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ABSTRACT

This thesis deals with the approximate solution of a class of zero-one integer programs
arising in the design of integrated circuits, in operations research, and in some combina-
torial problems. Our approach consists of first relaxing the integer program to a linear pro-
gram, which can be solved by efficient algorithms. The linear program solution may assign
fractional values to some of the variables, and these values are ‘rounded’ to obtain a prov-

ably good approximation to the original integer program.

We first consider the problem of global routing in gate-arrays. This problem has
important applications in the design of integrated circuits, and can be formulated as a
zero-one integer program. We introduce a technique we call randomized rounding for pro-
ducing a provably good approximation to this integer program from the solution to its
relaxation. In order to prove the quality of this approximation, we make use of some new
bounds on the tail of the binomial distribution. We present the results of experiments con-
ducted on industrial gate-arrays using our methods; these are encouraging and call for

further work.

We then show that our randomized rounding technique can be applied to some prob-
lems in combinatorial optimization and operations research. We also describe the relation
between the problems we study and a class of combinatorial results known as “discrete
ham-sandwich theorems”. This leads to the problem of rounding linear program solutions
deterministically in polynomial time. We invoke an interesting “method of conditional pro-
babilities” for this purpose. An extension of this method shows that it is possible to deter-
ministically mimic the randomized algorithm in a certain precise sense. This leads us to
the development of a deterministic polynomial time rounding algorithm that yields the

same performance guarantees as the randomized method.
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Chapter 1

Introduction

1.1 Overview

Integer programming is a fundamental combinatorial problem with a multitude of
practical applications. The general 0—1 integer programming problem is known to be
NP-Complete [17]. Although there is no efficient algorithm known for solving an arbitrary
integer programming problem, a number of special cases can be solved either approxi-
mately or exactly in polynomial time. This thesis deals with the approximate solution of a
class of integer programs arising in the design of integrated circuits, operations research,

and some combinatorial problems.

In an integer programming problem II; we are given a convex polytope P, in IRY; P,
is specified as the intersection of several half-spaces defined by linear inequalities. We are
to find a point in the polytope that minimizes the value of a linear objective function.
Furthermore, the point we select must be a lattice point, i.e. it must have all co-ordinates

integral.

If the restriction of integrality were removed, we would obtain the relaxation linear
programming problem [lp. We know of polynomial-time algorithms for the linear pro-
gramming problem [16,19]. It is natural to ask what information about I1; can be derived
from the solution to [15. In particular, it is interesting to see whether the solution to [1g
can be efficiently used to find a lattice point in P;. If we could thus find a lattice point
with an objective function value close to the optimal solution to II;, we have found an
approximation to the optimal solution.

In general, the solution to [z is not known to give enough information to construct

an approximate solution to I[1;. Indeed, the value of the objective function at the optimum

of [Ig can be arbitrarily far from the corresponding value for II; (see, for example, page



309 of reference [31] ). However, in a number of specific cases, it is easy to make use of the

solution to [T to approximately solve IT;.

In this thesis we study some integer programs through the relaxation approach. We
show in these cases that the solution to the relaxation linear program leads to an approxi-

mate solution to the original integer program.

All the integer programs we consider will be 0—1 integer programs, in which all co-
ordinates of admissible lattice-points (solutions) are constrained to be 0 or 1. These co-
ordinates are known as the variables of the integer program. In the solution to the relaxa-
tion I1g, all variables will thus assume values in the interval [0,1]. Our problem then is to
“round” each of these fractional variables to 0 or 1 so as to obtain an integer solution with

an objective function value close to the optimum of I1;.

Our emphasis in this thesis will be on the quality of these approximations, rather
than on the exact running time of our approximation algorithms. For our purposes, we
will be satisfied with showing that the procedures we develop have running times that are
polynomial in the size of the input. To do so, we will implicitly use the fact that the linear
programming algorithm of Karmarkar [16] is polynomial-time. We then need only show
that our algorithms for rounding the linear program solutions run in polynomial-time.

This will usually be obvious from the descriptions of our algorithms.

1.2 Organization of the thesis

In chapter 2, we introduce the problem of global routing in gate arrays. This problem
has important applications in the design of integrated circuits, and is therefore a problem
of considerable practical interest. The global routing problem is proved NP-Complete at

the end of the chapter, paving the way for the search for approximation algorithms.

Chapter 3 begins with a formulation of global routing as a 0—1 integer linear pro-

gram. We then discuss strategies for rounding the solution of the relaxation linear pro-



gram, and introduce a procedure we call randomized rounding as a means of producing a
provably good approximation to the integer program. In order to prove the quality of the
solution proved by randomized rounding, we make use of some new bounds on the tail of

the binomial distribution.

In the latter half of chapter 3, we describe experiments conducted on gate arrays
using our methods. We present the results of these experiments, which are encouraging

and call for further work.

In chapter 4 we show that our randomized rounding technique can be applied to some
problems in combinatorial optimization and operations research. Chapter 5 surveys some
combinatorial results related to our rounding methods, and leads to the study of removing

the randomness from our rounding methods.

In chapter 6 we study the problem of rounding linear program solutions deterministi-
cally. We invoke an interesting “method of conditional probabilities” for this purpose.
This leads us to the development of a deterministic polynomial time rounding algorithm

that achieves precisely the same performance guarantees as the randomized method.

We conclude by summarizing our main results and noting directions for further work,

in chapter 7.

1.3 Notation

Throughout this thesis, In x will denote the natural logarithm of x, while log x will
denote the logarithm of x to the base 2. Aside from this, we use the standard notation

used in algorithmic analysis [20].



Chapter 2
Global Routing in Gate Arrays

2.1 A Description of Gate Arrays

Gate arrays are a popular vehicle for the semi-custom design of integrated circuits. A
gate array is a two-dimensional array of gates (figure 2.1) arranged in rectilinear fashion.
A large number of such chips are fabricated by a manufacturer. A customer who wishes to
build a logic circuit decides on a mapping of the gates in her circuit onto the gates in the
array. The customer specifies the interconnections to be made between the gates in the
array to realize the circuit she has in mind. In figure 2.2, for instance, the gates numbered
1 are to be connected together, as are the gates numbered 2, and so on. The manufacturer
then makes the necessary connections by running wires over the gates on the chip, produc-

ing a routed chip. Figure 2.3 shows a possible routing for the connections required in

figure 2.2.
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We now give an informal description of the routing problem. A formal model of the
routing process will be stated in section 2.3. A convenient algorithmic abstraction is to
view each gate in the array as a square, as in figure 2.1. The array may thus be thought
of as being composed of abutting squares. This assumption is fairly close to practical gate

arrays; the reader interested in physical and technological aspects is referred to [3].



Wires between gates run parallel to the axes, and pass over the boundaries between
gates. These boundaries - known as channels - have fixed widths determined by the sizes
of the gates; each channel can thus permit no more than a certain number of wires to be
routed through it. Since the manufacturer builds the arrays with no a priori knowledge of
the customer’s circuit, these channel widths - or capacities - are fixed in advance. Let us
suppose for the moment that the gates of the customer’s circuit have been mapped on to
gate locations on the array. Such a mapping - known as the placement of the circuit onto
the array - defines sets of gates to be interconnected by routing wires through channels. A

set of gates to be interconnected in this fashion is known as a net.

The routing problem has traditionally been viewed as consisting of two phases. The
first is global routing, where for each net a pattern of routes through channels is selected,
subject to the constraint that the number of routes passing through any channel does not
exceed its capacity. Each channel physically consists of a number of parallel tracks in
which wires are actually laid down; the number of tracks in a channel is equal to its capa-
city. Note that a global routing does not specify the manner in which routes are arranged
amongst the tracks in a channel. Given a global routing, the detailed routing is an assign-
ment of a track to each route passing through a channel. This assignment is specified for

all channels, and must satisfy certain consistency conditions at the junctions of channels.

In this thesis, we will concern ourselves only with the global routing problem. We
will thus assume that we are given a placement of the logic circuit; and that detailed rout-
ing follows any global routing we might generate. In reality, the placement process and
the two routing phases are closely related — a bad placement might make it impossible to
produce a feasible global routing. Likewise, (although this happens somewhat less fre-
quently in practice), a bad global routing might make it impossible to produce a detailed

routing.



2.2 Related Work

2.2.1 The Placement Problem

The placement problem is closely related to graph partitioning and other similar
problems widely believed to be intractable [13). Furthermore, it is difficult to characterize
precisely a “good” placement - a good placement must permit easy routing, keep highly-
connected portions of the circuit in physical proximity (to avoid many long interconnection
wires on the chip), and avoid excessive congestion in any particular region of the chip. A
number of heuristics are employed in practice [8,32]. The actual heuristic used depends on
the application at hand and is governed by such factors as the type of circuits implemented

by customers, the size of the array, and the technology used.

2.2.2 Routing Algorithms and Heuristics

An early effort in the area of routing is due to Lee [24]. Lee’s algorithm was the pro-
totype of the “maze” style of routing algorithm. Here nets are handled one at a time; after
a net is routed the prevailing congestion in the channels of the array is taken into account
before the next net is routed. Each net executes a walk through the “maze” created by the

nets already routed.

The success of the Lee algorithm is very sensitive to the order in which the nets are
processed. In general, it could happen that the Lee algorithm encounters a bottleneck
before all the nets are routed, even though the problem instance may have a feasible solu-
tion. At this point it is necessary to enter a "rip-up-and-reroute” or backtrack phase in
which some of the nets routed so far are removed and the routing process restarted using a

different ordering of the nets.

Two aspects of Lee’s algorithm are unsatisfactory from a theoretical standpoint. The
first is that it is a backtrack search procedure with a running time that can only be

bounded by a function that is exponential in the size of the input. Secondly, it is not



known whether the Lee algorithm will find in polynomial time a solution close to the

optimal one. The algorithms we develop in the next chapter will address these issues.

So far, we have viewed the global routing problem as a feasibility problem. It is pos-
sible to view the problem instead as an optimization problem, as follows. Suppose that
every gate in the array were a square of side C, i.e. each channel has capacity C. (The
assumption that a gate is a square is not critical - we could, for instance, speak of a rectan-
gle of a given aspect ratio). Given an instance of the routing problem, we could ask for the
minimum value of C for which we can find a feasible routing. Note that this optimization

problem is at least as hard as the feasibility problem.

Burstein and Pelavin [5] used a dynamic programming approach to present an
approximation algorithm for the optimization problem. Subsequently, Karp et al. [18] used
a linear-programming approach together with a divide-and-conquer process to develop an
algorithm that provided a provably good approximate solution. In particular, they showed

that if C'P were the optimal channel capacity for a problem instance, their method would

find a routing that required channels of capacity O (C'/-log ). Their work motivated

C(I)

much of the work in this thesis, and the integer programming formulation we develop is
section 2.4 bears a strong resemblance to theirs. Their model of channels and channel

capacity is however considerably different from ours, which we define below in section 2.3.

Hu and Shing [15] also proposed a linear program formulation of the global routing
problem. Their formulation uses column generation techniques in the simplex method [7].
The algorithm they propose does not address an important feature of linear program solu-
tions which we will describe in detail in section 2.4. More recently, the simulated anneal-

ing technique has been applied to the problem by Vecchi and Kirkpatrick [38).

23 A Model for Routing in Regular Arrays

In this section we introduce a formal model for routing in two dimensional regular



arrays, which are an abstraction of gate arrays.

(M1) A regular array is a two-dimensional nXn lattice L(V.E) where the lattice nodes
represent gates, and the edges between nodes represent channel through which nets

can be routed. A net is a set of nodes that are to be connected.
(M2) An instance of the routing problem is a set R of nets.

(M3) A connection between two nodes v, and vy, for vg,v, € E, is a simple path
{er,ea,....,ex} ,e,€E for 1<i<k where e; is incident on v, and e, is incident on v,.
Such a connection is said to be of length k. A net is said to be routed if there exist
connections between every pair of nodes in the net. A net is thus routed by specifying

a tree in L that spans the nodes of the net.
(M4) A solution to the routing problem is a set S of trees such that every net is routed.

(M5) The width of an edge is the number of trees in S that use the edge. The width of a

solution is the maximum width of an edge taken over all edges in the lattice.
(M6) An optimal solution is one whose width is the least among all solutions.

Assumption M1 contracts each gate in an array to a node in a lattice. We are only
interested in the boundaries of each gate and their capacity to accommodate routes. The
internal structure of the gates is thus unimportant, permitting us to abstract gates by
nodes. The rectangular shape of gates now translates naturally to four edges in the lattice
L each of which represents a channel. The capacity of a channel is abstracted in M5 as the
width of the corresponding edge in E. The width of a solution identifies the “bottleneck” -
the channel(s) on an array most congested by the solution. For example, the solution in

figure 2.3 is of width 2.

Clearly the model stated above is not specific to a lattice - we could define a routing
problem in any graph G(V,E) rather than just the lattice. Indeed, the algorithms we will

develop in chapter 3 are applicable to any graph.



2.4 The Complexity of Global Routing

We introduced the global routing problem as a feasibility problem, or a decision prob-
lem. This decision problem is interesting for complexity-theoretic classification. We now
state the decision problem formally, using the terminology of the model in the previous

section.

GLOBAL ROUTING
INSTANCE: Given a lattice L(V E), a set R of nets, and a positive integer C.

QUESTION: Does there exist a set S of trees in L such that every net is routed and no

edge of £ has width exceeding C?

(a) (b)

Figure 2.4: Differences in routing models.

Kramer and van Leeuwen [21] showed that the related problem of WIRE ROUTING
is NP-Complete. The WIRE ROUTING problem differs from GLOBAL ROUTING only in
the wiring model. In their model two distinct connections can pass through a node only in
orthogonal directions, i.e. one connection must pass through the node vertically and the
other horizontally. In our model, we also allow “knock-knees” at a node: figure 2.4 illus-
trates the difference. Both parts of figure 2.4 constitute legal routings in our lattice model.
In the Kramer-van Leeuwen model, however, the routing in part (b) is not legal, since it

makes use of knock-knees.

The manner in which Kramer and van Leeuwen prove the WIRE ROUTING problem

NP-Complete is by reducing 3-SAT to an intermediate problem called OBSTACLE
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ROUTING, and then showing that OBSTACLE ROUTING reduces to WIRE ROUTING.
DEFINITION: An obstacle in a lattice is a rectangular sub-array of lattice nodes.

We now define the LATTICE OBSTACLE ROUTING problem, which differs from the
OBSTACLE ROUTING problem of Kramer and van Leeuwen only in that we allow knock-

knees in our routing model.

LATTICE OBSTACLE ROUTING
INSTANCE: Given a lattice L(V,E), a set R of nets, a set of Ly of obstacles in L, and a

positive integer C.

QUESTION: Under the routing model of section 2.3, does there exist a solution-set S of
trees in L containing no node of Ly, such that every net is routed and no edge of L has

width exceeding C?
LEMMA 2.1: LATTICE OBSTACLE ROUTING is NP-Complete.

PROOF: From the reduction of Kramer and van Leeuwen [21]. Their reduction holds even

when knock-knees are allowed.

Suppose that in our model for routing in a two-dimensional lattice (section 2.3), we
had the ability to create “obstacles” in the lattice, i.e. create rectangular regions in the lat-
tice through which no wire can be routed. We then have an instance of OBSTACLE
ROUTING. Thus if we could show that in our model it is possible to create rectangular
obstacles in the lattice, we could embed an arbitrary instance of OBSTACLE ROUTING in

an instance of GLOBAL ROUTING.

Suppose the input R contains C nets between a node v in the lattice and each of its
four neighbors. It is clear that all the edges incident on v are "blocked” in that no other
net can use these edges for its routing. Now consider a rectangular array of nodes in the
lattice L; this induces a sub-graph L,. If the input R contained C nets joining each node

in L, to each of its neighbors, it is clear that no other net in the global routing problem
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can use any edge of L;. Rectangular regions of the form of L, create the necessary obsta-

cles to embed an instance of OBSTACLE ROUTING in an instance of GLOBAL ROUTING.
THEOREM 2.2 : GLOBAL ROUTING is NP-Complete.
PROOF : By reduction from OBSTACLE ROUTING.

Theorem 2.2 tells us that unless P=NP, there is little hope of finding a polynomial-
time algorithm that solves the optimization problem exactly. Indeed, the algorithms we
will develop in the next chapter will be approximation algorithms that can only guarantee

finding a solution close to the optimum.



Chapter 3

Randomized Rounding

3.1 Overview

We begin this chapter by formulating the global routing problem as an integer linear
programming problem. We then introduce a probabilistic technique for approximately
solving such integer programs. The Chernoff bound on the tail of the sum of independent

Bernoulli trials will be used to prove the quality of this approximation algorithm.

The problem of integer multicommodity flow will then be shown to be closely related
to a special case of the routing problem. We show how our algorithm may be adapted to
this case as well, using a random walk procedure. We conclude the chapter by presenting

the results of some experiments on gate-arrays obtained from industrial sources.

3.2 Formulation as an Integer Program

In this section we show that the global routing problem reduces to solving an integer
linear program in which the variables assume only the values 0 or 1. We begin by consid-
ering a restricted version of the global routing problem, in which each net must be routed
using one of a small set of trees (or configurations). Such a restriction is often desirable
from a practical point of view, in order to control the quality of the routing produced. For
instance, a restricted set of configurations may be used to preclude circuitous routes that
result in unduly long connections between nodes. Long connections degrade both the speed

and the reliability of the finished chip, and are thus to be avoided.

Thus for each net r; € R we are given a set T(r;) of configurations that may be used
to route r;. Let ¢, be the j* configuration in T(r,). For each t;, let x; be an indicator
(0—1) variable that denotes the presence or absence of t; in the solution set S. We write

constraints to ensure that every net in R is routed:

Dx; =1, v (3.1)
J

12
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Next, we ensure that no more than C routes pass through any edge in E:

f
Dx,=C, V e€E (3.2)

e€tl-j

Subject to these constraints, our integer program objective is to
Minimize C , «x; € {0,1} 3.3
3.2.1 The Relaxation Linear Program

In view of theorem 2.1, this integer programming problem is NP-Hard. Our approach
consists of first solving a linear program relaxation in which the variables x; are allowed

to assume fractional values:

Minimize C , «x; € [0,1] (3.4)
This is a linear programming problem, for which a number of algorithms are known [7,16].
In particular, the algorithms of Karmarkar [16] and Khachian [19] are polynomial-time
algorithms. Solving the above linear programming problem assigns to each variable a

value xi‘j, and an optimum width C” for the objective function.

Because we have solved a relaxation linear program, the values x,-'j and C* may be
fractional, and do not thus correspond to a physically meaningful solution to the global
routing problem. It must be noted that C* is a lower bound on the width C’ of the
optimum solution to the original integer program. The linear program solution routes
each net by using ‘fractional pieces’ of several configurations. The significance of x:j is that
it represents the fraction of net r, routed by configuration ¢; in the “fractional routing”
generated by the linear program. In order to obtain a solution to the integer program (and

thus a routing), we wish to ‘round’ the linear program results x; to 0—1 values.

3.2.2 A Simple Rounding Strategy

We now examine a simple heuristic for rounding the fractional values x,'j to integer

(0—1) values. For each net r;,, we choose k(i) so as to satisfy:
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Xohay 2 x;, YV (3.5)
Ties are broken arbitrarily in the choice of k(i). In this heuristic, which we call MAX-
IMUM, net r, is routed using configuration tiki)- Thus, for each net r, we are picking a
configuration t,, that has contributed the most to its fractional routing. We need one
further condition to prove a performance guarantee for the MAXIMUM heuristic for round-

ing. Let the sets of allowed routes T(r,) be bounded in size:

|T(r)| < B, v i (3.6)

THEOREM 3.1: Let C’ be the width of the optimum solution. The routing produced by

MAXIMUM has width no more than B-C'’.

PRrROOF: By (3.6),

. 1 .
Xik(i) = E f voi (3.7
By constraint (3.2),
D =C , Y e€E (3.8)

eEtU

From these it follows that for each e € E,

. c’ .
[ {ie€typn}| = T8 < B-C (3.9
The theorem follows from our earlier observation that C* is a lower bound C. 0

3.3 Randomized Rounding

The bound in theorem 3.1 is not particularly good, especially when B is large. We
now introduce a more sophisticated strategy for rounding the xfj, which we call “random-
ized rounding”. Randomized rounding will be the main algorithmic technique we will use
in this chapter and the next. The method is probabilistic, and is applied independently to

each net r;.

The technique is as follows. For each i, independently, we use t; to route r; with pro-

bability x:, In other words, we interpret the linear program values for the indicator
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variables as probabilities for using the corresponding configurations. For each net r,,
exactly one configuration is chosen by making the probabilistic choice mutually exclusively
among the ¢;; (conceptually, we are casting a biased |T'(r,)|-faceted die with face probabili-
ties x)).

Randomized rounding has some intuitively appealing properties. For instance, a
configuration with a high contribution x;; to the fractional routing is more likely to be
chosen to route r;. From a more rigorous standpoint, we can prove that randomized round-
ing achieves a routing of width very close to the optimum width. The theorem on the per-
formance guarantee of randomized rounding involves some notions from probability theory

which we develop in the next section. The theorem and its proof will be given in section

3.5.

3.4 The Chernoff Bound

We now derive certain forms of the Chernoff bound on the tail of the binomial distri-
bution. These bounds will be used to prove the performance of randomized rounding. In
addition, the general principles used in its derivation will prove useful in chapters 4 and 5.
The reader is referred to [4] for a general treatment of the theory of moment-generating

functions and Chernoff-type bounds. The material below is entirely self-contained.

Let X;,X,, ..., X, be independent, identically distributed (or i.i.d.) 0—1 random
variables. Each random variable assumes the value 1 with probability p, and the value 0

with probability 1—p. Let
s = 3 x (3.10)
=1
A simple combinatorial argument shows that
Pr(S = k] = [,:]p" (1-py=*, 1sksr (3.11)

It is also clear that S has expectation rp. Chernoff's bound applies to deviations of S from
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its expectation. We first examine deviations of S above its expectation.

THEOREM 3.2: Let £ > 1. Then

Pr(S>¢mp] < (3.12)

gf

PROOF: The proof uses Chernoffs general technique [6] involving moment generating func-

ee—llrp

tions and the Markov inequality, and then bounds the specific form obtained for the bino-

mial distribution. For any positive real number ¢,

1S
Pr(S >¢rmp] = Prie >eté7 ) < E_[t.e_ ]
et’érp

(3.13)
The last inequality is the Markov inequality. Since the X; and thus X are independent,

the right hand side of the above is

Ele™ ) ,
—T{T—p—-— = e‘"f"‘P . [p.et + 1_p ]7‘ < e-t~£-rp . erp(e -1) (314)
The last inequality is obtained using 1 + x < e it is strict since we assume p>0 and

will use t>0. Lett = In £. From the above we have

§-1]”
PriS>¢rmp] < explrp(¢{-1-¢Ing)] = e§51‘ D (3.15)

REMARK: The bound in theorem 3.2 is universal, in that it holds for all £ > 1. However, it

is often desirable to have forms of (3.15) that are easy to invert, especially in the design of
algorithms. We now examine some simplified versions of (3.15) that have this property.

The following well-known version of Chernoff's bound follows immediately from (3.15).

COROLLARY 3.2.1:

Pr(S>¢rmp] <

3

REMARK: Obviously, corollary 3.2.1 is useful only for large deviations; indeed, it gives use-

£rp
e] (3.16)

ful information only when ¢ > e.

The following lemma will enable us to derive a simple upper bound on (3.15).
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LEMMA 3.3: For all § > 0, the function

is monotonically decreasing.

PROOF: We will show that the derivative of f (§) is always negative for positive 8. To do

80, we must prove that

8%2-In (148) — 28((1+8)-In(1+8) — &)

5 <0, &§>0 (3.18)
or
- In(1+48) < 2(148) In(1+8)-28, §>0 (3.19)
or
294
7+ 5 < In(1+48), 8>0 (3.20)

At § = O the two functions above are equal. We show that for all § > 0 the latter func-

tion grows strictly faster. Taking derivatives, we are reduced to having to show that

4 1
< , 6§>0 (3.21)
(2+8 )2 1+48
which follows from the fact that
4+46 < 4+46+8%, §>0 [ (3.22)

Returning to our bound of theorem 3.2, we re-write it with £ = 1+38; thus Srp

represents the deviation (above) of S relative to its mean. For § > 0, (3.15) becomes

Pr{S - > § < |—
r{ rp rp 1 155)

el ”
WTI (3.23)

(148 )In(1+8) - 8§

= exp [ — rpd? ( 52 )] (3.24)
COROLLARY 3.2.2: For any A > 0
Pr(S —rp>8rp] < expl - f(A)-rp8%]1, &8€(0A] (3.25)

PROOF: Follows from lemma 3.3 and (3.24), since the right hand side of (3.23) is bounded

above by the right hand side of (3.24). O
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REMARK: This form of theorem 3.2 is easy to invert. It gives us the Chernoff bound for the
binomial distribution for deviations in any fixed range. Note that A does not have to be

0Q1). It generalizes and improves on a result due to Angluin and Valiant [1], who proved

_ 2
a bound of exp[——gﬁ—] for A 1. Indeed, for this case corollary 3.2.2 gives a bound of

exp[ — f(1) - rp8? ] where f(1) = 2In2 — 1 = 0.3863.

Using an approach very similar to that used in the proof of theorem 3.2, we have the

following theorem on the deviations of S below its expectation rp.

THEOREM 3.4: For y€(0,1],

2

S Ay )
PriS—-—rmp<—-yrp] < e 2 (3.26)
COROLLARY 3.4.1: For y > 0,
e ”
Pr(S-rmp < —-yrp] < (14y ) 1+ (3.27)
_Ym»
PROOF: The proof follows from the fact that (3.27) is an upper boundone 2 . d

REMARK: This shows that the Chernoff bound in the form shown in (3.23) holds for devia-
tions below the mean as well. These bounds hold even when y exceeds 1, although this
case is not very interesting. Also, it is worth noting that by means of theorems 3.2 and
3.4, we have bounded the binomial distribution from above by means of a function that is
symmetric about the mean. In general, the tail probability is not symmetric about the

mean.

We require one more fact related to the Chernoff bound on the tail of the binomial
distribution. Let X, , X,;, ..., X, be independent 0—1 random variables. Random vari-
able X; assumes the value 1 with probability p;, and the value 0 with probability 1—p;.

As before, let

s = 3 x (3.28)
1=1
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and let

m = P (3.29)
=1
THEOREM 3.5: Let £ > 1. Then
ef! "
Pr(S>¢m] < : ] (3.30)
PROOF: Proceeding along the lines of (3.13), we have
IT Ee™
PriS >¢m] < %— = e tim H (pje' + 1—p;] (3.31)
j:
For¢ = In £, this is bounded above by
-1 §-1]™
L | P "gs 0 (3.32)
j=1

An analogous result can be proved for deviations below the mean.

Theorem 3.5 has the following interesting interpretation. In bounding the tail of the
sum of Bernoulli trials by means of our bounds, the only information we need is the
expected number m of successes, rather than the probabilities of the individual trials.
Accordingly, we introduce the following notation. We denote by B{(m,5) the Chernoff
bound on the probability that the sum of Bernoulli trials with expectation m exceeds

(1+8)m, for positive §.

8

€ ] (3.33)

B{(m,}) = (—1‘_’?)(“_—8)

We denote by D(m,x) the deviation above the mean that results in the Chernoff bound on

the tail probability being x:
Bm,Dimx)) = x (3.34)
3.5 The Performance of Randomized Rounding

We now prove a guarantee on the performance of randomized rounding for the global
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routing problem. Let the number of edges in the lattice L be N = 2n-(n—1).

THEOREM 3.6: Let € be a fixed positive constant. With probability at least 1 —¢, random-

ized rounding produces a solution of width

< C(l)

1 + Dc?, %)] (3.35)

PROOF: Consider constraints of the form (3.2); there are N of these. After the linear pro-

gram has been solved, the values x;- satisfy

X s C (3.36)

eEtlj
for any edge in E. Rounding the x,; randomly results in a constraint becoming the sum of

independent Bernoulli trials. The expected number of routes in the corresponding edge is

no more than C°. We now apply theorem 3.5 with deviation D(C’,f/—).

The probability that the number of routes in an edge (its width) exceeds

C#

1+ D(C’,%)I (3.37)

is (by the definition of D(m,x) ) at most ¢/N. It follows that the probability that any one
of the N edges has width exceeding (3.31) is no more than . The theorem follows from the

usual observation that C* = C¥. [

The function D(m,x) in theorem 3.6 suggests that the performance guarantee

delivered by randomized rounding is dependent on the relative values of C” and N. Let
us first consider the case C%' = In . From the point of view of gate-arrays, this is an
3

interesting case; even if each node of L were a member of at most one net, it can be shown
(18] that width 2(N'?) may be necessary in the worst case. Although this worst case may
never arise in practice, stochastic analyses based on empirical studies of gate-arrays

(12,33] have shown that the optimum width C'” grows as a fractional power of N.

Applying corollary 3.2.2 we see that when C” > In E, randomized rounding yields a
€
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solution of width at most

&
] (3.38)

ch + (e—1)-lc‘” In

with probability at least 1—¢. A performance bound similar to this was reported in [34];

the more general version of theorem 3.6 is due to appear in [35].

On the other hand, if C¥’ < In A!—, it is easy to apply theorem 3.2 to show that the

solution produced by randomized rounding has width at most

eln N/¢

(3.39)
[ In N/e]
In

C(I)

Thus theorem 3.5 is particularly good when CV is large; as we have remarked ear-
lier, this appears to be the case in practice. It is worth noting that the proof of theorem 3.5
is “loose” in at least three places - (i) we use the Chernoff bound (which is tightest when
all the x,'j in a constraint are equal, an unlikely event); (ii) we add up the probabilities of
too many routes in an edge to bound the probability of failure (tightest when the con-
straints are uncorrelated - which is never the case); (iii) the expected width of an edge after
rounding may be less than C” if a width constraint has some ‘slack’ in the linear program

solution.

3.6 Multicommodity Flow

The algorithm in section 3.3 relied on the assumption that we were given a set T'(r)
of possible configurations for each net. We noted that restricting the set of choices might
be of practical value. It is nevertheless interesting to ask whether there is an approxima-
tion algorithm that explores every possible configuration for routing each net r;. We show
in this section and the next that this is possible provided each net has a small number of

nodes. As before, we are not restricted to regular arrays; this algorithm can be applied to

any graph.
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In this section we consider the special case where each net has exactly two nodes
which we shall call terminals. A configuration that routes such a net is then a simple path
in L joining the terminals of the net. We can then restate the global routing problem as
follows. We are given a regular array L and a set R of pairs of terminals. Each pair of
terminals is to be joined by a path in L. We are to find the smallest integer C) so that no

more than C paths pass through any edge.

This is a version of the integral multicommodity flow problem [17]. In this problem,
we are given a graph together with k pairs of nodes; one node in each pair is marked 8;
and one marked ¢;. Each node s, is a source of a commodity labeled j, and we are to con-
vey d; units of commodity ; from s; to t;, The d;, which are integral, are known as
demands. For each edge e of the graph we are given a capacity c(e). The flows are to be
realized as integers, and the total flow in an edge (measured as the sum of the flows of all

commodities in that edge) must not exceed its capacity.

Clearly, if we could solve the integral multicommodity flow problem, we could solve
the global routing problem for two-node nets. The general integral problem is known to be
NP-Complete [10], although the non-integral version can be solved using linear program-
ming methods [17] in polynomial time. As in the algorithm of section 3.3, the difficulty
with the linear program solution is that we have flows that take on fractional values in the
interval [0,1]. As before we denote the linear program optimum by C’, and a fractional
flow fi(e) for commodity (net) i in edge e. We are therefore confronted again with the prob-
lem of rounding fractional flows to integral flows. In this case there is no direct interpreta-
tion of the fractional flows as probabilities. We now present two techniques for regarding

the fractional flows as a probability space.

3.6.1 Path Stripping and Coin Flipping

The main idea of this phase is to convert the edge flows for each net r; into a set I, of

possible paths which could be used to route the net. Initially, I'; is empty.
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For each ::

(1)

(2)

3

Form a directed subgraph L,(V,E,) C L(V,E) where E; is a set of directed edges
derived from E as follows: for each e € E, assign a direction to e which is the direction

of positive flow in e. If fi(e) = 0, e is excluded from E,.

Discover a directed path {e; , ..., e,} in L; from s, to ¢; using a depth-first search, dis-
carding loops. Let

fm = min {f(e;), 1 =j = m} (3.40)
For 1=i=m, replace f(e;) by fi(e;) = fn .
Add the path {e, , ..., e,} to T, along with its weight f,,.
Remove any edges with zero flow from E,. While there is non-zero flow leaving s,,
repeat step (2).

Otherwise, next ;.

It is clear that the above process terminates, since at each execution of step (2), at

least one edge (the one with minimum flow in the path) is deleted from E,. Thus the

number of times it is executed is bounded above by |E|. It is also evident that on termina-

tion, the sum of the weights of the paths in I'; is one.

Once we complete the path-stripping process for each net i, we can regard the sets I,

of paths as the sample spaces for the randomization. The randomization step is similar to

that in section 3.3, except that for net r; we now have |T';| choices rather than |T(r)|.

For each i independently do:

Cast a |I',|-faced die with face-probabilities equal to the weights of the paths in T,.

Assign to net r, the path whose face comes up.

Let C'” be the width of the best integer solution. We can then prove a theorem simi-

lar to theorem 3.6; the proof is essentially the same.

THEOREM 3.7: For any ¢ > 0, with probability at least 1 —¢ the width of the solution pro-
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duced by path stripping and randomized rounding does not exceed

C(I)

o £
1+ D(CY, N)I (3.41)

3.6.2 A Solution Using Random Walks

The idea of path stripping was to convert the fractional ﬂéws generated by the linear
program into a sample space for the randomized rounding phase. We now present an alter-
native method for rounding that uses random walks through the regular array, instead of
path stripping. Each net then chooses a route independently of all other nets as follows.
For each net r; we construct once again the subgraph L,, as before. We route the net from
s; to t; by means of a random walk based on the flow values in L,. At a typical step, the
net proceeds from a node to its successor, chosen in the following manner. Let the edges
directed out of the node be e,,...,e;, and the associated fractional flows be

filer) , .....f.(eg). We choose to continue the walk on e; with probability

file))
f;(el) + ... + fi(ed)

1=s/=d (3.42)
Using the following lemma, theorem 3.7 can be shown to hold in this case as well.

LEMMA 3.8: Let P,(e) be the probability that the routing of net r, passes through edge e.
Pe) = file) (3.43)

3.7 Multiterminal Multicommodity Flows

In this section we show that some of the ideas involving multicommodity flow extend
to the case where each net has a small number of nodes. We describe only the case when
each net r, has at most three nodes. We show that in this case we can in fact explore
every possible configuration for routing r,, just as we did for two-node nets in the previous

section. We describe the integer program and the randomization below.

Consider a net r, consisting of three nodes v;;, v;; and v;3. In general, any

configuration for routing r, must consist of a Steiner point in L to which we connect each
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of the nodes v;), v;5 and v;5 (in a ‘degenerate’ case, the Steiner point could be one of Vi1, Vg
or v;3 ). For each node v, of L, we assign a'0—1 indicator variable yix to indicate whether
or not v, is the Steiner point used to connect net r,. We write a constraint to ensure that

r; has a Steiner point:

Sy =1, vi (3.44)

We now set up a multicommodity flow network in which each node v;1, Uiz and v;3 must
send y; units of flow to node v;. As before, we can try to minimize the common capacity
C® of all the edges of L. It is clear that an integer solution for the y,, and the flows

corresponds to a routing.

The solution to the relaxation linear program will now contain both fractional flows
and fractional Steiner points (i.e. the y; will assume fractional values y;). The rounding
process now consists of two phases, each of which is conducted independently for all the
nets. In the first phase, the Steiner point for net r, is chosen as follows: node v, is chosen
with probability y;;. In the second phase, the fractional flows from Vi1, U3 and v;5 to the
chosen Steiner point are rounded using one of the techniques of the previous section. This

results in v;;, v, and v,; being connected to the Steiner point; net r, is thus connected.

It is easy to show that theorem 3.7 holds in this case as well.

3.8 Experimental Results for Global Routing

In this section we present the results of some preliminary experiments with global
routing in gate arrays using randomized rounding. The experiments described here
involve a very special implementation of the algorithm in section 3.3. We present results
on two gate arrays drawn from industrial sources. Both are relatively small gate arrays

compared to the current state of the art.

These results are described in greater detail in [27]. In interpreting these results, it

is important to realize that only two small arrays have been studied. The practical feasi-



bility of the method will depend on more experiments involving larger arrays.

3.8.1 The Decomposition Style of Routing

In routing practice, a popular technique for dealing with a multi-node net is to
decompose it first into simpler connections and route each of the smaller connections indi-
vidually. For instance, a t-node net can be decomposed into t—1 two-node connections.
Our initial round of experiments used such a decomposition process. For each decomposed
connection, we consider a set of routes that can be used to route it - this corresponds to the
set T(r,) of section 3.2. One of the routes that we consider will be used to route the connec-
tion. We describe below the details of implementation - decomposition, linear program

generation and coding.

3.8.1.1 Decomposition of Nets

Each net is decomposed into connections of different types using the following heuris-

tics due to Hanan {14)].

X x ...................... x
.......................)(
X ..................... P4
X X Horrarbarsanianinie) X
ROW COLUMN 2-BEND BOX

Figure 3.1: Types of connections.

There are four types of connections, depending on the relative position of the nodes to
be connected. If the nodes lie on the same row of the lattice, they are connected with a row
connection. Similarly, if they lie on the same column, they are connected with a column
connection. If the nodes do not share a common row or column, they are connected by a

two-bend connection - the nodes are connected using any minimum-length route with at
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most two bends. In the special event that there are four nodes on the corners of a rectan-

gle in the lattice, a box connection is used. Figure 3.1 shows the types of connections used.

3.8.1.2 Decomposition Heuristics

The decomposition phase reduces all nets to connections of the types listed above.
Nets with two nodes are trivially decomposed, since a two-node net is either a row, a

column, or a two-bend connection.

Nets with three nodes are treated under two cases (figure 3.2). The median-point is
defined as the point whose coordinates are the median values of the three row and three
column coordinates. If the net has a node at the median-point, then the median-point is
routed to the other two nodes by two two-node connections. Otherwise, a Steiner point is
introduced at the median-point and the three nodes are connected to the Steiner point by

two-node connections.

Two-Bend Route

\ ==~ Row/Col Route
Steiner Pt

Figure 3.2: Decompositions of three-node nets.

= Row/Col Route

B Steiner-Point

Two-Bend Route

Box Route

Figure 3.3: Decompositions of four-node nets.

Four-node nets are decomposed by considering the four corner rectangular areas

(labeled C). Each corner rectangular area (see figure 3.3) is decomposed by connecting all
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nodes in the area to the corner adjacent to the inner rectangular area. The inner rectangu-

lar area (labeled I) is then decomposed as either a two-bend or a box connection.

Nets with five or more nodes are decomposed using a minimum spanning tree algo-
rithm [22]. The edges in the (rectilinear) minimum spanning tree define connections in a
natural manner. Each connection consists of two nodes and is trivially a row, column, or

two-bend connection.

3.8.1.3 Linear Program Generation

The linear program is generated from the list of connections produced by decompos-
ing the nets. Each connection can be realized using one of a set of configurations. A
parameter ‘SPAN’ controls the number of configurations that are generated for row and
column connections. For row and column connections, the route can be displaced on either
side from the straight route by up to SPAN gates. This results in ( 2 * SPAN + 1)

configurations for row and column connections.

_____ 1_ _

| |

ir “'2'"'7i

o I

i-___,i__!;
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Row Routes Two-Bend Routes
| = Xy X
Pl
n 2 13
cod
ol
fe et Box Routes

Column Routes

Figure 3.4:Configurations for various connections.

Two-bend connections are realized by considering all the possible minimum distance
two-bend routings. Box connections are realized using the 'H'-shaped configurations shown

in figure 3.4 (a ‘U’-shaped connection is a degenerate case).
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3.8.1.4 Coding

The collection of programs for decomposition, linear program generation, and round-
ing were written in the C programming language and run on a VAX 11/785 running
Berkeley 4.3 BSD UNIX. Proce-ssing time on the VAX is short enough to allow interactive
usage of the various modules. In particular once the linear program is solved, one instance
of the rounding problem can be solved in about 1 VAX CPU second. The linear program
is run using MPSX, an implementation of the simplex algorithm for linear programming,

on an IBM 3081 running IBM/CMS.

3.8.1.5 Problems arising from Net Decomposition

Two problems arise from the decomposition style of routing. Both problems occur
because it is not possible to specify within the context of the linear program which net the
connections belong to. In both cases the effect on the objective function is to raise it

artificially.

When two connections pass through the same channel, they occupy two tracks. If
they belong to the same net, the electrical route will only require one track. We call this

phenomenon track sharing.

A cycle occurs when, in a physical realization of a net, there is more than one distinct
path from a node on the net to some other node in the lattice. This can happen when non
minimum-distance routes overlap. Again this means counting unnecessary tracks and may

artificially raise the objective function value.

3.8.2 The Experiments

We now describe the performance of randomized rounding on two gate arrays from
industrial sources; we call them example A and example B. Since these were actual arrays
from industrial practice, they had specifications of channel-capacity which had to be

respected in order to generate a feasible routing. In our linear programs, we defined a new
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quantity, the excess, which is the number of routes through an edge (channel) less its capa-
city. Let E denote the maximum excess (taken over the edges in the array). This quantity
E was the linear program objective in these experiments. Let E° denote the optimum

value of the linear program objective function.

Table 3.1 gives basic data on the two examples, such as array size, number of nets

and statistics on the net sizes.

Array Size No. of | No.of | No.of | No.of | No.of | Nds.in | Avg. no.
(Nodes) | Nets 2 nd. | 3 nd | 4 nd. | >4nd. | Largest of nds.
Nets Nets Nets Nets Net in Net
A 15x 12 285 111 152 19 3 5 2.6
B 17 x 23 449 257 88 29 75 21 3.64
Table 3.1: Input data for the two examples.
Array No. of No. of No. of No. of No. of
Connec- Row Column 2-bend Box
tions Connections | Connections | Connections | Connections
A 506 154 238 109 5
B 1266 481 440 341 4

Table 3.2: Decomposition Statistics.

Example B has over twice as many gates as example A. While B does not have twice as
many nets as A, it contains several very large nets (including a 21-node net) and thus a
larger average net size. Larger nets lead to more 2-node connections, non-minimal dis-
tance routings and the problems of track-sharing and cycles mentioned in the previous sec-

tion.

Table 3.2 contains information about the examples after their nets have been decom-
posed into 2-node connections as described in the previous section. Notice that although B
did not have twice as many nets as A, it has over twice as many connections - this is, as

we noted above, due to the more complex nets in B. For each decomposed example, four
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linear programs were created for values of SPAN from one through four (corresponding to

¢
increasing degrees of freedom for the routes).

Table 3.3 gives information on the linear programs - number of constraints (rows),
variables (columns), the number of simplex iterations to feasibility and optimality, the
IBM 3081 runtime in seconds and the optimal value of the objective function E*. The last
column shows a surprising phenomenon; it was found that many of the variables in the
linear program solution had already been assigned integer values (0 or 1), and thus did not

have to be rounded.

LP | SPAN No. No. Iter. Iter. Runtime | Optimal | %age of
of LP of LP to to (sec.) value of integer
rows | columns | feas. | optim. E’ solutions

Al 1 840 1774 497 514 25.10 0.0 77 %

A2 2 840 2435 402 474 32.93 -0.1667 75 %

A3 3 840 3050 0 145 15.63 -0.1667 92 %

A4 4 840 3600 0 146 19.74 -0.1667 92 %

B1 1 2009 5570 126 203 38.23 0.00 100 %

B2 2 2009 7270 133 187 42.98 0.00 100 %

Table 3.3: Linear program statistics for each example.

Integral-valued variables correspond to routed connections, and the last column in table
3.3 indicates the percentage of such connections in each of the cases. The most interesting
result here is that in example B, for the cases Bl and B2, all 1266 connections were routed
deterministically (100 % integer solutions). Furthermore, this was with an objective func-
tion E° = 0; in other words, the linear program had found a perfect routing! For exam-

ple B, increasing SPAN to 3 produced no reduction in the objective function, although some

of the variables now took on fractional solutions.

Unlike example B the linear programs for example A did not directly yield a routing
(all the solutions integral), so that randomized rounding was necessary. However, E* did

attain negative values for A2, A3 and A4. Interestingly, the versions with SPAN=3 and 4
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(more freedom allowed) reached and optimum with fewer simplex iterations and thus
decreased runtime. Thus, increased flexibility in the routes means an increase in the size

of the linear program but not necessarily an increase in runtime.

Where necessary, the fractional variables from the linear program were converted to
integer (0-1) solutions using randomized rounding, to produce physically meaningful rout-
ings. For each of the cases Al, A2, A3 and A4, fifty-one independent randomized round-
ings were performed (no rounding was necessary for Bl and B2 since the linear program

solution in these cases was perfectly integral). Table 3.4 summarizes the results of round-

ing.
Example | No. of Violations | Frequency of
Average | Best best of solution
Al 27.61 19 2 %
A2 22.92 14 4%
A3 2.73 0 4%
A4 3.53 0 8 %
B1 0 0 100 %
B2 0 0 100 %

Table 3.4: Results of 51 roundings of linear program solutions.

In each case, we list the number of channel capacities violated by the rounded solu-
tion (the “routing”); a value of zero corresponds to a feasible routing to the problem. Note
that feasible solutions were found in the cases A3, A4, Bl and B2 (the column "Best” under
“No. of violations” gives the minimum number of capacity violations among the 51 round-
ings). Notice also that the trend for the cases Al through A4 under 'average number of
violated channels’ shows that as the freedom (SPAN) is increased, we proceed closer to a
feasible routing. This is also confirmed by the frequency with which the best solution
occurs - A3 produced a feasible routing only 2 times out of 51 roundings, while A4 yielded
a routing 4 times out of 51. Our results suggest that SPAN = 3 is necessary to success-

fully route example A (SPAN = 2 could not even come close to a routing).
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3.8.3 Further Experimental Work

In this section we summarize our ongoing experimental research. Two major goals
can be identified in this respect. One is to eliminate the decomposition style of routing, for
the following reasons. The quality of the routing produced by the decomposition process is
sensitive to the particular decomposition heuristic used. Also, in piecing together the rout-
ing of a net from the routings of its constituent connections, we encounter the problems of
track-sharing and cycles discussed in section 3.8.1.5. To this end, we are working on
directly generating a set T(r,) of possible configurations for each net. In doing so, we
would like to maintain some control over the set of trees generated. For this purpose, we
are developing a language for describing tree configurations connecting a set of nodes in a

lattice [28].

Our other effort is in experimenting with more gate arrays drawn from industrial
practice. As mentioned before, the two examples we have studied so far are small com-
pared with the current state of the art. Larger arrays mean larger linear programs, and
thus greater running time. Another factor which governs the size of the linear program is
the number of configurations considered for routing each net. While a richer set of
configurations should lead to better routings, it would also increase the linear program
size. The tradeoffs between running time and routing quality (or even routability) should

be interesting to study.



Chapter 4

Packing Integer Programs

4.1 Overview

In chapter 3 we saw that the integer programming problem of global routing could be
approximated by solving the relaxation linear program and then using randomized round-
ing. It is natural to ask what other integer programs can be tackled using a similar
approach. In this chapter we show that the global routing problem we have considered is
related to a class of integer programs known as “packing” problems. Direct application of
randomized rounding does not yield a feasible approximate solution to such integer pro-
grams. We introduce a device we call scaling to extend randomized rounding to these

packing integer programs.

4.2 Packing Problems

Let A be an n Xr matrix in which each element a;; is either a 0 or a 1 (in section 4.6

we consider more general matrix entries). Consider the following integer linear program:

Max. 2 al_,- X,

Jj=1
s.t.zau x; Sk, 2=isn 4.1)
Jj=1
xj E {0,1}

This is a packing integer program in the following sense: we are trying to pack as many of
the column-vectors of A as possible into an n-dimensional cube of side k. The constraints
stipulate that the vector sum of the chosen vectors should fit in the cube. The reader may
wonder at this stage why any of the entries ay; should be 0, since the corresponding
column of A would then be redundant. The answer is that in section 4.5 we will study a
generalization of the packing program (4.1) in which the coefficients a;; can be reals in the
interval [0,1]. In the interest of uniformity of notation, we present the integer program in

the form (4.1).

34
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Lovasz [25] calls this problem simple k-matching in a hypergraph. The reason for this
terminology is that A can be thought of as the incidence matrix of a hypergraph, with the
rows representing the vertices and the columns the edges. The element a; is a 1 if edge j
is incident on vertex ;. The ixiteger program of (4.1) then seeks the largest set of edges
such that no more than k are incident on any vertex. The problem can also be phrased in

terms of set systems.

Aside from these combinatorial applications, there is also a scheduling interpretation
to the integer program (4.1). Each of the variables x; may be associated with a task. Each
row of the matrix represents a machine or facility. The entry a,; is 1 if the execution of
task j requires a unit of time on machine i. We wish to maximize the number of tasks
that can be scheduled for execution within a finishing time k. The assumption here is that
the processing of a task by various machines does not have to follow any sequence, and the

tasks are unrelated.

In discussing the problem below, we will speak of it as k-matching; the terminology

is, however, purely a matter of convenience.

As in chapter 3, our approach consists of solving the relaxation linear program with
x;€{0,1]. Let the linear program yield a value x; for the variable x,. Let the correspond-
ing value of the objective function be M"; various authors [11,25] have referred to M" as

the fractional k-matching number of the hypergraph.
When r > n, elementary linear algebra can be used [2] to show that we can round

r—n of the fractional variables to integer values without changing the values of Ea‘jxj
J=1

for 1=si=n. The following remarks therefore apply when we are faced with rounding

r < n variables x;.

For all j, independently we set x; to 1 with probability x;. Let the resultant rounded

value of variable x; be xj(". The difficulty now is that after rounding, 2 a; x;” may
j=t
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exceed k for some i, thus violating a constraint. Indeed, it can happen that the probability
that some constraint is violated is very high. We thus have to diminish the chance that
more than k variables that contribute to a constraint will get rounded. To this end, we

introduce a device which we call scaling.

4.3 Scaling

We begin by illustrating the simplest version of this technique. Let ¢, and €2 be fixed

reals in the interval (0,1) such that e, + €3 = &€ < 1. Let » €(0,1) be a number such that

- 3
lu)<__1_

n

B(vk ,

(4.2)

We have not as yet established under what conditions such a » must exist; let us for
the moment continue under the assumption that we do have such a value of v. The idea is
to multiply each x; by » before rounding; this can be thought of as “scaling” down the pro-
bability that x(” is 1.

x; (4.3)

The superscript s indicates a fractional value that has been scaled. As a result, the
fractional value of the objective function is also scaled down by the factor v; we let M*
denote » M". The randomized rounding process now consists of rounding variable x; to 1
with probability xj. We will now show that after rounding, with high probability no con-
straint is violated and the rounded value of the objective function does not fall “too far”

below M*.

THEOREM 4.1: With probability at least 1—¢, scaling followed by randomized rounding

finds an integer k-matching of cardinality at least

M*[1 - D(M%ep) ] (4.4)

PROOF: After rounding, the expected value of each constraint is no more than vk. By our

choice of » (equation 4.2), the probability that a constraint is violated (i.e. its value exceeds

€
k) is thus less than 71 Thus the probability that any constraint is violated is less than Ey.



37

The expected value of the objective function is M®. The probability that it falls below (4.4),
by corollary 3.4.1, is less than ;. Thus, with probability at least 1 —(g, +¢€;), we will have

a k-matching of the cardinality guaranteed by the theorem. O

How does the guarantee of theorem 4.1 compare with the optimum k-matching? We
know that the relaxation linear program optimum M’ is an upper bound on the integer
optimum. The value M*® in theorem 4.1 is smaller than M" by the multiplicative factor ».
Theorem 4.1 assures us of finding a k-matching that is smaller than »M" by a subtractive

factor.

It remains to determine for what values of k there exists a positive value of » satisfy-
ing (4.2). The performance guarantee of theorem 4.1 is stated somewhat abstractly in
terms of the function D, because we wished to give a bound that was correct for all values
of k. Examination of (3.23) reveals that if k exceeds In n/e, » is a positive constant. For
the remainder of this chapter, we will be interested only in values of ® > In n/e. We do so
in order to avoid having to deal with case studied in (3.39). With this assumption on k, we

can now state more concrete bounds. To do so, we require the following fact.

PROPOSITION 4.2: For a packing problem of the form (4.1),

M =k (4.5)

PROOF: Any & columns of A (corresponding to any k variables x;) constitute a feasible solu-
tion to the packing program (4.1). Thus the integer optimum MY’ is bounded below by k,

and above by M". O

It follows from our assumption about k that M" is at least In n/e. Using corollary
3.2.2 with A = e—1, we find that » = 1/e. The following special case of theorem 4.1

results.

COROLLARY 4.1.1: Let MD be the size of the optimum k-matching. When k = In n/¢, with
probability at least 1 —¢ scaling followed by randomized rounding finds a matching of car-

dinality
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172
I oy
LMD [2M In n/e] “e

e e
PROOF: We let &; of theorem 4.1 be &/n, and €, be e—¢/n. Application of corollary 3.2.2

and theorem 3.4 yields the result. d0

We thus have what Papadimitriou and Steiglitz [31] call a fully polynomial-time
approximation scheme (FPTAS) for the packing problem (4.1). As we observed in connec-
tion with the global routing problem, the performance guarantee is best when the integer

optimum is large.

44 Maximum Multicommodity Flow

In section 3.6 we used a version of the integer multicommodity flow problem to solve
a special case of the global routing problem. The following version of the problem, known
as maximum 0-1 multicommodity flow, is an important problem in operations research [23].
We are given a directed graph G(V,E), and k source-sink pairs as described in section 3.6.
Each edge e € E has a positive capacity c(e). For 1<j<k, the flow of commodity j is said to
be realized if we convey one unit of flow from source s, to the corresponding sink ¢;. The
flow must be integral, i.e. we must specify a path in G from s; to t;. We wish to maximize
the number of commodities whose flow is realized, with the constraint that the total flow in
any edge e does not exceed c(e). (In some problems of practical interest, constraints are
also placed on the flux through each node inV; our methods could be adapted to this case as

well).

This problem can be formulated as a 0—1 integer linear program. We know that
optimizing this integer linear program is NP-Hard [10,17]; but the relaxation linear pro-
gram can be solved efficiently. We will show that randomized rounding will find an
approximate solution to the maximum multicommodity flow problem provided no edge
capacity is very small. The idea is to use the techniques of path-stripping and randomiza-

tion developed in section 3.6, together with appropriate scaling as in section 4.3.
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Let F* be the optimal value of the (maximum) fractional flow. We denote by F'!’ be
the best integer optimum. Let N = |E| be the number of edges in the network. We

require the following fact analogous to proposition 4.2.

PROPOSITION 4.3: Let ¢ be the smallest edge capacity in a problem instance.

F'zFD =z 4.7
The algorithm we will present is applicable to networks in which the minimum edge-
capacity ¢ is at least In N/¢, where € is a fixed constant in the interval (0,1). We now

define » in a fashion analogous to equation (4.2).

l—v)< 3

Blwe, N+1

(4.8)
Let f.(e) be the variable denoting the flow of commodity i in edge e. The algorithm

consists of the following four phases.

(1) Solve the relaxation linear program maximizing the total fractional flow. Let the
fractional flow of commodity i in edge e be f[(e). Let the corresponding maximum

fractional flow be F°*.

(2) Scale all flows down by the factor » to obtain scaled flows r

fite) = file) (4.9)

*

The corresponding scaled fractional flow is F* = »F".

(3) For each commodity i, perform path-stripping and generate a set of paths that may be

used to realize the flow of commodity :.

(4) Choose a path for realizing the flow of commodity i at random, as described in section

3.6.

In a manner similar to the proof of theorem 4.1, we can now prove the following per-

formance guarantee theorem.

THEOREM 4.4: With probability at least 1—¢, the procedure described above will find a

maximum multicommodity flow of value at least
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We thus have a fully polynomial-time approximation scheme for instances of max-
imum multicommodity flow in which no edge capacity is smaller than In N/¢ for fixed posi-

tive €.

4.5 The Weighted Sum of Bernoulli Trials

In preparation for a generalization of the packing program (4.1) in section 4.6, we
study the following problem. Let a;,a;,...,a, be reals in the interval (0,1]. Let
X,,X;,..,X, be independent Bernoulli trials with p; being the probability that X;

assumes the value 1. We wish to study the following random variable:

s = Yax, (4.11)
J=1
Its expectation is given by
E(S] = Dap, = m (4.12)
J=1

We now prove a Chernoff-type bound on the probability that S deviates far above its
expectation. In fact, we show that the appropriate version of theorem 3.5 holds in this

case.

THEOREM 4.5: Let £ > 1. Then

PriS>¢m] <

- ]™
e
i ] (4.13)

PROOF: The proof is very similar to the proof of theorems 3.2 and 3.5.

E [etS]

etfm

PriS>¢ém]s (4.14)

for any positive real ¢t. This can be written as

H [pe™ +1-p;]
=1

otkm < et [Texplp -1 (4.15)
J=1
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Fort = In §, this becomes
£ expl Ep,-[(f)"’-l] ] (4.16)
j=1
which is
ef~! "
= f-e'" exp[ 2(£—l)ajpj] = [ £f ] D 4.1D
j=1

In a similar fashion, we can prove a theorem corresponding to theorem 3.4:

THEOREM 4.6: For y€(0,1],

Pr([S-m< -ym] < e 2

7 m
— ] (4.18)

4.6 The General Packing Problem

Let A be an n Xr matrix in which each element a; is in the interval [0,1]. Consider
the following packing program:

Max. 2 G.U x_,

J=1
s.t. 2 a;x; =k , 2=i=n (4.19)
=1
x; Gj {0,1}
This is a generalization of the packing program (4.1). In view of theorems 4.5 and
4.6, we now have a fully polynomial-time approximation scheme for the general packing

program (4.20).

THEOREM 4.7: Let M'" be the value of the integer optimum for the general packing pro-
gram (4.20). When k& = In n/e, with probability at least 1 —¢ scaling followed by random-

ized rounding finds an integer optimum of value

1/2
{0 Iy
_ M0 le In n/e] 4.20)

T e e



Chapter 5

Discrete Ham-Sandwich Theorems and Integer Approximation

5.1 Overview

All the problems we have studied so far have been optimization prob]e'ms‘ In this
section we introduce some combinatorial problems that are related to our optimization
problems in that they yield to similar solution techniques. These are the set-balancing
problems studied by Olson and Spencer [29,30,36]. In section 5.2 we survey the results of
Olson, Spencer and others. In section 5.3 we state the integer-approximation problem, a
variation of set-balancing studied by Beck and Fiala [2]. This problem will be the basis for
a technique we will develop in the next chapter for replacing randomized rounding by a

deterministic procedure. !

5.2 Balancing Families of Sets

In an instance of the set balancing problem, we are given a family @ of n finite sets

6 = {S;,S;,...,S,} Let

S = Us. (5.1)
Let r = [S|. We wish to partition S into two parts §, and 5. For a given partition of
S, the discrepancy of set S, is defined as

A = |ISMN6al-18MN6bs!]| (5.2)

We wish to construct a partition so as to minimize the maximum discrepancy over all i
A(8) = max{A} (5.3

13

Using techniques from linear algebra it can be shown [2,18,29] that if r > n, we can
assign r —n elements of S to A or B without increasing the value of A ( # ). This assign-
ment can moreover be done in deterministic polynomial time. Therefore, we only consider

the case r < n below.

42
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The simplest algorithm for partitioning the elements of S is to assign each element of

S independently to A or B by flipping a random coin to make the choice. It follows that
the expected discrepancy

E[A] = 0, Vi (5.4)

We now wish to answer the following question: how far can A, deviate from its expected

value? Unlike the problems studied in chapters 3 and 4, we are now interested simultane-

ously in deviations of A, both above and below its expectation. Using the Chernoff bound,

Olson and Spencer [29] proved the following theorem.

THEOREM 5.1: There exists a partition of the elements of S such that

A(6) = (nln2n)? (5.5)

In the same paper, they proceed to show that such a partition can be constructed in
deterministic polynomial time. In the next chapter we will show that their result for deter-

ministic construction can be improved upon and generalized.
Subsequently Spencer [37] showed the following.

THEOREM 5.2: For any family of sets 8, there always exists a partition of S such that

A(8) = 6Vn (5.6)

The proof uses an ingenious pigeonholing argument which unfortunately does not
lead to a polynomial-time algorithm for constructing such a partition. This result is also
the “best possible” in that there exists a family of sets # for which A ( §) is Q( Vn ).

Spencer also showed that there existed a partition of S such that A, is O( Vi ).

The family # of subsets of S can be represented by means of an incidence matrix A in
which rows represent sets S, and columns represent the elements of S. The matrix entry

a;; is 1 if set S, contains the j* element of S. The matrix A is thus an n Xr 0—1 matrix.

It is natural to try and extend the balancing problem to the case when the matrix

entries a,; assume other values than 0 and 1. Instead of partitioning the elements of S, we
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can now speak of partitioning the columns of A. We call this the matrix balancing prob-
lem. Let ( z,,....,x, ) be a vector such that x; € {—1,+1}. By associating each component of
the vector with a column of A, we can consider the partitioning process as one of assigning
signs to the columns. The maximum discrepancy with respect to a given vector x (parti-

tion) can then be defined as

Ay (x) = max (5.7

2 a;x;
i=1

Spencer [37] shows that the probabilistic and deterministic constructions mentioned

above hold (within constant factors) provided |a;| = 1 for all i,j. It is interesting to note
that the problem of minimizing discrepancy can be cast as an integer program. We write

constraints of the form

2 a;x; < A (5.8)
Jj=1
and
(IU'IJ‘ = —A (59)

Subject to these constraints, we minimize A for x; € {—1,+1}.

If now we were to allow a relaxation x; € [—1,+1], we find that the optimal values

for the x; are
x;, = 0, 1l=j=r (5.10)
This holds regardless of the matrix A. The application of randomized rounding at this
point is to simply assign %1 to x; with equal probabilities. Thus the proof of theorem 5.1

can be viewed as a special case of randomized rounding.

5.3 The Integer-Approximation Problem

In this section we consider the following integer-approximation problem studied by
Beck and Fiala [2]. Let A be a n Xr matrix (we continue to assume that r < n). Given a

vector p = (p;,pz,...,p-) of reals, we are to construct a vector q¢ =
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(q1,92, --., g, ) of integers such that

2 a;(pj—q;) (5.11)

J=1

is “small” for all i.

We may assume without loss of generality that p; € [0,1] for all j. Let us now con-
sider the restricted class of solutions ¢; € {0,1} for all j; the g, are thus “rounded” versions

of the p;. With these restrictions Beck and Fiala prove the following theorem.

THEOREM 5.3: Given the matrix A and the vector p in an instance of the integer approxi-

mation problem, a vector ¢ can be constructed in deterministic polynomial time such that

2 a;(pj—gq;)

J=1

< (8rIn2n)Y2 | 1=isn (5.12)

We will improve on this result in the next chapter. Spencer [37] has shown that for

every input A and p, there exists an integer-approximation vector ¢ such that

| Y aj(p-g)] = 6Va . lsisn (5.13)
j=1

As in the case of matrix-balancing, this existence result is not known to lead to an

efficient constructive algorithm.

The set balancing problem is a discrete ham sandwich problem in the following sense.
The ham sandwich theorem in topology states that given n measurable sets in Euclidean
n-space, there exists a hyperplane which splits all n sets precisely in half. The set balanc-
ing problem is thus a discrete analog of the topological ham sandwich theorem. It seeks to

simultaneously split n sets of elements (as near as possible) into two halves.

Set balancing can thus be viewed as a special case of integer approximation with
pj = 05,1=j=r. Beck and Fiala only consider the case a,; € {0,1}. We will consider a

more general case in the next chapter.



Chapter 6

Rounding sans Randomness

6.1 Overview

In this chapter we study a technique for replacing randomized rounding by means of
a deterministic polynomial-time procedure. We begin by considering the integer-
approximation problem introduced in the last chapter. We analyze the quality of the
integer approximation generated by randomized rounding. We then use an interesting
“method of conditional probabilities” to develop a deterministic algorithm that performs as
well as randomized rounding. Using this method, we indicate in section 6.4 how the ran-

domized algorithms of chapters 3 and 4 can be made deterministic.

6.2 Integer Approximation Revisited

Recall that in the integer approximation problem, we were given a matrix A and a
vector p whose components are reals in the interval [0,1]. We are to compute an integer
vector ¢ with components from {0,1} such that every co-ordinate of A (p — q)is small in

absolute value.

We first use randomized rounding to show the existence of a provably good vector q.
We then show that the probabilistic existence proof can be converted, in a very precise

sense, into a deterministic approximation algorithm. We wish to bound the discrepancies

(6.1)

A = Qe ip-q)
j=1

in terms of the inner-products

8 = 2 a,; pj (6.2)
j=1

6.2.1 The Existence Proof

Suppose we set each g; to 1 with probability pj, independently of all the other com-

46
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ponents of g. Consider the random variable ¥, = 2 a; q.

Jj=1

E(¥] = Xa,Elq] = s (6.3)

Jj=1

THEOREM 6.1: There exists an integer approximation vector g such that

A, = s, D(s;,1/2n) (6.4
PROOF: We will show that if the integers g; are selected using randomized rounding, the
resulting vector will satisfy (6.4) with non-zero probability. We thus establish the

existence of such a g using the probabilistic method [9].
Let us say the i** bad event B. occurs if A, exceeds the bounds of (6.4). Consider the

random variable ¥,. By (6.3), its mean is Ea,jpj = ;. By the definitions above,

j=1
Pr(¥ >s +s Di(s,1/2n)] < 1/2n (6.5)
Pr{V¥, <s, —-s D(s,1/2n)] < 1/2n (6.6)

Thus the probability of bad event B, is < 1/n. Let us say a vector g is “good” if no bad
event occurs. Since there are n possible bad events 8,, the probability that the vector pro-
duced by randomized rounding is not good is < n (1/n) = 1. Thus a randomly chosen

vector ¢ is good with non-zero probability, and the theorem follows. O

Note the importance of the strictness of the inequalities of theorems 4.5 and 4.6 in

the proof of the above theorem.

6.3 The Method of Conditional Probabilities

We now show that the probabilistic existence proof of theorem 6.1 can be converted to
a deterministic construction of a good vector g. We use an interesting "method of condi-
tional probabilities”; the deterministic algorithm will mimic the probabilistic existence

proof in a very strong sense.

It is instructive to model the computation by means of a decision tree. Consider a
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complete binary tree T of r levels. Level j of T represents the setting of ¢; to 0 or 1. For
instance, if g; were set to 1, we proceed from the root of T to its left son; if g, were set to
0, we proceed to the right son. Thus, assigning the variables q,, g3, * - in sequence to 0
or 1 amounts to walking down T from the root to a leaf. Each leaf corresponds to one of
the 2" possible vectors g. In terms of the bounds of theorem 6.1, we could then speak of

“good” leaves and "bad” leaves.

Randomized rounding is equivalent to taking the left son at level j with probability
p), and the right son with probability 1—p;; the choices at the various levels are made
independently. Theorem 6.1 tells us that T always has a good leaf. Our task is to walk

down the tree to a good leaf in deterministic polynomial time.

At a typical stage of the computation, we are at some node at level j in the tree,
l1=j=r. We have already walked down the first j—1 levels, assigning ¢, , --- ,g,_; in
the process. We now wish to proceed to one of the two sons of the current node (i.e., assign

gjtoOor1).

Suppose (although this will not be the case) that randomized rounding were executed

at levels j through r. Let P, (q;, -, g;_;) denote the conditional probability of a bad
event occurring given ¢;, - , qj- and assuming that randomized rounding is used to
computeg;, - - - , q.. Then
Pi(qy, - ,q-1) =
pi Pimilqy, " ,qi-1, 1) + A-p) Piyy(qy, ~** ,q-1, 0) (6.7)
=> Pi(qy, " ,qi1) =
min {P;j41(q1, -+ ,¢-1,1),Pjs1 (g1, - ,qj-1,0)} (6.8)

The following algorithm then suggests itself: for j = 1 to r, at level j we set g; to 0
or 1 8o as to minimize P;,;(q;, - ,g;-1,q;). The existence of at least one good leaf
(theorem 6.1) implies that P, < 1; combining this inductively with equation (6.8), we con-

clude that
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1>P1>P2(QI)>P2(QI,QZ)> AR >P,.(q1,"',q,_1)>P(Lean6.9)

]
where P(Leaf) is the probability that we have reached a bad leaf. Every leaf is either bad
or good; accordingly, P(Leaf) is either 0 or 1. But our procedure takes us to a leaf for

which P(Leaf) < 1, so P(Leaf) must be 0 and the leaf we have reached must be good.

From an algorithmic standpoint, the difficulty lies in computing these conditional pro-

babilities efficiently. Let U; (gq;, - - , gj-1) be an upper bound on P; (g, -+ ,qj-)
for all j, that can be efficiently computed. Further, let Uj(qy, - ,q;-1) have the pro-
perty that
Uj(qlv te ,Qj—l) =

min {U;,; (¢qy, -~ v qi-1,1),Ujs1Cqy, ¢ ,q-1,0)} (6.10)

Our algorithm would then be: for j = 1 to r, assign to q; that value which minimizes
Uini(qy, - ,q-1,95)
At each stage:
(a) The function U is an upper bound on the function P (temporarily omitting subscripts,
etc. for brevity);
(b) By (6.10), U never rises in the course of the computation;
(¢) The algorithm can be run efficiently since U can be computed efficiently.
We call this the method of pessimistic estimators, since at each stage we bound the

probability of failure from above. If we could find a pessimistic estimator such that

U(root) < 1, we are guaranteed to succeed.

6.3.1 Moment-Generating Functions and the function U

We now derive a suitable function U; the manner in which we do so parallels the
proofs of the bounds in theorems 4.5 and 4.6, and the existence proof of theorem 6.1.
Recall that we said that the i** bad event B. is said to occur if, for the vector g that we

compute, the i discrepancy A, exceeds the limits prescribed by theorem 6.1. Let
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L, = s 1+ D¢(,1/2n)] 6.11)
Li_ = s[1-D(;,1/2n) ] (6.12)

Thus, bad event B; occurs when ¥, > L;,, or when ¥, < L,_ .

6.3.1.1 Bounding the initial probability of a bad event

Consider the probability of bad event B8, resulting from ¥, exceeding L;,, at the

beginning of the computation (at the root of T'). Following (4.15), for anyrealt, =0

4

Priw,>L.] < e 5 [Ltp e +1-p] (6.13)
Jj=1

6.3.1.2 Updating the Bound
We now consider the effect of setting g, to 0 or 1. Suppose some g, were assigned the
value 1. Given this information, the conditional probability that ¥, exceeds L;, is the

probability that the sum of the remaining random variables exceeds L,, — a,; . This is

bounded above by

e"i(LH‘au.) HE[e'.-a.'jqj'] - e"iLH eaxkti H[Pje%l"f‘l—Pj] (6.14)
j=k J=k

Thus the conditional probability of ¥, exceeding L,, given g,=1 is just bounded by
replacing the moment-generating term pe™* " + 1—p, by ¢*‘ in the bound function -
an intuitively correct idea. Likewise, it can be verified that setting g, = 0 has the effect

that the term pye iy 1—p, is replaced by 1.

6.3.1.3 The function U

The probability that any one of the random variables ¥, exceeds its upper limit is

bounded above by the sum of the individual probabilities in (6.13):

1=1

-t.L t.
2 e tliy rI[pj el-‘ut._'_l__pj] (6.15)
J=1
So far, we have discussed deviations of the random variables ¥, above their means; a simi-

lar analysis gives a bound on the probability that for some i, ¥, falls below its lower limit
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L;_ . Adding this bound to (6.15), we obtain an upper bound on the probability that any 8,

occurs.

U(root) =

2 e i Iltp e +1-p1 + e_"L‘_rI[PJe-aU'i'*'l"PJ] <1 1616
J=1

i=1 Jj=1

The last inequality stems from our proof of theorem 6.1; indeed, we used the above
bound (through theorems 4.5 and 4.6) in its proof, with ¢, = In [ 1+D(s;,1/2n) ]. We use
these values ¢, in our computation of U. Equation (6.16) gives us the value of U at the
root of T. We saw (section 6.3.1.1) the effect of assigning some g, to 0 or 1; the updated
value of U is always an upper bound on the probability of a bad event, conditioned by the

assignment of q.

It remains to show that for any k, one of the two possible assignments of g, reduces
the value of U. We will show that this property is satisfied by U(root); a similar argument
applies to subsequent stages. We thus examine the effect of setting q;,. Equation (6.16) for

U can be written as

DB (g et 1-py + C re M 4 1-py = 6.17)

i=1

P 2 (B, e+ C, e ") + (1-py 21 (B,+C)) (6.18)
i=1 =
where B; and C, are fixed numbers. If g, is set to 1, the new value of U is
2 (B, e"1iqC e "t (6.19)
i=1
while if q, is set to 0 the new value of U is

S (B +C) (6.20)

=1

Since (6.18) is a convex combination of (6.19) and (6.20), it is no less than the smaller

of (6.19) and (6.20). Thus we can proceed from the root of T to one of its sons in such a
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manner that U does not rise. A similar argument for the general step (updating U as we
proceed) shows that the value of U does not rise in the course of the computation. Thus

1 > U(Leaf) > P(Leaf).

THEOREM 6.2: The method of pessimistic estimators yields in deterministic polynomial time

an integer vector ¢ such that

A,‘ = §; D(s,,1/2n) ’ 1<isn (621)

This improves on the result of Beck and Fiala [2] who studied the case a; = Oor1l
(theorem 5.3). Using reasoning similar to (3.38) and (3.39), we find that the discrepancies
guaranteed by our algorithm are asymptotically smaller than those of the Beck-Fiala algo-

rithm whenever s, is o(n). Even when s, grows as n, our constant factors are better.

We will now consider applications of the theory developed above to approximately

solving our integer programs in deterministic polynomial time.

6.4 Deterministic Rounding

The integer approximation problem we have just studied is typical of the rounding
problems we have been concerned with throughout this thesis. It is therefore reasonable to
expect that the techniques that removed randomization in the case of integer approxima-
tion should work for our other integer programming problems. We show now that this is
indeed the case. We begin by outlining the method of pessimistic estimators as applied to
the global routing problem. We then state theorems concerning the other integer pro-

grams we have considered; the details are straightforward and are omitted.

6.4.1 Global Routing

In section 3.1 we formulated the global routing problem of chapter 2 as an integer
linear program. We require this formulation, together with the analysis of section 3.5, in

applying the method of pessimistic estimators. We now give an outline of the determinis-



53

tic equivalent of randomized rounding as applied in section 3.3, drawing suitable analogies

with our treatment of integer approximation in section 6.3.

We route the nets r; € R sequentially. Recall that T(r,) is the set of possible rout-
ings for net r;; ¢;; is the i route in T'(r;). The indicator variable x,; in the integer program

denotes the presence or absence of ¢; in the routing.

The decision tree T now has |T(r,)| branches at level i. Randomized rounding con-
sists of choosing the j* branch at level i with probability x:j, where x,-’_,- is the value
assigned to variable x,; in the linear program solution.

We may set € to 1 in theorem 3.6 and view it as an existence proof, analogous to
theorem 6.1. Note that the strictness of the bound of theorem 3.5 is important for the
existence proof. The method of conditional probabilities then applies, just as in section 6.3.

We now indicate how to construct a pessimistic estimator for the failure probability.

Each sum-to-one constraint (3.1) gives rise to a moment-generating term. Let

E _ » ‘L
CE = ¢ 1+D(C,N)] (6.22)
and
t = In 1+D(c‘.§)] (6.23)

Also, let p, = {i: some tree in T(r,) contains e } for all e € E. Corresponding to (6.13),

the probability of the width of an edge e exceeding C¥ is bounded by

e=tC* H 2 x; e’ (6.24)
1€p, Jekt,
Summing over all edges, we obtain the upper bound function
Uu = 2 e tC* H 2 x; e (6.25)
e€E 1€p, Jje€t;

Fori = 1 to |R|, we choose the tree t,; which minimizes the function U. By reason-

ing similar to that leading to theorem 6.2, we have the following theorem corresponding to
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theorem 3.6.

1
THEOREM 6.3: The method of pessimistic estimators produces a routing of width

o1l 26)
1 + D(C ,N) (6.

A similar deterministic algorithm can be devised for the multicommodity flow

approach of sections 3.6 and 3.7.

6.4.2 Packing and Maximum Multicommodity Flow

We now state the “deterministic” versions of various theorems proved by randomized

rounding. Corresponding to theorem 4.7, we have:

THEOREM 6.4: Scaling and pessimistic estimators find an integer k-matching of cardinality

> M ,1 - D(M*, %)] (6.27)

For the maximum multicommodity flow problem, we have corresponding to theorem

4.4:

THEOREM 6.5: Path-stripping, scaling and pessimistic estimators find a multicommodity

flow of total magnitude

> Fs [1 - DF* #] (6.28)



7.1

Chapter 7

Conélusion

Main Results

We conclude by summarizing the main contributions of this thesis. From a theoreti-

cal standpoint, this work re-examines an old problem: that of approximately solving a com-

putationally hard integer program by using the solution to its rational relaxation. Our

results pertain to a collection of integer programs of practical interest. From a practical

point of view, this work tackles an important problem in the design of integrated circuits.

The algorithms developed here offer performance guarantees, and our preliminary experi-

mental experience is encouraging.

1)

(2)

3

(4)

We now list the main results in greater detail.

The problem of global routing in gate-arrays is shown to be NP-Complete, thus laying

a basis for the search for heuristics for this problem.

The global routing problem is formulated as an integer program, and a provably good
approximation algorithm is presented for this integer program. The approximation
algorithm uses the solutions to the relaxation linear program; these solutions are
rounded using an interesting randomized method. The quality of the approximation

is proved using new bounds on the tail of the binomial distribution.

Initial experimental work in global routing with our randomized algorithm has pro-
duced encouraging results. Further work with larger gate-arrays is necessary before
the practical usefulness of the method becomes clear. Of particular concern is the size
(and consequent cost in computer time) of the linear programs that have to be solved.
On the other hand, it is possible to trade off linear program size and routing quality

by controlling the choice of routes used in an experiment.

The randomized rounding algorithm has been shown to be applicable to certain pack-
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ing and multicommodity flow problems from combinatorial optimization and opera-

tions research, and to some combinatorial problems concerning set balancing.

(5) An interesting “method of conditional probabilities” is used to convert randomized
rounding to a deterministic procedure yielding the same performance guarantees.
The deterministic procedure is made polynomial-time by using “pessimistic” upper
bounds on the probabilities of certain events occurring in the algorithm. This is a
somewhat surprising result. While it says that randomization is unnecessary for our
rounding problems, it is interesting that the deterministic algorithm works by mim-
icking the proof of the randomized algorithm. Although our deterministic algorithm
could thus be derived from purely combinatorial methods, it is the use of the proba-

bilistic method that led to its conception and understanding.

7.2 Further work

A number of avenues for further research are now apparent. We derived a Chernoff-
like upper bound on the tail probability of the weighted sum of Bernoulli trials in
theorems 4.5 and 4.6. The bound is tightest when all the probabilities p, - - - p, are equal.
It would be interesting to derive lower bounds on the tail probability, especially when the

probabilities p; - - - p, assume disparate values.

In the analysis of randomized rounding in section 3.5, and again in the construction
of the pessimistic estimator in section 6.3, we always sum the probabilities of all bad
events. These bad events are surely correlated. Is it possible to prove a tighter bound
using algebraic properties of the coefficient matrix? When the sum of the entries in every
column of the coefficient matrix is bounded above by some number g, Karp et al. [18] give

a technique for rounding such that all discrepancies are bounded above by g.

The method of conditional probabilities was used in chapter 6 to convert our random-
ized rounding algorithms into deterministic ones. What other randomized

algorithms/constructions can be made deterministic using the method of conditional
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probabilities? In order to make the conversion computationally efficient, we have to find
good pessimistic estimators for the conditional probabilities that arise in the problem. One

cannot always hope to compute a tight pessimistic estimator in polynomial time.

Given that parallel algorithms are currently in vogue, it is natural to ask whether
our deterministic rounding algorithm can be parallelized. It is to be noted that randomized

rounding can be done in constant parallel time due to our use of independent coins.

Discrepancy bounds of the form of theorem 6.1 define a set of 2n halfspaces in
Euclidean r-space. Theorem 6.1 assures the existence of a lattice point (all r co-ordinates
are integral) in the convex body defined by the common intersection of these halfspaces.

Can this be related to Minkowski’s convex body theorem [26]?
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