83] similar to the process of finding an optimum

solution of a combinatorial optimization problem. Annealing is a well-known

process to grow crystals. It consists in melting the fluid and then lowering the

temperature slowly until the crystal is formed. The rate of decrease of tempera

ture has to be very low. especially around the freezing temperature, to avoid the

formation of glasses, i.e. areas in which the crystal lattice is not perfectly regular.

The Metropolis Monte Carlo method [MRR53], [Bin78] can be used to simulate the



annealing process physics. The same procedure has been proposed as an effective

method for finding global minima of combinatorial optimization problems. This

method when applied to combinatorial optimization generates moves randomly

and checks whether the cost of the new configuration satisfies an acceptance cri

terion based on a parameter, T. sometimes called "temperature" in analogy with

the physical case. If the cost decreases, the move is accepted. If the cost increases,

then a random number between zero and one is generated and compared with

/r(Ac,7 )- exp(—^—)

where Lcti is the change in cost obtained by moving from configuration i to j

and T is temperature, the controlling parameter. If the random number is larger

than /r(Acy ). the move is accepted, otherwise the move is discarded. Note that

the higher the value of T is. the more likely it is that a "hill climbing" move is

accepted. Note also that "hill climbing" moves are less and less probable as the T

is decreased. A certain number of moves are generated and checked before a

decrease in T is allowed. The initial value of T. the number of moves generated at

each fixed value of T and the rate of decrease of T are all important parameters

that affect the speed of the algorithm and the quality of the final configuration.

Experimental results [KGV83]. [VeK83], [SeS84], [AJM84] show that simulated

annealing produces very good results when compared to other techniques for the

solution of combinatorial optimization problems such as those arising from the

layout of integrated circuits, at the expense of large computer time (a 1.500 stan

dard cell placement problem can take as much as 24 hours of a VAX 11/780

[SeS84]).

A mathematical analysis of the algorithm is very important to understand

the essential features which make the algorithm work well and to suggest tech

niques for controlling its operation. Markov chains [Kar73], [Fel70], [Doo5l],



[Fre7l] can be used as a mathematical model of simulated annealing. We proved

that under certain assumptions on the mechanism used to generate the

configurations and on the function / used to determine whether the new

configuration is accepted, simulated annealing produces asymptotically the

optimum solution of combinatorial optimization problems with probability 1. A

similar proof was independently proposed by Lundy and Mees [LuM86]. The

proof has underlined the essential properties of the algorithm, so that we have

been able to derive a class of "probabilistic hill-climbing algorithms" that have the

same asymptotic properties of simulated annealing.

The report is organized as follows. In Chapter 2. the class of Probabilistic

Hill-Climbing (PHC) algorithms is formally defined and its mathematical

representation in terms of Markov chains introduced. In Chapter 3. basic

definitions and theorems specifying the properties of Markov chains relevant to

the analysis of PHC algorithms are reviewed. In Chapter 4. the assumptions on the

parameters of the PHC algorithms needed to guarantee the optimality properties

are introduced and the convergence theorems are proved. In Chapter 5. additional

results which give insight on how to select the the number of moves to be

attempted at each value of T by the PHC algorithms are presented. Chapter 6 and

7 are devoted to the description of a new dynamical strategy to control the

annealing process and to its applications to the solution of two combinatorial

optimization problems respectively. In Chapter 8. new research directions and

concluding remarks are given.



CHAPTER 2

Probabilistic Hill Climbing Algorithms

Given a combinatorial optimization problem specified by a finite set of

configurations or states S and by a cost function c : S -• 1R+ defined on all the

states / 6 S. Probabilistic Hill Climbing (PHC) algorithms are characterized by a

rule to generate randomly a new state or configuration with a certain probability,

and by a random acceptance rule according to which the new configuration is

accepted or rejected. A parameter T controls the acceptance rule. We assume that

T ^ 0 and that an updating rule generates a monotonically decreasing sequence

\Tm).m » 1.2... with limit zero. PHC algorithms define a random variable X

which takes values on the set of states S generated and accepted by the algorithm.

Their structure is shown below.

PHC Algorithm Structure (/<>. T0)

{

/* Given an initial state jo and an initial value for the parameter T. Tq .*/

T = T0:

while( "stopping criterion is not satisfied )

"while( " inner loop criterion is not satisfied )
{
j = generate (X )
if(accept( c(j\c(X).T )
}

T = update (T)

}
}



The acceptance of a new state j is determined by accept, whose structure is

shown below.

accept( c (j ) . c (t) . T )

{

/*
returns 1 if the cost variation passes a test.

T is the control parameter.
*/

Acy «c(/)-c(*) :
y »/r(Acy );
r «=* random (0.1) ;

/*
random is a function which returns a pseudo random number uniformly

distributed on the interval (0,1].
*/

if (r <y)
return{\) ;

else

returniO) ;
}

The acceptance strategy is represented by the function fT : IR —• ( 0 .1 ].

fT is a family of functions of the argument Acj;. The shape of fT is controlled

by adjusting the parameter T.

Remark 2.1. Simulated annealing [KGV83], belongs to the PHC class. In

simulated annealing, the control parameter T, called temperature, is updated by

means of the following law

rm +1 = «r/n 0<a<l (2.1)

and hence it satisfies the property that every element of the sequence

{ Tm } m = 12.... is such that Tt > 0 and that the sequence of updates is

monotonically decreasing and converges to zero. The acceptance function for the



simulated annealing is

for Ac,-; > 0 and

_cQ)-c(»)

/r(Acy) - e T (2.2.a)

/r(Acy) - 1 (2.2.b)

otherwise. Hence, it takes values on the interval (0.1].

•

PHC algorithms applied to a combinatorial optimization problem can be

represented by Markov chains [Kar73], [Fel70], [Fre7l]. We derive this model on

a simple example: a linear placement problem.

Suppose that 3 interconnected modules {ajb.c} have to be placed on a mono-

dimensional grid, so that the global length of interconnections is minimized. The

state space S consists of 6 configurations, all the possible placements of the three

modules (3!). i.e.. 5= { 1 ,. . . , 6 }

1 » {a ,b ,c)

2 - { c .a ,b)

3 = { b ,c .a)

4 - {a ,c ,b)

5 » { c ,b .a)

6 — { b .a . c\.

We assume that the generation of new configurations is done by a PHC algo

rithm, applied to this problem by exchanging the positions of two elements. In

this case, the set of states reachable from the first state is equal to {4,5.6}. The set

of neighbors for the other states can be determined easily. Note that for all i € S.

the cardinality of each set of neighbors is 3.



Fig. 2.1. Schematic representation of the generating rule.

The graph shown in Figure 2.1 is aschematic representation of the generating

rule. Each node of the graph represents one of the possible placements: there is an

edge (i J ) in the graph if j can be obuined from i by interchanging the positions

of two modules. For each placement i. we denote by S(i) C S the set of all the

states / € S such that there isan edge (i J ) in the graph.

In general we define Sti ) to be the set of all the states that can be generated

by aPHC algorithm with the generating rule introduced before in one step starting

from i. 5(0 is defined to be the set of neighbors of i under the selected genera

tion rule. Note that the generation rule induces a metric on the state space S and



10

turns it into a metric space.

Up to this point nothing has bees said about the cost associated to each one of

the configurations. Assume now. for the sake of simplicity, that in the previous

example the configurations have been numbered so that

c(i) < c(/) *i *J .i .] - 1 6 . (2.3)

We can now append to the edges of the graph the probability that the transi

tions between two configurations occurs when a PHC algorithm is applied. For

example, if simulated annealing is applied, there are certain transitions which are

independent of T and Acy , i.e.. the transitions corresponding to a decrease in cost,

and others which are dependent on T and Acy, e.g., the "hill climbing" transi

tions. If the states of the above example are numbered such that (2.3) holds the

graph of Figure 2.1 becomes the graph represented in Figure 2.2. The dashed edges

represent transitions which are dependent on T and Ac^, while solid edges

represent independent transitions.

The application of a PHC algorithm to a combinatorial optimization problem

can be represented by a graph. The nodes of the graph are the possible

configurations, the edges represent configurations which can be obtained by the

generation rule of the PHC algorithm. The edge labels represent the probability

that the corresponding transition is generated and accepted by the algorithm.

The probability that the configuration selected by a PHC algorithm at the

(k +1)—st iteration be j given that at the k —th iteration was i. is defined by

Prob{ Xk+1 = j I Xk =i } £ PyGT) . (2.4)

where



\

Fig. 2.2. Transition graph. The dashed edges represent
transitions dependent both on T and Acy.

The solid edges represent independent transitions

11

PijiT) - GiJ(T).fT{AciJ) V; € 5(i) . (2.5)

where GijiT) is the probability of generating state j being in state i , possibly

dependent on the parameter T. Acu is defined as follows

Acu = e{j) —c(i) ,

and Xk is the value Uken on by the random variable X, representing the generic

solution given by the algorithm, at the k-th iteration. Since G^iT) must be a

probability, the following relation must hold
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Z GijiT) = I (2.6)
)6SU)

moreover by definition Gy (T ) » 0 for the states that are not in Sii ).

Eq. (2.5) is the product of two different terms :the first term, i.e. Gy (T ) .

is the probability that j is generated by the algorithm, the second term. i.e.

fT{ Acy ) is the probability that the new configuration is accepted. An example

of G^iT) is given by

GijiT)
lASii)\ V; €S(i)

0 otherwise

where the probability of generating all the states that can be generated is uniform

and independent of T. In our example, we assume that the generation probability

is uniform and independent of T. and since \Sii )\- 3.Vj € 5,

G^iT) -
1/3 -Vy €S(i)
0 V/£S(f)

We assume also that / is given by (2.2).

Note that since / is not. in general, identically equal to one. there is a finite

probability that the algorithm will remain in configuration i. The following equa

tion determines this probability:

PuiT)-l - £ PijiT). (2.7)
J € 5(i)

The stochastic process represented by the evolution of the random variable

Xk produced by PHC algorithms is a Markov process. In fact. eqs. (2.4) and (2.5)

imply that, given the value Xk. the value of Xk+i depends only on the value of

Xk . i.e.. the probability of any particular future behavior of the process, when its

present state is known exactly, is not altered by additional knowledge concerning
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its past behavior. Furthermore it is easily seen that if we extend eq. (2.4) to

describe an n step transition of the PHC algorithm as follows

Prob{Xk+n -y IX*=i } * PjnKT) .

the Chapman-Kolmogorov equation [Fel70]

Pij{n) = £i,ik(m)i,t]n-/n> Vm : 0 < m < n .
4 = 1

is automatically satisfied by the matrix multiplication rules.

Finally since the configuration space of combinatorial optimization problems

is a counuble and in general finite set, the process is a discrete time Markov pro

cess with a finite state space. Finite time Markov processes are named Markov

Chains.



CHAPTER 3

Basic Definitions and Results on Markov Chains

In this section, a few basic definitions and theorems on Markov chains which

are relevant to the discussion of PHC algorithms are reviewed. All the theorems

are presented without proofs since they can be found in any of the standard pro

bability theory texts. e.g. [Kar73], [Fel70], [Fre7l].

Definition 3.1. Sute y is said to be accessible from sUte i if for some

integer n ^ 0. Py(") > 0. Two states i and j. accessible to each other, are said to

communicate.

m

The relation induced by this definition is an equivalence relation. The

equivalence classes induced by this relation consist of all those sutes for which

there exist a probability greater than zero to go from one state to the other in both

directions in a finite number of steps.

Definition 3.2. A Markov chain is said to be irreducible if the equivalence

relation induces a unique class.

•

Example 3.1. The Markov chain represented by the following probability

transition matrix

' 0 ^2
Px 0

where the elements of P,. i = 1.2 are all non zero, is irreducible. The Markov chain

represented by

14



Pi 0

0 P2

15

where Pi and P2 are two matrices with elements not all zero, is not irreducible.

•

Definition 33. The period of the sUte i is said to be the greatest common

divisor of all integers n ^ 1 such that

P>) > 0 .

•

Theorem 3.1 If the Markov chain is irreducible and there exists a state, say

i, such that

P» > 0

then all states have period one.

•

Definition 3.4i A Markov chain in which each sute has period one is said to

be aperiodic.

•

Example 3^. The Markov chain represented by the following probability

transition matrix

0 ?2

Pi 0

where Px and P2 are two matrices whichelements are not all zero, is periodic with

period two.
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It is easy to show that periodicity is a class property i.e.. all the sutes in an

equivalence class have the same period.

Definition 3.5 Let hii{n) be the probability that suiting from state i. the

first return to state i occurs at the n -th transition, i.e..

hu(n)~Prob{Xn - i.Xj * i. y - 1.2.....n-l.l X0» *K
hit is defined by means of the following recursion

p..(n) _ y /,..(»-*) P.tf

* =o

AsUte i is recurrent if ]£ hj^*= 1.
n = l

1 if n = 0

0 if n>0 *
(3.1)

This definition says that a state i is recurrent if . starting from state i. the

probability of returning to state i after some finite length of time is one.

Example 33. The following probability transition matrix

*u

q if i = y + 1
p if i=y-l (3.2)
0 otherwise

represents the Markov process known as one-dimensional random walk on the

positive and negative integers where, at each transition, a particle moves with pro

bability q one unit to the right and with probability p one unit to the left with

i p + q = 1). If the process starts from the origin, if p ^ q. there is a non zero

probability that a particle initially at origin will drift to +ooifg > p ( —coin

the other case ) without ever coming back to the origin. Hence the origin is not

recurrent.
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The following condition

P =q = y • (3.3)

is necessary to ensure the recurrence of the Markov chain determined by eq. (3.2).

In [Kar73] a formal proof of condition (3.3) is given.

•

Recurrence as periodicity is a class property, i.e.. all the states in an

equivalence class are either recurrent or non recurrent.

The properties that have been introduced above define a large class of Mar

kov chains for which an ergodic theory has been developed. The two main results

of this theory are recalled below.

Theorem 3.2. Let i be the initial sute and let Pi 0) - 1. If a Markov chain is

irreducible, aperiodic and recurrent, then

a) the following limit exists

lim P»ia) = -sr-^
n-oo ^ . (n)

Z * W
n -0

whereA,-/") is defined recursively by eq. (3.1)

b) For each y.

lim Pjfn) « lim />fl(,,)-^. (3.4)
it -»oo n -»e©

An intuitive explanation of Theorem 3.2 is as follows. If n is large enough.

Pj\n\ the probability of being at the n-th iteration in sUte i. surting from sUte

j. depends only on the sute itself and is totally independent on the initial state
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y. Note that ttj defined in Theorem 3.2 is always larger than or equal to zero. If it

is larger than zero, then the following imporunt result holds.

Theorem 3.3. If Wj of eq. (3.4) is greater than zero-V j and the Markov chain

is recurrent, irreducible and aperiodic then

IS!

lim Pu{tt) = n = Z"jFji •

and the %'s are uniquely determined by the following set of equations

LSI

Z "Ii - 1 • (3-5.a)

LSI

Z in Pij = *} . (3.5.b)

*i >0 Vi . (3.5.c)

•

The set {71;. i « 1 LSI} determined by Theorem 3.2 is called the station

ary probability distribution of the Markov chain and TT=»[,ir1,7%,-*,.fln]is

called the stationary probability distribution vector.

The sUtionary probability distribution is very imporunt since it completely

characterizes the asymptotic behavior of a Markov chain.

The last result we report is related to the rate of convergence of an arbitrary

initial probability distribution vector p(0) to the asymptotic probability distribu

tion vector ir.

Theorem 3.4. (Frobenius-Perron Theorem) Let P be the transition probabil

ity matrix of a finite irreducible Markov chain. Let v be the sUtionary probability

distribution for the Markov Chain then:
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a) \o = 1 is an eigenvalue of P with geometric multiplicity 1:

b) let Xi X = 0.1.2,...n-l be the eigenvalues of P. The following relation

holds

I Xi I < Xo i - 1.2....ji -1 ;

c) it and 1 are the left and right eigenvectors of P corresponding to Xo. 1 is a

vector with all the entries equal to 1:

Proof. Many different proofs of the Frobenius-Perron Theorem are available

in the literature on Markov chains and non-negative matrices. One of these can be

found for example on [Sen80].

•

From the Frobenius-Perron Theorem follows immediately

Corollary 3.1 Let p(0) be the initial probability distribution vector of the

sutes in the Markov chain and let p<n) be the probability distribution vector of

the states after n iterations have been performed. If ir is the asymptotic probabil

ity distribution vector then llir —p(n)ll goes to zero at least as fast as o( I Xj1 I )

as n —•». where X> is the largest eigenvalue of P such that

I Xj I < 1 i = 1.2....* -1 .



CHAPTER 4

Asymptotic Properties of Probabilistic Hill Climbing Algorithms

Results quoted in Section 3 cannot be applied directly to the Markov chain

representing the stochastic process generated by PHC algorithms. In fact, these

results are in general valid for stationary transition probability matrices, i.e.. for

transition probability matrices that are independent of time. Note that the transi

tion probabilities defined in Section 2 depend on the parameter T which is updated

during the evolution of the algorithms and hence are dependent on time. How

ever, when the parameter is kept constant. i.e., in the inner loop of PHC algo

rithms, the transition probabilities are constant and the associated Markov chain

sUtionary.

Our strategy to prove the properties of PHC algorithms is to determine first

which conditions PHC algorithms must satisfy so that a sUtionary probability

distribution exists for each given value of the parameter T. Then we will intro

duce a function uj iT ). defined on the set of configurations, with the property that,

when T approaches zero. *nj(r) ;*0 only for those configurations that are global

optima for the combinatorial optimization problem. Finally conditions on the

acceptance function / will be determined such that ng (T ) is the sUtionary proba

bility distribution of the Markov chain describing the PHC Algorithm. If we can

prove that, given a function i^iT) with the above mentioned properties and a

suiuble generation function Gy iT). it is possible to determine an acceptance func

tion / with the features outlined in section 2, then a PHC algorithm is obuined

which generates with probability one, asymptotically, a global optimal solution

for the combinatorial optimization problem.

20
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The first assumption on the PHC algorithms is related to the generation rule

and the accepunce rule. The rules must be such that for all T different from zero,

the Markov chain induced by the algorithm is irreducible. This means that for

each pair of configurations, say i. j . there must be integers 0 < mji < oo, so

that Pij{n) ;* 0 and Pjfm) &0. In other words, the graph obuined by representing

the generation rule with directed edges as in Section 2, must be strongly con

nected. In addition, we must be sure that the accepunce rule does not eliminate

edges of the graph by assigning them probability zero which cause the labeled

graph obuined by removing the edges with zero weight not to be strongly con

nected. Note that the accepunce rule specified by simulated annealing assigns a

non zero probability to all the edges of the graph corresponding to the generation

rule and hence, for this PHC algorithm we only need to verify that the generation

rule produces a strongly connected graph in the configuration space.

The next condition is related to the aperiodicity of the Markov chain.

Proposition 4.1. Let the Markov chain corresponding to a PHC algorithm be

irreducible for all T ^ 0. If the accepunce function / of the PHC algorithm is

such that there exists at least a pair of sutes i and j for which

0</r(Acy)<l. VT > 0. (4.1)

then the Markov chain is aperiodic for all T > 0.

Proof. If (4.1) holds, then according to (2.4). PitiT) > O.-VT > 0 and the

proof follows from Theorem 3.1 and the irreducibility of the Markov chain.

•

The condition of Proposition 4.1 is always satisfied by simulated annealing,

since there is at least one state for which (4.1) holds: the global optimum.
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The accepunce functions which satisfy the condition of Proposition 4.1 and

which Uke values in the set (0.1] are said to be admissible.

Proposition 4*2. Let S. the configuration space of the optimization problem,

be finite and the Markov chain associated to a PHC algorithm be irreducible -V

T > 0, then the Markov chain is recurrent Vr > 0.

Proof. Since the state space of the Markov chain is finite, then after a

number of steps greater than 151 at least a sute of the Markov chain has been

visited twice. By definition, that state is recurrent. Since recurrence is a class pro

perty and the Markov chain is irreducible by hypothesis, the Markov chain is

recurrent.

•

According to Theorem 3.3. the Markov chain associates with a PHC algo

rithm which satisfies the conditions of Propositions 4.1 and 4.2. has a sUtionary

probability distribution.

Now we look for a form of the stationary probability distribution which,

when T goes to zero, is different from zero only in global minima of c.

To this end. we have to find under which conditions a stationary probability

distribution i^iT) is different from zero, as T goes to zero, only if the i-th

configuration is the global optimal solution.

Theorem 4.1. Let 77-(D. be a function that -V£ € S maps IR+ into

(0.1/15 I ]. iTiiT) is defined by

*•(r ) = MT) g ic ii)J ) (4.2.a)

where f£T ) is a normalizing factor such that

and g is such that

Z><r) = i (4.2.b)
i € S



Then

g(c.r)>o vr > o,-vc

o
lim g ( c . r ) =

gici.T)
gic2.T )

if c >0

if c < 0

g(«i -c2.r)

lim TTiiT)
no

1/\M\ if i € M

0 if i € 5 CiMc

where the set M is defined by

M - ii I c(i) <c(y) . V / € 5 }
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(4.3.a)

(4.3.b)

(4.3.c)

(4.4.a)

(4.4.b)

Proof. The proof of (4.4) is straightforward because of the properties of the

function g. In factVi € M. by (4.3 x). eqs. (4.2) can be rewritten as

but since

ITiiT)
\m\ + Z *(eO) -cCO.r )

j € (S C\MC)

c(y)-c(£)>0. Vi € M , V; € (5 OMc)

from (4.3 .b) follows

limirj(D = -j-r-y-
T iO lAf

Vi € M

(4.5)

If the same reasoning is applied for an i € iS C\Me) then at least one ele

ment of the summation in (4.5) goes to oo as T goes to 0. This completes the proof

of the Theorem.
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Now. we have to specify under which conditions on / and G a 7»j iT) of the

form described above is indeed the sUtionary probability function of the Markov

chain associated to the PHC algorithm.

Theorem 4.2. Let S '(y ) be defined by

S'ij) = Uj €5(t)}.

if / is admissible and V j

Z g(c(OX)Gy(r)/r(Acy) - (4.6)

- gicij)J) Z GjiiT) frUcji)

then TTiiT) defined by eqs. (4.2) is the sUtionary probability distribution of the

Markov chain whose one-sUp transition probability is given by eqs. (2.4-2.7).

Proof. The proof of Theorem is carried out by verifying that g . G and /

satisfy the conditions of Theorem 3.3. In view of the assumptions made on func

tion G and of Propositions 4.1 and 4.2. the Markov chain defined by eq. (2.4. 2.7)

is irreducible, aperiodic and positive recurrent. It is now immediate to see that

WiiT) defined by eq. (4.2.a) satisfies eq. (3.5.a) because of (4.2.b) and (3.5.c)

because of (4.3.a). Finally it takes just a little thinking to see that (3.5.b) is

satisfied automatically once / is chosen as specified by (4.6).

•

Theorem 4.2 is important since it suggest a way to construct a PHC algo

rithm with guaranteed convergence properties. In fact one first selects a function

WiiT) that ensures the convergence to the global optima (Theorem 4.1) and then

selects an accepunce function / and a generation rule G such that Propositions
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4.1, 4.2 and Theorem 4.2 are satisfied.

Up to now we did not place any assumptions on G^iT) and we have

obuined a general result. We now assume that the rule to generate new sutes is

such that the existence of G^iT) implies the existence of GjiiT). Under this

assumptions we can prove the following

Corollary 4.1. If the function Gt) iT) is such that

Gy(7)G,i(r)*0 (4.7)

then an admissible function / defined by

fTiAci}) GjiiT) , ... ,..x , .
77UZJJ " G^f7*(c0)-c(,))- a8)

satisfies eq. (4.6).

The proof of theCorollary follows directly from eqs. (4.2) (4.3.c) and (2.7).

Remark 4.1. Simulated Annealing as proposed by Kirkpatrick [KGV83] has

g, G and / defined as follows

c(i)

gicii)J) = e "T" (4.9)

GijiT)
l/\Sii)\ V; €Sii)

0 *j£Sii)

_c(j)-c(i) . .

/r(AclV) - min[l.e 7 ] V; €5 . U,2;
These functions satisfy the conditions of Corollary 4.1 and then, a fortiori.

of Theorem 4.2. Hence the configurations generated by simulated annealing

asymptotically converges to the global optimum.
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Another PHC algorithm can be generated just by replacing the accepunce

function of simulated annealing (2.20 with the following one

_cQ)-c(i)
Tfri*Cij) =-f C(T, c(i) (4.10)

1+. ^
and leaving functions G and g the same.

The result suted in Corollary 4.1 is of interest when a PHC algorithm has to

be implemented. In fact with (4.7) and (4.8) it is possible to compute the ratio

between the accepunce probabilities using only informations related to the two

sutes involved in the transition. There is still a degree of freedom in fixing the

actual value of / and in Remark 4.1 it is shown how this degree of freedom can

be exploited to generate two different accepunce strategies that lead to the same

asymptotic behavior.

A slightly different PHC algorithm related to simulated annealing has been

used in a package for standard cell placement [SeS85]. In this algorithm, the

accepunce function is the same as simulated annealing and G^ iT ) satisfy the fol

lowing relation:

GijiT) = G^iT)
but are not uniform. This algorithm is again described by a Markov chain with the

same sUtionary probability distribution as simulated annealing.

Note that when the control parameter T. approaches zero, the accepunce

functions / given by (2.2) and (4.10) become a unitary step function that assigns

probability one only to those transitions which improve the cost function and

probability zero to the others. Hence, when T is set to zero. / s degenerate into

the usual greedy strategy and select, among all the new configuration that are gen

erated, the ones with cost lower than the present configuration only.
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Unfortunately Theorems 4.1 requires the algorithm to perform an infinite

number of iterations every time the parameter T is updated. It is clear that a stra

tegy of this kind is practically inapplicable. In fact, a PHC algorithm performing

an infinite number of iterations for each value of the parameter T is a conceptual,

non implemenuble algorithm [Pol7l], in the sense that an internal loop is never

exited.

If we assume that the function g is continuous in its second argument, then

also TTiiT) is a continuos function. The continuity of TqiT) implies that the sU

tionary probability distribution for a particular value of the controlling parame-

ter, say T. is a good approximation for the sUtionary probability distribution for

all the values of T sufficiently close to T. This result suggests a strategy for the

control of T: start with a value of T for which the sUtionary probability distri

bution is easy to estimate, and update T so that only a few iterations are needed

to obuin a good approximation to the new sUtionary probability distribution.

We will elaborate more on this point in Chapter 6 where we discuss how to derive

an "efficient" control strategy for the algorithm.

Remark 4.2. Simulated annealing as proposed in [KGV83], follows the stra

tegy outlined above. In fact, surting with a "high temperature" guarantees an

easy estimation of TTiiT). The accepunce function (2.2) implies that for T

sufficiently large, the probability of accepting a move is close to one. Hence, if the

generation probability is uniform and the associated Markov chain irreducible, all

the states are equally likely and the sUtionary probability distribution trivial to

estimate.

In simulated annealing, the "temperature" is slowly decreased. Since in this

case, the function g is given by (4.9) which is obviously continuous in T. we can

interpret the control strategy as a direct application of Proposition 4.3.
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In addition, the updating rule of simulated annealing is

2m+1 "* OkTmMm

where a can be a constant as in (2.1) or a function of T but always less than one

and larger than zero. Values of a that yielded good results are in general in the

interval [0.9.0.99], which forces the updating to become slower and slower as the

algorithm approaches7=0.

•

All the results presented in this section are asymptotic and hence they can

only help deciding the control strategy and how long the inner loop of PHC algo

rithms should be run. However, no sharp bound is given on the actual choice of

the number of steps to be Uken in the inner loop.



CHAPTER 5

Number of Iterations at Each Value of T

In the previous section we have presented theoretical results which can be

used to explain the success of PHC algorithms and to derive qualiutive reasoning

on the strategy for controlling the parameterT. In this section, we present results

which can be used to estimate how many steps should be attempted for each value

of T to "minimize" the risk that the algorithm is trapped in a local minima fort

the cost function. The results presented are derived from the general properties of

the Markov Chains.

PHC algorithms can be used to compute an estimation to the actual sUtion

ary probability distribution in the following way. Store how many times each of

the states has been visited by the algorithm during its evolution. The ratio

between this number and the total number of iterations gives an estimate on the

7Jj iT )'s. Actually, when the number of iterations goes to infinity, the result of the

calculation converges to the tij- iT )'s.

The ideal approach to the determination of the number of iterations to take,

would be to detect when the approximation is within a specified distance from the

SUtionary probability distribution. Theorem 3.4 and Corollary 3.1 gives us an

upper bound on the distance between the actual state distribution and the asymp

totic. Unfortunately the bound can be computed only knowing the second largest

eigenvalue of the probability transition matrix. Clearly this is beyond the

knowledge of the problem we have. Thus we have to resort to another technique.

This technique has been obuined by observing that, in order to obuin a good final

result, the PHC algorithms have to be able to leave local minima where they could

29
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end up during the compuution. Thanks to the properties of Markov chains, it is

indeed possible to estimate the number of iterations needed to get out of a local

minima at a given value of T with probability 1—6,6 > 0.

Proposition 5.1. Given a sute . say i. such that PuiT) < 1. then a PHC

algorithm has probability 1 —6 to leave * if at least

"' • TOT7 (51)

iterations are performed by the algorithm with T constant.

Proof. For the sake of noUtional simplicity, in this proof and in the proof of

Proposition 5.2. the dependence of P on T will be implicit. Let

OF = f «-Kl -Pa) (5.2)
i» = i

be the probability of leaving the i after at most N iterations. Taking the sum of

the series. (5.2) becomes

.„ (1 -J».Xl -pd

Now if a number of iterations N j, given by (5.1) are performed, then

a*' -1 -rf*

ln€

1 -rf05"

lov

1 -Pti U =1-6.



31

The evaluation of PuiT),-V i € S requires to know the values Uken by the

cost function on the configuration space, which is obviously out* of the question.

Assuming that the accepunce function is monotonic decreasing in the first argu

ment as is the case of the accepunce functions given in (2.2) and (4.10). there are

a number of possible techniques to estimate PuiT). For the result sUted by Pro

position 5.1 to hold, we need a conservative estimate of PuiT). Unfortunately,

the techniques we have been able to discover cannot be guaranteed to obuin an

upper bound on PuiT). The most conservative bound is obuined by assuming

that Lcij "V j € Sii).-Vi € S. i ^ j is constant and equal to Ac^} where j

is the worst configuration and i is the best configuration found so far. To use this

estimate, we have to insert a step in the PHC algorithm to record the best and

worst configuration.

Proposition 5.1 is a "worst case" result: a similar approach is useful to deter

mine the expected value of the number of iterations necessary to leave i.

Proposition 5.2. Let i be asute such that PuiT) < 1and let Rf be the pro

bability that a PHC algorithm leave i after N iterations. The expected value of

the number of iterations required to leave i. N, is given by

Ni " 1 -PuiT)

Proof. By the definition of expected value

Ni - Zn R" (5.3)
n=0

Substituting in (5.3) the expression for R[* given by

JS/- Plf-Hl-Pn)

we obuin



Ni « Zn/>„»-'(1 -Pa)
RSO

n-1
(1 -Pu)Z"> Pa

n = 0

a -Pi,)-^-Z^«

(1 -Pii)' d X
dPH 1 -Pu

1 -i>«
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As in the previous case. Pu must be estimated. The approximations intro

duced above are also needed to estimate N,-.

Note that a Markov chain represents a stochastic dynamical system. The

time (or number of iterations, since the configuration space is finite and discrete)

necessary to leave a particular sUte plays a role which is similar to the time con

stant in a linear dynamical system. If a linear dynamical system is controlled by a

piece-wise constant function, a time as long as a few time constants will bring the

system to a new steady state condition. A similar reasoning can be applied here if

we assume that a number of iterations which is few times N,- is needed to reach a

sUtionary probability distribution.

N and N defined as the the largest values of of Ni and A", respectively

determine two different estimates of the number of iterations necessary for the

algorithm to obuin a good estimate of the sUtionary probability distribution.

It is imporunt to note that both N and N increase as T approaches zero.



33

Finally in this section we want to point out that N and N depend upon Pti

which is unknown. Estimations of Pa which are too crude easily generate values

for N and AT that are unrealistically large. This make the use of this type of esti

mation impracticable when a PHC algorithm is implemented to solve a realistic

combinatorial optimization problem.



CHAPTER 6

A Dynamical Control Strategy for the Annealing Process

In the previous Chapters we concentrated on the study of the structural pro

perties of PHC algorithms and on the conditions on the generation and accepunce

function that have to be satisfied to guarantee the convergence of the solution to

the global optimum of the cost function. In this Chapter we will focus, for the

sake of comparison, on a particular PHC algorithm, the original simulated anneal

ing. We will show how a carefully designed annealing process can produce good

results saving a considerable amount of compuution time. However it must be

noted that the control strategy for the annealing process is not restricted to the

original simulated annealing algorithm but applies to every PHC algorithms as

well.

The improvements that have been proposed to reduce the CPU time necessary

to the simulated annealing to produce good solutions may be subdivided into two

groups: improvements involving the move-set design and improvements of the

annealing process.

In the former approach, clever move-set based on the idea of range-limiting

[OtG84], [SeSS4] or changes in the cost function [GrS86] is employed to reduce the

chances of generating a next sUte which is likely to be rejected. This would lead

to a significant reduction in CPU time at low values of parameter T where the

accepunce probability for up-hill moves decreases rapidly as Acy > 0 increases,

call for the enlargement of the move-set obuined by combining several simple

moves to obtain a complex one. The idea being that a larger move-set allows a

faster exploration of the solution space and an higher probability to escape from

34
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local minima. These improvements of the move set allows the use of more aggres

sive cooling schedule and this cuts down the CPU time. Unfortunately the

approach of complex move-set is usually problem-dependent and is unlikely to be

generally applicable to various combinatorial problems. As a result, it has not

been widely used.

The latter approach involves careful control of the annealing process. The

conditions determining an annealing process are the initial value of T sometimes

referred in the literature as "hot condition", the updating rule for T. the equili

brium condition, and the stopping condition. For an annealing process to be

problem-independent, the parameters used in the four conditions should be deter

mined by the system itself and should not have any predefined values. For a

cooling to be efficient, an early detection of equilibrium and an aggressive strategy

to decrement T are desirable. For a cooling to be reliable, quenching must be

avoided.

6.1. The Hot Condition

The condition proposed by White [Whi84] is used to determine the starting

value of T for the annealing process. The system is considered to be"hot" enough

if

<r«T .

where o~is the standard deviation of the cost distribution. Hence, to determine the

initial value of T say T^. an initial exploration of the configuration space is per

formed. During the exploration, all the generated sutes are accepted, i.e. T is

assumed to be infinite. The sUndard deviation of cost distribution is computed

and Tco is determined as

Tm = k * a .
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k is determined as follows: The cost is assumed to be normally distributed and k

is chosen so that the corresponding value of T guarantees the acceptance of a

configuration with cost which is 3 a worse than the present one with probability

P. The assumption on the cost distribution leads to the following expression for

k

A typical value of k, corresponding to a value of P « .85, is 20. Furthermore it

should be noted that since at high values of T only a limited number of moves is

necessary to achieve the equilibrium distribution, the overhead for using a high

value of it is insignificant.

6.2. The Decrement of T

Methods to determine the next value of T based on the standard deviation of

the cost distribution at the present value of T have been reported in the literature

[AaL85], [OtG84]. The advanUge of these type of approaches is that the updating

of T is dynamically controlled by the system itself and hence the schemes are

generally applicable to a wide variety of problems. Although the idea of quasi-

equilibrium was used to guide the T decrement, the extent of the disturbance that

could be tolerated by the system with out perturbing too much the quasi-

equilibrium it was never mentioned. As a result, an explicit guideline for the

choice of a small parameter which controlled the disturbance has not been

reported.

In our approach, we use the annealing curve - the curve of average cost

<ciT)> versus the logarithmic of T - to guide the decrease of T. The idea is to

control T so that the average cost decreases in a uniform manner. The slope of

the annealing curve is given by



d<ciT)> _ T d<ciT)>
d(ln(T)) dT

From the well known sUtistical physics relation [Rei5 ] we have:

d <cjT)> <T2jT)
dT - T2

where <r2iT) is the variance of the cost at value T of the parameter. From (6.1)

it follows that

d<cjT)> crHT)
dilniT)) . - T

The slope of the annealing curve can be approximated by

<ciTk+i)> -<cjTk)> <T2iTk)
lniTk+0 - IniTt)) " Tk

where <ciTk )> and c2iTk ) are computed recursively, as the algorithm proceeds.

with the following relations

<c(B ♦ i)iTk )> - ^iycu ♦ i>Cr*) +j^rr <c(*>(r*}> •

= -l—ic(n +1)0*) )2 +-L. t ic(i)iTk ))2 - «c(„+1)(r4)>)2 .
n+1 n+lj.j

The superscript n is the iteration counter, namely the number of moves attempted

at the value Tk of the parameter. Eq (6.2) leads to

, Tki<ciTk+1)> -<ciTk)>)
Tk+i - Tk exp( 'Z7iTkl

Note that Eq. (6.3) is an implicit relation that cannot be used to determine Tk +J

because <c(rt+1)> is not known. Therefore (6.3) must be replaced by the fol

lowing approximation

, r( <dTk)> -<c(rft-,)>>Tk+i =Tk exp( jpg^ )
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To maintain quasi-equilibrium. we require that the expected decrease in the aver

age cost be less than the standard deviation of the cost. For insunce:

<ciTk)> -<ciTk-{)> - -\<riTk)

where X < 1. Finally,

X Tr1+1-r4eXp(-^T)

In the actual implemenution, the ratio of Tk +1 ITk is lower bounded by a small

number (typically 0.5) to prevent a drastic decrease of T caused by the flat

annealing curve at high values of T.

S3, The Equilibrium Condition

To reach an equilibrium means to esublish the steady-sUte probability dis

tribution of the accessible states. However, dynamic monitoring of the steady-

state condition for all the accessed sutes is in practice hardly feasible.

Partly because of this the condition that has to be satisfied for the system to reach

the equilibrium is the least addressed issue in the annealing processes in the litera

ture. Typically, either a fixed number of generated configurations [AaL85] or cer-

uin minimum number of new accepted configurations [KGV83] is used, in the

hope that the system will reach equilibrium by then. The condition we present in

this report is completely based on statistical information collected during the

operation of the algorithm and has been shown, on a set of examples to which we

have applied it. to be fast and reliable in detecting the equilibrium.

Our equilibrium condition is based on the observation that once equilibrium

is established, the ratio of the number of the new sutes generated with their costs

within a certain range 8 from the average cost to the total number of the newly

accepted sutes will also reach a stable value, say X- This value depends on the

nature of the cost distribution and the sampling range & For the case of a normal
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distribution, as is the case at high values of T. the ratio between the number of

the accepted states having an energy in the range (<c> -8. <c> +8) (hereafter

referred to as the within count), and the accepted sutes is erf (8/ <r) where

erf i x ) is the error function [Fel70]. Based on this value and on the size of the

problem, a target accepunce within count and a maximum tolerance limit are esta

blished as the equilibrium parameters. The equilibrium is considered mainuined if

the within count reaches the Urget value before the tolerance count ( i.e. the

number of the accepted states with their costoutside the designated range) exceeds

the maximum tolerance limit. On the other hand, if the maximum tolerance count

is exceeded, both the within count and the tolerance count are reset to zero and the

counting is initiated again. Ideally, both the x and l^e within count should be

updated dynamically to reflect the change in the cost distribution when T is

decreased. For simplicity, in the present implemenution they are determined at

the beginning of the annealing process and remain consUnt throughout the anneal

ing process.

The parameter 8 should be a fraction of crso that the final state at any value

of T. i.e. the "chosen" equilibrium sUte. is a state with a cost close to the average

cost (within the range of 8) and hence is a highly accessible state at that value of

T. In other words, in such case, the final sUte will be a good represenution of the

sysum at that value of T and hence, since the change of T is small, it will bealso

a good represenution of the system at the lower value of T. Such control over

the quality of the equilibrium sute is missing in the traditional approach where

the number of moves attempted at each T is kept fixed. X is defined by

X = erf iS/&). The within count is set to be X* 3* sizeof the problem and the max

imum tolerance is (1 —x)*3*.rfze of the problem. An upper limit on the number of

the new sutes generated is needed in this case to terminate further generation for

low values of T because the urget within count may never be satisfied at low
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values of T without dynamic adjustments of X and the Urget within count. A

typical value for this maximum number of generated moves is M, where M is the

number of sutes which may be reached in one move, i.e. the cardinality of the set

of neighbors Sii).

To guarantee the validity of the sutistics. a criterion based on the minimum

number of accepted moves is implemented. Detection of equilibrium based on the

Urget within count is initiated only when the criterion is satisfied. A typical value

for the minimum number of accepted moves is the size of the problem. e.g. the

number of cells in a placement problem. At low values of T. the minimum accep

unce criterion cannot be met when the maximum generation limit is exceeded. In

such case, generation is allowed to extend to an ultimate limit, which is typically

few times M. During this extended generation, the regular equilibrium detection

based on the within count is still in force. Hence, equilibrium may be regarded

esublished at low T if the Urget within count fails in one of the following condi

tions: (1) the minimum accepunce criterion is satisfied and the maximum genera

tion limit is exceeded: or (2) the minimum accepunce criterion is not met when

the ultimate generation limit is exceeded.

The effect of using the new equilibrium condition mentioned above is that

the number of moves generated at each value of T is dynamically adjusted

throughout the annealing process and a noticeable saving in CPU time is achieved

by reducing the number of moves performed at high values of T where the equili

brium is reached quickly.

6.4. The Stopping Criterion

A typical stopping criterion for termination of the annealing process found in

the literature is as follows: The algorithm is terminated when the average cost

does not change significantly for few consecutive values of T. A different



41

approach is introduced in this annealing process. When equilibrium is established,

we compare the difference between the maximum and minimum' costs among the

accepted sutes at that value of T with the maximum change in cost in any

accepted move at the same value of T. If they are the same, apparently all the

sutes accessed are of comparable costs and there is no need to use simulated

annealing. T is then set to zero and the algorithm becomes a standard "greedy"

random selection algorithm. An optional exhaustive search follows which ends

the optimization process. This mechanism of stopping the annealing has been

found to be quite successful without any negative side effects.



CHAPTER 7

Applications of the Dynamical Control Strategy

The annealing process described in the previous section has been applied to

solve the Traveling-salesman problem and the standard cell placement problem.

The two problems have been chosen because for both of them are available in

literature algorithms based on the standard simulated annealing technique. Furth

ermore the nature of the problems is different enough to prove the generality of

the proposed strategy to control the annealing process.

7.1. Traveling-salesman Problem

The Traveling-salesman problem is a well known NP-complete problem

[GaJ79]. It consist in determining a tour on a graph such that every node is visited

only once and the length of the tour is minimized. In the particular instance of

the traveling-salesman problem we selected, the cities, nodes of the graph, are

located at the vertices of a square array. The cost is the total Manhattan distance

of a closed tour divided by the number of the cities. The intercity distance is uni

tary. A move is carried out by randomly selecting two cities in the tour and rev

ersing the order in which the cities in between are visited. The control parameters

of the annealing schedule are reported in Table 7.1
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parameter value

k 20 •

A 0.7

8 0.5 <r

within count erf (0.5) * 3A7
maximum tolerance (1 -erf i0.5)YZN

maximum generation limit NiN -l)/2
ultimate generation limit 2NiN -1)
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Table 7.1. Parameter setting for the traveling salesman example.

where N is the number of cities. Problems with N ranging from 49 to 400 are

analized.

For the particular traveling-salesman problems considered, the global minima

are known. Hence the quality of the solution produced by the algorithm can be

carefully assessed. Using the control parameters reported in Table 7.1, the stan

dard deviation from the global minimum is less than 2 per cent for each problem

studied. A typical annealing curve is shown in Figure 7.1 for a problem with 400

cities. The curve appears to be rather smooth which is an a posteriori indication of

a good control strategy for the parameter T.

In Figure 2. the CPU time required for the annealings is compared with the

result published in [AaL85] in which a different annealing process is used. Care

has to be Uken when comparing the CPU time from various studies. In fact two

issues may affect the CPU time required to produce the result in addition to the

actual efficiency of the algorithms compared. The first issue involves the targeted

quality for the solution. The simulated annealing may produce oscillations of the

solution in the vicinity of the optimum and a stopping criterion that promptly

detects such a situation can save few percents of the global running time. The

second issue is related to the differences in the computing environment, both in

computer hardware and software. Different efficiency of both operating systems

and compilers may produce significant differencies in the CPU time. In the above
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Figure 7.1 Annealing curve for a 400-city traveling-salesman problem
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Figure 7.2 Comparison of performance of the new annealing process with
the one reported in literature. Solid line is from literature; circles are from

the new annealing process.
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comparison, the quality of the solution found by the algorithm is comparable in

both studies. The computer hardware used is the same, namely a Digital Vax 11-

780. The operating system and the programming languages used in algorithm

implemenution are, however, different. In our case we used C programming

language and UNIX BSD 4.3 operating system. The program by Aarts et aL is

written in Pascal with VMS operating system.
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Besides the above described differencies. a uniform speed-up of more than

five times clearly demonstrates the efficiency of our annealing process. The CPU

time saving is obuined mainly by reducing the number of moves attempted at

high values of T and byusing a more aggressive updating strategy for T.

7.2. Placement of the Standard Cells

The standard cell layout stile is used to assemblesubblocks of integrated cir

cuits. In this style the cells, each of which implements an elementary logic func

tion, are placed in rows (or columns) and are connected to realize more complex

logic functions. The connections are performed in the routing channels available

between the rows. The objective of the placement is to select the position of the

cells in the rows so that the area of the subblock, namely the area of the cells plus

the routing area, is minimized. Of course the minimization is obuined by reducing

the routing area since the cell areas are daU of the problem.

TimberWolf3.2 [SeS86] is a very efficient simulated annealing based package

for the placement and global routing of standard cells. TimberWolf3.2 features

an annealing process in which the number of moves that are attempted at each

value of T is proportional to the complexity of the circuit, i.e. number of cells, as

shown in Table 7.2.



•No. of cells attempts per cell

<«200 100

<»500 200

<=1000 300

<«1500 400

<-2000 500

<-2500 600

O3000 700

O3500 800

<«4000 900

<=4500 1000

> 4500 1200

Table 7.2. TimberWolf optimal number of attempts per cell.
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T is updated according to predetermined exponential law.

To test the efficiency of the new proposed annealing process it has been

insulted in TimberWolf3.2. All the other features of the original program

namely the move-set. the penalty term to account for overlap, as well as the

range-limiting feature in TimberWolf3.2 are left unchanged. The control parame

ters for our annealing process are the same as those used in the traveling-salesman

problem discussed in the previous section. N is this case the toul numberof cells.

Four circuits of size ranging from 183 to 800 cells are analyzed using both

algorithms. In Table 7.3 the results obuined with the TimberWolf3.2 annealing

process and those obuined with the new annealing process are indicated with the

subscript 1 and 2 respectively. The quantities At and Av. given by

Af = (1- -^) 100 .
*i

Aw - ( 1 - — ) 100 .
Wi

represent the saving in CPU time and in estimated wire length of the new anneal

ing process with respect to the one used in TimberWolf3.2.



Size

CPU time (sec.) Wire length

fi tt A, Wl w2 A.

183

286
469
800

2301

7330

11117
38526

984

4536
5140

32400

57.2%

38.1%

53.8%

15.9%

295585

317306
487934

1270561

300448

330263
480981

1262354

-1.6%

-4.1%

+1.4%

+0.7%

Table 73. Comparisons with TimberWolf Annealing Process.
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The results collected in Table 7.3 show that savings in CPU time up to 57% are

obuined by applying the new annealing process while the quality of the solution

is mainuined. The improvement in CPU time does not exhibit a constant trend

with respect to the size of the problem to be solved. This was expected since the

proposed annealing process is adaptive and the number of attempted moves is

varied according to the statistics of the problem to be solved, in order to obuin

good quality solutions. The new dynamically adjusted annealing schedule com

pares well with the original schedule as indicated by the annealing curves in Fig

ure 7.3.

As stated in the previous section. CPU time required for simulated annealing

varies drastically with the quality of the solution. The speed-up ratio may be

reduced if a setting different from the one reported in Table 7.2 for the maximum

number of generated moves is used for the original annealing schedule. To test the

above conjecture TimberWolf3.2 with the original schedule was allowed to run

for an amount of time comparable to the time required by the new schedule. The

results we have obuined are collected in Table 7.4.
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Figure 73 Annealing curves in TimberWolf: solid line new annealingprocess:
dotted line original annealing process.

Size Wire length saving CPU time

new vs. original new vs. original

183 +2% 97%

286 -3% 115%

469 +42% 102%

800 +1% 97%

Table 7.4. Comparisons between the two schedules with the same
amount of CPU time.

The results represented in Table 7.4 show that the two schedules produce solu

tions with comparable quality in three out of four cases. In the fourth case the
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quality of the solution obuined with the new schedule is considerably better. The

conclusion we derive is that the adaptive schedule succeeds in tne task of deter

mining the exact number of moves to be performed at each value of T necessary

to produce good quality results. Furthermore the set of experiments conducted so

far demonstrate the capability of our general annealing process to compete with

handicrafted cooling schedules like the one used in the original TimberWolf3.2.

The general applicability and efi&ciency of the new annealing technique is also real

ized.

Finally is necessary to note that the new annealing process has still a lot of

margin for improvements. In fact all the parameters that control the process are

determined under the assumption that the normal distribution for the cost func

tion is mainuined through the annealing process. This assumption is not realistic

when T is small. In this case in fact the cost distribution is not symmetric any

more and the Gaussian distribution tends to a Gamma distribution.



CHAPTER 8

Conclusions

A theory of a class of algorithms for the solution of combinatorial optimiza

tion problems inspired by the technique known as simulated annealing has been

developed. The class of algorithms has the characteristic of being probabilistic and

of being able to climb "hills", i.e. to accept intermediate solutions which increase

the cost. For this reason, these algorithms have been called Probabilistic Hill

Qimbing (PHC) algorithms. The mathematical model used in the study of their

properties is a Markov chain with finite state space.

Based on the key results on sUtionary probability distributions of Markov

chains, we have derived conditions on the parameters of PHC algorithms to

guarantee that an optimum configuration is found with probability one. The

theory requires that an infinite number of iterations be performed as intermediate

steps.

Some guidelines in the selection of the number of iterations used in the inter

mediate steps have been given. Finally an annealing process with parameters that

are dynamically determined according to the statistics produced by the algorithm

during its evolution is presented. The new annealing process has been substituted

to the traditional one in two algorithms used to solve the Traveling Salesman

problem and to determine the optimal placement of standard cells. The solutions

obuined by the new annealing process have been compared with the solutions

obuined by the same algorithm with the traditional annealing process. In both

cases the results obuined with the new annealing process were of the same or

better quality than those obuined with the traditional annealing process.
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Much work remains to be done to exploit fully the mathematical model. We

are exploring new control strategies and techniques which we hope will give

tighter bounds on the number of iterations needed to mainUin a given level of

confidence in the optimality of the results. In particular, we are looking at the

theory of nonhomogeneous Markov chains to be able to find stronger results than

the ones so far obuined.

Furthermore we are investigating the possibility of determining new accep

unce functions that guarantee the same asymptotic probability distribution but a

faster rates of convergence. In addition, a set of placement and routing packages is

being developed which incorporates the control strategies suggested by the theory.
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