The Complexity of Parallel Search!

Richard M. Karp?®
Eli Upfal®
Avi Wigderson*

1Some of the resuits in this paper appear in preliminary form in ([KUW 85a] and [KUW 85¢].

Computer Science Division, Department of Electrical Engineering and Computer Sciences, University of
galifornia, Berkeley, California. Research supported by NSF Grant #DCR-8411954.

IBM Almaden Research Center. Research supported by a Weizmann Fellowship.

4'Computer Science Department, Hebrew University, Jerusalem, lsrael. Research supported by DARPA
Grant #NO0OQ39-83-C-1036 at the University of California at Berkeley.

ABSTRACT

This paper studies parallel search algorithms within the framework of
independence systems. It is motivated by earlier work on parallel algorithms for
concrete problems such as the determination of a maximal independent set of ver-
tices or a maximum matching in a graph, and by the general question of determin-
ing the parallel complexity of a search problem when an oracle is available to solve
the associated decision problem. Our results provide a parallel analogue of the

self-reducibility process that is so useful in sequential computation.

An abstract independence system is specified by a ground set E and a family
of subsets of E called the independent sets; it is required that every subset of an
independent set be independent. We investigate parallel algorithms for determin-
ing a maximal independent set through oracle queries of the form "Is the set A
independent?", as well as parallel algorithms for determining a maximum indepen-
dent set through queries to a more powerful oracle called a rank oracle. We also
study these problems for three special types of independence systems: matroids,

graphic matroids and partition matroids.

We derive lower and upper bounds on the deterministic and randomized com-
plexity of these problems. These bounds are sharp enough to give a clear picture
of the processor-time trade-offs that are possible, to establish that randomized
parallel algorithms are much more powerful than deterministic ones, and to show
that even randomized algorithms cannot make effective use of extremely large

numbers of processors.

1. INTRODUCTION

1.1 Motivation

This paper grew out of an attempt to understand the relative difficulty of deci-
sion problems and search problems in the context of parallel computation. In a
decision problem one is asked to determine whether a certain object exists; the
object might be a hamiltonian circuit, eulerian circuit or perfect matching in a
given graph, or a satisfying assignment for a given boolean formula. In a search
problem, on the other hand, one is required to produce the object when it exists.
Thus the general form of a decision problem is "for a given input x, determine
whether there exists a y such that the predicate F(x,y) is true”, whereas a search
problem is of the form "for a given input z, determine whether there exists a y

such that F(x,y) is true and, if so, exhibit such a y".

In the realm of sequential computation the distinction between decision prob-
lems and search problems is relatively unimportant, because any search problem
can be solved efficiently on the assumption that an efficient subroutine, or "ora-
cle", is available for a closely related decision problem. The standard example is
the construction of a truth-value assignment satisfying a given boolean formula,
given a subroutine to test whether boolean formulas are satisfiable. Let the given
formula be F(x,, 13,..,X,), Where the x; are variables which can assume the values
0 and 1. One call on the oracle determines whether the given formula is
satisfiable. Assuming it is, a second call on the oracle is made to determine
whether the formula F(1, xj,..,x,), obtained by fixing x, to the value 1, is
satisfiable. If so, the problem is reduced to finding a satisfying assignment for
FQ, x,,..x,), a boolean formula with n-1 variables. If not, the formula
F(0, x,,...,x,) must be satisfiable, and so again the problem is reduced to finding a
satisfying assignment for a formula with n — 1 variables. Each oracle call after
the first fixes one more variable, and, if the original formula is satisfiable, a satis-

fying assignment is produced after n + 1 oracle calls.

A similar process can be defined for any search problem specified by a predi-
cate F(x,y). The string x € {0,1)° specifies the problem instance, and the string
y € {0,1)° is a solution to that instance if the predicate F(z,y) is true. We assume
that, for each instance x, all solutions y are of a common length n, and that the
value of n is easily determined from x. The process requires an oracle for the fol-

lowing decision problem: given the input x and a specification s of the bits that are

-4.-

to occur in certain positions of the string y, determine whether there exists a solu-
tion y satisfying the specification. Instances with solutions of length n can be
solved with n + 1 successive calls on the oracle for this associated decision prob-
lem, and thus the sequential complexity of the search problem is greater than that

of the decision problem by at most a factor of order n.

The process of solving a search problem by successive oracle calls is of special
interest when the search problem enjoys a property called self-reducibility. The
search problem associated with predicate F(z,y) is self-reducible if the question
"Does there exist a y such that F(x,y) holds and y is consistent with specification
s?" can be trivially converted to a question of the form "Does there exist a y' such
that F(z', y') holds?”", where the length of the derived instance x' is no greater
than the length of the original instance x, and the length of y’ is equal to n minus
the number of bits of the solution that are fixed by the specification s. In such
cases the decision problems presented to the oracle involve the same predicate that
defines the given search problem. For example, the satisfiability problem for
boolean formulas is self-reducible because the question of whether a given boolean
formula has a satisfying truth assignment in which certain variables are fixed at
specified values, is easily converted to the question of whether a related boolean
formula is satisfiable. Most search problems of practical interest are self-
reducible. In the context of sequential computation, where the main issue is often
whether a given search problem can be solved in polynomial time, the distinction
between a self-reducible search problem and the corresponding decision problem is
usually of secondary importance, since the self-reducibility process ensures that the
search problem can be solved in polynomial time whenever the decision problem
can.

In the context of parallel computation the distinction between search problems
and decision problems is far more important because we are interested in algo-
rithms that run in sublinear time. If we are trying for a sublinear algorithm then
the self-reducibility process, with its n + 1 successive oracle calls, is not very
promising. And in fact there are many cases where a decision problem is easy or
even trivial to solve in parallel, but the corresponding search problem is challeng-
ing. For example, testing whether a connected graph is eulerian is easily done by
checking whether all degrees are even, but finding an eulerian circuit is harder
[AIS84]. The problem of deciding whether a graph contains a maximal indepen-
dent set of vertices is vacuous, since the answer is always "yes", but constructing a

fast parallel algorithm to find a maximal independent set has proved challenging

.5.-

[KW84,L85]. Other examples where search problems and the associated decision
problems seem to require very different approaches are biconnectivity [VT84], pat-
tern matching [G84] and strong orientation [V84].

It is natural to ask whether there is a useful parallel analogue of the self-
reducibility process. To find a satisfying instance of a boolean formula this paral-
lel self-reducibility process would execute a series of steps, each involving p simul-
taneous calls to a satisfiability oracle, where the parameter p indicates the allowed
degree of parallelism. Each call would involve a formula derived from the original
problem by making a partial truth assignment, in which some variables are set to
1 or 0, and the others are left free. But how should these partial truth assign-
ments be chosen, so as to minimize the number of parallel steps for a given choice

of p?

We have chosen to study a generalization of this problem in the context of
independence systems. An independence system S is defined by a pair (E,I), where
E is a finite set of n elements called the ground set and I is a family of subsets of
E called the independent sets of S. The independent sets are closed under contain-
‘ment : if ACBCE and B € I, then A € I. The subsets of E that are not
independent are called dependent. A set M C E is called a maximal independent

set if it is an independent set and is not a proper subset of any independent set.

We study parallel algorithms whose goal is to construct a maximal indepen-
dent set. At each step such an algorithm presents p queries to an independence
oracle; each query is of the form "Is set A independent?”. The algorithm ter-
minates when a maximal independent set has been determined. It is easy to see
that the parallel solution of a search problem, using oracle calls to determine
whether solutions exist satisfying certain partial specifications, can be modelled
within this framework. Let F(-,) be the predicate associated with a search prob-
lem, let x be an instance, and let n be the length of each solution associated with
input x. We define an independence system with ground set {e,,5,...,€ 5, €1,€25., p}
such that the maximal independent sets are in one-to-one correspondence with the
solutions y. The maximal independent set corresponding to y is equal to
fely; = 1} U {&ly; = 0}. The set {e; €;,,... i, €,€),-+€,} is independent if and

only if there exists a solution y satisfying y; =y, =" =y, = 1 and

Yiy T Y, T TV T 0.

-6-

In addition to the question of parallel self-reducibility, there were several
other concrete problems that motivated us to study the problem of constructing a
maximal independent set in an abstract independence system. One of these is the
problem of constructing a maximal independent set of vertices in a graph. Here
the ground set is the set of vertices in a graph, and a set is independent if no two
of its vertices are adjacent. There is an obvious sequential algorithm which builds
up a maximal independent set by inspecting the vertices one at a time. The
independent set is initially empty, and each vertex in turn is added to it if doing so
preserves independence. Parallel algorithms for this problem are investigated in
((IKW84] [L85]). However, the algorithms given in those papers cannot be
expressed within the present model, since they are not restricted to gathering

information about the graph by queries to an independence oracle.

We shall also consider a second related problem motivated by our work on a
parallel algorithm to construct a perfect matching in a graph G [KUW84]. Our
algorithm was based on a fast parallel subroutine to solve the following problem:
given H, a subgraph of G, and a set of edges A within H, determine the max-
imum, over all perfect matchings M in subgraph H, of the number of edges in the
intersection of A with M (our algorithm has the property that, in every subroutine
call, the graph H is known to possess a perfect matching). The problem of search-
ing for a perfect matching using parallel calls on this subroutine can be general-
ized to an interesting parallel search problem involving an independence system.

In order to pose this general problem we require some further definitions.

Let S=(E,]) be an independence system. A set M C E is called a maximum
independent set if it is an independent set and no independent set has larger cardi-
nality. The rank of a set A C E is defined as the maximum cardinality of its
intersection with a maximum independent set. The restriction of independence
system S to a set B C E, denoted S/B, is an independence system defined as fol-
lows: the ground set of S/B is B, and a set A C B is independent in S/B if and
only if it is independent in S. When the identity of the independence system S is
fixed, rankg (A) will denote the rank of A in S/B.

We shall be interested in parallel algorithms for the following problem: given
an independence system S = (E,J) and an oracle which answers questions of the
form "What is rankg (A)?", find a maximum independent set in S. The problem of
constructing a maximum matching corresponds to the special case in which the

ground set is the set of edges of a graph, and the independent sets are the

.7-

matchings in a graph. The subroutine used in [KUWB84] is nothing but a rank ora-
cle for this independence system.

1.2 The Model of Computation

This paper is concerned with parallel algorithms for the following two prob-

lems:

The Mazimal Independent Set Problem: given an independence system
S = (E,]), and an oracle which answers questions of the form "Is the set A

independent?” find a maximal independent set in S.

The Maximum Independent Set Problem: given an independence system
S = (E,]) and an oracle which answers questions of the form "What is

rankg (A)?", find a maximum independent set in S.

Associated with each parallel algorithm for one of these problems is a positive
integer p called the number of processors. An algorithm with p processors
progresses in parallel steps; in each (parallel) step the algorithm presents p queries
to its oracle. An algorithm may be either deterministic or randomized, and its ora-
cle may be either an independence oracle or a rank oracle. In the case of an
independence oracle the goal is to find a maximal independent set, and in the case
of a rank oracle it is to find a maximum independent set. Thus we have four
classes of algorithms, and, within each class, we are interested in the number of
steps required by a p-processor algorithm operating on an ihdependence system

whose ground set contains n elements.

We formalize the concept of a parallel algorithm in terms of decision trees. As
an illustration we deal here with the most complicated case: a randomized algo-
rithm using a rank oracle. A (n,p) randomized decision tree with rank oracle is a
rooted tree with three types of nodes: randomization nodes, query nodes and leaves.
Every query node is labelled with p pairs of sets (A,B;), (A2,Bj), ... (A,,B,), where
A; CB;C(12,.,n}, i = 12,.,p; the branches from such a node to it children are
labelled with all possible joint values of the rank of A; in S8/B,, i = 1,2,..p.
Every leaf is labelled with a subset of E.

Given an independence system S with ground set {1,2,..,n}, an execution of
the algorithm corresponds to the traversal of a root-leaf path in the tree. When-
ever a randomization node is encountered, one of its children is chosen at random

(all choices being equally likely), and the edge to that child is traversed.

.8-

Whenever a query node is encountered, the p associated queries are executed, and
the outcomes of the queries determine the branch to be followed. In order for the
algorithm to be correct, it is required that any leaf which can be reached when the
algorithm is executed on independence system S must be labelled with a maximum

independent set in S.

Because of the randomization nodes, the path through decision tree H which
is selected when the tree is executed on independence system S, is a random vari-
able. Let c(H,S), the expected cost of executing tree H on independence system S,
be the expected number of query nodes occurring in the selected path. Let

T (np) = m}}n mgx c(H,S), where H ranges over all (n,p) randomized decision

trees with rank oracle, and S ranges over all independence systems with ground
set {1,2,....n}.

In a similar manner, we can define randomized algorithms with an indepen-
dence oracle, and deterministic algorithms with a rank oracle or independence ora-
cle. In the case of a deterministic algorithm the decision tree contains no randomi-
zation nodes, so that the same path is always selected when the algorithm is exe-
cuted on a given independence system. In the case of an independence oracle, any
computation with input S = (E,J) must terminate at a leaf labelled with the name
of a maximal (not necessarily maximum) independent set in S. We can define a
complexity measure associated with each of the four classes of algorithms. These
complexity measures will be denoted T3¢ (n,p), T (n,p), Tid (n,p) and
T;‘,‘:f (n,p).

1.3 Summary of Theorems

In this section we summarize the main results of the paper and comment on

their significance.

Section 2 is concerned with lower bounds on the deterministic complexity of
both the maximal independent set problem and the maximum independent set

problem. The main results of that section are as follows:

n
log p

Theorem 3. T3¢ (np) =Q

n

Theorem 4. T3 (np) = Q og 75

-9.-

Section 3 is concerned with both lower and upper bounds on the randomized

complexity of the maximal independent set problem. The main results are:

3
Theorem 8. T;,’,‘.;’b (n, n 2 = O(\/_r:).

n
log np

Theorem 7. Tig, (n,p) = szl

Section 4 investigates the randomized complexity of the maximum indepen-

dent set problem, and gives the following result:
Theorem 8. T2 (n,n) = O(log? n).

In interpreting these theorems, it is useful to keep in mind that, when the
size of the ground set is n, the time required for a sequential algorithm to solve
any one of our basic problems is n. Comparing Theorems 6 and 8 with Theorems 3
and 4, we see that randomized parallel algorithms are much more powerful than
deterministic ones. In the deterministic case, the speed-up obtained by using p
processors is only logarithmic in p; this is true whether we are solving the maxi-
mal independent set problem using an independence oracle (Theorem 3) or the

maximum independent set problem using a rank oracle (Theorem 4). On the other
3

hand, a randomized algorithm with p = n 2 can solve the maximal independent set
1

problem in O(n-?'-) steps using an independence oracle (Theorem 6); this represents
1

a speed-up over the best sequential algorithm by a factor of nE, and establishes
that there does exist a useful parallel version of the self-reducibility process, pro-
vided that randomization is permitted. In the case of a rank oracle the speed-up
achievable with a randomized algorithm is even more impressive; a running time

of O(log? n) can be achieved using n processors.

Theorem 7 is one of the most interesting results in the paper. It sets an abso-
lute limit on the speed-up that a randomized algorithm using an independence ora-

cle can achieve; as long as the number of processors is subexponential it is impossi-
1

ble to obtain an execution time much below n 3. This result, when contrasted with
Theorem 8, shows that, in the context of randomized algorithms, a rank oracle is
much more powerful than an independence oracle; Theorems 3 and 4 indicate that

this is less true in the case of deterministic computation.

- 10 -

In Section 5 we consider matroids, a widely studied special class of indepen-
dence systems. A matroid is an independence system S = (E,]) such that, within
every restriction S/B, the maximal and maximum independent sets coincide.
When we consider algorithms whose inputs are restricted to matroids, the four
complexity measures that arise are denoted TMAT$E (n,p), TMATZE™ (n,p),
TMAT®S, (n,p) and TMAT 5 (n,p).

The following theorem shows that, in the case of matroids, the rank oracle is

extremely powerful.
Theorem 9. TMATTEM (n,n) = 1.

It turns out that the lower bound given in Theorem 7 holds even when the
independence systems presented as input are restricted to matroids. Thus we have

the following theorem.

1
3

ind = n
Theorem 10. TMAT 75 (n,p) Q [log P

However, when the inputs are restricted to matroids the complexity of deter-

ministic computation with an independence oracle becomes reduced.
Theorem 11. TMAT (n,n) = O(Vn).

Finally, in Section 6, we consider the very special case of graphic matroids. In
a graphic matroid, the elements of the ground set are the edges of a graph, and a
set of edges is independent if it contains no cycle of the graph; thus, the indepen-
dent sets correspond to the forests in the graph. Let the prefix TGRAPH denote
the complexity of an algorithm when the independence systems presented as input

are required to be graphic. Then we have the following theorems.

2

Theorem 12. For every positive integer d, TGRAPH %, (n, n?¢*1) = O(n d).

Theorem 13.

3
(i) For every integer d = 4, TGRAPH ¢ (n, n?¢*') = O(n 9)

(i) TGRAPH (n, n¥'**"*1) = O(log n).

These results show that much more impressive speed-ups are possible for

graphic matroids than for general matroids.

.11 -

2. LOWER BOUNDS FOR DETERMINISTIC ALGORITHMS

In this section we prove the following two lower bounds.

Theorem 3. T4 (n,p) = Q Tog p

Theorem 4. T2 (np) = Q[

log np

As a step toward the proof of these results we introduce a search problem
called the group testing problem. This problem is of interest in its own right, and
lower bounds on the complexity of parallel algorithms for its solution will easily
translate into the lower bounds promised in Theorems 3 and 4.

2.1 The Group Testing Problem

An instance of the group testing problem is specified by a finite set U called
the universe and a nonempty set X C U. The problem is to identify any element
of the set X. Algorithms for solving this problem gather information by asking
questions of the form "Is A N X empty ?", where A is a subset of U. Associated
with each algorithm is a positive integer N, specifying that the universe is the set
{1,2,...N}, and a positive integer p, the number of processors, which determines the

number of queries that can be asked at a single step.

The definition of an algorithm for the group testing problem can be formalized
in terms of decision trees as follows. A (N,p) probabilistic decision tree for the
group testing problem is a rooted tree with three kinds of nodes: randomization
nodes, query nodes and leaves. Each query node is labelled with a p-tuple
(A,Aj,..., A) of subsets of {1,2,..,N}, and it has 2P children, corresponding to the
possible outcomes of the queries "Is A; N X nonempty?”, for i = 12,..,p. Each
leaf is labelled with an element of {1,2,..,N}. The input to the algorithm is a
nonempty set X C {1,2,.,N}. On input X, an execution of the algorithm
corresponds to the traversal of a root-leaf path, with coin tossing determining the
selection of branches from randomization nodes and the outcomes of queries deter-
mining the selection of branches from query nodes. In order for the algorithm to
be correct it is required that, for all inputs X, every leaf that can be reached when
the algorithm is ececuted on input X must be labelled with an element of X.
Exactly as in the case of decision trees for the maximal or maximum independent

set problem, a deterministic algorithm is one without randomization nodes. The

-12 -

cost of executing decision tree H on input X is denoted ¢ (H,X), and it is equal to
the expected number of query nodes visited while traversing the tree on input X.
The randomized complexity of the group testing problem is defined as
Tpmb (N.p) = I® B2 ¢ (H,X), where H ranges over (N,p) probabilistic decision
trees for the group testing problem, and X ranges over the subsets of {1,2,..N }.
The deterministic complexity of the group testing problem, denoted Tyt (N.p), is

defined similarly.

2.2 Complexity of the Deterministic Group Testing Problem

Theorem 1. For all N and p, iﬁ&% < Ty (N p) = Tgl(%%—ﬁ 1

Proof- The upper bound is achieved by the following natural algorithm, which
maintains a set A guaranteed to have a nonempty intersection with X. Initially
A = {1,2,..N}, and the algorithm terminates when A becomes a singleton set. At
a general step the algorithm partitions A into p + 1 sets A}, Ay, ..., Aps, each of

which is of size at most [;J%-Ll_]' It then tests in parallel whether A; N X is

empty, for i = 1,2,...,p. The result of these tests identifies one of the sets
Ay, A, .., A, as having a nonempty intersection with X, and the lowest-indexed
such set becomes the new A. The number of steps executed by this deterministic

algorithm is at most [log,.; N].

The lower bound is obtained by a simple adversary argument similar to one
given in [FRW84]. The starting point for the lower bound is to observe that a com-
plete description of the information available to the algorithm at any point during
its execution can be specified by a collection of sets {{L;}}, each of which is known
to have a nonempty intersection with X, and a single set K which is known to
have an empty intersection with X. The sets L; are called positive sets, and K is
called a negative set. The positive sets are all disjoint from K. Initially {1,2,..,N}
is the only positive set, and K is empty. When the result of a query becomes
known, the positive sets L; and the negative set K are updated as follows: if the
query set is A and it is found that A N X is nonempty,then A N K is added to the
list of positive sets. On the other hand, if it is found that A N X is empty, then
the set K is replaced by K U A, and each positive set L; is replaced by L; N A.
When p queries are executed simultaneously, the information available to the
algorithm can be updated by making updates corresponding to the individual

queries, in an arbitrary order.

- 13-

The algorithm cannot terminate until it creates a positive singleton set. To
see this, suppose that the algorithm concluded that element a was contained in X,
at a time when no positive set was a singleton. Then the algorithm might be
incorrect, since the available information is consistent with the possibility that X
consists of all elements of {1,2,....N} except a and the elements of K.

The adversary strategy is based on the idea of measuring the progress of the
algorithm by the minimum size of a positive set. This minimum size is initially n
and, as we have just pointed out, it is equal to 1 when the algorithm terminates.
We shall show that if, at the beginning of a step, the minimum size of a positive
set is ¢, and the p queries A}, Ay, .., A, are then simultaneously executed, then

the adversary will be able to specify the outcomes of these queries so that, after

I.

the information is updated, the size of each positive set is at least | » i 1
In choosing his answers to the queries A, Ay, ..., A, the adversary maintains
a set W of unanswered queries. Initially, W = {A,, A,, .., A,}. The adversary

then does the following

while W = ¢ do
if W contains a query whose outcome is determined by the present
information state
then give the unique consistent answer to all such queries and
delete them from W
else
let A be the query in W such that A N K is of minimum
cardinality

if]A NK| = —*

+1
then, for everypquery B € W give the answer B N X = ¢ and
adjoin B N K to the list of positive sets
else give the answer A N X = ¢, set K to K U A and replace each
positive set L by L N A.

It is easy to check that the outcomes specified for the queries are consistent
and that the updates to the list of positive sets and the negative set K correctly
reflect the outcomes of the queries. The fact that, after the step, each positive set

is of size at least ¢ 1T is a consequence of the following observations:

-14 -

. at the beginning of the step, each positive set is of size at least ¢;

« whenever a query is answered affirmatively, the set added to the list of posi-

tive sets is of size at least ¢ ;
+1

. whenever a query is answered negatively, the number of elements deleted

from any positive set is at most ¢ ;
p+1
. the number of queries answered is p;

. all negative answers precede all positive answers.

This completes the proof of Theorem 1.

2.3 Lower Bounds from the Group Testing Model

The following theorem establishes a relationship between the deterministic
group testing problem and the problems of finding a maximal independent set
deterministically using an independence oracle and finding a maximum indepen-
dent set deterministically using a rank oracle. This relationship yields lower

bounds for the complexity of the latter two problems.

Theorem 2. Let N = 2 . Then

2
(@) T (np) = Ty (N,p)

(b) Td’:’:k (n,p) 2 Tdet (N,np)

Proof: Let h be any bijection from the set {1,2,...N} onto the g—-element subsets

of {1,2,..,n}. This bijection induces a one-to-one correspondence between the
instances X of the group testing problem with universe {1,2,...,N} and the indepen-

dence systems with ground set {1,2,..,n} and all their maximal independent sets of
size % The independence system S(X) corresponding to instance X of the group

testing problem has as its maximal independent sets those %-element sets that

correspond to the elements of X under the bijection A.

Let H be any (n,p) randomized decision tree with independence oracle for the

maximal independent set problem. Then, using the bijection h, we can derive a

.15 -

(N,p) randomized decision tree H’' for the group testing problem with universe
{1,2,..N}. The execution of H' on instance X simulates the execution of H on
instance S(X) step-by-step. Whenever H asks the query

"Is A an independent set ?", H' asks the query "Is D N X nonempty ", where D is

the set of elements of {1,2,.,N} which correspond under the bijection H to —’ZL

element sets which contain A. Clearly, the two queries have the same answer, and
H' will determine an element of X at exactly the same step when H determines a
maximal independent set in S(X). Thus the complexity of the deterministic group
testing problem with universe {1,2,..N} and p processors is no greater than the
complexity of the deterministic problem of finding a maximal independent set in a
n-element independence system using p processors. This completes the proof of

(a).

The proof of (b) uses the same correspondence between instances of the group
testing problem and instances of the maximum independent set problem. Let R be
any (n,p) randomized decision tree with rank oracle for the maximum independent
set problem. We define a corresponding (N,np) randomized decision tree R’ for the
group testing problem with universe {1,2,...,N}, such that, for every step executed
by R on instance S(x), R’ executes two steps on instance X. At any step where R
asks the query "What is rankg (A)?", R’ first asks n queries of the form "Is
D; N X nonempty?", where D, is the set of elements of {1,2,...N } which correspond

under the bijection A to —’Zi-element subsets of E which contain at least i elements

of B. If R’ receives the n-tuple of answers "D; N X is nonempty, i = 1,2,...,r" and
"D, N X is empty, i = r + 1,.,a" it knows that, in the independence system
S(X)/B, the size of a maximum independent set is r. At the second step in the
simulation of a single step of R, R’ asks r queries of the form "Is C; N X empty?"”,

i + 12,..,r, where C; is the set of elements of {1,2,.,n} which correspond under
the bijection A to %-element subsets of E which contain exactly r elements of B

and at least i elements of A. If R’ receives the n answers "C; N X is nonempty,
i =12,..," and "C; N X is empty”, i = s + 1,5 + 2,.r, then it goes on to con-
tinue the simulation of R as if R had received the answer "rankg (A) = s". Thus
R’ executes twice as many steps on instance X as R executes on instance S(X). It
follows that the complexity of deterministic group testing with a N-element
universe and np processors is not more than twice as large as the complexity of the

deterministic maximal independent set problem with p processors and a rank

-16 -

oracle, on instances where the ground set is of size n. This completes the proof of
part (b).

Theorem 2 allows us to derive lower bounds on the complexity of the deterministic
maximal independent set problem from lower bounds for the deterministic group

testing problem, as follows.

n

Theorem 3. T4 (np) = Q Tog

Proof: By Theorem 2,

T:i:‘ti (n’p) = Tdet : » P

2

and, by Theorem 1,

Tdet : » P = lng+1 2 p
2 2
But
n _ n
log,+1 n|P| = g logp|
2
This completes the proof.
ran. n
Theorem 4. T (np) = @ l log np

Proof: By Theorem 2,

2 Tﬁ‘:’{" (n,p) 2 T‘det ’r: , np

2

and, by Theorem 1,

2 2

-17 -

But

log np

10gnp+1 Z = Q[
2

This completes the proof.

3.3 The Randomized Complexity of the Group Testing Problem
Theorem 5. T, (N, log N) = 0(1).
The proof requires a probabilistic lemma.

Lemma 1. Let U be a set with 2™ elements and let X be a nonempty subset of
U. Let a random linear ordering be imposed on the set X. Then, with probability
greater than 1/2, there exists a nonegative integer a such that exactly one of the
first 2° elements in the ordering is contained in X.

Proof- The result is clearly true if |X| = 1. Assume that |X] = 2 and condition
on the position in the ordering of the second occurrence of an element of X. If this
second occurrence is at b, and 2° is the largest power of 2 less than b, then the
probability that the first occurrence of an element of X is among the first 2¢ posi-

tions, and hence that there is exactly one element of x among the first 2° positions,

a

is T which is greater than 1/2. This completes the proof.

Proof of Theorem 5: We can assume without loss of generality that the size of
the universe is of the form 2™; if not, we can add an appropriate number of dummy
elements, none of which lie in X. We present an algorithm which, in three steps,
using m + 1 processors, determines an element of X with probability greater than
1/2. Assume that the elements of the universe are arranged in a random permuta-
tion. At the first step, the algorithm asks queries of the form "Is S, N X = @,
k = 0,1,.,m, where S, consists of the first 2% elements in the ordering. If a is the
first index for which the answer is "Yes" then, by Lemma 1, |S, N X] = 1 with
probability greater than 1/2. At the second step, assuming that S, contains
exactly one element of X, the algorithm identifies that element. For this purpose
the algorithm establishes an arbitrary one-to-one correspondence between the 2°
elements of S, and the 2° a-tuples of zeros and ones. Then, in parallel, the algo-

rithm presents the queries "Is A; N X = @?", for i = 1,2,...,a, where A; consists of

.18 -

those elements of S, whose corresponding a-tuples contain 1 in the i position.
Assuming that S, contains exactly one element of X, the i** query determines the
i** bit in the a-tuple associated with that element, and thus the a queries combine
to identify the element. At the third step, the algorithm checks whether the
selected element lies in X; with probability > 1/2 the answer will be "Yes". By
repeating this three-step process until an element of X is determined, the algo-
rithm solves the randomized group testing problem in less than six steps on the

average.

4. THE RANDOMIZED COMPLEXITY OF THE MAXIMAL INDEPEN-
DENT SET PROBLEM

In this section we prove lower and upper bounds on T;’,'g,, (n,p).

4.1 An Upper Bound

We begin by presenting a randomized algorithm using an independence oracle
for the construction of a maximal independent set. The algorithm maintains a par-
tition of the ground set E into three sets, IN, OUT and F; the set IN consists of
elements that will appear in the final maximal independent set, OUT consists of
elements that will not appear in that set, and F consists of elements about which
the algorithm is still undecided.

Algorithm A

IN « ¢;OUT « ¢; F « E

while F = ¢ do

begin
Select a random permutation ay,as,...a |f| of the elements of F;
in parallel, for i = 1,2,..,, [\/;j, test whether {a,,as,....a;} U IN
is independent;
k « max {il{a,,as,.,a;} U IN is independent}
IN <IN U {a,,a3,....a}
OUT « OUT U {a€F|{a,a3,.ax} U IN U {a} is dependent}
F <« E - (IN UOUT)

end

output « IN

-19 -

We shall investigate the expected number of elements deleted from F at each
iteration. Let T = (F,I') be the independence system with ground set F in which
a set A C F is independent if and only if A U IN is independent in the original
independence system (E,J). For i = 0,1,.,|F|, let g; be the probability that an i-
element set drawn at random from F is independent in T. For j = 0,1,.,|F| —1
consider the following experiment: draw a j-element set A at random from F and
then draw an element a at random from F — A. Let p; be the conditional proba-
bility that A U {a} is independent in T, given that A is independent in T. Then,

fori = 1,2,..,F|, ¢; = ﬁ p;- Let m = |F|.
j=0

Now consider the behavior of the algorithm on a permutation a;,a;,<.,a|r of
F. For any s < [\/;] such that {a;,as,...,a,} is independent in T, the algorithm
will place the elements a,,a;,....a, into IN and will place in OUT all elements
a€ F - {a,ay,..a,} such that {a;as,..a,} U {a} is dependent . If the permutation
is chosen at random then the probability that {a;,as,..a,} is independent is g,
and, given that {a;a,,..a,} is independent, the expected number of elements
a€ F — {a,as,.,a such that {a;,as,.,a,} U {a} is dependent is p, (m — s). It fol-
lows that, for any s S[\/;], the expression ¢,(s + (1 — p,) (m — s)) gives a lower
bound on the expected number of elements deleted from F at the next iteration.
We shall show that, no matter what the values of the conditional probabilities p;
are, there is an s such that g,(s + (1 — p,) (m — s)) is at least e~ Vm + 0(1).

We distinguish two cases:

Case1: forj =0,1,.] \/;], p; > exp(— Wl—]-). Choose s = [\/;1_]. Then
m

= 1
q, = exp(—) > et
T% P V]
and hence
q,(s + (1 - p)) > e tlVm] =e ' Vm + 0.

Case 2: there exists a j < [\/;] such that p; = exp(— -lvl—l—). Let s be the
m

least such j. Then

q, = I-—-Epj 2 [exp(— W];n_l-l—)l > e‘l,

- 20 -

and hence

_ 1
g s+ 1 —p)(m—s)=els+(1—ce Vmly (m = s))

_ 1
=e lm(l —e Vml) = ¢=1 Vim + O(1).

We have now shown that, at an iteration step in which the number of ele-
ments in F is m, the expected reduction in the cardinality of F s
> e~ ! Vim + O(1). From this it is easy to show that the expected number of
iterations required to reduce |F| from its initial value n to its final value 1 is
0(Vn). The probabilistic analysis needed to justify this plausible conclusion is dis-
cussed in the Appendix.

Since each execution of the while loop in algorithm A can be executed in a
3

constant number of steps using n? processors, we have proved the following
theorem.

3
Theorem 6. T2 (n, n?) = O(Va)

4.2 A Lower Bound

The following theorem gives a lower bound which sets a limit on the extent to

which the performance of Algorithm A can be improved.

1

n 3

ind -
Theorem 7. Toras (n,p) Q (log pes

Proof: We use the following observation, which states that a lower bound on the
randomized complexity of a problem is given by the minimum, over all determinis-
tic algorithms, of the expected time required to solve the same problem when the
instances are drawn from a fixed probability distribution. This observation
appears to have been first stated explicitly by Yao [Y77], in a context more gen-
eral than the present one. Let H be a (n,p) deterministic decision tree with an
independence oracle. Let D be a probability distribution over the independence
systems with ground set {1,2,..,n}, and let T(H, D) be the expected number of
(parallel) steps executed by decision tree H on an instance drawn from D. Then
Tird, (n,p) = min T(H, D)

.921-

We shall pick a probability distribution D and show that, for all (n,p) deter-
ministic decision trees H, the expected number of steps executed by H on instances
drawn from D is bounded below by a certain function f(n,p) which grows as fast as

1

B)3, The distribution D is concentrated on independence systems of the fol-

log np
lowing form: the n-element ground set E is partitioned into 2t sets A, Ay, ..., Az,

(

each of size _én? where ¢ is a parameter to be specified later. A set B is indepen-
in

dent if and only if, for all i, i = 1,2,..,2¢, |B N A}} = PR All independence sys-

tems of this type are taken to be equally likely in the distribution D.

We shall derive a lower bound on the expected number of steps required for a
deterministic algorithm to find a maximal independent set in an independence sys-
tem drawn from D. Since we are proving a lower bound we may assume that cer-
tain extra information is provided to the algorithm free of charge in the course of
its execution; at the i** step this information consists of the identity of the set A;.
We may also assume that the algorithm is required to work correctly only for
independence systems that have nonzero probability in the distribution D. Thus,
we work with a modified definition of a deterministic (n,p) decision tree, in which
a query node at distance i from the root returns not only the answers to the p
queries presented to the independence oracle, but also the identity of the set A,
and in which the algorithm is only required to be correct on instances with nonzero
probability. Let H be such a decision tree. A computation path in H defines the
two sequences of events O;, Og,..., and @1, Q3,..., where O; is the event defined by
the answers of the independence oracle in the first i — 1 steps, and @, is the event
defined by the assignments of elements to the sets A, A,,..,A;_;. The probability
of an input instance at the start of step i of the computation is its conditional pro-
bability in D given the event O; N Q;.

Because the identity of A, A,,...,A;_, is determined before the j** step, we
may assume that, if B is an oracle query presented at the j* step, then
BCA/UA;_,U.. Ay We may also assume that the algorithm terminates by
presenting a query at some step j of the form "Is B independent?”, where B is a
maximal independent subset of A; U A;,; U ... U Ay. Since the algorithm is in a
position to present such a query as soon as it has determined a maximal indepen-
dent set in the independence system, the requirement that the algorithm must
explicitly ask such a "verification query" extends its execution time by at most one

step.

.929.

We say that an oracle query B at step j is local if either

i) [|BNAj> -i%— (so that B is a dependent set) or

(i) B is independent and, for every P>,

] 1 . n
- —_— - —_—
|Bﬂ||Ak|_U+4)(2t l+1)4t2

kzi

Note that the outcome of a local query B at step j is determined by the cardi-

nality of B N A;.

The probabilistic calculations required for this proof are based on the follow-
ing bounds on the tail of the hypergeometric distribution. Let n,M and N be posi-
tive integers with M < N. Let p = % Then, for0 < 8 <1

g B Ll

and

[Ml [" =k sexp[_ .3_2_’2]
A=[L+ Bingl llx] 3

Analogous bounds are derived for the binomial distribution in [AV 79). The
present bounds can be obtained by a similar derivation based on an inequality of
Hoeffding [H63]; see also the discussion in [C79]. We shall call these bounds the
H -AV bounds.

Let E denote the event "at least one of the queries in the i** step is not local".
Then

Prob(E N 0;|Q;] - Prob(E|Q]
Prob(0;|Q;] ~ Probl0(|Q;]

Prob[E[O; N Q,] =

We shall derive a lower bound on Prob [0;|Q;]. Let B be a query presented to
the independence oracle in some step j < i. Then, by our hypothesis that the
queries at the first i — 1 steps are local, B is a local query. There are two cases to

consider:

.23 .

i) |BNAj> -i:—z Then, at step j, the oracle responds that B is dependent.

The dependence of B is implied by Q;, since the event Q; determines the set
A;. Thus the probability that B is dependent given Q; is 1.

(ii) The oracle has responded that B is independent and, since B is a local query,

BA Al =G+ L)@ —i+1) . The probability that B fails to be
4 442

k=i

independent given Q; is bounded above by the probability that a set of

@ - -3-) 20 -i+1) :’:; elements drawn at random from

A;UA;;; U ., UA, has an intersection of size at least ﬁlz— with some set
A,. For each choice of A, this probability is bounded above by the probabil-

ity that a hypergeometric random variable with mean (: — %) :’:; is greater

than or equal to 2L Using the H—AV bound we find that this probability

4¢2
3)2
is bounded above by exp (— (i — i) SCE S 4 . As i ranges from 1

4" 442 3. 3
i - =

4

__3n
1282

to ¢ this quantity remains bounded above by e

The number of queries presented during the first i — 1 steps is p(i — 1),

which is less than pt. For a given query B, the oracle’s response that B is

kn

independent could be false only if, for some k, |B N A,| > R But, since B is a

local query, we have shown that the probability of this event is bounded above by
3n

e 12 Hence, the conditional probability, given @;, that some query during the

first i — 1 steps has an outcome different from the "normal” outcome indicated by

3n

the event O; is bounded above by 2pt? e 128‘3, and it follows that
3n

Probl0,|Q] = 1 — 2pt? e 1B

Next we derive an upper bound on Prob(E|Q;]l. Let B be a set presented to
the independence oracle at step i when the event O; N @; occurs. As noted before,
we may assume that B C A; UA;4; U .., U Ay. We distinguish between two

cases.

-24 -

@ |B| = Z"-:‘;(zt —i+ D1+ Then, by the H—AV bound,

8|

B n A > —% with probability at least 1 —e %2%'. Whenever
4t

IB N4l > — 4 holds the query B is local.

(i) |B| < 4—— 2t -1+ + —) Then B can fail to be local omly if, for
some k > i, |B NAy >+ Z) zt—z By the H—AV bound the probability
T B2

that this happens for a given k is bounded above by e , and the proba-

" 5120

bility that it happens for some k is bounded above by 2t e

Since p queries are presented to the oracle at step i, the conditional probabil-

ity, given Q;, that some query fails to be local at step i, is bounded above by

n

2tp e 512 We have now shown the following two inequalities:
_3n

Prob[0;|Q;1 =1 — 2ptte " 128% gpg Prob[E|Q;) = 2pt e ~ . We can now con-

clude

" 51268
prob[E|O0; N Q] = 2pt e o

1 - 2ptle 128¢%

< 4pt? e— 5127

- n
512¢9

It follows that, with probability greater than 1 — 4ptd e , all queries at the

first ¢ steps are local. But the verification query which the algorithm is required to
n
51200

present at its last step is not local, and hence, with probability = 1 - 4ptd e
1

n

3 .
3400 lo 7o log np we obtain

the execution time is at least t. Choosing ¢t = [

1
3

md n
Pmb (nip) Q Ilog np

- 25 -

5. A RANDOMIZED ALGORITHM FOR THE MAXIMUM INDEPENDENT
SET PROBLEM '

We present a randomized parallel algorithm for constructing a maximum
independent set in an independence system S = (E D), using a rank oracle. Recall
that, for any set B C E, the independence system S/B has B as its ground set, and
a subset of B is independent in 8/B if and only if it is independent in S. If A C B

then rankg (A) is defined as max |A N C|, where C ranges over the maximum

independent sets in S/B. A rank oracle answers queries of the form "What is
rankg (A)?.

In any independence system, the following randomized algorithm constructs a

maximal independent set with probability 1. Let H,, the m** harmonic number,

- 1.1 1
be defined by H, =1 + 5 + 3 +.+ o

Algorithm B

B « E; r « rank; (E)
while |B| > r do
begin
m « |B|;
draw a sample j from the probability distribution over

{0,1,..,m — 1} in which each element i has probability ——-—-1_———;
(m -i)H,

A « a random j-element subset of B;
R « {e€B — A|rankg (A U {e)) = rankg (A)};
B«B-R
end
output « B

The algorithm satisfies the invariant assertion that, at the beginning of each
execution of the body of the while loop, the set B contains a maximum independent
set in the independence system S. This property holds initially, when B = E. To
gee that it remains true throughout the execution of the algorithm, we show that,
if B contains a maximum independent set in S then, after the next iteration,
B — R contains a maximum independent set in S. Let C be a maximum indepen-
dent set in S which is contained in B and contains rankg (A) elements of A. Then

C contains no elements of R; for if it did contain some element e € R then it would

- 26 -

contain rankz (A) + 1 elements of A Ufe} This would imply
rankp (A U fep) = rankg (A) + 1, contradicting the fact that e € R.

Next we show that, at any given step, the expected value of |R| is mH— L

where r is the size of a maximum independent set in S (and also in S/B) and
m = |B|. Fori =0]1,..,m — 1let

p; = Prob[rankpg (A U fe)) = rankp (A)],

where A is a randomly chosen i-element subset of B and e is a random element of

—1

B — A. Then r = rankg (B) = "2 p;. At a given iteration the probability that
i=0

_ 1

(m -1)H,

given that A is of cardinality i, is (1 — p;) (m — i). Hence the expected size of R

the algorithm chooses a set A of size i is , and the expected size of R,

is

Sl 1-p)m -
m -) H, pi

i=0

-1 -
Since p; = r it follows that the expected size of R is mH
1=0 m

We have shown that, when m elements remain, the expected number of ele-
m —

H,
cited in the Appendix that the expected number of iterations required by the algo-

T It now follows from the results

ments eliminated at the next iteration is

rithm is O(log? n). Each iteration can be executed in constant time using n pro-
cessors. This completes the proof of the following theorem.

Theorem 8. T2 (n,n) = Odog?n).

6. THE COMPLEXITY OF FINDING A BASE IN A MATROID

A matroid is an independence system S = (E,I) with the property that, for all
B C S, all the maximal independent subsets of B have the same cardinality; in
other words, for every restriction S/B of S, the maximal independent sets coincide
with the maximum independent sets. Because of this property the concept of rank
becomes simplified: rankg (A) assumes the same value for all sets B containing A,

and it is simply equal to the maximum size of an independent subset of A. A

-97.

maximum independent set in a matroid is called a base, and a minimal dependent
set (i.e, a dependent set which does not properly contain any dependent set) is

called a circuit.

We shall be interested in deterministic and randomized algorithms, using
either an independence oracle or a rank oracle, for finding a base in a matroid. As
in the previous sections, these algorithms are modeled by decision trees containing
query nodes, leaves and, in the case of randomized algorithms, randomization
nodes; but now these decision trees are required to correctly identify a maximal
independent set only when the input is a matroid. Let TMATYS (n,p),
TMATS, (n,p), TMAT] (n,p) and TMAT?% (n,p) represent the complexities of
these four matroid problems. For example, TMAT, (n,p) is the complexity of the
best deterministic algorithm for finding a base in a matroid using an independence

oracle, when the size of the ground set is n and the number of processors is p.

A striking example of the algorithmic usefulness of the additional structure
present in matroids is the following easy result, which indicates that for matroids

the rank oracle is too powerful to be interesting.
Theorem 9. TMAT* (n,n) =1

Proofr Let S = (E,J) be a matroid. The following algorithm constructs a base
B.

Algorithm

Let the elements of the ground set E be a,,a,,...,a,;
In parallel, for i = 1,2,..,n, determine rankg ({ay,a2,---a});
B « {a;|lrankz({a,,a3,....a;}) > rankg({a,as,..a;-1))}

We prove that B is a base. It is clear from the algorithm that, for
i =12,..,n, |IB N {a,as,..a;}| = rankg({a,,as,..a:p). In particular,
|B| = rankg (E); thus B has the right cardinality for a base, and it remains only
to show that B is an independent set. To do so we prove by induction that, for
i =12,..n, BN {a;a,,..a;} is independent. Assuming this is true for i, we prove
it for i +1. In case rankg({a,as,.,a;+1)) = rankg({a,a,,..a;) we have
B N {a,,as,...a;+1} = B N {a},a,,.,a}, and, by induction hypothesis,
B N {a,,as,...a;} is independent. In case

rankg({a,,a2,.,a;+1) > rankg({a;,as,..,a) we have

.28 -

B N {a),ag,..a;+) = (B N {a1,82,...a.) U {a; 41} We also know that
B N {ay,a5,..,a;} is a maximal independent subset of {ay,as,..,a;} but is not a maxi-
mal independent subset of {a;,ay,...;+1}; hence the only possible way to augment
B N {a;,as,..a;} to a maximal independent subset of {a;as,..a;+,} is to add the
element a;,,, and it follows that (B N {a;,a3,...a;}) U {a;+} is independent.

We can also exploit an earlier proof to obtain the following lower bound.

Theorem 10.

1
n 3

log np

TMAT?S (n,p) = Q [

Proof: On inspecting the proof of Theorem 7 we find that the lower bound

applies even when the independence system presented as input is of the form (E,I),
where E is the disjoint union of 2¢ sets A;, A,,...,A 5, each of cardinality Ent_’ and a
set is independent if and only if its intersection with A; has cardinality less than

or equal to -‘%—, for i = 1,2,...,.2¢t. Such an independence system is a matroid; in

fact, it is a special type of matroid known as a partition matroid. It follows that
the lower bound holds for matroids.

The following fact about matroids will be stated without proof.

Fact 1. Let S = (E,]) be a matroid. Let A be a subset of E. Let the elements
of A be linearly ordered. Let D be a subset of A defined as follows: e € D if e is
the largest element in some circuit contained in A. Then A — D is a maximal

independent subset of A.

The following theorem shows that the lower bound of Theorem 1 no longer
holds in the case of matroids.

Theorem 11. TMAT® (n,n) = O(Vn)

Proof: We present an algorithm for the construction of a base.

- 29 .

Algorithm

IN « OUT « @; F « E;
while F = ¢ do
begin
m < |F;
re—|Vm|;
partition F into r sets F{,F,,....F,, each of size ror r + 1
in parallel for i = 1,2,...,r test whether IN U F; is independent
if at least one of the sets IN U F; is independent
then let j = min{i|IN U F; is independent}
IN«<INUF;;F«F - F,
else in parallel for i = 1,2,..,r do
begin
let the elements of F; be a;1,8;3,...@i5i), Where s(i) = |F|
in parallel for ¢ = 1,2,...,5(i) test whether IN U {a;,a:3,...a i} is
independent;
let k(i) be the least k such that IN U {a;;,a;s,...,8 ;} is dependent
[such a k must exist, since [N U F; is dependent]
end
OUT « OUT U {a;iy, i = 12,0} F « F = {ayi), i = 1,2,..r}
end
output « IN

The algorithm satisfies the following invariant assertions: at the beginning of

each execution of the while loop,

(i) the sets IN, OUT and F form a partition of the ground set E;
(ii) the set IN is independent;

(iii) rankg(IN U F) = rankg(E)

These assertions hold initially, when IN = OUT = ¢ and F = E. To show that
they remain true, we consider two cases:

Case (a). for some j, IN U F; is independent. Then (i) remains true after the
execution of the instructions IN « IN U Fj and F « F — F.; (ii) remains true
because IN U F; is independent; and (iii) remains true because IN U F does not

change.

-30 -

Case (b). for all i, IN U F, is dependent. Then (i) remains true after the execu-
tion of the instructions QUT « OUT U {aj3i, ¢ = 1.2,...74
F «F - {a;3i),¢ = 1,2,...r}; (ii) remains true because IN does not change; and
(iii) remains true by applying Fact 1, with A = IN U F, and with the linear order-
ing such that all elements of IN precede all elements of F and, for each i, the ele-
ments of F; occur in the order a;1,a;2,..@;x;- It follows that, upon completion of
the algorithm, the set IN is a base.

Since each iteration of the while loop entails the execution of n queries in
parallel, the algorithm requires n processors. Also, at each iteration which begins
with |F| = m, the number of elements deleted from F is at least |Vm|. It follows
that the total number of iterations is O(Vn). This completes the proof.

7. THE COMPLEXITY OF FINDING A BASE IN A GRAPHIC MATROID

A matroid with ground set E is graphic if there exists a graph G with edge
set E such that, for all A C E, A is independent if and only if the set of edges of A
determines a forest (subgraph without cycles) in G. The graph G is said to realize
the graphic matroid S. We shall consider decision trees with an independence ora-
cle in which the input is restricted to graphic matroids. Note that these decision
trees acquire information only by queries to the independence oracle; the adjacency
structure of the graph G is not directly available to them. Let the complexity
measures corresponding to randomized and deterministic decision trees be denoted

TGRAPH4(n,p) and TGRAPH %, (n,p), respectively.

In order to study these complexity measures we shall require some further
concepts about matroids. Let S = (E,I) be a matroid and let B be a subset of E.
We have already defined the matroid S/B; its ground set is B, and a subset of B is
independent in S/B if and only if it is independent in S. The matroid S/B is
called the restriction of S to B. Let D be an independent set in S. Then the
matroid S[D], the contraction of S on E — D, has E — D as its ground set, and a
set A € E — D is independent in S(E — D] if and only if A U D is independent in
S. It is immediate from these definitions that an independence oracle for the origi-
nal matroid S can be used to determine whether sets in S/B or S[D] are indepen-
dent. Define the girth of a matroid as the minimum number of elements in a cir-

cuit.

-31-

If S = (E,) is a graphic matroid then the matroids S/B and S[D] are also
graphic. If G is a graph realizing graphic matroid S then the graph induced by
the edges in B realizes the matroid S/B and the graph obtained by contracting the
edges in D (i.e., identifying the two end points of each such edge) realizes the
matroid S{D]. The girth of a graphic matroid is the length of the shortest cycle in
any graph realizing S.

Lemma 2. Let d and n be positive integers. Let S = (E,J) be a graphic

2
1_ —_—

matroid of girth = 2d + 1 with n elements in its ground set. Let s =|n 4]

Then at least half of the s-element subsets of the ground set E are independent.

Proof: We may assume that S contains at least one circuit, since otherwise the
result holds trivially. Let G be a connected graph realizing the graphic matroid S.
Since G has n edges and at least one cycle, it has at most n vertices. Every cycle
of G is of length at least 2d + 1. It follows that, between any two given vertices
of G, there is at most one simple path of length = d; for if two such paths existed
then there would exist a cycle of length =< 2d. Since the number of pairs of ver-

tices is at most [’2'], G contains at most ['2'] simple paths of length =< d. An s-

element subset of E contains a cycle only if it contains all the edges of some simple
path of length d. The fraction of s-element subsets of the n-element ground set

containing a given d-element set is

[s:d=s(s—1)...(s—d+1)<s—dd
[n] nn —1).(n —d+1 n-—d
s

Hence the fraction of s-element subsets of the ground set containing some simple
d
s —d 1

< =
n—d n,2,

path of length d is at most [;] But, for the given choice of s, I

and thus ['2'] [:—-:—Z—ld < %

2
Theorem 12. For every positive integer d, TGRAPH ;’,‘:,’b (n, n28*) = 0(n ?)

Proof: We prove the theorem by presenting an appropriate randomized algo-

rithm. Let the number of processors p be n2d*! Then the algorithm is as follows.

-32-

Algorithm C

IN « OQUT « ¢; F« E

while F = ¢ do
begin
[the sets IN, OUT and F form a partition of E]
let M be the graphic matroid S{IN1/F;
[the ground set of M is F; if graph G realizes S then a
graph realizing M is obtained by contracting the edges in IN
and deleting the edges in OUT; an independence oracle for
the original matroid S suffices for independence tests in
M]
linearly order the set F (any linear ordering will do);
in parallel, for each set A C F such that |A| = 2d, test
whether A is independent in M;
let K = {e € F| for some circuit C in M of size <
2d, e is the largest element of C in the linear
ordering}
(the independence tests performed at the previous step
provide enough information to determine K]
OUT « OUTUK;F «F - K,
let N be the graphic matroid S{IN]/F;
m « |F};
in parallel, choose n2d+1 random subsets of N, each of

L2
cardinality [m ¢J;

if at least one of these sets is independent in N then
choose any such independent set A;
IN«INUA;F<F - A

end

At the beginning of each iteration of the while loop the ground set E is parti-
tioned into three sets, IN, F and OUT, such that IN is independent and IN U F
contains a base. The base that is eventually found will contain IN and will be a
subset of IN U F. To enforce this we contract on S — IN to force the set of ele-
ments IN into any base that is found, and then restrict to F to ensure that no ele-
ments of OUT are included; this is done by working in the matroid M = S[IN]/F.
If B is a base in M then IN U F is a base in the original matroid S. The iteration

.33.-

begins by deleting elements from the ground set of M to produce a new matroid N
which has two crucial properties: first, that the ground set of N contains a base of
M: and second, that the girth of N is at least 2d+1. This is achieved by linearly
ordering the elements of F, and then deleting the largest element in each circuit of
length < 2d in M. Fact 1 ensures that there is at least one base which contains
none of the deleted elements. This process of deleting elements to increase the

girth while preserving a base works for any matroid.

The next part of the algorithm exploits the special properties of graphic

matroids. Because the graphic matroid N has m elements in its ground set and

-

girth at least 2d + 1, Lemma 2 ensures that a randomly chosen |[m ?]-element
subset of the ground set of N has a better than 50% chance of being independent.
When n2¢*! such subsets are chosen independently, the chance that all of them

fail to be independent is less than 2""2“1, which is minuscule. Thus, with very

1
high probability, an independent set of size [m 4| will be found at each itera-
tion. Whenever such a set is found it is inserted into IN and deleted from F, so

1 —
the size of F is reduced by [m ¢]. It follows that, with high probability, the set
2

F will become empty after O(n ¢) iterations. The number of processors required to

execute one iteration of the while loop in constant time is O(n2d*1),

We have established the correctness of the algorithm, determined the number
of processors it requires and analyzed its running time. This completes the proof of
Theorem 12.

Theorem 13.

3
(i) For every integer d = 4, TGRAPH: (n, n%%!) = O(n ¢)

(i) TGRAPHId(n, n¥*82"*1y = O(log n)

Proof: The proof will be based on the analysis of a deterministic algorithm
which is similar to Algorithm C, but in which the randomized process used in
Algorithm C to search for an independent set A of suitable size in matroid N is
replaced by a deterministic process based on the properties of polynomials over

finite fields. We shall show that, when matroid N has m elements in its ground
3

1-—
set, this construction is guaranteed to produce an independent set of size & (m)

in matroid N, and from this it will follow that the algorithm terminates within

-34 -

3
O(n %) iterations. The algorithm is as follows.

Algorithm D

IN « OUT « ¢; F « E;
while |F| = 16 do
begin
let M be the graphic matroid S(IN}/F;
linearly order the set F;
in parallel, for each set A C F such that |A| < 2d, test
whether A is independent in M;
let K = {e € F| for some circuit C in M of size =
2d, e is the largest element of C in the linear
ordering}
OUT « OUT UK, F «F - K,
let N be the graphic matroid S[IN]/F;
m <« |F|;
if m < 16 then go to exit
q « the least power of 2 = m;
let a be a one-to-one function from F into GFlq], the

finite field with ¢ elements;
3

let T be a subset of GF[q] of cardinality |q m 4,
in parallel, for each polynomial f of degree d — 1 over

GF[q] do

begin A(f) = {e€F|f(ale)) €T}, test whether A[f] is independent in N end,;
let A be any independent set of maximum cardinality among

the independent sets of the form A(f);

IN—INUA;Fe<F - A

end

[|[F| <16]

exit: using any decision tree of constant depth, find a

maximal independent set A in F;

output « IN U A.

As in Algorithm C, the following will hold at the beginning of each iteration
of the while loop: the sets IN, F and OUT form a partition of E, and there is a

-35-

base which contains IN and is contained in F. At each iteration, elements are
deleted from M to produce a matroid N with girth = 2d + 1, where d = 2[log,nl];
the number of elements in the ground set of N is denoted m.

We will show that there exists a polynomial f of degree d — 1 over GF(q)
such that the set A(f) is independent and has cardinality = % (|T] — 1). For all

1
d, this quantity is @ (m) and is at least 1 when m = 16.

Recall that if N is a graphic matroid with m elements and girth = 2d + 1
then a set A is independent provided it does not contain any of at most [’g] d-

element sets. These sets correspond to simple paths of length d in a graph G that
realizes N; we refer to them as the forbidden sets.

Let B be one of the forbidden sets. We will prove that, among the g sets

3

A(f), exactly |q m—zjd contain B. Consider a(B), the subset of GF[q] which is the
image under a of the forbidden set B. Since a polynomial of degree d — 1 over
GFl[q] is determined by its values at any d points, the q? polynomials of degree
d — 1 take on different d-tuples of values at the points in a(B), and since the
number of possible d-tuples is equal to the number of polynomials, each d-tuple of
values is assumed by exactly one polynomial. But A(f) contains B if and only if it

assumes a value in T at every point in a(B). The number of d-tuples of values
3

from T is |T|? = |q m—-‘;]d, and hence the number of sets A(f) containing the for-
3

bidden set B is [g m ¢]¢. Since there are at most ['g] forbidden sets the number
of sets A(f) which contain some forbidden set, and hence are not independent, is at
most

[rg] lg m-%]d < [r;] ¢ m3 < _qzi m-L

We shall use an averaging argument to show that there exists an independent

1
set A(f) of cardinality %— |IT| =1 =92(m 9¢). We sum the cardinalities of all

the sets A(f), as f ranges over all polynomials of degree d — 1, and then subtract
off an upper bound on the sum of the cardinalities of those sets A(f) which are

dependent. This leads to a lower bound on the average size of the independent sets

A().

-36 -

ANl = 2 X lffifate)) =y}

f e€F y€T
=3 St =mat T,
e€F y€T
> [A(D| = m|{flA(H) is dependent}|
{fIA(f) is dependent/

d d
9 -1y =9
< m(2 m”™) 9 "

Hence

d
=mqlt|T] - -

{flA(f) is independent} 2.

Since the number of independent sets A(f) is at most g%, the average size of an
independent set A(f) is at least

d
m g7 - -

m 1 1

and it follows that there exists an independent set A(f) of cardinality

1
2%|T|-1=Q(m d),

3
It follows that the number of iterations of the while loop is O(n ¢). With
n2d*1 processors it is possible to execute each such iteration in constant time.
This completes the proof of (i).

In order to prove (ii) we modify Algorithm D by inserting the statement

d « 2[logyn] at the beginning of the algorithm, and changing the statement "let
3

T be a subset of GF[q] of cardinality |q m—:i]"; to "let T be a subset of GF[q] of

cardinality 9 ", We shall prove that, in an iteration where |F| = m, an indepen-

dent set A of size at least -'f— is found.

The number of sets A(f) that contain a given forbidden set B is |T|¢ = (%)d,
d
and the number containing some one of the [’gl forbidden sets is = [’g] [g] , which

d
is less than -92— This establishes that more than half of the sets A(f) are

-37-

independent.

Next we examine how the cardinalities of the sets A(f) are distributed. Since
m = 16, d = 8. Let C be any c-element subset of F, where 2 = ¢ = d. We use
the basic fact that, over any c-tuple of points in GF[q], where ¢ =< d, each c-tuple
of values from GF[q] is assumed by the same number of polynomials of degree
d — 1. Thus, it follows that, for every set D C C, A(f) N C = D for exactly a
fraction 27° of the polynomials f. Hence the expected value of |A(H N C| as f

ranges over all polynomials is —;—- If we restrict attention to those sets A(f) which

are independent then, since the independent sets comprise more than half the total
number of such sets, the average value of [A(f) N C| is at least its average value
over that half of the set of degree-(d — 1) polynomials for which |A(f) N C| is

least; and that average value is at least % Hence, when we fix C and average
|A(f) N C| over the independent sets A(f), the average value of |A(H N C| is at
least -Li-l- It follows that the average value of |A(f)| over all independent sets

A(f) is at least —rZ—, and hence there exists an independent set A(f) of cardinality

t least 2.
at ileas 4

It follows that the number of iterations of the while loop is O(logn). Since
piilogm 1 orocessors suffice to execute an iteration in constant time, the proof is
complete.

- 38 -

APPENDIX

SOLVING PROBABILISTIC RECURRENCE RELATIONS

Several of the randomized algorithms studied in this paper start with a set F
of cardinality n and repeat an iteration step which attempts to reduce the cardi-
nality of F; the process continues until F becomes empty. The amount by which
m, the cardinality of F, is reduced at each iteration is a random variable X(m).
The analysis of each of these algorithms was in two parts: first, a lower bound on
the expectation of X(m) was derived, and then an upper bound on the expected
number of iterations was stated. In this section we state a theorem which was
used, in each of these cases, to pass from a lower bound on the expectation of X(m)

to a statement about the distribution of the number of iterations.

The theorem is concerned with the following iteration process, which captures

the structure of each of our randomized algorithms.

men;te0;
while m > 0 do

begin m « m — X(m); t « ¢t + 1 end
Tt

Here X(m) is a random variable ranging over {0,1,..,m}, and T is a random

variable which represents the number of iterations executed.

What can we say about the distribution of T, given that E[X(m)] = g(m),
where g is a monotone nondecreasing function from the positive reals to the posi-

tive reals?

Theorem 14. E(T] = f , and for every a >0,

T dx
P T —] < eC.
rob{T > (a + 1).!' g(z)] e

This theorem is best possible in the sense that there are distributions of the
random variables X(m) for which the upper bounds are tight. The proof of the
theorem is contained in a forthcoming paper by the present authors. We believe
that the theorem will find many applications to the analysis of randomized algo-

rithms and to the probabilistic analysis of deterministic algorithms.

-39.

REFERENCES

[AV79] D. Angluin and L. G. Valiant, "Fast Probabilistic Algorithm for Hamil-
tonian Circuits and Matchings", J. Comp. Syst. Sci., 12, 6 (1979) 155-193.

[AIS84] B. Awerbuch, A. Israeli and Y. Siloach, "Finding Euler Circuits in Loga-
rithmic Parallel Time", Proc. 16th STOC, (1984) 249-257.

[C79] V. Chvatal, "The Tail of the Hypergeometric Distribution”, Discrete Math,
25, (1979) 285-287.

[FRW84] F. Fich, P. Ragde and A. Wigderson, "Relations between Concurrent-
Write Models of Parallel Computation”, Proc. 3rd PODC, (1984) 179-189.

(G84] Z. Galil, "Optimal Parallel Algorithms for String Matching”, Proc. 16th
STOC, (1984) 240-248.

(H84] F. K. Hwang, "Three Versions of a Group Testing Game", SIAM J. Alg. Disc.
Methods, 5, no. 2, (1984) 145-153.

[HKS81] D. Hausmann and B. Korte, "On Algorithmic versus Axiomatic Definitions
of Matroids", Mathematical Programming Study, 14, (1981) 98-111.

(H63] W. Hoeffding, "Probability Inequalities for Sums of Bounded Random Vari-
ables", J. Am. Stat. Assoc., 58, (1963) 13-30.

[KUWS85a] R. M. Karp, E. Upfal and A. Wigderson, "Are Search and Decision
Problems Computationally Equivalent?”, Proc. 17th STOC, (1985) 464-475.

[KUWS85b] R. M. Karp, E. Upfal and A. Wigderson, "Constructing a Perfect Match-
ing is in Random NC", Proc. 17th STOC, (1985) 22-32.

[KUWS85¢c] R. M. Karp, E. Upfal and A. Wigderson, "The Complexity of Parallel
Computation on Matroids", Proc. 26th FOCS, (1985) 541-550.

[KW84] R. M. Karp and A. Wigderson, "A Fast Parallel Algorithm for the Maxi-
mal Independent Set Problem", Proc. 16¢th STOC, (1984) 266-272.

[L76] E. L. Lawler, Combinatorial Optimization, Networks and Matroids, Holt,
Rienhart and Winston, (1976).

[L85] M. Luby, "A Simple Parallel Algorithm for the Maximum Independent Set
Problem", Proc. 17th STOC, (1985) 1-10.

- 40 -

[TV84] R. E. Tarjan and U. Vishkin, "Finding Biconnected Components and Com-
puting Tree Functions in Logarithmic Parallel Time", Proc. 25th FOCS,
(1984) 12-20.

[V84] U. Vishkin, "An Efficient Parallel Strong Orientation”, Technical Report No.
109, Computer Science Department, New York University, (1984).

[W76] D. J. A. Welsh, Matroid Theory, Academic Press, (1976).

[Y77] A. C. Yao, "A Probabilistic Computation: Towards a Unified Measure of
Complexity", Proc. 18th FOCS, (1977) 222-2217.

