SPUR COPROCESSOR INTERFACE DESCRIPTION

Paul M. Hansen

Shing I. Kong

Computer Science Division of EECS
University of California, Berkeley
Berkeley, CA 94720

October 1986

ABSTRACT

This report describes the SPUR coprocessor interface. The interface pro-
vides enhanced performance potential by allowing parallel operations
between the SPUR processor and SPUR coprocessors. A decoupled control
and execution architecture allow data transfers to proceed while coprocessor
functions are performed. Implicit and explicit synchronization mechanisms
provide the programmer complete control and flexibility. On-chip coproces-
sor register files and a wide data path between the memory and coprocessor
minimize data transfer overhead. An intelligent interface control unit pro-
vides parallel decoding of instructions for maximum performance. Other
coprocessor functions applicable to performance monitoring, signal process-
ing, image processing, workstation graphics, language coprocessors, and so
forth are being considered, but will not be reported here.'

' Principal funding for the SPUR project is provided by the Defense
Advanced Research Projects Agency under contract N00039-85-C-
0269. Additional support for this research was provided by the State
of California MICRO program, by a Digital Equipment Corporation
CAD/CAM grant, by the National Science Foundation under grant
DCR-8202591, by equipment donations from Texas Instruments, Inc,,
and by computer resources provided under DARPA contract N00039-
84-C-0089. An overview report on the SPUR architecture is found in
[HELS5].

1. INTRODUCTION

The SPUR CPU is a custom VLSI-32 bit general-purpose host targeted to
support Lisp and other high-level language software environments. The RISC-like
architecture provides high performance for a wide range of applications.

Traditional von Neumann computer architectures have achieved enhanced
performance by adding optional hardware to perform tasks that are usually exe-
cuted in software. These devices are often called coprocessors and include
attached processors, array processors, floating-point accelerators, data channels,
graphics display processors, performance monitors, and so forth. Thus, a copro-
cessor is an optional piece of hardware that replaces a piece of software for a
higher level of performance.

Many peripheral devices as well as more closely coupled coprocessors fall in
this general category. It is nevertheless important to recognize a distinction
between standard peripheral hardware devices and tightly coupled coprocessors:
the programming model for the coprocessor differs from that of peripheral devices.
Standard peripheral hardware usually appears to the programmer as a set of
registers in the memory space of the main processor. The programmer must con-
sider the communication protocol and implement the interface between the peri-
pheral and the device in software.

In contrast to this, the tightly coupled coprocessor adds special instructions
to the CPU instruction set that allow the programmer to utilize the coprocessor
capabilities. It may also provide additional registers and data types that are not
directly supported by the main processor architecture. However, certain interac-
tions needed between the main processor and the coprocessor (i.e., the communi-
cations protocol) are implemented in hardware and are transparent to the pro-
grammer. Thus, the coprocessor can extend the functions provided to the user
without appearing as hardware external to the main processor. This provides a
more uniform programming model from a user point of view.

The SPUR system employs an optional special purpose device for floating-
point arithmetic. This device will support the IEEE Standard P754 for add, sub-
tract, multiply and divide in single, double, and extended precisions. (Other func-
tions, such as transcendentals, are handled by runtime routines.) We refer to this
as the SPUR Floating-point Unit, or simply FPU. For documentation purposes, it
would seem logical to refer to all signals and mnemonics related to the coprocessor
to be designated “CP”. Other applications are being considered besides floating-
point arithmetic, but this report will focus on the FPU. Thus, to avoid confusion
between the CPU and CP designations, the coprocessor interface signals, blocks,
modules and functions will be designated with the “fpu’’ prefix. The first genera-
tion SPUR system will support a floating-point coprocessor (FPU) and a perfor-
mance monitor (PMC) [Fau86]. Later generations will consider other applications.

-3-

Section 2 of this report provides a brief overview of the SPUR coprocessor
interface and functions. Section 3 provides a greater degree of detail and timing
diagrams for various operations, instructions, and the interaction between the
CPU and FPU.

2. FLOATING-POINT COPROCESSOR INTERFACE OVERVIEW

From the assembly language programmers point of view, the SPUR FPU has
15 read/write 87-bit operand registers and one read /write control/status register
(nominally 64 bits). The bits in an operand register are defined from left to right
(with MSB at left-hand side) as follows:

of BITS 1 17 64 2 3
FIELD SIGN EXPONENT FRACTION ROUND TAG DATA TYPE

The FPU is a load/store architecture. Consequently, all arithmetic operations
involve three registers: two source and one destination.

2.1. Instructions

As of this writing, 18 operations are defined for floating-point arithmetic and
general coprocessor functions (load, store, etc). They are listed in Table 1. It
should be noted that all LOAD instructions have two forms, depending on the
cache operation involved: simple read or read with ownership. For example, the
two opcodes for loading single precision operands are LD_SGL and LD_SGL_RO.

2.2. Control Flow

The FPU coprocessor has two major functional units: the interface control
unit (ICU) and the execution unit (EU). The clocking scheme of the FPU is ident-
ical to the CPU: 4 non-overlapping phases per cycle. (Refer to Section 3 for more
details.) In phase 3 (phi3) of every cycle, the FPU ICU accepts and decodes the
INSTRUCTION BUS fragment issued on fpuOPCODE_CV3 lines, and initiates
operation in the subsequent cycle if it is an FPU operation. This continues until
cycle N (N is the number of execution cycles for the particular instruction being
executed). The fpuBusy_C4 signal is disasserted in the last execution cycle (regis-
ter write) to signal when the FPU EU is done. (See Section 2.6 for complete
definitions of signals.) -

Under normal circumstances, CPU and FPU instructions execute in parallel.
This parallelism is controlled in two possible ways: (1) explicit: the fpuParallel bit
in the Upsw (user process status word in the CPU) may be set, which will allow
overlap of CPU and FPU operation instructions, and (2) implicit: the assertion of

Table 1. SPUR FPU Coprocessor Instructions

ARITHMETIC OPERATIONS, OPERAND CONVERSION, and COMPARE
Instruction Syntax Instruction Semantics

FADD Rd,Rs1,Rs2 FPU Rd < FPU Rsl + FPU Rs2
FSUB Rd Rsl,Rs2 FPU Rd <- FPU Rsl - FPU Rs2
FMUL Rd,Rs1 Rs2 FPU Rd <- FPU Rsl * FPU Rs2
FDIV Rd,Rs1,Rs2 FPU Rd <-— FPU Rsl / FPU Rs2
FABS Rd,Rs1,0 FPU Rd <- FPU Rsl with sign = 0
FNEG Rd,Rs1,0 FPU Rd <- FPU Rsl with inverted sign
FCMP cond,Rs1,Rs2 FPSW(cond) <- result
CVTS Rd,Rsl1,0 FPU Rd <~ {convert to single) FPU Rsl
CVTD Rd,Rs1,0 FPU Rd <- (convert to double) FPU Rsl

LOAD COPROCESSOR REGISTERS and FMOV
Instruction Syntax | Instruction Semantics
LD_SGL,RO Rd,Rs1 RC FPU Rd <- M [(Rst + RC)
LD_DBL,RO RdRs1 RC FPU Rd <- M [(Rsl + RC)
LD_EXT1,RO Rd,Rs1,RC FPU Rd <- M [(Rs1 + RC)
LD_EXT2RO Rd,Rs1,RC FPU Rd <- M [(Rs1 + RC)
FMOV Rd Rs1,0 FPU Rd <- FPU Rsl

STORE COPROCESSOR REGISTERS
Instruction Syntax Instruction Semantics
ST_SGL Rs2,Rs1,5C FPU Rs2 -> M [(Rs1 + SC)
ST_DBL Rs2,Rs1,SC FPU Rs2 -> M [(Rsl + SC)
ST_EXT1 Rs2,Rs1,5C FPU Rs2 -> M [(Rs1 + SC)
ST_EXT2 Rs2,Rs1,SC FPU Rs2 -> M [(Rsl + SC)

the fpuBusy_C4 line will prevent the CPU from issuing FPU operation instruc-
tions if the FPU is still in the execution phase of a previously issued instruction
(as signaled by fpuBusy_C4). When overlap is prevented, the CPU always stalls
until the fpuBusy_C4 line is not asserted.

2.3. Data Flow

Data flow between the FPU and the SPUR data cache memory is directly
controlled by the CPU. The data path to the cache is 64 bits wide. Double preci-
sion operands are loaded in one cycle. Loads may proceed in parallel with FPU
operation, since the FPU register file is dual ported. The FPU pipeline is similar
to the CPU pipeline: an FPU load requires the instruction fetch, effective
addresses calculation, memory access, and register write cycles. Since there is no
operand forwarding in the FPU, the load target is not ready for use in the FPU
until the third instruction following the load instruction.

-5-

Two instructions that allow loading the CPU registers directly from FPU
registers, and vice versa without passing through cache memory were included in
the initial design, but will not be implemented in the drst version. Eventually,
these instructions will be useful for transferring integer operands, and control and
status information between the CPU and the FPU.

2.4. Performance

Table 2 lists the number of execution cycles needed to complete FPU arith-
metic operations. Loads and stores are considered single-cycle operations, and are
discussed in Section 3.2.1.

Table 2. SPUR FPU Execution Cycles for Arithmetic Operations

ARITHMETIC OPERATIONS
Instruction l Cyecles (operation only)
FADD Rd,Rs1,Rs2 3
FSUB Rd,Rs1,Rs2 3
FMUL Rd,Rsl,Rs2 8
FDIV Rd,Rs1,Rs2 20
FABS Rd,Rs1,0 3
FNEG Rd,Rs1,0 3
FCMP cond,Rs1,Rs2 3
CVTS Rd,Rs1,0 3
CVTD Rd,Rs1,0 3

Studies comparing the SPUR FPU with commercial microprocessor-based
systems employing VLSI floating-point coprocessors indicate that the SPUR-FPU
combination can execute several floating-point intensive benchmarks between 5
and 15 times faster than other systems [Han85]. The main performance advan-
tages come from:

(1) the dual ported register file allowing data load/store during FPU opera-
tion,
(2) the parallel execution of the FPU and CPU, and

(3) very efficient algorithms and hardware structures for the four operations
implemented on-chip: add, subtract, multiply, and divide.

2.5. Programming Interface

The FPU effectively adds new data types, new registers, and new instructions
to the CPU. The coordination of the processor-coprocessor operation is handled
mostly by the programming languages and coprocessor interface automatically.
The FPU architecture is Load/Store, with arithmetic operations between FPU
registers. The hardware is invoked directly by program instructions, and no
recompilation is necessary for systems that are not equipped with an FPU. Sim-
ple link-time command arguments direct the loading of algebraic routines in the
absence of the FPU. One bit in the Upsw causes the CPU to trap to algebraic
routines when FPU instructions are encountered and an FPU is not available in
the system.

2.86. Hardware Interface

Figure 1 shows how the FPU is connected as a coprocessor in the SPUR sys-
tem. Figure 2 shows the logical interconnections between the CPU and FPU.
The CPU and FPU both use a 4-phase non-overlapped clocking scheme as illus-
trated in Figure 3. The coprocessor interface signals fall into three groups:

(1) instruction: opcode and FPU register specifiers,

(2) control (to FPU): new instruction valid, suspend FPU operation, and

(3) status (from FPU): FPU busy, FPU exception, FPU compare result.

2.8.1. CPU to FPU Signals
Below is a brief description of the signals from the CPU to the FPU. f For a
more detailed discussion, please refer to Section 3 of this report: Coprocessor
Interface Details.
fpuOPCODE_CV3: 7 bits. This specifies the opcode of the instruction
which the CPU broadcasts to all coprocessors. The CPU starts driving these
lines at the beginning of phi3.
fpuRS1_CV3: 5 bits. This specifies the first source register of the instruc-
tion, which the CPU broadcasts to all coprocessors. The CPU starts driving
these lines at the beginning of phi3.
fpuRS2_CV3: 5 bits. This specifies the second source register of the
instruction, which the CPU broadcasts to all coprocessors. The CPU starts
driving these lines at the beginning of phi3.

T 1f either the CPU or the FPU begins driving a signal at the beginning
of phiN, it is assumed that the signal is stable and latchable at the end of
phiN at the destination.

.............

PROCESSOR SNOOPING
v
R
e | el [®
UNIT G
FPU COPROCESSOR
o
o
PROCESSOR
SNOOPING SHARED
GLOBAL
UNIT U@ CACHE
MEMORY
R
e | lem IR
UNIT G
FPU COPROCESSOR
PROCESSOR
SNOOPING
E ! » 12D
UNIT | jU CACHE
R
e | Llem J[E v
UNIT G
FPU COPROCESSOR

Figure 1. The UC Berkeley SPUR multiprocessor system.
The processor is a single chip with an on-board instruction buffer (IB). The floating-point unit
(FPU) is tightly coupled to the CPU via the local processor bus. The cache controller is integrat-
ed on one chip with off chip tag and data RAMs. The caches work together to implement a cache
comsistency protocol, described in [KEP]. Shared memory and I/O devices are accessible through

the system bus.

o procTagMatch_V3
dataMayBeValid_V3
datalsValid_Vs
Cache Controller
(CC)
fpeOPCODE_CV3
7
1 3
dataValid fpuRS /_CV dataValid
3
fpuRS2_CV3
F -
5
UPSW P
u fpuRD_CV3 FPSW
5
t
...... e P
fpuParallel ¢ fpulNewlostr_CV3
1
fpuSuspend_CV4
1
fpuExcep_C4
1
Processor Coprocessor
t c4 ,
(CPU) PuBesy- (FPU)
1
fpuBrT_F_C4
1

Figure 2. The SPUR coprocessor interface (FPU).
Signals dataMayBeValid_V3, tagMatch V35, and datalsValid_V8 come from the cache controller
to both the CPU and FPU.

fpuRD_CV3: 5 bits. This specifies the Destination register of the instruc-
tion which the CPU breadcasts to all coprocessors. The CPU starts driving
these lines at the beginning of phi3.

phit __T° ”L
i Ao |
phid i i
ohid | L

‘ 140 '

Figure 3. The SPUR system 4-phase clocking scheme.
Clocking is 4-phase, non-overlapping, with 25 nsec high levels, 10 nsec underlap low levels yielding

a 140 nsec total cycle time.

Het Pxec Mem W
! ! ! ! } . | | i I i !
l T T 1 T ' t ! T T T
Het Brec Mem Wr
! I ! | 1 i ! ; L
T 1 T i 1 1 T I I 1 H i
Hes Prec Mem Wr
. 1 L ! I L L] .]
1 T T f f T ! T T I
et Fxec
l I ! L : i
1 T Y T i !

Figure 4. CPU pipeline Stages.
Register operations do not use the Mem cycle, permitting instruction prefetching or operand ac-
cess during those times. Although it is theoretically possible to issue one instruction per cycle (as
shown above), cache misses and/or a busy coprocessor (cannot begin execution of a second in-
struction until the first is done) will increase the number of effective cycles per instruction com-
pleted to more than 1.0. Simulations indicate that between 1.6 and 2.0 clock cycles per instruc-

tion are necessary.

fpuNewlnstr_CV3: 1 bit. Asserted by the CPU whenever a valid instruc-
tion of any variety is issued. The CPU starts driving this signal at the begin-
ning of phi3.

fpuSuspend_CV4: 1 bit. Asserted by the CPU during any pipeline suspen-
sion, except when the pipeline is suspended due to fpuBusy_C4. (This
effectively is a signal to stall FPU register writes.) The CPU starts driving

-10 -

this signal at the beginning of phi4.

2.8.2. FPU to CPU Signals

The signals between the FPU and CPU which provide status are described
next. Many of the details of operation are contained in Section 3 of this report:
Coprocessor Interface Details. Note: If the FPU begins driving a signal at the
beginning of phiN, it is assumed that the signal is stable and latchable at the end
of phiN on the CPU.

fpuBusy_C4: 1 bit. Asserted by the active coprocessor (the FPU) to indi-
cate that it is busy. The FPU starts driving this signal at the beginning of
phi4. The CPU latches it at the end of phil.

fpuExcept_C4: 1 bit. Notifies the CPU that an error condition exists in the
coprocessor. The FPU starts driving this signal at the beginning of phi4.
The CPU latches it at the end of phil.

fpuBrT_F_C4: 1 bit. A signal coming from the FPU Fpsw which indicates
the result of the last FCMP instruction. The FPU starts driving this signal
at the beginning of phi4. The CPU latches it at the end of phil.

Table 3 summarizes the signals between the CPU and FPU and indicates the
phase in which the signals change (driven either by the CPU or FPU) and are
latched (by either the CPU or FPU).

2.6.3. CPU UPSW and FPU PC Registers

Besides the signals above, the CPU must maintain the following information
in the Upsw to support coprocessors:

fpuParallel: 1 bit. When asserted, it enables parallel operation of the CPU
and the FPU. If this bit is not set, parallel operation is prohibited (forcing
sequential mode). Parallel operation is described later.

fpuEnable: 1 bit. When asserted, it indicates to the CPU that an FPU dev-
ice is available in the system. When not asserted, the CPU traps to runtime
routines to emulate floating-point hardware operations.

The parallel execution of CPU and FPU instructions requires that the CPU
maintain a copy of the last FPU instruction’s address which is needed in the event
of an exception. Exception handling routines must determine what action is
necessary based on the instruction that faulted. However, with parallel operation
between the CPU and FPU, the program counter inside the CPU may not be
pointing at the FPU instruction that causes the FPU exception. This implies that
the CPU must have a special register that stores the address of the last FPU
instruction the CPU issued. This special register is the FpuPC, which is loaded

- 11 -

Table 3. SPUR Coprocessor Interface Signals - Read/Write Timing.

CLOCK EDGE of CYCLE
SIGNAL phil:LE phil:TE | phi2:.LE phi2:TE | phi3:LE _ phi3:TE | phi4:LE phi4:TE
fpuOPCODE_CV8 - - - - Clepu) S - -
: : : : Lty | - :
JpuRS1_CVS8 - - - - Cl(cpu) S - -
- - - - - L(fpu} - -
fpuRS2_CVS - - - - C{cpu) S - -
- - - - - L{fpu) - -
fouRD_CV38 - - - - C(cpu) S - -
- - - - - L{fpu) - -
fouNewlnstr_CV3 - - - - C(cpu) S - -
: : : : . Lty | - :
fpuSuspend_CV{ - - - - - - C(cpu) S
: : : : : : - Lioy
fpuBusy_C4 - - - - - - C(fpu) S
. Liepw) | - - : - : :
SfpuEzcept_C4 - - - - - - C(fpu) S
. Liepy) |- : : : : :
fpuBrT_F_C4 - - - - - - C{fpu) S
L{cpu) - - - - - -
data MayBeValid_V38 - - - - Clec) S - -
{pulae) - - - - - L{cpu) - -
- - - - - L{fpu) - -
datalsValid_V38 - - - - Clec) S -
(pulse) - - - - - L(cpu) - -
- - - - - L{fpu) - -
procTagMatch_V3 - - - - Clcc) S - -
(pulse) - - - - - L{cpu) - -
: : : : L) |- :
interrupts - L{cpu) - - - - - -

All signals are levels, except as indicated.
All signals shown “-"" are assumed stable or unasserted at those times.

phiN clock phase N.

LE leading edge.

TE trailing edge.

_L signal is asserted low. All other signals are asserted high by default.

_.CN signal changes only during phi N, where N =1, 2, 3, or 4.

_VN signal is valid only during phi N, where N =1, 2, 3, or 4.

_CVN signal changes only during phi N and is valid by the end of phi N, where N =1, 2, 3, or 4.

_N signal has valid and non-zero value only during phi N, where N =1, 2, 3, or 4.
cpu SPUR central processing unit

fpu SPUR floating-point unit

cc SPUR cache control unit

C(xxx) the phase-edge where the sender (CPU or FPU) begins CHANGING the signal.
S the phase-edge where the signal is first assumed STABLE.

L(xxx) the phase-edge where the receiver (CPU or FPU) LATCHES the signal.

-12 -

for all FPU operations.

2.7. Floating-point Unit Micro-Architecture

The description of the internal architecture and structure of the floating-
point unit is beyond the scope of this report, and is discussed in [Kat85]. The fol-
lowing sections describe in detail the interaction between the CPU and FPU dur-
ing normal processing, exception and interrupt handling, and parallel operation.

3. FLOATING-POINT COPROCESSOR INTERFACE DETAILS

3.1. Sending Instructions to Coprocessors

As illustrated in Figure 2, 22 bits of every instruction the CPU fetches from
its internal instruction buffer is broadcasted to all coprocessors via
fpuOPCODE_CV38, fpuRS1.CV3, fpuRS2 CVS3, and fpuRS3. The coprocessor
decodes every instruction issued by the CPU to determine if the instruction is
intended for it. This is an instruction tracker paradigm. The FPU instructions
(see Table 1 for details) include:

(1) FPU arithmetic operations (add, subtract, multiply, divide, etc.) and
compare,

(2) FPU memory and register operations (move between registers, or
load/store FPU registers from/to memory), and

(3) a synchronization instruction.

As mentioned earlier, the CPU and FPU are both load/store architectures.
All floating-point arithmetic operations involve three registers: two sources and
one destination. The CPU pipeline consists of four stages each of which has four
phases, corresponding to the 4-phase clock. Figure 4 illustrates the cycle overlap
between CPU pipeline stages. The duration of each instruction is represented by
a horizontal bar. The darker vertical bars splitting the horizontal bar show the
cycle boundaries and the smaller/lighter vertical bars show the phase boundaries.
Time progresses {rom left to right.

A typical CPU instruction is composed of the (1) instruction fetch cycle, (2)
execution cycle (ALU operation, shift, effective address calculation, ete.), (3)
memory reference cycle (or null cycle for register operations), and (4) register
write cycle. An FPU instruction is similar, differing only in that it can have more
than one execution stage.

- 13-

3.2. Timing Analysis: Load & Store, FPU Operation, FPU Compare

The following sections discuss and illustrate with diagrams the basic timing
relationships between the CPU and FPU for some of the instructions shown in
Table 1, and clarify the operation of the CPU-FPU interaction at the hardware
level. The simplest functions include loading and storing operands to and from
the FPU. The more complicated floating-point operations include the algebraic
functions (+,-,*,/), operand conversion, and comparison. Many complicated situa-
tions arise due to cache misses, floating-point exceptions, overlapped operation,
pipeline suspension, etc. and these will be discussed in Section 3.4. In this sec-
tion, only simple cases are considered.

3.2.1. Timing of CPU and FPU Load and Store Instructions

The sequence of events during a CPU load (with no data cache miss) are as
follows:

cycle 1 (Ifet): CPU fetches the instruction.

cycle 2 (Exec): CPU calculates the effective address and sends it out during
phi4.

cyele 3 (Mem): CPU latches the data input pins at the end of phi3.

cycle 4 (Wr): CPU writes the operand to the CPU register file during phi3.

This is illustrated in Figure 5a. Figure 5b shows the timing of the FPU load
instruction. The only difference between this and the regular CPU load (Figure
5a) is that the FPU latches in the data instead of the CPU.

Similarly the only obvious difference between a regular CPU store (Figure 6a)
and the FPU store (Figure 6b) is that the FPU sends out the data instead of the
CPU. The goal here is to make the FPU behavior during an FPU load/store
identical to the CPU behavior during a CPU load/store: receive input data and
send output data during the same times the CPU would receive or send data.
This essentially makes the FPU transparent to the cache controller. If there is no
cache miss, the FPU load and store instructions are both four cycle instructions -
the same as all other CPU instructions. The dual port register file on the FPU
allows FPU loads and stores to be overlapped with other instructions (the same as
CPU instructions). As mentioned previously, there is no internal forwarding on
the FPU, and results for an FPU load cannot be used until the third instruction
after the load.

3.2.2. Timing of FPU Operation Instructions

The timing of an FPU operation that is neither an FPU load nor an FPU
store instruction is as follows (for example, a 4-cycle FADD):

- 14 -

| et ‘ Al ' Mem | Wr |
A?’E, |%%{|w’]%|%1‘{|%%%|
CHVIHES I T e I
fpuNewinstr CPU sends out C:PU latches CPU Raegister write
effective addr e Aats and ff no miss
checks cache intes
(Munitor signal
dataValid)
Part a. CPU LOAD
| - o T R
C_P.U,|%%%|%E%|%%%lf§%|
Activities Nl T
fpuNewlnstr CPU sends out
eflecttve addr
Ifet [Mem Wr
FPU | ! w | l | : r | ! ! ! | ! 1] |
Activities | 7 T l l . T | T ! T l 1 | T l
I I = S
FPU recetves FPU latches FPU Register write
FPU Load in data and both ¥f no miss
CPU and FPU check cache mise
(Monftor signal
dataValid)

Part b. FPU LOAD

Figure 5. CPU and FPU load instruction timing.

cycle 1 (Ifet): CPU fetches the instruction, FPU latches it.

cycle 2 (Execl): FPU begins operation, asserts fpuBusy_C4 at beginning of
phi4.

cycle 3 (Exec2): FPU continues operation, CPU updates FpuPC during phil.
cycle 4 (Exec3): FPU continues operation.

cycle 5 (Wr): FPU ends operation, writes FPU register file during phi3,
disasserts fpuBusy_C4 at beginning of phid4, and asserts fpuEzcep in phi4 if

such a condition occurs.

CPU
Activities

CPU
Activities

FPU

Activities

This is illustrated in Figure 7, with back to back floating-point multiply instruc-
tions. If the FPU operation had been FADD or FDIV, the only difference would
have been fewer (3 total for FADD) or more (20 total for FDIV) Exec cycles

- 15 -

Ifet, Ah Mem
| | | al | 1 |] | ! ! | l 1 l |
I 1 1 H I i i 1 I 1 H 1 I | ! [
R I~ I
fpuNewinstr CPU sends out) _J———l —_ L CPU checks cache miss
effective addr (Monttor signal
dataValid)
data
Part a. CPU Store
Ifet Al
I]] | | | i | ' l] | | |)
I | T 1 I 1 1 i I 1 1 7 I 1 i
I I I
fpuNewinstr CPU sends out L CPU checks cache miss
effective addr (Morztitor signal
dataValid)
Mem
| 1 !] I | ! I ! I ') l 1
I !) 1 l ! I 1 I 1 | 1] l I i i
I I
FPU recetves H L FPU checks cache miss
FPU Store (Monitor signal
dataValid)

data

Part b. FPU Store

Figure 6. CPU and FPU Store instruction timing.

before the Wr(FPU) cycle.

As shown in the timing diagram, the CPU recognizes that the FPU is busy
only after the CPU has already issued the instructions 10 and II.
internal pipeline is then suspended and the FPU interface control unit has

" From the view point of the FPU, I2 has not yet been issued because
fpuNewlnstr is zero during the CPU Ifet cycle.

! The CPU

fpuMul(10
cpu(I0

fpuMul

cpu

11
Il

f] puMul

)

pu
fpuMul£

fpuMul
cpu

I4)
14)

fpuNewlnstr
latchlnstr
cpulnternSus
fpuSuspend
fpuBusy
fpuExcep
fpuBrT_F
fpuPCupdate
dataValid
preventFpuWr
.fqur
cancelFpuOp

fpulnstrDecode

j Ifet {Ex1{Ex2| ...
| Ifet |{ExeciMemj
| | | !

i | et (Wait ...
i | lfet {Exec| ...
| i i i

| i {Wait ...
i i | et | ...
I

i 1
| | |
L |
P |
| | |

(MemlMem)_ Wr |

(Ex® e i 00 0
R
R
iWait| Ex1 {Ex2 | ... [Ex9 | - j == |
(Exec|ExecjMemj ... (Mem]Mem) Wr i
| | ! |
| Wait|Wait|Wait| |W31t| Exl | | Ex2 | (
i(Itet){Ifet) | Execj ... {Exec[Exec}Mem;
i i i [i i
iWait] ... Wait;Wait;Wait| ...
i Ifet i I(Ifet) (Ifet); Exec|
| | l l
i , | Ifet
|
|

i
[
[
|
i

- 16 -

P
i
..!...!

I sane
et | ...
|

| |
i
o
| |
| |

|
1
|
|
1
1

i i
| EXO | rer | o |
(MemIMem) Wr i

Wam Ex1 | Ex2 1
[ExecIExec] Mem; ‘

|Waxt Walt Waxt.
(H‘et)l(lfet) Exec‘

M

Figure 7. FPU operation instruction timing for back-to-back FPU Operations

Note: Signals that are shown to make the transition from low to high or vice-versa in less than

one phase time are intra-chip signals. Those shown taking one phase time are inter-chip signals.

buffered instruction I1 while the FPU execution unit is working on 10. The CPU
updates the FpuPC register to instruction I0 during the Mem cycle (Exec2) for 10.
The CPU internal pipeline remains suspended until one full cycle after the
fpuBusy_C4 line is disasserted. Before that, however, the fpuNewlnstr CV3 is
issued so that the FPU will latch the fpuOPCODE_CVS and register specifier
lines for I2.

The sequence is the same for all other instructions:

-17 -

(1) The fpuBusy. (4 signal is asserted at the beginning of a new execution
sequence on the FPU.

(2) The CPU suspends its internal pipeline, not issuing any more instruc-
tions until the FPU is no longer busy.

(3) The CPU updates the FpuPC register during its Mem cycle (Exec2 for
the FPU).

(4) The FPU register file is written during phi3 of the last execution cycle,
and the fpuBusy_C/{ signal is disasserted in phi4.

(5) The values on the fpuOPCODE_CV3, fouRS1_CVS, fpuRS2 CV3, and
fpuRD_CV3 lines are significant only during phi3 of any cycle while
fpuNewlnstr_CV3 is asserted.

3.2.3. Timing of the FPU Compare Instruction

The FPU compare instruction’s timing is similar to that of FADD and is illus-
trated in Figure 8.

FCMP(I0 ’ Ex1 ! Ex2 ! Ex3 ! Wr ! '
cpu}loz : Het : . Exec : Mem : Wr : :
cpu(ll) | | Ifet I Exec i Mem | Wr |
epu{l2) : : : Ifet : Exec : Mem :
pulls) | i i e | Exee |

| ! | | . |

fpuNewlnstr ! ; ; I Jl
fpuBusy l{ \]r :
fpuBrT_F } 7 }
fpuPCupdate i ‘[{
fpulnstrDecode ‘ ; !

Figure 8. FPU compare instruction timing

Like any other FPU operation, the fpuBusy_C4 signal is asserted until the com-
parison is completed and the result (T or F) is stored in a bit in the Fpsw. This
bit is continuously available to the CPU as the fpuBrT_F signal. The CPU looks
at the fpuBrT_F signal whenever a regular CMP_ BR_DELAYED instruction is
executed with the fpuBrT_F bit specified by the COND field of the instruction.
The compiler must insert a SYNC instruction (or several CPU instructions) after
the FCMP instruction but before the fpuBrT. F signal is tested to guarantee that
the fpuBrT_F signal is valid, and allow possible resulting exceptions to be

- 18 -

handled. As mentioned before, the fpuBusy.C4 signal provides an indication to
the CPU when the FPU execution unit is busy.

'3.3. FPU Suspension and Parallel CPU-FPU Operation

The CPU is designed to issue a mew instruction each cycle. However, the
CPU pipeline may occasionally be suspended, resulting in no new instructions
being issued. From the FPU’s point of view, there are two possible causes for
pipeline suspension:

(1) Reasons that are related to FPU operation. When the FPU is busy with

a previous arithmetic operation, the CPU must wait until it becomes
free before it can issue a new FPU instruction (as discussed in Section
3.2.2.

(2) Reasons that are NOT related to FPU operation. For example, this hap-
pens when a cache miss occurs.

Also, the CPU and the FPU have been designed to allow parallel operation. The
following sections explain in greater detail the timing relationships between the
CPU and FPU to make parallel operation possible.

3.3.1. CPU and FPU Pipeline’Suspension

Figure 7 illustrated the internal pipeline suspension of the CPU due to
fpuBusy_C4 being asserted (reason 1 stated above). The CPU issued an FPU
instruction in I0 and wanted to issue another FPU instruction immediately after-
ward. However, the FPU execution unit can only handle one instruction at a
time. The CPU responds to the fpuBusy_C4 signal when another FPU instruc-
tion is decoded by suspending the CPU pipeline. This results in no new instruc-
tions being issued. It is important to note that the FPU operation cannot be
suspended during such a condition. Otherwise, a deadlock may result (since
fpuBusy_C4 would never be disasserted and the CPU would wait forever).

On the other hand, the CPU internal pipeline can be suspended for reasons
not related to the FPU operation. At the interface level, the only indication that
the CPU internal pipeline is suspended comes when the fpuSuspend_ CVj signal is
asserted. In this case, certain FPU activities must be suspended to prevent it
from advancing to an inconsistent state if a trap occurs. (By definition, all
instructions issued before the trapping instruction must be allowed to finish, while
the victim of the trap and all later instructions must be restarted after the trap is
serviced.) This implies the FPU operation can be suspended by the CPU with the
fpuSuspend_CV{ signal. (Note: The FPU does not have to suspend everything
as soon as it receives the fpuSuspend.CV{ signal. It must simply remain in a
state where instructions that were issued after the instruction which eventually
causes the trap can be killed if a trap occurs, and before writing to FPU internal

- 19 -

registers.) This is illustrated in Figure 9, which shows that the CPU asserts the
fpuSuspend_ CV{ signal at the beginning of phi4 before the first suspended cycle
and disasserts the fpuSuspend_CVj signal at the beginning of phi4 before the first
normal cycle after suspension.

—(10)

fpuOp Il;
cpu(ll

Exec | (Mem)

Ex1

Ifet |
I (Exec)

Ifet | (Exec) |

—(12)

|] |
| | 1
i I |
! ! !
; (Ifet) : (Ifet) : (Ifet)
i i i
| | !

—(13)

fpuNewlostr

fpuLatchlnst

cpulnternSus

fpuSuspend

Figure 9. Illustration of fpuSuspend_CV4 signal.

In Figure 9, the cycles are identified for both the FPU and the CPU, as indi-
cated by Ifet, Exec (or ExN, for the FPU), Mem or Wr. Also, depending on
whether I1 is a CPU instruction or an FPU instruction, the Exec cycle of I1 can
either be in the CPU or the FPU.

To summarize: the CPU asserts the signal fpuNewlInstr_CV3 to inform the
FPU that new values for fpuOPCODE_CV3, fpuRS1_CV8, fpuRS2 CV3, and
fpuRS3 are available and the FPU latches them at the end of phi3. During CPU
pipeline suspension, no new instructions are issued to the FPU and the signal
fpuNewInstr_CV3 is unasserted (zero) as illustrated in Figure 9.

3.3.2. CPU and FPU Parallel Operation

The CPU and FPU can function in two different modes: parallel and sequen-
tial. In parallel mode, the fpuParallel bit in the CPU’s Upsw is set and parallel
operations of the CPU and FPU are allowed. Otherwise, all FPU operation
instructions are serialized with CPU instructions. As mentioned earlier, the FPU
is a load/store architecture and the instructions include: FPU arithmetic opera-
tions (add, subtract, multiply, divide, compare, etc.) and FPU memory and regis-
ter operations (move between registers, or load/store FPU registers from/to
memory). The parallel operation of the CPU and FPU can be summarized as

- 920 -

follows:

(1) After an FPU memory operation is issued, the CPU and FPU can con-
tinue to execute either CPU or FPU instructions. (Note: Software must
guarantee that the target of an FPU operation is valid before an FPU
store instruction tries to write it to memory. Otherwise, a SYNC
instruction must be inserted before all FPU store instructions to make
sure that any operation which could potentially change the store target
is completed.)

(2) After an FPU arithmetic operation is issued, the CPU can continue to
execute CPU instructions, or FPU load or FPU store instructions. No
new FPU operation instruction is allowed to begin until the previous
FPU operation instruction is done.

If the fpuParallel bit is not set, the FPU and CPU operate in sequential
mode in which all FPU operation instructions must be executed serial fashion; ie,
after the CPU issues an FPU operation instruction, the CPU cannot issue or con-
tinue to execute any instructions until the FPU instruction is done (fpuBusy. C4
is unasserted). Figure 8 in Section 3.2.3 illustrates parallel execution. While the
FPU performs the compare operation of 10, the CPU continues to execute I1, 12,
and I3 where I1, 12, and I3 are assumed to be CPU instructions. Figure 10 illus-
trates the case where FPU and CPU instructions are mixed in sequence, and the
operation is assumed to be sequential.

3.4. How Special Cases Are Handled By This Interface

Many things can happen during the normal execution of programs that need
special attention at the hardware level to guarantee correct results. Among them
are exceptional conditions (associated with integer or floating-point arithmetic),
cache misses, page and bus faults, etc. The following sections of this report
explain many of the most common ‘‘unusual” events and illustrate how they are

handled.

3.4.1. The Effects of Cache Misses on CPU and FPU Pipelines

A cache reference immediately followed by another cache reference (for any
combination of CPU or FPU LD/ST instructions) can be handled by the SPUR
system as long as both the CPU and FPU monitor the dataValid signal (a compo-
site of 3 other signals) and the FPU monitors the fpuSuspend_ CV{ signal.

3.4.1.1. CPU Load Followed By FPU Load - No Cache Miss

Figure 11 shows the simplest case where neither instruction 10 nor I1 causes a
cache miss. The FPU will not be misled by the first assertion of the dataValid sig-
nal as long as the FPU knows when to start checking the dataValid signal. This

-921-

fpuAdd(10) | Mfet | Exl | Ex2 | Ex3 | Wr j wm | == |
cpu(lo) | Ifet | Exec | Mem i(Mem){(Mem);{(Mem); Wr 1

| Ifet : | b U

I

|

! ! !
fp“?l; | PR PN i I
cpuADD(T1 . Ifet i Exec i(Exec)i(Exec)i(Exec)i Mem i Wr i
12 Dfet | oooe Do b e D !
12; I

|

|

|

|

|

fpu : ! : ! !
I Tret ! (Ifet) : (Ifet) ll (Ifet) : Exec : Mem i Wr

‘ ' ' ' |

|

!

|

|

cpuADD

fpuADD 13{
epu(I3

fpu(l4

cpuADD(14
fpu(I5

cpuADD(I5

o
P
L
L
L
L
L
] |

[
x2 | Ex3 | Wr |

| Ifet i Exl E ‘ |
Mem |(Mem)|(Mem)!(Mem}i Wr
[i !

| et | Exec |

|
|
|
i i et | i
i i i i Ifet
i ! ! '
|
|
]

&

|
ec i(Exec) i(Exec) |(Exec)| Mem
[i i [

| (ifey) 'l (Ifet) | (Ifet) | Exec

—y
—~

et

|
i
i
i
i
i
!
!
!
{
| Ifet
i A

l
i
i
i
|
I
|
|
i
i

| I B

fpuNewlnstr

cpulnternSus

fpuSuspend
fpuBusy
fpuPCupdate
fpuWr

fpulnstrDecode

Figure 10. Sequential mode: FPU operation followed by CPU operation

is a requirement even for the simplest case when an FPU load or store instruction
is not preceded by any other cache reference instruction. As indicated in Figure 5
and Figure 6, without any pending cache miss, the FPU does not start checking
the dataValid signal until its Mem cycle, which is two cycles (third cycle overall)
after it receives the FPU load or store instruction.

3.4.1.2. FPU Load Followed By FPU Load - Cache Miss

For all memory reference instruction (either CPU or FPU load or store), sig-
nals dataMayBeValid_V3, procTagMatch_V38, and datalsValid_ V3 must be moni-
tored by both the CPU and FPU to form the dataValid signal (see Figure 2).
This is necessary because a cache miss caused by an FPU load or store requires:
(1) the CPU to suspend its pipeline, and (2) the FPU to repeat its memory access
cycle and suspend all FPU activities that are related to FPU instructions received
after the FPU memory access instruction. This is illustrated in Figure 12, which
shows an FPU load that results in a cache miss, and is followed by another FPU
load instruction.

As stated above, the FPU must suspend all FPU activities that are related to
FPU instructions received after the FPU memory access instruction, until the

-9292.

cpuLoad(I0 Ifetch Mem_Access Wr_cpuReg

)
f puLoadE ; Mem_ Access

)

)

Ef_Addr
Ifetch

cpu----(I

Exec

|
|
|
1
|
|
(12 |
|
; Hfetch
|
1
i
i
i
i
|
f
x
|

(13

cpuSendAddress
cpuCheckDataValid
fpuCheckDataValid L P
dataValid ___.___._ - ——

Ifet

fpuNewlnstr

fpuload(I0 | Ifet Exec Mem | (Mem Mem) | Wr I
cpu(lo | et Exec Mem | (Mem Mem} | Wr |
| | | |
fpulLoad Ilg i Ifet Exec | {Exec ?Exec i Mem |
cpuill | Ifet Exec | (Exec Exec) | Mem |
| ! i |
—---(12) Ifet i (Ifet) (Ifet) ;| Exec |
i i i i
—() i i i
! !] %

! ! !

! l

T 1

|

cpulnternSus

\

fpuSuspend
cpuSendAddr

|
l
|
|
|
|
|
|
|
1
|
:
I
|
|
l
!
|
|
|
I
|
t
1
-
t

|

l

dataValid —

fpuWr : i
fpulnstrDecode : ! LN ' el f
fpuLatchData(10) |l ! ! _A } _A !
fpuLatchData(I1) { lx ! ! l

Figure 12. FPU cache miss followed by FPU load or store

-93-

pending cache miss is serviced. For example in Figure 12, I1 (the second FPU
load instruction, is suspended until valid data is received for 10. So, the
fpuSuspend_CVj signal is asserted. However, all FPU instructions issued prior to
the time 10 was fetched can continue execution. The signal fpuBusy_ C4 remains
unasserted and FPU load and store are handled like CPU load and store.
Although both the CPU and FPU see the dataValid signal, only the CPU has to
monitor the fault or error lines. This will be explained later in this section.

3.4.1.3. CPU Load Followed By FPU Load - Cache Miss

The coprocessor interface also takes care of what might appear to be a much
more complicated case: a CPU memory reference instruction that misses in the
cache followed by an FPU memory reference instruction.

fpu(l0 ' Ifet l Exec ' Mem | Mem | | Mem) ! Wr I
cpuload(I0 ! Ifet | Exec | Mem | (Mem] ! | (Mem) | Wr !
| | | | | | | |
fpuLoad | | Ifet I Exec | (Exec | | (Exec) 1 Mem |
epu(l] | Ifet | Exec | (Exec) | | (Exec) | Mem |
] | | | | | | |
—(I2) | | | et i (Met) | i (Ifet) | Exec |
| | | i i | | |
~) | | i | | e
bl SR A S ! i '
L et - i e N oo |
fouNewlnstr o™ | L 1| |] N "
i Loy e———— e]
cpulnternSus e |
b | L R]
fpususpend | " |
cpuSendAddr L~ /T AL
vad | bn a0
fpulnstrDecode | ' A TR A Ed N
| o | | oo
cpuLatchData(l0) | P i AL AL AL
| | | A oo
fpulatchData(Il) | | i L i |
i | | i | i

Figure 18. CPU cache miss followed by FPU load or store

The FPU cannot start looking at the dataValid line for its data until the cache
miss caused by the CPU load has been satisfied. This problem is easily solved by
using the fpuSuspend_CV4 signal. The CPU pipeline is suspended due to the
cache miss caused by 10. And the FPU will not begin lookmg for the dataValid
signal until fpuSuspend_CV4 is disasserted.

By comparing I1 in Figure 11 and I1 in Figure 13, it is obvious that the
fpuSuspend_ CV4 signal stops the FPU from getting into I1's memory access cycle
(Mem) until the pending cache miss for I0 is serviced. Since I1 is not in its
memory access cycle, the FPU does not look at the dataValid signal and will not

- 924 -

be misled by the first assertion of the dataValid signal.

Finally, if I1 in Figure 13 causes a cache miss, the CPU pipeline will again be
suspended. The FPU controller must repeat the memory access cycle of I1 until
valid data is received (dataValid = 1) and suspend state-changing activities in the
FPU. By using the fpuSuspend_CV} signal, the FPU does not have to under-
stand the CPU load or store instruction. Also, the FPU does not have to match
each assertion of dataValid with each cache reference.

In summary:

(1) If fpuSuspend_CVj is asserted, suspend FPU execution unit activities.
(The FPU does not have to suspend everything as soon as it receives the
suspend signal, but must guarantee that FPU operations that are in pro-
gress can be killed if a trap occurs (see Section 3.6) before the internal
state of the FPU is changed). Otherwise,

(2) Start looking for valid data by monitoring the dataValid signal during
the memory access cycle of an FPU load or store.

(3) If dataValid is not asserted, repeat the memory access cycle and suspend
all FPU activities that are related to the FPU instruction received after
the FPU memory access instruction until dataValid is asserted.

3.4.1.4. Cache Miss Resulting in Fault

Certain error conditions in the CPU and FPU result in a trap. Some of these
have been mentioned previously. The FPU finds out the CPU is taking a trap by
decoding the CPU internal TRAP_CALL instruction. This section describes what
the FPU must do in response to receiving the TRAP_CALL instruction.

Inside the CPU, there is a slight difference between a trap caused by a page
fault or bus fault and a trap caused by something else: a page fault or bus fault
causes a trap during CPU pipeline suspension while the other conditions can only
cause a trap when the CPU pipeline is not suspended. How the FPU should
respond to a TRAP_ CALL depends on whether the page or bus fault is caused by
an FPU cache access, or by a CPU cache access. Therefore, there are three
different cases to consider:

(1) The CPU takes a trap because the CPU cache reference results in a page
or bus fault,

(2) The CPU takes a trap because the FPU cache reference results in a page
or bus fault,

(3) The CPU takes a trap for reasons other than 1 or 2 above. This will be
referred to as ‘‘regular trap’ for the rest of this section.

Case 3 described above is the simplest and is illustrated in Figure 14. When
the FPU receives the internal instruction TRAP_CALL, all it has to do is check

-95-

whether the last instruction it received (I1 in Figure 14) before receiving
TRAP_CALL was an FPU instruction. If that is the case, then that instruction
must be killed. Otherwise, no action has to be taken.

Ifet Null

—(10) Iet Exec Mem Null Wr i | |
—) | et Exec — —] i) : |
(12)- > Internal TRAP_CALL : et Exec Null]| Wr [OverWritten]
InternalRead _PC | ! Wr
| |
‘

trapRequest

cpuSendinternalTRAP_CALL

fpuNewlnstr

e e s mm e
e e

latchinternallnstrs
fpuDecodelnternalTRAP_CALL

|
|
|
|
[
|
|
i
|
|
|
fpuDecodelnternalREAD_PC :
!
|

|
|
:
|
1
4
1
\
|
1
|
[
|
|
i

Figure 14. A regular TRAP timing sequence.

3.4.1.4.1. CPU Cache Miss Fault

Figure 15 illustrates Case 1 in which the CPU takes a trap because a CPU
cache reference results in a page or bus fault. As discussed in Section 3.3, when-
ever the CPU pipeline is suspended for a CPU instruction, FPU operation is also
suspended for instructions issued after the CPU instruction that caused the
suspension. (FPU operations that were started before the CPU instruction caus-
ing the CPU suspension must finish, and the fpuBusy_C4 signal will guarantee
that no other FPU operations will be started.) In other words, during CPU pipe-
line suspension, no later FPU instruction can complete its execution even if the
CPU-FPU pair operates in parallel mode. I1, which is shown in Figure 15 as an
FPU instruction, will not finish its execution during the CPU pipeline suspension
and can be easily killed when the FPU receives the TRAP_CALL instruction.
Any FPU instruction received before 10, however, must be allowed to finish.

Notice that in Figure 15 the fpuSuspend_CV{ signal is still asserted when the
FPU receives the TRAP_CALL instruction. As discussed previously, as long as
fruSuspend_CV/{ is asserted, the Ifet cycle of the 12 is being repeated by the FPU.
Consequently, when the FPU receives the TRAP_CALL, the FPU still considers
I2 to be in its Ifet cycle. As far as the FPU is concerned, instruction I2 is
overwritten by the TRAP_CALL instruction. The last instruction the FPU
received before receiving the TRAP_CALL is, in effect, still I1. Therefore the

fpu(I0 Ifet —_—] — - _] — =
cpuLoad(I0 Ifet | Exec : Mem : (Mem) : (Mem) : (Mem) iTrappedE
fpuAdd(ll et | Exl1 | Ex2 | (NoWr)! (NoWr)! Killed !

cpu(Il Ifet | Exec | (Exec) I'{Exec) ; (Exec) : Killed : ‘

fpu(12 ffet | — _ = i
cpuAdd(I2 Ifet (Ifet) (Ifet) | (Ifet) %Ovae!I

InternalTRAP_CALL
InternalRead_PC

Ifet : Exec

fpuNewlnstr

latchNewlInstr

cpuSendAddr

fpuBusy

cpulnternSus

fpuSuspend

preventFpuWr

dataValid

cpuLatchData(I0)

updateFpuPc

trap_Request

cancelFpuWr

fpulnstrDecode

Figure 15. Timing of trap caused by CPU page or bus fault.

same hardware, which is used in Case 3 to kill I1 in Figure 14, can be used here
for Case 1 as long as the hardware ignores the empty cycles when the FPU is
suspended by the fpuSuspend_ CV{ signal.

3.4.1.4.2. FPU Cache Miss Fault

Figure 16 illustrates Case 2 in which the CPU takes a trap because the FPU
cache reference results in a page or bus fault. The CPU pipeline is suspended due
to the cache miss, and the FPU must suspend all execution activities related to
this instruction (no effect on previously issued instructions). Consequently, during
an FPU cache miss, no FPU instruction issued after 10 can complete its execution
even if the CPU-FPU pair operates in parallel mode. Thus, the FPU instruction

-97-

I1 shown in Figure 16 wiil not finish its execution (ie, write its result to the desti-
nation register) during an FPU cache miss and can be killed easily when the FPU
receives the TRAP_ CALL instruction. The FPU Exec cycles during which the
destination register would be written are usually shown at Wr in all figures. If the
FPU write is cancelled, it is designated a NoWr(FPU) cycle.

|
InternalTRAP_CALL Ifet | Exec |

InternalRead_PC

fpuLoad(I0 l| Het | Exec { Mem i{Mem i { (Mem 1 Mem iTrappedi ;
cpu({l0) | Ifet | Exec | Mem j (Mem] | i (Mem) | (Mem) [Trapped| i

i ' i i 1 i i i i i

fpuAdd{Il) | Ifet | Exl | Ex2 | i(NoWr) | (NoWr)| Killed | i
cpu{ll i Ifet | Exec | (Exec) | i (Exec) | (Exec) | Killed | i

[' i 1 i i [i i

fpu(I2 i i Ifet | — | | — —_] = i
cpuAdd({l2) | i et | (Ifet) | (Ifet) | (Ifet) OvWrite i
i i | | ' ' |

| ' l i

! ! ' !

! ! ' !

| | |

fpuNewlnstr

latchNewlnstr

cpuSendAddr

fpuBusy

cpulnternSus

fpuSuspend

preventFpuWr

dataValid

fpuLatchData(10)

updateFpuPc

trapRequest

cancelFpuWr

fpulnstrDecode

Figure 16. Timing of trap caused by FPU page or bus fault.

Since the FPU is not looking at the page fault or bus fault line, it does not
know a fault has occurred until the FPU receives the TRAP_CALL instruction.
Therefore in Figure 16, when the FPU receives the TRAP_CALL instruction, the
FPU still considers I2 to be in its Ifet cycle. Once again, the TRAP_CALL
instruction has overwritten instruction I2 and I1 is still, in effect, the last

- 98 -

instruction the FPU received before receiving the TRAP_CALL. Therefore the
same hardware, which is used Case 1 to kill I1 in Figure 15, can be used here for
Case 2 as long as the hardware ignores the empty cycles when most of the FPU
activities are suspended due to an FPU cache miss.

3.5. Internal MISS Instruction

Besides the internal TRAP_CALL instruction, the FPU must also understand
the internal MISS instruction, used for instruction buffer misses. The FPU should
not do anything as a result of receiving this instruction. In other words, the FPU
must treat this instruction the same way it treats all others CPU (integer) instruc-
tions.

3.6. Exception Handling

Figure 17 shows a most critical case, where two FPU instructions are in series
and the first one causes an arithmetic exception. Here, the CPU must respond to
the exception before the CPU updates the FpuPC incorrectly. When the CPU
responds to the exception by taking a trap, the FpuPC must contain the address
of 10, the FPU operation instruction that caused the exception.

Figure 17 should be compared with Figure 7, which shows the case where
several FPU instructions are in series but none causes an exception. The follow-
ing two assumptions are made in Figure 17:

(1) The CPU looks at the fpuEzcep continuously.

(2) The CPU, if no exception has occurred and the fpuBusy_C4 signal is
not asserted, updates the FpuPC during phil of the second execution
cycle of an FPU instruction (the equivalent Mem cycle for the CPU).

In Figure 17, instruction Il is killed, as described in the previous examples
shown in Figure 15 and Figure 16. I2 is overwritten by the internal

TRAP_CALL.

3.6.1. Exceptions During Cache Miss and Subsequent Fault

Since the FPU can operate in parallel mode, an exception resulting from an
operation may not be posted until long after the instruction was issued. In the
meantime, the CPU can issue an instruction that results in a cache miss, and sub-
sequently a page fault. What happens then?

First, the exception detection logic on the CPU is disabled during suspension
due to a cache miss. Thus, if a reference results in a cache miss, the CPU will
suspend everything until (1) the reference is either satisfied (the dataValid signal
is asserted) and the CPU continues operation, or (2) a page fault results. In the
first case, once normal operation resumes, the exception will be detected (since the

-99 -

InternalRead_PC

fpuMul(I0 : Ifet : Ex1 ‘l Ex2 : Ex3 : { Wr i —_ :Trapped= :

cpu(lo) Ifet Exec | Mem | (Mem) | i (Mem) P— iTrappedi i

fpuMul(ll) | | et | Wait | Wait | | Wait | Ext | Killed | |

cpu(ll) i et | Exec (Exec) | i (Exec) i Mem ; Killed ; i

fpuMul(I2) | : | Wait | Wait | | Wait | Wait OvWrite |

cpu(l2) i i et (Ifet) ; i (Ifet) ; Exec ;OvWrite :

Internal TRAP_CALL | | } } : | et | |
i | ' 1 i i |

‘ ! ! ' '. ! !

i I 1 | N ol |

fpuNewlnstr

latchNewInstr

fpuBusy

cpulnternalSus

updateFpuPc

fpuWr

fpuExcep

trapRequest | oot

(AT U S S e S A A A O
fpulnstrDecode I BRI B I T I N I S N S R N

Figure 17. Timing of FPU exception.

logic is no longer disabled because of suspension) and handled much like an inter-
rupt, resulting in a TRAP_CALL. In the second case, the trap handler is called
to resolve the page fault first, and any instructions issued after the one that
caused the miss/fault are killed. The page-fault trap has higher priority than the
FPU exception trap, so the exception will be handled later. (Note: to guarantee
that the state of the FPU is preserved to allow proper exception handling, the
FPU must either not be used by any routines in the trap handling code, or the
exception must be handled during the trap handler.)

Table 4 shows which exceptions are generated by the hardware (FPU execu-
tion unit) for each of the FPU instructions. It should be remembered that the
fpuPC register maintained on the CPU is for the latest FPU operation. Loads
and stores are not “‘operations’’ in that sense. Also, since the SYNC instruction is
only a busy-test, it falls in the non-operation category. In general, FPU instruc-
tions that can cause exceptions are the only ones for which the CPU must save
the fpuPC.

Table 4. SPUR FPU Exceptions

.30 -

INSTRUCTION EXCEPTION _

Operand Result Result Result
Trap Overflow Underflow Inexact

LD_SGL no exceptions generated

LD_DBL no exceptions generated

LD_EXT1 no exceptions generated

LD_EXT2 no exceptions generated

ST_SGL no exceptions generated

ST_DBL no exceptions generated

ST_EXT1 no exceptions generated

ST_EXT2 no exceptions generated

FMOV no exceptions generated

FABS no exceptions generated

FNEG no exceptions generated

FP_CMP yes no no no

FADD yes yes yes yes

FSUB yes yes yes yes

FMUL yes yes ' yes yes

FDIV yes yes yes yes

CVTS yes yes yes yes

CVTD yes yes yes yes

SYNC NONE

1. FUTURE COPROCESSORS

Many factors influenced the SPUR coprocessor interface design. Ini-
tially, we limited ourselves to approximately 100 signal pins as a packaging
constraint. We currently expect about double that number. Some of the
things we left out, changed, or limited because of the pins constraint are:

(1)

(2)
(3)

generalized coprocessor ID’s. A coprocessor ID code would have
been included in the instruction format (or in a CPU control regis-
ter) to allow more than one coprocessor to exist in a system.

generalized exception handling.

multiple coprocessor support. Coprocessor PC’s would need to be
saved on the CPU chip for exception handling, etc. Multiple enable
bits would need to exist in the Upsw to indicate which coprocessors
are present, which can run in parallel, and so forth.

local-bus master capability. Language coprocessors would need to
manipulate memory. For example, a Prolog coprocessor (see
[BCD86)) that provides hardware support for unification will need
to compare entire data structures to determine if two patterns

.31 -

match. This implies being able to read from and write to memory
and being able to handle such things as page faults, etc.

Other applications are being considered for the SPUR workstation

environment, involving second-generation capabilities. However,
details are beyond the scope of this paper.

2. ACKNOWLEDGMENTS

We are grateful to Glenn Adams, Gaetano Borriello, BK Bose, Reese
Faucette, Randy Katz, and Dave Patterson for reading early versions of this
paper and providing useful suggestions.

3. REFERENCES

[BCD86]

[Fau86]

[Han85]

[HEL85]

[Kat85]

[KEP]

G. Borriello, A. Cherenson, P. Danzig and M. Nelson, “Special or
General-Purpose Hardware for Prolog: A Comparison”, Computer
Science Division Technical Report UCB/Computer Science Dpt.
87/314, University of California, Berkeley, October 1986.

R. Faucette, “SPUR Performance Monitor Coprocessor (PMC)”,
Computer Science Division Internal Technical Report, University
of California, Berkeley, October 1986.

P. M. Hansen, “Coprocessor Architectures for VLSI”, Phd
Qualifying Examination Proposal, University of California,
Berkeley, CA 94720, May 3, 1985.

M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B.
K. Bose, G. A. Gibson, P. M. Hansen, J. Keller, S. I. Kong, C. G.
Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood, B. G.
Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout and
D. A. Patterson, “SPUR: A VLSI Multiprocessor Workstation”,
Computer Science Division Technical Report UCB/Computer
Science Dpt. 86/273, University of California, Berkeley, December
1985.

“SPUR Architecture Design Rationale”, Proc. of (S292i:
Implementation of VLSI Systems, September 1985.

R. H. Katz, S. Eggers, C. Perkins, R. Sheldon and D. Wood,
“Implementing a Cache Consistency Protocol”, 12th Annual
Symposium on Computer Architecture, Boston, MA, (June 1985).

