A Greedy Heuristic for the
Rectilinear Steiner Tree Problem

Marshall Bern and Marcio de Carvalho

Report No. UCB/CSD 87/306

September 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A GREEDY HEURISTIC FOR THE RECTILINEAR
STEINER TREE PROBLEM

Marshall W. Bern*

Marcio de Carvalhot

Computer Science Division

University of California -- Berkeley

ABSTRACT

Clark Thompson recently suggested a very natural “greedy”
heuristic for the rectilinear Steiner problem (RSP), analogous to
Kruskal’s algorithm for the minimum spanning tree problem. We
study this heuristic by comparing the solutions it finds with rectil-
inear minimum spanning trees. We first prove a theoretical result:
on instances of RSP consisting of a large number of random points in
the unit square, Thompson’s heuristic produces a tree of expected
length some fraction shorter than a minimum spanning tree. The
second part of this paper studies Thompson’s heuristic experimen-
tally and finds that it gives solutions about 9% shorter than
minimum spanning trees on medium size problems (40-100 nodes).
This performance is very similar to that of other RSP heuristics
described in the literature.

* Supported in part by NSF grant MCS-8311422
+ Supported in part by CAPES grant 3817/82-4

1. Introduction

Assume we have a set V consisting of N points on the plane. A Steiner tree
for V is a tree that contains these N points as a subset of its vertex set. A
rectilinear Steiner tree is a Steiner tree for V which contains only horizontal and
vertical line segments. The rectilinear Steiner problem (RSP) is to find a rectil-
inear Steiner tree of minimum overall length. This problem bears a close kinship
to the problem of finding a rectilinear minimum spanning tree (RMST); the crucial
difference is that a solution to the Steiner problem may include extra vertices,
called Steiner points, if their inclusion helps reduce the overall length of the tree.
Efficient algorithms for solving RMST are well-known [Kr, Pr]; RSP, on the other
hand, is NP-complete [GJ], hence it is unlikely that any polynomial-time algorithm
exists for its exact solution. Researchers have discovered polynomial-time algo-
rithms for some special cases of RSP [AGH], and have devised a number of heuris-
tic algorithms for the general problem [Se, ML, MLL, H78, H79, KoSh]. Hwang
[H76] proved that for any set of points in the plane the length of a rectilinear
minimum spanning tree is no more than 3/2 the length of a rectilinear Steiner
minimal tree.

Our interest in RSP stems from its application to wire layout problems in
VLSI circuit design, specifically wiring combinational circuits in gate arrays. For
this application, it is desirable to have (suboptimal) solutions to RSP with small
overall wire length and a small number of wire bends. Moreover, the randomized
rounding method of Raghavan and Thompson [RT] provides motivation for an algo-
rithm that can produce a number of alternative solutions to RSP. This method
requires as input a number of alternative wirings, and then uses a randomization
technique to produce a routing of small width, that is, with a small number of
wires running in parallel along any one gate array channel.

Clark Thompson [Th] proposed the following natural RSP heuristic: start by
connecting the two closest nodes with a wire, either straight or “L-shaped” (that is,
the union of one horizontal and one vertical line segment), then in each subsequent
stage, “greedily” add the shortest wire, straight or L-shaped, node-to-node, node-
to-wire, or wire-to-wire, that reduces the number of connected components. Stop
when the number of connected components reaches one. As stated, this heuristic
allows a free choice of two possible orientations for each L-shaped wire. By vary-
ing this choice, either randomly or according to some deterministic rule, a number
of alternative solutions may be found.

A literature search revealed that similar, though not identical, heuristics
have been tried in the past [Se, MLL, LBH, H78, H79]. The major difference is
that the heuristics in the literature use an approach analogous to Prim’s RMST
algorithm [Pr], rather than to Kruskal’s RMST algorithm [Kr]. That is, they grow
a tree from a single source node by successively adding in closest nodes, rather
than by growing a forest of connected components. The Prim approach typically
produces a heuristic with a faster running time, since wire-to-wire distances are
never considered.

- 9.

In this paper, we investigate Thompson’s heuristic, first theoretically, and
then experimentally. We focus on the question of wire length, though the experi-
ments in section 3 also offer some data on the number of Steiner points and wire
bends. Throughout this paper, we compare the Steiner trees produced by
Thompson’s heuristic to rectilinear minimum spanning trees. In the theoretical
section we prove that trees found by a slightly modified version of Thompson’s
heuristic are asymptotically some fraction shorter than minimum spanning trees.
In the experimental section, we show that Thompson’s heuristic performs about as
well as the published heuristics. Unfortunately, its running time is probably not
as fast.

2. Theoretical Analysis

Theoretical analysis of Thompson’s algorithm evolved on two fronts: deter-
ministic and probabilistic. The most important deterministic result is that
Thompson’s algorithm will never give a longer tree than the minimum spanning
tree. Our probabilistic result is the following: in a model in which nodes are dis-
tributed at random according to a Poisson process with intensity N on the unit
square, for N large enough the expected length of a solution given by a variant of
Thompson’s algorithm is at least .098% shorter than the expected length of a
minimum spanning tree. Our analysis is not at all sharp, so that the true fraction
is likely to be much higher than .098%.

2.1. Deterministic Analysis

Kruskal’s classical “greedy” algorithm for RMST starts by placing a wire
between the two closest nodes (rectilinear distance) in V. In each subsequent step,
a wire is placed between the two closest nodes that are in different connected com-
ponents. The original Thompson’s algorithm presented in section 1 is analogous to
Kruskal’s algorithm for RMST [Kr] in its greedy choice of wiring. For the pur-
poses of analysis, we now introduce a modified version of Thompson’s algorithm
that holds even more closely to Kruskal’s algorithm. This version stipulates that
at the i-th stage of Thompson’s algorithm, fori = 1,2, -, N—1, the vertices in
the connected components of the growing forest must be exactly the same vertices
as those at the i-th stage of Kruskal’s greedy minimum spanning tree algorithm.
The two components to connect are chosen by minimum node-to-node distances, but

the wire laid down to connect them may attach to previously laid wires on either
or both ends.

Kruskal’s Algorithm

while 3 more than one connected component do
find nodes u and v in distinct components with min rectilinear separation
join u to v with a minimum length rectilinear wire
od

Original Thompson's Algorithm

while 3 more than one connected component do
find the two connected components X and Y with min rect separation
join X to Y with a mininimum length rectilinear wire
od

Modified Thompson’s Algorithm (Heuristic C)

while 3 more than one connected component do
find nodes « and v in separate components with min rectilinear separation
join u’s component to v’s component with a minimum length rectilinear wire
od

Figure 1 demonstrates that Thompson’s original method and the modified
method are, indeed, distinct methods: the Steiner trees they create may be
different. In this figure original points (nodes) are indicated by boxes, and Steiner
points are indicated by circles; the order in which wires are laid down is shown by
small numbers next to the wires. In either version, one has a free choice of two
possible orientations for L-shaped wires. In Figure 1, all L-shaped wires attach to
their uppermost vertex with a horizontal line segment.

2 2
1 1
3 4 . 3
4
= 5 5
ORIGINAL MODIFIED

Figure 1. Steiner trees produced by original and modified Thompson’s algorithms.

Theorem 1. Both versions of Thompson’s algorithm dominate minimum spanning
tree.
Proof. The easy one first: it is clear that the modified algorithm dominates
minimum spanning tree since at each stage it chooses a wire no longer than the
wire chosen by Kruskal’s algorithm and connects the same two components.

To prove that the original algorithm dominates minimum spanning tree, we
need two technical definitions and an invariant. In the following discussion

-4-

Steiner forest refers to a forest on the same N nodes (and any number of Steiner
points) on which we are trying to find a Steiner tree. We shall call a set of rectil-
inear wires C a cutset with respect to Steiner forest F if C is the set of all rectil-
inear wires with exactly one endpoint in a single connected component of F. Wires
in a cutset may be node-to-node or may have one or both endpoints on wires in F;
that is, we consider the connected components of F as including nodes and wires.
(Notice that if we are not constraining Steiner points to grid points, a cutset may
be infinite.) We shall call a Steiner forest F promising if it is possible to add
node-to-node wires to F to form a Steiner tree of length no greater than the length
of a minimum spanning tree. The forest with no edges is obviously promising. We
assert that if F is a promising forest and e is the shortest wire in a cutset with
respect to F, then F with e added is promising. Consider a Steiner tree T no
longer than a minimum spanning tree consisting of F with only node-to-node wires
added. To this Steiner tree we could add wire e and form a cycle. (If T already
contained e, we would be done.) This cycle would necessarily contain a wire f,
f # e, where f is one of the node-to-node wires in the cutset of which e is a shor-
test wire. Removing f would result in a new Steiner tree of length no longer than
the length of 7. We have now proved the assertion.

A single stage in the original Thompson’s algorithm adds the shortest wire it
can add without forming a cycle. Calling one of the components joined by this wire
X, the set of all rectilinear wires joining X to another component is a cutset with
respect to the Steiner forest already grown by the algorithm. We can now apply
the assertion above to conclude that after each stage of the original algorithm,
including the last stage, the Steiner forest is promising. Thus the Steiner tree pro-
duced by this algorithm is no longer than a minimum spanning tree. I

Theorem 2. Neither version of Thompson’s algorithm dominates the other.

Proof. Figure 1 gives an instance of the rectilinear Steiner tree problem in which
the original algorithm yields a shorter solution than the modified algorithm. Fig-
ure 2 gives an instance in which the modified algorithm outperforms the original.
We again used the rule of attaching to uppermost nodes horizontally, but examples
like Figures 1 and 2 can be concocted for any tie-breaking rule. [l

2.2. Probabilistic Analysis

For the purposé of analysis, we choose to use the modified version of
Thompson’s algorithm in this section. We are interested in random instances of
the Steiner tree problem. The most intuitively appealing probability space con-
tains instances in which N nodes are distributed independently and identically,
uniformly on [0, 1] X [0, 1]. (Since our focus is on asymptotics, we do not limit
our attention to cases in which the nodes are at grid points.) We find it more

ORIGINAL MODIFIED

Figure 2. An instance in which the modified Thompson’s algorithm outperforms the original.

convenient, however, to work in a Poisson model. Typically, theorems proven in
the Poisson model can be transported back to the “exactly-N” model [St, KS], but
we could not find a way to do this with our results. Nevertheless, our results have

implications for the exactly-N model.

The Poisson probability space is convenient because it avoids conditioning due
to the constraint that there are exactly N nodes. We first consider a Poisson pro-
cess with intensity 1 in a square of side VN. In the Poisson model:

(1) The probability of k nodes appearing in any region of area A is
e AAY/RY.

(2) The conditional distribution of nodes in any region of area A given
that exactly k nodes fall in A is joint uniform (that is, the k nodes are
independent and identically distributed uniformly on that region).

We further assume that N is large enough that we can inscribe two smaller con-
centric squares within the large VN x VN square, such that the borders between
the outermost square S; and the middle square S, and between S, and the inner-
most square S are each of width 3. This division is necessary to handle certain
boundary effects. Of course there is nothing special about the number 3; any
larger number would serve equally well. Finally a word on notation: P['] denotes
the probability of an event, E[-] denotes the expectation of a random variable, and
d(u,v) denotes the rectilinear (or Manhattan) distance between nodes u and v.
For any node v, define n(v) to be v’s nearest neighbor; that is, if u is another node,
u #v,dn@),v) < du,v).

Our strategy in showing that the modified Thompson’s algorithm (hereafter
called Heuristic C for “Clark”) asymptotically outperforms the minimum spanning
tree heuristic is to identify a situation in which Heuristic C makes a better choice
of wire than Kruskal's algorithm, and then show that this situation recurs

-6-

frequently. The situation which we shall use is shown in Figure 3. The essential
ingredients are that one of the two connected components being joined contains
exactly 2 vertices, and that the new wire extends from the size 2 component
(hereafter called a 2-component) in the same direction that the wire within the 2-
component makes an L-bend. Kruskal's algorithm will at some stage form a 2-
component containing vertices u and v if and only if n(v) = u and n(u) = v. The
next lemma calculates the chance of a given node participating in a 2-component.

Kruskal’s Wiring Heuristic C's Wiring

Figure 3. Wiring a 2-component.

Lemma 1. For each node v in S;, P[n(v) is in S; and n(n(v)) = v] = .57.

Proof. The probability that d(v,n(v)) = x is equal to the probability that there
are no nodes (other than v) in a rectilinear ball of radius x around v, which is
equal to e 2’ by property (1) of the Poisson process. Differentiating, we obtain the
probability density function for d (v,n(v)) of 4xe ~2*",

Now let u be n(v). For any v in §j, the probability that d(u,v) < 3 is larger
than .999, since P[d(u,v) = 3] = ¢~ !® < .001, so assume we are in the case that
d(u,v) = 3. Notice that in this case u is necessarily within §,. The node u must
be located on the boundary of a rectilinear ball of radius d(u,v) about v, as in Fig-
ure 4. All of this ball is within the larger square S, and no nodes other than v
are within the interior of the ball. If n(u) # v, some node w must be within a ball
of radius d(u,v) about u. It is not hard to calculate that the area of the shaded
region R in Figure 4 varies linearly from (d(u,v))? to (3/2)(d (u,v))?® depending
upon the location of u on a side of the boundary of the rectilinear ball. We overes-
timate the area of the shaded region, and hence underestimate the chance of
n(u) = v, by assuming the area to always be (3/2)(d (u,v))%. Continuing the calcu-

3
lation, P[ﬂ anode winR] = f 4xe'2’2-e'3‘2/2dx, that is, the integral over x of
0

the instantaneous probability that d(u,v) = x times the conditional probability
that there are 0 nodes in R, given that R has area (3/2)x2. Thus, P z a node w

3
in R12 @7 [7xe™™2%dx = (/1 - ¢™%) = 571. So altogether, for
0

-7-

each node v in 83, P[n(v) isin S, and n(n(v)) = v] = .999 X .571. QI

Figure 4. If there are no nodes in the shaded region R, then n{u) = v.

For distinct nodes u and v the probabilities P[n(n(u)) = u] and
Pln(n(v)) = v] are not independent. This lack of independence, however, will not
turn out to be a problem.

In an execution of Kruskal’s minimum spanning tree algorithm, each 2-
component must later be wired to some other component. Each of these later wir-
ings is potentially a situation as in Figure 3, that is, a situation in which Heuristic
C will save wire. In wirings between two 2-components Heuristic C has two
(nonindependent) chances to save, thus we may associate the potential savings
with the 2-components themselves, rather than with the wire joining the 2-
components.

Let us look at a 2-component more closely in Figure 5. Nodes u and v are
connected by an L-shaped wire; c¢,, denotes the corner point of this wire. (We
ignore the case in which u and v can be connected with a single horizontal or vert-
ical line. This case occurs with probability 0 when nodes are not constrained to be
on grid points.) Further assume that both u and v are in S,; such a 2-component
we shall call an interior 2-component. We extend our notation so that n(u,v)
denotes the node nearest the set of nodes {u,v}, that is, node w is called n(u,v) if

for any other node ¥, y # u, y # v, we have
min{d(w,u),d(w,v)} = min{d(y,u),d(y,v)}. If u and v form an interior 2-
component during the execution of Kruskal's algorithm, then

w = n(u,v) = n(u,n(u)) is the next node to be wired to the component containing
u and v. (Of course, w need not be isolated as in Figure 5. In fact, Heuristic C
may not even send a wire to w if the connected component containing w contains a

-8-

closer corner point. The fact is that Heuristic C will never use a wire longer than
the distance from w to the c,,.) Node w must be outside the union of balls of
radius d(u,v) around uz and v since n(u) = v and n(v) = u. We would like to
estimate the probability that n(u,v) = w is in the region where Heuristic C saves
the most wire. This region, which we shall call R,,, is the intersection of the
square S; with the quadrant of the plane centered at c,, that includes neither u

nor v along its boundary.

Figure 5. Heuristic C saves at least min{L,Lj} if n(u,v) is in R,.

The argument goes as follows: w must be at some distance
d = min{d(w,u),d(w,v)} from the set {u,v}. The probability that d is less than 3
is greater than .999, so assume this is the case. (The fact that P[d = 3] > .999
can be seen by noticing that the probability that there exist no nodes within dis-
tance x of a 2-component is less than the probability that there exist no nodes
within distance x of a single node.) Since the knowledge that w is n(u,v) in no
way conditions the direction of w, all points at distance d are equally likely. Thus,
we need only determine what fraction of a line at distance d from {u,v} lies within
R,,. An easy calculation shows that the length of the boundary of the union of the
balls of radius d around u and v that falls within R, is V2(d — min{L,,L,}),
where L, is the horizontal separation and L the vertical separation of u and v.
The total perimeter of the balls is between 5V2d (achieved when L, = L, and
approached for any L, and L, when d is relatively large) and 6Vad (approached
when L, or L, is close to 0). Thus, the fraction of the line within R,, is at least
Vaod - min{L,,L,}) / 6Vad, Recalling that d = L, + L,, we see that this last
quantity is at least 1/12. We have thus proven the following:

-9.

Lemma 2. Assume nodes u and v form an interior 2-component. Then for hor-
izontal and vertical separations L; =20 and L, =0, Pln(u,v) is in
R,] = 1/12 — .001. 0}

One more estimation lemma is necessary:

Lemma 3. If L, and L, are the lengths of the horizontal and vertical wire seg-
ments in an interior 2-component, then E[{min{L,,L,}] = .06.

Proof. As in the proof of Lemma 1, we consider v’s location fixed and u’s location
to be distributed on a ball of radius d(u,v) about v. The random variable
min{L,L,} varies between 0 and (1/2)d(u,v) with u’s position on a side of the
ball. Conditioning on the fact that n(z) = v only increases the likelihood that u is
near the middle of a side, and thus that min {L,, L,} is nearer (1/2)d (u,v). Thus,
E[min{L,, Ly}] = (1/4)E[d(u,v) | u = n(),v = n(u)) >

3
(1/4)fx4x e"2.¢=3/2 4y We can do this integral by parts to obtain
0

3
Elmin{L,, L,}] = (=1/7)3e7 %2 + (1/7) f e~"*/2dx. The value of this latter
0

integral can be found by a change of variables (y = V7/2x) and a look in any
table of the error function. Altogether we see that E(min {L;,L,}] = .06. []

Combining Lemmas 2 and 3, we can conclude that Heuristic C produces an
expected wire savings over Kruskal’s minimum spanning tree algorithm of about
.005 per interior 2-component, or about .0025 per node in an interior 2-component.
These savings are not necessarily independent for distinct nodes u and v, but this
will not matter for our purposes. We are now in a position to state our main
results. Let II(N) denote a set of nodes specified by the unit intensity Poisson pro-
cess on the square [O,VN] X [O,VZV]. Let C(II(V)) and M (II(N)) denote, respec-
tively, the length of the Steiner tree found by Heuristic C and the length of a
minimum spanning tree on II(V).

Theorem 3. li}{,n inf E[MIIWN)) — C{IN)] /N = .0014.

Proof. E[M(II(N)) — C(II(N))] is greater than the sum over all nodes v of the
probability that v participates in an interior 2-component times the expected wire
savings credited to nodes in interior 2-components. Notice that here we are using
the fact that expectations add regardless of independence. Now for any node v, Plv
is in 831 = (1 — (12/VYN))?, Pln(v) is in S; and n(n(v)) = v |v is in S3] = 57,
and the expected wire savings given that v is in S3, n(v) is in Sy, and n(n(v)) = v,
is at least .0025. Thus, E[M (IIV)) —CIIN)] = N-(1 — (12/VN))? .57 - .0025

-10 -
= .0014N, for sufficiently large N. [l

We now consider nodes on the unit square. Let X,, X,, --- be an infinite
collection of i.i.d. random variables (that is, nodes) distributed uniformly on
[0,1]1 x [0,1], and let IT'(N) be nodes given by a Poisson process of intensity N on
[0,1] X [0,1]. Let S(X;,...,Xy), C(X,,...,Xy), and M(X,,...,Xy) denote,
respectively, the length of an optimal Steiner tree, the Steiner tree found by
Heuristic C, and the length of a minimum spanning tree on the nodes
Xy, Xo,..., Xy, Let SUT'(N)), CAT'(N)), M(IT'(N)) denote the same functionals
on the nodes IT'(N).

Steele’s work [St] shows that both S(X,, ... ,XN)/ VN and SAT'(N)) / VN
converge almost surely to Bg, with Bg an unknown constant greater than 0. Simi-
larly, both M(X,, ... ,Xn)/ VN and M(T'(N)) / VN converge almost surely to
By. Haimovich and Rinnooy Kan [HRK] show that the asymptotic worst case
length of a minimum spanning tree on N nodes in the unit square is \/.‘EV-IV, that
is, for any sequence of nodes X, Xo, * ** , lirgjl_’silp MX,....Xy)/ VN = V2.

This result obviously gives an upper bound of V2 on Bu- There is an upper bound
of 1 on Bg [CH, CG]. We know of no published lower bounds on these constants,
though it is not hard to show that By and Bg are at least V27/8 (about .31) by
calculating the expected distance between a node and its nearest neighbor. Our
experiments in section 3 suggest that B, is between .7 and .8.

Corollary 1. 83 — .0014 = Bg.

Proof. Heuristic C gives a feasible solution to RSP, thus C(I'(N)) = S(II'(N)).
Now Theorem 3 (suitably rescaled for the unit square) implies Corollary 1. [l

The following corollary gives Heuristic C’s wire savings in the form of an expected
fraction of the total wire.

Corollary 2. liIIVp inf E(MITI'\N))-CI'(N)]1/ EMII'(N))] = .00098.

Proof. For any &€ > 0, we have that E{M(IT'(N))-C{II'(N)]1/ E[M{II'(N))] =
E[M{T'(N))-C(IT'(N)»]/ \/N(BM + ¢) for sufficiently large N. Using Theorem
3 (rescaled) and the result of [HRK] that By < V2, we obtain Corollary 2. []

We now comment on the exactly-N analog of Theorem 3, that is, lim
inf E(M(X,, ..., Xx)=C(Xy,....Xx)1/ VN = .0014. This analog would fol

low if we could prove a seemingly trivial smoothness condition on the sequence
G(1), G?2), - - -, where GIN) = EIM(Xy,...,Xy)-C(X,, ..., X1/ VYN. If

-11 -

|G(N+1) — G(N)| could be shown to be 0(1/VN), then the result would follow,
using a certain "Tauberian” theorem in the literature [P]. Unfortunately, the
behavior of Heuristic C is not simple, and it appears difficult to prove even this
“trivial” condition. In any —case, we can conclude that lim
sup E(M(X,, ... Xx)—CXy, ..., X0)1/ VN = .0014. N

2.3. Theoretical Conclusions

Our probabilistic analysis leads us to suggest two other heuristics for RSP:
the first is a simpler heuristic with the same asymptotic performance guarantee;
the second is a less quick heuristic with a potentially better guarantee. The first
algorithm would be the same as the modified Thompson’s algorithm with the
exception that only the corner points of L-shaped wires may be used as Steiner
points. In other words, at each stage of the algorithm the connected components
are chosen as in Kruskal’s algorithm (by shortest node-to-node distance) but the
connection is wired to either the closest node or the closest corner point. Ng [N]
has used a similar algorithm (the difference being that the two components to con-
nect are chosen by point-to-point distances, where a "point” may be a corner point))
for wiring nets in gate arrays. Ng’s algorithm is especially simple to implement;
all that is required is to modify an implementation of Kruskal’s algorithm to allow
the insertion of new points as the algorithm runs.

The second, less quick, heuristic suggested by our work is one in which an ini-
tial stage lays down wires along a minimum length perfect matching. A second
stage greedily wires the resulting 2-components, as in Thompson’s algorithm. In
this heuristic, all nodes participate in 2-components rather than just 57% of all
nodes. On the other hand, a small price is paid in that the matching may require
some relatively long wires that a minimum spanning tree does not.

3. Empirical Analysis

In this section we investigate the performance of Thompson’s algorithm on
randomly generated problem instances. For simplicity, we let the grid size and the
number of nodes in the instance be completely dependent: we generated instances
consisting of N nodes in an N X N grid, with N ranging from 10 to 100. As in the
theoretical analysis, we compare the length of a Steiner tree produced by the two
versions of Thompson’s algorithm with the length of a minimum spanning tree on
the same set of nodes. All our programs were implemented in Pascal.

3.1. Implementation

Our presentation will be based on the following high-level algorithm:

-12 -

program Steiner;
GetNodes; {Gets a random problem instance }
NumberofComponents « N;
while NumberofComponents > 1 do
(x1,y1), (x2,¥9) « Closest; { Returns and deletes closest pair of elements }
if (x,y,) and (x,,y,) are not in the same component then
Connect ((x;,y)), (x9,¥2));
NumberofComponents « NumberofComponents - 1;
fi
od

Algorithm 1. High-level Steiner Tree Algorithm

Both versions of Thompson’s algorithm are embedded in Algorithm 1; their
differences are a consequence of different alternatives adopted for the subroutines.
In the original version, the routine “Closest” considers both nodes and wires. In
the modified version, the routine “Closest” considers only nodes.

We chose to avoid the complexity of handling wires (that is, line segments)
using only endpoints. We maintained an N X N array of characters, representing
the grid. (This decision especially simplified printing out graphical representations
of the Steiner trees.) Cells in the grid could be in one of five states: empty, node,
Steiner point, wire, or corner. Given our simple choice of data structure, a naive
implementation of “Closest” and “Connect” would be very slow. For example, if
“Closest” were to compute the minimum rectilinear distance over all possible pairs
of elements each time it were called, the complexity of the algorithm would be no
better than Q(N5), since the number of elements (node cells and wire cells) would
be Q(N?) in the worst case, and the number of calls to “Closest” would be at least
N — 1. The number of calls to "Closest” would be much more than N — 1 if most of
the calls returned a pair of elements from the same component.

An efficient implementation of the operations “Closest” and “Connect” is
achieved with suitable data structures. Pairs of cells and their distances (the keys)
are stored in a d-heap tree which allows us to obtain and delete its minimum value
in O(dlogyn) and to insert a new element in O(log,n), where d is the maximum
number of children a node can have and n is the number of elements in the heap
[T]. The parameter d is chosen according to the relative frequency of delete and
insert operations; we used d = 4, which works fairly well over a wide range of
operation mixes. Our heap initially contains only node-to-node distances. As the
algorithm proceeds, however, “Closest” updates the heap, adding wire-to-node dis-
tances and wire-to-corner distances. Wire-to-corner distances are distances from
cells containing a new wire point to cells containing a corner point of a previously
placed wire. These distances are the only wire-to-wire node distances that must be
remembered, since any wire-to-wire line may be “slid”, without changing its
length, until it becomes a node-to-wire or corner-to-wire line.

-13 -

In order to determine whether two elements are in the same component, we
make use of a “union-find” data structure [AHU, T]. This structure is used to
maintain a collection of disjoint sets allowing the following operations: union
which merges two sets and find which returns the set containing a given element.
This structure allows us to perform these operations in almost linear running time,
actually O(ma(m,n)), where m is the number of operations, n the number of ele-
ments and a(m,n) is the inverse of Ackerman’s function. The number a is very
slow growing, in fact, a(m,n) < 3 for n < 2!, thus for all practical purposes,
a(m,n) is a constant not larger than 4 [T].

A final point concerns the decision one has to make when wiring two non-
collinear elements; there are two possible choices of where to place the corner point
of the L-shaped wire. In our implementation of “Connect”, the corner point always
has as its x-coordinate the x-coordinate of the first parameter, and its y-coordinate
is always the y-coordinate of the second parameter.

Our implementation of Thompson’s original algorithm is given in Algorithm
2. The routine “GetNodes” generates a random problem instance. The set “Points”
remembers node points and corner points. The routines “Union”, “Find”, “Delete-
min”, and “Insert” are as in [T], with a few exceptions. “Deletemin” returns a pair
of points as the name of the minimum item; this pair gives the coordinates of the
endpoints of the shortest wire. Similarly “Insert” is called with a pair of points as
two of its arguments.

We now consider the implementation of the modified Thompson’s algorithm.
In this version the next component to be connected is determined by closest nodes.
Thus, the heap will contain only distances between nodes, not between arbitrary
elements (wire and node cells) as in the original version. It will be necessary, how-
ever, to define another structure suitable for storing the coordinates of the closest
elements of each pair of connected components. A (necessarily symmetric) matrix is
used for this purpose. This matrix is indexed by representatives of components;
entry i,j contains the coordinates of the closest pair of cells, one of which is from
the component with representative node ¢ and the other from the component with
representative node j. (Until this point we have referred to nodes only by coordi-
nates; in the actual Pascal implementation, nodes also have unique numbers.)
After each “Union” operation, the row (respectively, column) corresponding to the
root node is set to the component by component minimum of the rows (respectively,
columns) of the old root nodes. The modified routine “Connect” is presented in
Algorithm 3; all other modules of Algorithm 2 remain unchanged.

-14 -

program Steiner;
GetNodes;
NumberofComponents « N;
while NumberofComponents > 1 do
(x1,¥1Y, (xg,yz) « Closest;
if Findi(x;,y;)) # Find((x3,y2)) then
Connect((xy,y1),{x3,y2));
Union((xy,y1),(x3,y2));
NumberofComponents <~ NumberofComponents - 1;
fi
od

procedure GetNodes;
fori « 1to N do
x; <« random number between 1 and Gridsize;
y1 < random number between 1 and Gridsize;
for (x,.y;) € Points do
Insert (heap,(x;,y1),(x3,y2),dist((xy,y1),(x2,¥2)));
Points « Points + (xy,y,);
od
od

function Closest;
Closest «— Deletemin(heap);

procedure Connect ((x1,y1), (x2,y2));
if x; = x5 then
for y « min {y;,y;} to max {y,,y;} do
for (x',y’) € Points do
Insert (heap,(x,,y),(x’,y"), dist((xy,¥),(x",¥)));
od
od
else if y, = y; then
for x « min {x;,xo} to max {x;,x;} do
for (x',y") € Points do
Insert (heap,(x,yy),(x",y"), dist((x,y),(x",¥")));
od
od
else
Points « Points + (x;,y;)
Connect((xy,y3), (x2,¥2));
Connect((xq,yq), (x1,71));
Union{{x,y3), (x1,y1));

Algorithm 2. Our implementation of the original Thompson's Steiner Tree Algorithm.

3.2. Running Times

What are the running times of our algorithms? In order to separate the
effects of grid size and number of nodes, in this section we assume that our prob-
lem instances consist of N nodes in an M X M grid. Starting our analysis at the
beginning, we recall that the original and modified algorithms share a common

.15 -

procedure Connect ((x',y'1),(x'2,y 2));
(x1,y1), (x2,¥2) « Array [Find((x'1,y'1), Find((x'3,y"2)];
Conn ((x1,y1),(x3,¥2);

procedure Conn ((x1,y1),(x2,y2));
if X1 = X3 then
for y « min {y,,y;} to max{y;,ys} do
for (x',y') € Points do
if dist({xy,y),(x",¥")) <
dist (Array [Find((x,,y)), Find((x",y"))]) then
Array [Find((x,y)), Find((x',y)] & (x1,y), (x,y");
fi
od
od
else if y, = y; then
for x « min {x,,x;} to max {x;,x,} do
for (x',y’) € Points do
if dist((x,y,),(x",y') <
dist (Array [Find((x,y,)), Find((x’,y"))]) then
Array [Find ((x,y)), Find((x",y)] « (x,y1), (x",5");
fi
od
od
else
Points « Points + (x1,¥1);
Conn((xl,yz),(xg,yz));
Conn((xy,y2),{(x1,¥1));
Union((xl,yz),(xl,yl));

Algorithm 3. Pseudocode for the modified algorithm’s “Connect”

input phase. As each point’s coordinates are generated, the distances from that
point to all previous points are computed, and the distances are stored in a heap.
At the end, O(N?) distances will be stored in the heap. Initial insertion time is
O(logN), so the total time for all initial insertions is O(N%ogN).

Now consider the rest of the original algorithm. For each cell on a wire
placed by “Connect”, the algorithm computes the distances to all nodes and previ-
ously placed corner points and inserts these distances into the heap. The number
of nodes and corner points is O(N), and an L-shaped wire in an M XM grid has
length O(M), so the number of insertions is O(MN) for each call to “Connect”.
Counting all N—1 calls, the maximum size of the heap is seen to be O(MN?).
Thus, each insertion takes time O(log(MN?) which is O(logM), so we can conclude
that all calls to “Connect” take total time O(MN?logM). Using the fact just noted
that the maximum size of the heap is O(MN?), we see that all the calls to
“Closest” take total time O(M NZ2logM). Finally, the union-find part of the algo-
rithm is relatively fast: only MN cells can be “unioned” together (the size of the

-16 -

entire tree), thus, the time for all calls to “Union” and “Find” is practically
O(MN). Overall, we can conclude that our implementation of Thompson’s original
algorithm has time complexity O(M N 2logM).

The modified algorithm turns out to be slightly speedier. In this case, too, the
innermost loops of “Connect” are the dominating influence. Because the cardinal-
ity of the set “Points” is O(N), the number of cells on a wire is O(M), and the
number of wires is O(N), the lines within these loops are executed O(M N?) times.
Each pass through one of these loops executes a comparison, an assignment, and
two “Finds” on a union-find data structure on which no more than MN “Union”
calls have been done. Thus, the modified algorithm has time complexity O(MN?).

Both these running times are “pseudo-polynomial” in the size of the problem
instance; that is, they are polynomial in the length of the problem instance only if
node coordinates are given in unary rather than binary notation. Note, however,
that fully polynomial implementations of these algorithms are not hard to write.

CRICIMAL VERSION

MINIMAL SPANNING TREE MODIFIED VERSION
° o+ o4 ° o=t @ ° o—p——to—p—2
o—-8 I oo | ot] o—* o—9te t ° |
| 1 o=+ © | | +-to ° | 1 ° °
| | [| | 1 1 1 1] |
1 | i o t { Som—o-t-e ! 1 ————t
] o--s | | | —* | ' o |]
| o o+ | ° °] { ° o |
1 | | | 1 1 | |
| i | ' | | ! |
oA-—ms | ot | ! ° ! |
o oo+ | """; :
: .]] H -
o] o | o !
1 | 1 ' |]
[} ° : : °
o : e 1 ° t
| oRt—s 1 o | [} [
[} | o———s] -t t bg———a
[} 1 3 | | [} ¢ |]
i 1 ° 1] ° t] o
I : v | I |
°! : L.ad] o]
[} 1 t
o0
]
|

°
| S U,

o= -——oh-—-0lte*
1] 1] | 1 1 1
| t 1 | had 1 |
o —————4 ' G ——— : O ——————t :
]
| | 1
° o—=e ° °
Original points = &0 Original points = 40 Original points = 40
Double wire = 13 Steiner points = 1S5 Steiner points = 17
Wire Jength = 175 Wire length = 151 Wire length = 3151
Number of Bends = 29 Nusber of Bende = 15 Nusber of Bends = 12
Total length = 204 Totel length = 181 Total length = 180

Figure 6. Trees produced by the algorithms described in this paper.

3.3. Fixed Size Problems

The size chosen for these experiments was 40 nodes in a 40 X 40 grid, which
we believed to be realistic for VLSI routing problems. The algorithm running on a
VAX 11/785 took only 0.33 seconds of processor time to solve a problem of this size,
making it possible to run a large number of problem instances. For each instance,

.17 -

40 coordinates are randomly generated and three trees containing these nodes are
obtained: the minimum spanning tree and the two Steiner trees, one for each ver-
sion of Thompson’s algorithm. Figure 6 shows an example; other examples are
included in Appendix A. (In these figures, circles represent nodes, + denotes a
corner point, * denotes a Steiner point, and # denotes a cell that contains more
than one wire in the case of the minimum spanning tree.) For each trial, we
recorded the fraction of wire saved by each of the two versions of Thompson’s algo-
rithm-relative to the length of a minimum spanning tree.

Algorithm | Mean (%) c
Original 9.298 217
Modified 9.365 2.12

Figure 7. Comparative Data from 5,000 cases

Figure 7 shows the means and standard deviations of the values (expressed as
per cents) obtained. Both algorithms on the average produced Steiner trees more
than 9% shorter than minimum spanning trees. In Figures 8 and 9 we show histo-
grams of the algorithms’ peformance. Note the high concentration around the
mean, which suggests that the algorithm is robust.

0 2 4 [] 8 10 12 14 16
©% Shorter than MST

Figure 8. Histogram of the fractional wire savings of the original algorithm.

- 18 -

v v v . v "

/] 2 4 [} 8 10 12 14 18
9% Shorter than MST

Figure 9. Histogram of the fractional wire savings of the modified algorithm.

3.4. Variable Size Simulation

The main goal of this simulation was to acquire some feeling about the perfor-
mance of the algorithms as the size of the problem increases. The running times
in this experiment were much larger than in the previous case, so only 500
instances were analyzed, all of them using the modified algorithm. The problem
instances are all of the form N random points in a grid of size N by N. Figure 10
presents a plot of the data (labeled “Modified”) obtained from this simulation,
showing N along the x-axis, and the wire savings of the Steiner tree relative to the
minimum spanning tree along the y-axis. The thin lines on either side of the data
line indicate the boundaries of a 95% confidence interval. We also plot the percent
of wire that is “doubled” in the minimum spanning tree; this wire would be saved
even by the simplistic algorithm of computing a minimum spanning tree and then
removing one wire of each doubled wire. We believe that the true asymptotic
advantage of Thompson’s algorithm is lower than 9%, though, of course, not so low
as is indicated by our theoretical results.

Finally, Figure 11 shows the performance of Thompson’s algorithm according
to other criteria-- the numbers of wire bends and Steiner points. Again problems
of size N were N randomly placed nodes in an N X N grid. In this experiment
both the number of bends and the number of Steiner points grow just slightly fas-
ter than linearly with N. This is because nodes are sparser for larger N. (The
chance is 1/N that a cell is occupied by a node.)

LTS

-19 -

4 v v v v v v v 3
20 30 40 50 60 70 80 90 100

Number of Points

Figure 10. Wire Savings as a function of problem size.

50 = e e : ; grosre e ;
Bends

+Steiners

0 ‘ ' v ' . ' * .
20 30 40 50 60 70 80 90 100

Number of Points

Figure 11. Numbers of bends and Steiner points as a function of problem size.

.20 -

Reference Approach Efficiency | Range of N | % over RMST
Modified Thompson’s Greedy (Kruskal) ON?) 20-100 8.9
Lee, Bose, Hwang [LBH] Greedy (Prim) ON? 5-30 approx. 8
MacGregor-Smith, Liebman [ML] | Rectangularization O((NY 5-30 7.2
Yang, Wing [YW] Branch-and-Bound expon. 9-50 approx. 11

Figure 12. A comparison of different heuristics.

3.5. Empirical Conclusions

Figure 12 compares our results with other results reported in the literature.
The number reported for performance is the mean per cent shorter than a solution
to RMST. Overall, Thompson’s algorithm produces solutions as short as those
found by the other heuristics for RSP, but (neglecting constants) runs more slowly
than [LBH] (and related algorithms [H78, H79, MLL], two of which are
O (NlogN)). It is interesting to note that the one non-greedy polynomial-time
heuristic shown [ML] produces relatively poor solutions.

Because it is so difficult to find optimal solutions to RSP (see [L] for two
different exponential time algorithms), we do not know how close heuristic solu-
tions are to optimality. Some data on optimal solutions to RSP are included in [Se]
and [YW], but the numbers of nodes in the problem instances are too small to per-
mit firm conclusions. If forced to name a number, we would guess that for large
problems optimal rectilinear Steiner trees average about 12% shorter than rectil-
inear minimum spanning trees.

Acknowledgements

We would like to thank Richard Karp for some valuable discussions about the
asymptotic analysis in section 2, and Clark Thompson for suggesting this research
topic.

References

[AGH] A. V. Aho, M. R. Garey, and F. K. Hwang, “Rectilinear Steiner Trees: Efficient
Special Case Algorithms,” Networks 7, 1977, pp. 37-58.

[AHU] A. V. Aho, J. E. Hoperoft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[GJ] M. R. Garey and D. S. Johnson, “The Rectilinear Steiner Tree Problem is NP-
Complete,” SIAM J. of Appl. Math., 32, 1977, pp. 826-834.

.91 -

{H76] F. K. Hwang, “On Steiner Minimal Trees with Rectilinear Distance,” SIAM J. of
Appl. Math., 30, 1976, pp. 104-114.

[H78] F. K. Hwang, “The Rectilinear Steiner Problem.” Design Automation and Fault-
Tolerant Computing 2, 1978, pp. 303-310.

[H79] F. K. Hwang, “An O(NlogN) Algorithm for Suboptimal Rectilinear Steiner Trees,”
IEEE Trans. on Circuits and Systems 26, 1979, pp. 75-77.

[HRk] M. Haimovich and A. H. G. Rinnooy Kan, personal communication with A. H. G.
Rinnooy Kan.

[KS] R. M. Karp and J. M. Steele, “Probabilistic Analysis of Heuristics”, Chapter 6 of The
Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization, edited
by E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Wiley, 1985.

[KoSh] J. Komlés and M. T. Shing, “Probabilistic Partitioning Algorithms for the Rectil-
inear Steiner Problem,” Networks 15, 1985, pp. 413-424.

[Kr] J. B. Kruskal, "On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem,” Proc. AMS 7, 1956, pp. 48-50.

[L] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and
Winston, 1976, pp. 289-290.

[LBH] J. H. Lee, N. K. Bose, and F. K. Hwang, "Use of Steiner’s Problem in Suboptimal
Routing in Rectilinear Metric,” IEEE Trans. on Circuits and Systems 26, 1976, pp.
470-476.

[ML] J. MacGregor-Smith and J. S. Liebman, “Steiner Trees, Steiner Circuits, and the
Interference Problem in Building Design,” Engineering Optimization 4, 1979, pp. 15-
36.

[MLL] J. MacGregor-Smith, D. T. Lee, and J. S. Liebman, “An O (NlogN) Heuristic Algo-
rithm for the Rectilinear Steiner Problem,” Engineering Optimization 4, 1980, pp.
179-192.

[N] A. Ng, U. of California at Berkeley. personal communication.
[P] H. R. Pitt, Tauberian Theorems, Oxford University Press, 1958, pp. 37-42.

[Pr] R. C. Prim, "Shortest Connecting Networks and Some Generalizations,” Bell Syst.
Tech. J. 36, 1957, pp. 1389-1401.

[RT] P. Raghavan and C. D. Thompson, “Provably Good Routing in Graphs: Regular
Arrays”, Proceedings of the 17th Annual ACM Symposium on the Theory of Comput-
ing, 1985.

.292.

[Se] M. Servit, “Heuristic Algorithms for Rectilinear Steiner Trees,” Digital Processes 7,
1981, pp. 21-32.

[St] J. M. Steele, “Subadditive Euclidean Functionals and Nonlinear Growth in Geometric
Probability,” Ann. Probability 9, 1982, pp. 365-376.

[T] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, Pennsyl-
vania, 1983.

-

[Th] C. D. Thompson, U. of California at Berkeley, personal communication.

[YW]Y. Y. Yang and O. Wing, "Suboptimal Algorithm for a Wire Routing Problem,” IEEE
Trans. Circuit Theory 19, 1972, pp. 508-511.

.23 -

APPENDIX A

STEINER TREES AND MINIMUM SPANNING TREES

MINIMAL SPANNING TREE

o0 (<]
| |
| |
| |
=% i 24 O=—==—4 _
| | | |
| | | o—-——%
| | | | o
| | ! | |
o+ | o=——m————=4 |
| | |
| | |
or——=—=—0—¢ | |
[|
| ! o+ |
| o | o
[1
- o+ | _ O——=——0—*
o—=—===0——=* {
| |
o+ _
| |
| !
o—* o~—*
| o -+
| |
| o+ |
| | |
| | O==—=4% O+
| o—-o | o=+
o4+ | | |
| o~—+ o o+
o |
o———+ |
| |
| |
! |
o+ o——4+ |
o————==+ | oOo~=-0
o-+

Original points = 40
Double wire = 8
Wire length = 172
Number of Bends = 30
Total length = 202

MODIFIED VERSION

+00 -]
| |
| |
| !
o-* o~———" |
| t |
_ _ o———==N
| | o
| | |
o+ [} |
| | |
| | |
o--t----0 | |
| ! |
| | o-—=*
| o==—==* o
| | | |
o+ { P Lttt e 2l 4
O ——O——t |
| |
o—+ _
| |
| |
o-+ *——op
| o-=*
| |
| o-* |
| | |
| | o o
| o--—o gt
o-é--s [Lo
| o-—+ o+ LT
I)
o—~=+ 1
| |
| |
| |
o=+ o _
O~—====¢ @-—g-b-q
o+

Original points = 40
Stelner points = 14
Wire length = 148

Number of Bends = 17
Total length = 179

ORIGINAL VERSION

400 -]
) |
| |
| |
o-* [- aanauand 4 [
| | | |
_ _ ll.l.lll"Ol..'nl.
! | | | o
| | | |
¢ | o |
| | |
| | |
o= ° | |
| |
| o+
[PUSHSEY | o
11
o+ O—==8——0—+
jo-—-*~o |
| | |
o+ | |
| | |
| | |
o+ _ o
_ o=t
| |
o-*]
| |
| o—=*+ o
o—-0 | o-*
o———+ | | |
| o+ o+ *to
1 |
o-——+ |
| |
| |
| |
o+ o+ |
O~ ———— _ o—-*-0
o—*

Original points = 40
Steiner points = 13
Wire length = 154

Number of Bends = 17
Total length = 184

MINIMAL SPANNING TREE

o+

-

?'—-—-0

o—-2=%
i
0———1—————
8 1

et

o-+|
of-+

|)

1 |

O—=——e

Original points = 40
Double wire = 14
Wire length = 180
Number of Bends = 36
Total length = 216

T

0————— s

MODIFIED VERSION

O———==== -0 o-+
o-——* | |
| |
| |
1 Ot -tameenrg
o-t=-4+ |
| |
+-0 |
| |
| |
| |
ot o—=4¢
_ _ [ot d
O=————— L ~Q———¢ |
| | | ¢—0
| o | | o
[o |
o——* | |
+——0—4 |
) o———%
| |
o-*]
o———=% | o4
| | ° I
| | | 1
] +—Q—~—¥ | o-=-+
| | | o-—+
o+ +%0 | |
| | |
| | |
| o* |
| | |
o—-+) | o
o—-* |
[R |
| |
o +—=0

Original points = 40
Stelner points = 14
Wire length = 158

Number of Bends = 22
Total length = 194

ORIGINAL VERSION

o+ o
| ot

| I

o=======—0 o-+
o—==* |

o+

-}
§ o s) —— e o s i —
O—————— ¢

-0

Original points = 40
Steiner points = 14
Wire length = 158

Number of Bends = 22
Total length = 194

Y - S S

MINIMAL SPANNING TREE MODIFIED VERSION ORIGINAL VERSION

o 0 o ©
A ° ! _ |
{ | o—o—
o=+ | o—o-* | —— “ lo._.
of——+ of-+ o+ + -o* O||||..W|
o=+ _ o-——+ i 2 _
o=+ ! | o-+ | onu!.w “
_ _ o--—+ _ !
| | ! |
| | | .
| ° -0 |
I ! _
“ | S
o o
Y « 1 T
f | | | - -
—O~~Off}-—~—~0—-+ 0l|||n_v|..°|-||||o...|4 . O====-0——0~8—————0—0-+
] e T nant
| | | | [| | —_
o+ | | o | o—t | | o | o=+ | PN
| o=+ | i o+ | _l
o1 ! os-o “ T
| | |
[-] [-] [-34d
o-==-0+ ° o———-o+ -
o4 | o——+ “ o— ﬂ
| | | | _
o+ o ! o-+ ° _ o+
| | | | | o
| | o* 1 | | °
O=====4 o—o————+| | o oo~ . I |
| | | I | | | | i gt
| ==t 1 o+ | L e - et | o+ i | |
L S - L
o
| o+ | | M | oh ﬂ
o+ | | o+ | | i
| | | | o———f—e
o—--—-9 o-——mt o
o o
Original points = 40 Original points = 40 Wm“mw”ﬂu mxnu._.w_n.n-luwuo
Double wire = 9 Steiner points = 11 Wire woznvov = 138
Wire length = 153 Wire length = 140 gt

Number of Bends = 29 Number of Bends = 17 "on-»q.uMn wﬂ:au Mowo
Total length = 182 Total length = 168 ngt

MINIMAL SPANNING TREE

o=+ | o
| | |
o+ | o
(] | |
o———+ | | |
) | | |
] | off———o o-+
o—-+ o=+ | |
| | |
| | |
| | o4
| off-—~+ o
| |
o I
| o+
o-+ |
off—~—-+ | o———+
_ ot |
| | | o
| o |
I | |
| o-+ |
| o———¢ | o+
o-+ | | |
o+] | |
| | | |
| | | | o+
	o+		
o+ I			
	o-——=—%		
	*		
	o		
o—+			
o (- it d			
o~==4 |
off#-——-+
-}

Original points = 40
Double wire = 17
Wire length = 172
Number of Bends = 34
Total length = 206

MODIFIED VERSION

4O~ ———
o-* o
1 |
o+ _ o
I | |
o=t | I |
| | | |
| | o~t-t—-g o+
o——+ [+ | |
| |
| |
_ ———————
o* [
|
o |
| o+
o+ |
O———t—uy | o
| o+ |
| I %0
! ° |
| | |
_ fo Sy To—"
(] | o+
o-* | |
o+ +-———o I i
| | | |
| | | | o+
| 1 l | |
| $o—mm——-o+ f I
| o+ { | |
! | o~=-—= .
| | |
| | °
o+ _
{ o o-—+
| |
o-—-+ |
o=~
e——0

Original points = 40
Steiner points = 13
Wire length = 150

Number of Bends = 21
Total length = 184

ORIGINAL VERSION

b= OO~ —————t
o-¢ o
| |
o-+ | -]
| 1 |
Om == ¢ | |
| | | |
| | o-*---o o-+
o=+ o | |
| I |
| | |
_ 0."‘0"'.
I ot o
| 1
| o |
[o+
_ o—+ _
o-——t0_y \ °
| o+ |
| | *——0
| o |
| | |
‘ °|l'||.l.
-] | o+
o-* I |
o+ +--—--0 | |
I | | |
| | | | o+
| | | | 1
|] o+ | |
| o+ | | |
| [o~——=*
| | |
| | °
o+ _ .
| o o=+
1 |
o——=~+ }
o—~*
=0

Original points = 40
Steiner points = 14
Wire length = 149

Number of Bends = 20
Total length = 183

