Data Path Design Considerations
for a High Performance VLSI

Multiprocessor

Daebum Lee

Report No. UCB/CSD 87/318

November 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Data Path Design Considerations for a High Performance VLSI
Multiprocessor

Daebum Lee

Department of Electrical Engineering
and Computer Science
University of California
Berkeley, California 94720

ABSTRACT

A VLSI data path implementation for the SPUR (Symbolic Processing Using
RISC’s) processor is presented. There are many tradeoffs to be considered in the
design of a microprocessor data path. Often, these tradeoffs are interrelated and thus
increase the complexity of the design. This report focuses on the design of the
CMOS data path with the tradeoffs considered throughout the implementation of

the data path for the SPUR CPU.

November 17, 1986

Daebum Lee
Author

Title Data Path Design Considerations for a High Performance VLSI

Multiprocessor

RESEARCE PROJECT

Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley,

in partial satisfaction of the requirements for the degree
of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee: :;25222%12// C?fffé%é;éézZ" , Research Adviser
il 4

Moo 15 1686 pate
Mr// (‘-22@

TABLE OF CONTENTS

1. INTRODUCTION

2. ARCHITECTURAL ASPECTS AND CONSTRAINTS OF THE SPUR CPU

2.1 The 4-stage Pipeline

2.2 Clocking Specification

2.3 Functional Units

2.4 The SPUR CPU chip

2.5 Execution of Instructions by the Lower Data Path

3. IMPLEMENTATION OF THE SPUR DATA PATH

3.1 The Design styles and the Scalable CMOS Technology
3.2 The Register File

3.3 Intemnal Forwarding

3.4 Functional Units

3.5 Design Metrics of the Lower Data Path

3.6 Experimental Results - A Testchip for the Data Path

4. ALTERNATIVE IMPLEMENTATIONS

4.1 Dual-port Read and Write Memory Cell
4.2 An On-chip Dynamic Memory

5. CONCLUSION AND SUMMARY

REFERENCES

APPENDIX

Data Path Design Considerations for a High Performance VLSI
Multiprocessor

Daebum Lee

Department of Electrical Engineering
and Computer Science
University of California
Berkeley, California 94720

1. INTRODUCTION

Evolving integrated circuit technology permits high performance CPU’s to be built on a single
chip. As a result, the data path design for such a high performance microprocessor becomes increas-
ingly complex. It often involves numerous performance and cost tradeoffs. Furthermore, optimiza-
tion of the design must be done interactively with different levels of hierarchy to achieve global
optimization rather than the local optimization. Consequently, the data path design depends heavily
on the microarchitecture of the processor. The design objective can differ very much for one archi-
tecture to another. This report presents the design of a data path optimized for the specific micropro-

cessor architecture, SPUR (Symbolic Processing Using RISCS).

SPUR is a multiprocessor workstation being developed at UC Berkeley to support LISP pro-
gramming environments through multiprocessing [Hill85]. It includes three custom VLSI chips, the
CPU, the floating point coprocessor (FPU), and the memory management unit (CC-cache controller).
The SPUR CPU chip is the third generation RISC processor designed and implemented at U.C.

Berkeley. This report describes the details of the data path implementation for the SPUR CPU chip.

In Section 2, a brief overview of the SPUR CPU microarchitecture is presented. This will help
illustrate the implementation details of the data path presented in the following section. The pipeline
organization is discussed first since it has a great impact on the data path timing. It also imposes
hardware requirements, such .« multiple read and write czpability of the register file. Clocking
specifications and requirements of functional units are then presented. After looking at a CPU block

diagram and global floor plan, the three most typical instruction executions are presented to illustrate

22

how the subsystems in the data path are utilized to implement the instructions.

Section 3 focuses on the impiementation of the SPUR CPU’s lower data path. The implemen-
tation strategy used through out the chip is presented first, along with the process technologies in
which the SPUR chips will be fabricated. The implementation details of the register file, intenal
forwarding logic, and functional units are further scrutinized in the following sections. A part of
SPUR CPU chip was assembled into a testchip and fabricated. Testing results are presented at the

end of the Section 3.

Finally Section 4 examines some alternatives in designing a high performance microprocessor
data path. The register file with multiple read and write ports can affect processor's performance as
well as it’s pipeline organization. Thus, the design of double port read and write memory cells are
considered. The limitations of implementing a dynamic memory on the processor chip are also

examined, and finally an implementation of on-chip cache using dynamic memory is presented.

-3-

2. ARCHITECTURAL ASPECTS AND CONSTRAINTS OF THE SPUR CPU

The microarchitecture of the SPUR CPU has been influenced by previous RISC projects at UC
Berkeley [Kate83] [Joan85]. Some features of previous Berkeley RISC architecture were kept in the
SPUR CPU, while others were deleted and new features were substituted. For example, a large
register file with an overlapping window scheme is implemented in the SPUR CPU, while the 32-bit
barrel shifter included in RISC II is replaced by a simple shifter that shifts up to 3 bits. Advances in
technology permit an instruction cache to be implemented on the CPU chip. This on-chip cache will
improve the performance by reducing the contention between instruction and data memory traffic, in

addition to reducing the effective instruction access time.

This section will provide a brief overview of the SPUR CPU architecture as well as some detail
about key features. Implementation issues of those key features are further discussed in the following
sections. A detailed description of the SPUR CPU microarchitecture can be found in [Kong86], and

the instruction set is described in {Taylor85].

2.1 The 4-stage pipeline

The basic idea behind the SPUR pipeline organization came from the three-stage pipeline in
the RISC-II processor [Kate83]. In an ideal three-stage pipeline, each register-to-register instruction
takes 3 cycles to finish. However, instructions that reference memory, such as load, take four cycles
to complete. After a 4-cycle instruction, the following 2 instructions must be suspended. Figure 2-1

illustrates this suspension sequence. The reasons for the suspension are listed below:
(1) There is a register file write confi.ct between the 4-cycle memory access instruction and
the following register-to-register instruction.
(2) There is a memory access conflict between 4-cycle instruction (Mem Access stage) and
the instruction entering the Ifetch stage of pipeline.
There are many ways to avoid this type of pipeline suspension. For example, if the register file

is made of 2-port read-write memory elements, the first conflict can be resolved. The second conflict

can also be resolved by including an on-chip instruction buffer (cache) or separating a cache

Ifetch Exec Mem Acc Write
Suspend
Ifexch Exec Write
Suspend
Ifewch Exec Write

Figure 2-1. 3-stage pipeline
(memory) into data and instruction caches, which allows the CPU to reference both data and instruc-

tion simultaneously.

The solution employed in the SPUR CPU was to include an on-chip instruction buffer and to
stretch all 3-cycle instructions to a uniform 4-cycle pipeline {[Kong86]. The third stage can be a
memory access cycle for those instructions that reference memory, and can be anlidle stage for the
register-to-register instructions, and is illustrated in Figure 2-2. The idle stage of the stretched pipe-
line eliminates the double port write requirement on the register file, while the on-chip instruction
buffer eliminates the conflict between instruction fetch and memory access. Moreover, adding one
extra cycle to delay the write stage does not degrade the performance of the CPU. The result of each
ordinary instruction is still available to the next instructions through double internal forwarding

(double intemal forwarding is explained below).

The 4-stage pipeline organization now requires double intemal forwarding, as shown by the
arrows in Figure 2-2. This avoids data hazards caused by referencing the register whose new value is
not yet written into the register file. Extra temporary latches must be provided to store the results
that might be intemnally forwarded, along with the logic that detects the forwarding conditions.
However, there is an instruction sequence where this intemmal forwarding logic cannot resolve the
data interdependency: When an instruction following a load instruction references the register being
loaded. The loaded value won’t be available until late in the memory stage of the load instruction.

By this time the 2nd instruction has almost finished its execution stage. The result of the instruction

11 Ifewch Exoc Mem Ace Wrim LOAD
2 letch Exoc \ Mom Acc Wrim
A
Ny
I3 Ietch \ Exec Mem Acc Write
14 Hewch Exec Mem Acc Write

Figure 2-2. 4-stage pipeline of the SPUR CPU
in this sequence is thus undefined. The implementation details of this double internal forwarding cir-

cuits are presented in Section 3-2.

2.2 Clocking Specification

The clocking scheme of the SPUR CPU is a direct result of its register file and instruction
buffer operations, which are in turn dictated by the 4-stage pipeline operations. At least 3 phases are
needed to permit read and write within one cycle in both blocks (section 3-2 explains why 3 phases
are needed). These phases are a precharge phase prior to the read, a phase for the read, and a phase
for the write. However, the register file and the instruction buffer (IB) require different timing for

their own operations. Therefore a 4-phase non-overlapping clocking scheme is chosen.

The operations of the register file and IB with a 4-phase non-overlapped clocking scheme are
summarized in Figure 2-3. Note that a non-overlapped time is required to discharge the word-line
before precharging the bit-line.

To eliminate clock skew caused by the delay of bringing the ph.ses .n a chip, an on-chip 4-

phase clock generator has been designed and tested for use in SPUR CPU chip [DKJeong86].

-6-

The timing specification for this 4-phase clock depends on the critical paths within each phase.

The initial timing analysis indicates that 25 nsec for each phase with 10 nsec non-overlapped time is

required. This results in cycle time of 140 nsec.

Phil —_—
Pni2
Phi3
Phid —_—
Phil Phi2 Phi3 Phi4
nsec 25 10 25 10 25 10 25 10
Reg File Read - Write precharge
bit line
Decoder Precharge Deocde Precharge Decode
for write for read
Bit line Discharged - Driven precharged
(read) for write to 1
Word line Driven discharged Driven discharged
for read to 0 for write * to0
Phil Phi2 Phi3 Phi4
IB Precharge Read - Write
bit line
Decoder Decode Precharge Decode precharge
for read for write
Bit line Precharge Discharged - Driven
o1l (read) for write
Word line | Dischraged Driven Discharged Driven
w0 for read to 0 for write *

*

Word line must be discharged during the non-overlapped time, before the bit lines being
precharged.

Figure 2-3. Operations of the register file and the instructior. buffer

2.3 Functional Units

Hardware support for complex functions often requires substantial silicon area on the chip as
well as an increase in the basic cycle time. In RISC architectures, most complex functions are left
out and only simple minimum functions are used sequentially to implement complex functions. In
the SPUR CPU, the major functional units required are the arithmetic logic unit (ALU), the shifter,
and the byte extractor/inserter.

The ALU is a simple 32-bit adder and includes some basic logical operations such as OR,
AND, and XOR. These logical operations are readily available from the input section of the adder,

and hence do not consume extra silicon area.

The shifter is used to iimplement arithmetic and logical shift operations. The SPUR CPU
implements 1 to 3-bit logical left-shift, 1-bit logical right-shift, and 1-bit arithmetic right-shift opera-
tions.

Tag checking and operations on tags are necessary features because the SPUR CPU is designed
to support LISP. The 40-bit register is made of an 8-bit tag and a 32-bit data word to support this.
The byte extractor and inserter are also used to implement instructions that do operations on tags.
The byte-extractor takes a byte out of the source register and puts it onto the destination bus, and the
byte-inserter inserts a byte into a 40-bit word.

With 4-phase clocking, all functional units accept inputs at the leading edge of phi2 and drive
the output bus at the leading edge of phi4. The implementation of these functional units are

presented in section 3-3.

2.4 The SPUR CPU chip

The SPUR CPU chip consists of two major blocks: The Instruction Unit and the Ex.cution
Unit. The execution unit is further divided into the upper data path. the lower data path, and the con-
trol unit. The 40-bit lower data paih is for general computation on the 40-bit tagged registers, and the

30-bit upper data path is for instruction address calculations and special register references.

busPC
TRAP CALL IFET MEM EXEC
CwWP | | swp
busl BTae PC PC PC PC PC
1B
~ C T T 1 -
Control
CLOCK
busL CONTROL UNIT
< GEN busS
|
TAGA NS BRANCH
Tra
REG COND P
DST2 || DST1 |} MBR INT BUS- BYTE
FILE
BUFA EXT
&
busA & UPSW

BUFB IST SHIFT

busp | ALU
bus® _’Q

Figure 2-4. CPU Block Diagram

KPSw

<

Figure 2-4 presents a block diagram of SPUR CPU chip. The basic elements and functional

units within each major blocks are described:
Instruction Unit(IU)
Instruction Buffer(IB): 512 bytes or 128 32-bit words direct-mapped cache. It is organized

into 16 sub-blocks each containing 8 words.

IB Tag: Tag storage for IB
IU controller: Instruction unit controller, consists of 2 finite state machines
Execut’..n Unit(EU)
Lowe- data path
Register file: 138 40-bit registers organized into 8 multiply overlapped widows. Registers are
dual-ported for read but single-ported for write.

DST1, DST2: These two temporary latches hold the results of two instructions, which have

-9-

finished their execution stage of pipeline but waiting for the register file write stage. If condi-
tions are met, these results are forwarded to the next instructions which need them.

Internal forwarding logic: The logic that detects internal forwarding conditions.

MBR: Memory buffer register which stores the data to be written to the external memory.
Functional Units:

Byte Extractor/Inserter: Byte extractor and inserter

Shifter: A simple logical and arithmetic shifter

ALU: A simple adder with XOR, OR, and AND logical operations

Trap Logic: Generates trap requests for various conditions

Branch Cond: Uses the outputs of the ALU to evaluate the conditions for all compare and
branch instructions.

KPSW, UPSW: UPSW and KPSW are special registers which hold User and Kemel Processor
Words, respectively. Logically, they belong to the upper data path, but due to space limitation

of the upper data path they are placed in the lower data path.

Upper data path

CWP: Current window pointer points to the register window in use

SWP: Saved window pointer points to the memory address that holds the saved window in
memory overflowed from the register file.

TrapPC: Holds the target address for potential trap request

CallPC: Holds the target address for the jump or call instructions

Adder: Calculates the destination address for all compare and branch instructions while the
ALU is periorming the comparison.

IfetPC: Holds the address of the instruction currently in the instruction fetch stage of the pipe-
line.

ExecPC: Holds the addrzss of the instruction currently in the execution stage of the pipeline.

MemPC: Holds the address of the instruction currently in the memory access stage of the

-10-

pipeline.

Control Unit

The control unit decodes the instruction OP codes into high-level control signals for the rest of
the CPU. Since a 4-stage pipeline is used, it must deliver these high-level signals in time for
the correct pipeline stages. These high-level signals are then routed to the local decoding

blocks to form low-level control signals, which directly control the data paths.

Floor Plan: The IB and the Regfile are the largest (in size) single blocks in the chip. The size
and aspect ratio of these two blocks lead to the floor plan of the chip as shown in Figure 2-5. The
upper data path, which calculates the instruction addresses is placed by the IU in the upper half of
the chip. The lower data path, which is for general computation on the 40-bit registers, is placed next
to the Regfile in the lower half of the chip. Both the instruction buffer and the register file use the
same memory element. Furthermore, both data paths are implemented in bit-sliced fashion along
with this basic memory element. This not only saves the design time but also provides the possibil-
ity of sharing some useful layouts in both data paths. The lower data path gets all control signals
from the control unit through the local decoding logic. All control signals are buffered by control
line buffers adjacent to the data path. It also accepts the register address and the immediate fields of
the instruction from the IU through busl. BusL is for the memory data, while busS is for the memory

address and it may also be used to transfer data between the upper data path and the lower data path.
The implementation of the instruction unit (JU) is well described in [RichD86], and that of the
upper data path of the execution unit (EU) is in [Wook86]. This report will focus on the implemen-

tation issues of the lower data path.

2.5 Execution of instructions by the lower data path

This section illustrates the execution of instructions by the lower data path with architectural
features and clocking specifications presented thus far. These illustrations not cnly give an insight of

how subsystems in the lower data path are utilized, but also provide a glimpse of the timing

-11-

(lambdas)
1 B
UPPER DATAPATH
TAG
1 IB
4 1 L8]
CTR
500+ CONTROL UNIT
r CLOCK GEN J
T RA RB]
T TRAP LOGIC
EXT
1 REG FILE DTS MBR | BUF | &
SH
IsT
ALU PSW
o 1
0 500C 10000
(1 lambda = 1um) (lambdas)

Figure 2-5. The floor plan of the SPUR CPU chip
constraints they have.
Among many instructions supported by the lower data path, the execution of these most com-
mon instructions are chosen in the illustrations. The execution of those three instructions involve

almost all of the subsystems in the data path.

-12-

(1) Register-to-register operation using one of the functional units.

RD <---RS1 (FU) RC

(2) LOAD instruction

RD <--- MEM[RS1 + RC]

(3) STORE instruction

MEM[RS1 + RC] <--- RS2

Figures 2-6, 7 and 8 illustrate the execution of the above 3 instructions by the lower data path.

-13-

busl
busA
bidineA BUS BusBuf
DST2 DST1 INT A&B
Reg File
bitlineB
busB 7 busB2
Phil
Cycle 1 Phi2
Ifetch Phi3 Instruction decoding in control unit
Phi4 Register file decoding - RS1
Phil BusBufA <-- busA, BusBufB <--busl or busB
Cycle 2 Phi2 ALU <--busA2, busB2; TAGA <-- busA2[tag]
Exec Phi3 ALU
Phi4 DST1 <-- busD <-- ALU; DST1[tag] <-- busD <-- TAGA
Phil
Cycle 1 Phi2
Mem Acc Phi3 DST2 <-- DST1
Phi4
Phil
Cycle 1 Phi2 Register file decoding for wr..e - RD
Write Phi3 RD <-- DST2
Phi4

Figure 2-6. Mustration of register-to-register operation

RD <--RS1 (ALU)RC

-14 -

busl
busA busA2
bitlineA BUS BusBuf ALU
DST2 INT A&B
Reg File
bitlineB
busB) ‘ busB2
Phil
Cycle 1 Phi2
Ifetch Phi3 Instruction decoding in control unit
Phi4 Register file decoding - RS1
Phil BusBufA <-- busA (RS1), BusBufB <--busl or busB
Cycle 2 Phi2 ALU <--busA2, busB2
Exec Phi3 ALU
Phi4 MAR<-- busS <-- ALU
Phil
Cycle 1 Phi2
Mem Acc Phi3 DST2 <-- busL. <-- MEM¥*
Phi4
Phil
Cycle 1 Phi2 Register file decoding for write - RD
Write Phi3 RD <-- DST2
Phi4

* Assume no cache miss

Figure 2-7. [llustration of LOAD instruction : RD <-- MEM[RS1 + RC]

busS

MAR

-15 -

busI
busA busA2
bidineA BUS BusBuf ALU
DST2 MBR INT A&B
Reg File
bitlineB
busB) busB2
busl. ‘L X
Phil
Cycle 1 | Phi2
Ifetch | Phi3 Instruction decoding in control unit
Phi4 Register file decoding - RS1 & RS2
Phil | BusBufA <-- busA (RS1), BusBufB <--busl (RC) MBR <-- busB
Cycle 2 | Phi2 ALU <--busA2, busB2
Exec Phi3 ALU
Phi4 MAR<-- busS <-- ALU
Phil busL <-- MBR
Cycle 1 | Phi2
Mem Acc | Phi3
Phi4
Phil
Cycle 1 | Phi2
Write Phi3
Phi4

Figure 2-8. Nlustration of STORE instruction : MEM[RS1 + RC] <-- RS2

busS

MAR

-16-

3. IMPLEMENTATION OF THE SPUR DATA PATH

This section presents the implementation details of the SPUR CPU’s data path. Before exa-
mining the low-level details, it may be advantageous to look at an overall picture of implementation
strategies. For example, the circuit design styles used throughout the CPU chip, and the process tech-

nologies in which the chip will be fabricated.

3.1 The Design Style and the Scalable CMOS technology

The general design strategy used in data path implementation follows the theme of global
optimization rather than local optimization. Due to the limited resources on a single chip, a
compromise should be made on the local optimization of any subsystem, such that the ultimate goal
of global optimization can be achieved. Furthermore, the overall performance of the data path
strongly depends on how closely subsystems are connected to the data path and how efficiently they
interact with each other. Most subsystems in the SPUR data path are designed and optimized by
carefully considering these facts.

The design style used throughout most of the chip is dynamic CMOS design. Within such a
design -style, charge redistribution and clock skew can be severe problems. The general guidelines of
avoiding these problems are well presented in [Nora83] and [Kong85]. The following rules are fol-
lowed in all dynamic circuits designed in the chip:

(1) In the case of domino logic, all inputs must be either settled before the evaluation or they

can make only one transition from O to 1 during the evaluation.

(2) Any input that is more likely than others to make a O to 1 transition during the evaluation
r.s0e, is placed further away from the precharged node (closer to the GND).

(3) Clocked CMOS latches are used for latching inputs from precharged nodes, such as
precharged bus.

(4) Dynamic nodes are intentionally laid out to have larger capacitance (about 5X or more)

than any node that can potentially share charge. Consequently, even if charge

-17-

redistribution takes place, the logic level of the dynamic node is not degraded to an

incorrect logic level.

Dynamic circuit design style often speeds up the data flow. For example, a highly capacitive
bus can be precharged to a high level and then pulled down to low or remain high according to the
logic. Since NMOS transistors are usually 2-3 times stronger than their CMOS counter parts, pulling
down a capacitive bus is fast with a modest amount of silicon area. Some highly capacitive busses in

the SPUR CPU chip, such as busD and busS, are implemented this way.

The SPUR pipeline can be suspended for a long period of time due to memory or coprocessor
operations. Therefore, provision should be made to prevent any loss of valuable information stored
on capacitive nodes during those long pipeline suspensions. Since charge on capacitive nodes leaks
away after a certain period time (approximately 2-4 msec), it is necessary to refresh such nodes
periodically. Most latches and registers are, therefore, made to have a refreshing feature. Since 4
phases are available everywhere on the chip, they are used as refresh signals. This will ensure all
dynamic latches and registers are refreshed every cycle even during the indefinite pipeline suspen-

sion as long as the power and clock are still on.

Initially, the SPUR CPU chip was planned to be fabricated in a 2 pm double metal CMOS pro-
cess. Advances in technology make it possible to fabricate it in scalable CMOS processes. Several
design rules have been merged to produce a general set of scalable CMOS design rules. Moreover,
circuits used in the SPUR CPU chip are designed to be tolerant of process variations. As an exam-
ple, even though the SPUR CPU chip uses large amount of silicor. area for the memorics, it does not
use sense amplifiers in any of them, due to the sense amplifier’s relatively heavy dependence on the
process.

The processeé available to fabr:.zte SPUR chips are the 2 wn CMOS process at XEROX
PARC and the CMOS40 process at HP’s Northwest 1C division (Corvallis, OR). The CMOS40 pro-
cess is equivalent to the 1.6 wm lambda-based technology (lambda = 0.8 pm). Both 2 wn CMOS and

the CMOS40 processes are double metal processes. SPICE model parameters for both processes are

-18 -

included in Appendix. All SPUR chips use a pad-frame containing 208 pads, although the CPU chip
only needs approximately 180 pads. The remaining pads will be used to probe various signals in the

chip for diagnostics.

3.2 The Register File

The significance of having a large register file in a RISC type data path has been well discussed
in [Kate83]. As in the RISC II processor, the SPUR CPU includes 138 registers organized into 8
overlapping windows. Unlike RICS II, these registers are 40-bit long in which an 8-bit tag is aug-
mented to the 32-bit data to support tag checking. In this subsection, a CMOS implementation of the

register file is presented.

3.2.1 Memory cell design

The register-oriented RISC instruction format usually has addresses of two source registers and
a destination register. With the 4-stage pipeline in the SPUR CPU, it leads to double reading and
single writing of register file, all within one cycle. Among the different memory cells considered, the
popular 6T static RAM cell based on CMOS technology, as shown in Figure 3-1, was chosen. The

NMOS version of the same cell was also used in both RISC II and SOAR [Sher84] [Joan§5].

The conventional SRAM uses sense amplifiers to speed-up the read and write. The SPUR CPU
chip, however, avoids the use of sense amplifiers due to the complexity of circuits. An alternative is
to precharge the bit line prior to read and discharge it according to the data stored in the memory
cell. This alternative has been adopted in SPUR CPU for its simplicity and its insensitivity to
processes variations. Consequently, at least 3 phases are needed to complete read and writc within a

cycle - one for read, one for write and one for precharge.

‘While the sense amplifier us¢s both bit lines for reading, precharging scheme only requires one
bit iine for the reading. This makes it easy to design a two-port read register file with just two busses.
The access transistors M3 and M4 in Figure 3-1, are driven by two different select lines, such that

two accesses can occur simultaneously through two bucses. Cell reading is done by merely

-19-

Wor ‘ﬁl e A WordlineB
_vad

ey e

busA busB

[x ——

— —
/ M3(8/2) M4(8/2) /
M5(l6f2)] }— ——{ |:M6(1 62)

Figure 3-1. CMOS 6T SRAM cell
discharging a precharged bit line. In this scheme, however, the reading can be quite slow because

the selected cell must discharge the heavily loaded bit lines by several volts.

The read delay can be reduced by widening the pulldown transistors of cell (M5, M6) as well
as the access transistors (M3, M4). However, there are two drawbacks to widening the access
transistor. First, when the cell is selected and "0" is stored, current flows from the bit line through
the access transistor (M3) and the pulldown transistor (M5) to the ground. To avoid altering the
state of the cell, the conductance (W/L) of access transistor must be several times smaller than that
of pulldowns, so that the drain (node X in Figure 3-1) voltage of the pulldowr transistor does not rise
above the threshold of the coupled c¢evice. Secondly, as the width of access transistor increases, the
drain wrea of that device also increases. This, in tum, increases the bit line capacitance, since the
drains of all 138 access transistors contribute to the bit line capacitance. Optimum conductances of

these two devices exist, and SPICE was used to determine the optimum sizes of these devices.

The simulations indicate that a conductance (V/L’s) ratio of 2 will ensure sale operation. It

seems to be a small ratio, but right after the selection is made, the pulldown transistor is in its linear

-20-

region of operation while the access transistor is in saturation, hence the effective resistance of
access transistor is much higher than that of pulldown and the ratio of 2 was satisfactory. With this
ratio of 2, and bit-line precharged to 5V, the voltage at the drain of pulldown (node X in Figure 3-1)
stayed below 0.6V until reading is done, according to SPICE simulation. Since the threshold voltage
of the NMOS transistor is close to 0.9V, this design has a safety margin of about 0.3V. The safety

margin to the logical threshold, on the other hand, is greater than 1.0V.

Precharging the bit-line to less than 5V can also reduce the reading delay. However, the layout
of a cell (described below) results in transistor sizes wide enough to meet our timing goal even with

bit lines precharged to 5.0V.

The major effort in laybut was directed at minimizing the area of register file considering all
the constraints, as well as reducing parasitics to achieve the fastest access time. In addition to the
constraints mentioned above, the layout of register cell is further limited by the pitch-matching con-
straints imposed by the decoder and the size of the data path bit-slices. Each regiéter needs two
decoders to provide double reading. The width of the cell is limited by this requirement. On the
other hand, since the data path is designed with a bit-slice for each subsystem, the height is deter-
mined by other subsystems, as shown in Figure 3-2. In the SPUR data path, the ALU requires a
height of about 74 lambdas (1 lambda is 0.8 yn in the CMOS40 process and 1 um for the XEROX
process) to include all circuits needed within a bit-slice. These constraints results in 2 final cell size
of 32 lambdas (width) by 74 lambdas (height). Given this cell size, the access and pull-down transis-
tors were sized such that the access time can be minimized while maintaining the ratio between them

for the safety margin. The final sizes of the transistors are also indicatec in Figure 3-1.

The layout of 4 register cells is shown in Figure 3-2. They are laid out together to share power
lines and bit-line contacts. This not ::nly minimizes t'. area but also reduces parasitics, such as bit-
line capacitance. Since a CMOS process with 2 layers of metal is available, the cell design uses
metal-1 word lines and metal-2 bit lines. Therefore, the only significant parasitics are capacirznces
on these lines, and the resistance of these lines can be neglected. The extracted capacitances of

word-line and bit-line are 1.2pF and 2.1pF respectively. The power lines are also run in metal-2

1 register cell

-21-

16 lambdas

————

———e

Decoder
A0

Decoder

BO

Decoder

B1

Decoder
Al

! Py

r——accAOﬂ—-accEO#

,uncZ§ll——eéEZx#
i I A et

Z

o

%0 558

R R TR s
X s o] '.“ -'\-ik‘-&\‘

¥ Y

oas o0 Y

b

L

-~
t

busAl#

Data Path

Bit Slice

L.

Data Path

Bit Slice

'acsgl#——a

ccAl#

—

Figure 3-2. Laycut of register cell

74 lambdas

.22

horizontally. The SPICE simulation results of register file using this memory cell is summarized at

the end of Section 3.2.2.

3.2.2. Decoders and Address latches

In the SPUR CPU, the register addresses of an instruction being executed are available to the
register file during phi3 of the Ifetch (1st cycle) stage of its pipeline, and registers are read during
phil of the execution stage (2nd cycle). Therefore accessing the register file can take 3 phases, and it
is also pipelined. In phi3, the register file latches the addresses from busl and busCWP, and drives
the decoders. Decoders are then evaluated during phid to select two of 138 registers, while bit-lines
are precharged. Having selecied two word-lines, the register file read proceeds by driving those two
word line during phil. As a result, the read time in phil only consists of driving a word-line and then
discharging a bit-line. Likewise, the write access time consists of driving the word-line and the bit-
line until the cell is written to the desired value. Since writing uses both busses with large bit-line

drivers, writing is done much faster than reading, but only one register can be written at any time.

The block diagram of the register file is shown in Figure 3-3, and the circuit diagrams of the
address latches and decoders are shown in Figure 34. Clocked CMOS latches and domino circuits
are used in the address latches and decoders. These circuits are excellent examples of the design

style and charge redistribution avoidance rules discussed in section 3-1.

The RA and RB latches are essentially the same. When read, they latch in different addresses,
and when write, they latch in the same address from the RD such that only one register 1s selected.
Shift registers are used to implement RD to store the address of the destination register, which will
be written back during phi3 of write stage (4th cycle) of the pipeline. All these units are made of
pseudo-static registers, such that each register is refreshed in every cycle. An indefinite pipeline stall
mandates this refreshing, since charge on any capacitive node can leak away after certain period of
time ("2msec).

The window address for a read is latched :n during phi3, and that for a write is latched in dur-

ing pnil. The CWP block in Figure 3-3 decodes the 3-bit window address using static logic gates

-23-

busCWP busIl
h -4
CcCwp
DECODERS RD
RA & RB e
IF LOGIC
DRIVERS
busA
BltlineA < >
REGISTER ARRAY ’ DST2 DST1
busD
BitlineB
busB

Figure 3-3. Block diagram of the register file
and drives the word-line decoder all within the same phase. Predecoding of the window address uses
the special ascoder of Figure 3-5, which was suggested in [Kate83]. This decoding circuit imple-
ments the overlapping window scheme by mapping two different logical addresses into one physical
address. The register numbering for the SPUR CPU can be found in Appendix. The numbering is
such that the overlap registers appear in their two windows with 5-bit address that differ in only 1-bit

position. It was the numbering of registers that forced special decoders to be used in the register file.

SPICE simulations of the register file are summarized in the Table.3-1. The register file read is

one of the most critical paths in the SPUR CPU chip. A testchip that contains the register file and the

phi3*

busl

phi3

Address Latch

phi4

phid*

N4

|

phi2*

e

phi2

m_“;

Driver

NZ_IE Nt_”: No_{

=

phi4

Decoder

Figure 3-4. Circuit diagram of address latches and decoders

internal forwarding logic was assemblec and fabricated in 2 pn CMOS process at XEROX PARC

The test results are presented in section 3-5. The experimental results are very close to the simula-

tions.

-25-

phid* ——q [

A4

wne —{[N —{[

wAL wAL mAD AL
v A0 we D

phi4 _‘_l [:

Figure 3-5. Decoder for the overlapping window registers

3.3 Internal Forwarding

In the pipelined execution of the instruction stream, data interdependencies among instructions
may arise. In both RISC II and SOAR, where 3-stage pipelines were employed, the data interdepen-
dency exists onlv between two consecutive instructions [Kate83] [Joan85]. That is, the result of any

instruction needs to be forwarded only to the next instruction, requiring a single internal forwarding.

In the case of a 4-stage pipeline, the data interdependencies may exist among 3 consecutive
instructions since the write-back stage of the pipeline is delayed by 2 cycles after the execution
stage. This datz dependency among 3 consecutive instructions can only be resolved by the double
intemal forwarding scheme illustrated in Figure 2-2, The results availabie from the execution stage,
therefore, need to be stored in a temporary registers for 2 cycles. Two temporary registers, called

DST1 and DST2, are provided to store the results from two consecutive instructions. A third

-26-

Block/Operation Phase Delay(nsec)
CWP phi3, phil 8
RA & RB phil, phi3 6
Decoder phi2, phi4 6.5
Read phil 16.5
Write phi3 10

Table 3-1. Signal Delays in Register File : SPICE simulation

instruction in the pipeline might use either of these.

The DST1 receives the result of instruction at the end of the Exec stage when execution is
completed. This result is passed onto DST2 during the Mem stage and is written into the register file
from DST2 during the write stage. Since the register file writing is done during phi3 while reading 1s
done during phil, the forwarding from DST?2 is still necessary to provide the temporary result that

might be read in phil. This occurs when the instruction with the Exec stage coincides with the write

stage of the previous instruction.

The data dependencies can be detected by comparing the addresses of register references in the
instruction currently in the Ifetch stage with addresses currently held in RD for later use in the write

stage. Four equality comparators are needec to detect the following conditions (see figure 2-2):

DSTZ_to_busA : RS1,I3=RD,I1
DST2_to_busB : RS2,I3 =RD,I1
DST1_tc_busA : RS1,I3=RD.IZ

2ST1 to_busB : RS2,I3=RD,12

.27 -

The comparisons must be done in parallel with the decoding of register file, such that busA and

busB are driven by the temporary results during phil if internal forwarding conditions are met.

= = i

N1 N2
. phil
phid phi2
phi4®

phi

Figure 3-6. Comparator using dynamic CMOS XOR circuits

The comparators must be fast to keep the cycle time short, and must be laid out compactly to
fit between the DST’s and the register file decoder, as shown in Figure 3-1. Thus, a fast dynamic
XOR circuit as shown in Figure 3-6 has been used. Bit-wise comparisons are done using this
dynamic XOR circuit, and then the outputs of these XOR's are fed into the Domino circuit for an
address match. Since this XOR circuit uses only true values of inputs, routing and area consumption

are minimal. The comparator circuit operates as follows:
(1) During phi2, node N1 and N2 are discharged to GND.
(2) Node N3 is precharged to Vdd during phi3

(3) The XOR is evaluated during phi4 by opening transmission gates connected to nodes N1
and N2. Notice that nodes N1 and N2 are actively driven through the transmission gates.
If two inputs are different, the node N3 will be fully discharged to GND. If both inputs
are low, it will remain high at precharged value of Vdd. However, if both inputs are high,

the logic level at node N3 will be momentarily unstable depending on the arrival of

-28 -

inputs, but will be restored to the value as low as (Vdd-Vt) by the time inputs get sta-

blized. In any case, the final value of node N3 will be stablized within phi4.

(4) The Domino circuit (OR) is evaluated for an address match during phil. At the same lime
the IF enabling signal is asserted, the output of Domino gets through to the output of the
IF logic block. The outputs of the IF logic remains at GND until a match is made. In the
case of a match, the registcr file busses are disconnected from busA/busB during phil, as
explained below.
After conditions for intemal forwardings are met, busA and/or busB must be driven by the
values stored in the DST’s instead bf the values from the register file. The circuits in Figure
3-7 are used to disconnect the register file busses from busA and busB only if internal forward-
ing needs to be done. In the case where two forwardings are destined for the same bus, e.g.
DST2_to_busA and DST1_to_busA, the result from DST1 shall drive the busA because the
result in DST1 is more recent than that in DST2. Since DST1 is placed close to busA, the

DST1_to_busA will always precede the DST2:_to_busA.

The circuit used to implement double internal forwardings must not lengthen the read time of
register file during phil. However, the signal delay through these circuits are added to the read time
of register file. Thus, inverters and transmission gates used for the internal forwarding must be
designed to minimize the signal delay through them. The inverters are designed such that their sizes
increase by approximately 3 times each stage [Mohsen79). Since register file busses are changing
very slowly when reading, including a few inverters between register file bus and busA(busB) actu-
ally helps getting a fast transition on busA and busB. With the circuits designed as above, the extra
delay that is added 1> the read delay was not more than 3 nsec. The SPICE result shown in section
3.2.2 includes this extra delay. The signal delays within IF block are not significant compared to the

read delay of register file. SPICE simuation of IF logic indicates the delay in phil is about 12 nsec.

One advantage of separating the busses is that capacitances on busA and busB hat the DST's
drivers must drive, are reduced by disconnecting the highly capacitive bit lines of the register file.

This reduction in capacitance in tumn eases tne design and layout of internal forwarding circtits.

-29.

DST2 _To_busA* DST1 _To_busA*
DST2 DST1*
Y A\ 4
— —
BidineA busA
Do+ >o——x} :

|]

A i

— —

DST2_TO_busA DST1_To_busA

Figure 3-7. Circuit diagram of double internal forwarding logic

3.4 Functional Units

The three functional units, as introduced in section 2, are the ALU, the shifter, and the byte
extractor and inserter. The shifter and the byte extractor/inserter are implemented simply using pass
gate logic - a CMOS transmission gate followed by an inverter. These blocks latch in their inputs
during phi2 and drive the output bus (busD) in phi4. They have more than a phase to evaluate their
outputs, and thus timing is insignificant compared to the ALU. The optimization policy of these

blocks is to minimize the silicon area. The layouts of these two blocks can be found in Appendix.

-130-

Precharge
(prul*)

busD

Output of the

Functional Units

[

¥

Drive_busD ——i E

(phi2)

Figure 3-8. The driver used in functional units to drive busD

The output section of all functional units drive busD, making busD highly capacitive. To
speed up the data flow through this bus, busD is precharged to a high level before it is driven during
phi4. The circuit of Figure 3-8 is used for all output drivers of functional units. As discussed at the
beginning of this section, precharging highly capacitive busses saves the area and speeds up the data

flow.

The ALU performs Add, Subtract, XOR, OR, and AND. The ALU design is essentially an
adder design since the latter 3 logical operations are readily available from the input section of most
adders. Subtract can also be done by complementing one of the inputs, and setting the carry-in bit
before performing the additon. The ALU is diviced intc 3 subblocks: the input section, the carry
propagation biock, and the sum block which is also an output of ALU. The ALU operates in 3
phases. The input section latches in inputs in phi2, and the carry propagates in phi3, anc finally the
sum is computed and the result of ALU is put onto busD during phid.

The carry propagation delay of ALU is the most critical path within the functional units, which

is done during phi3. The secondary critical path in phi3 is register file write. Thus, the ALU propa-

gation block is designed to have about the same delay as the register file write. The 8-bit block carry

-31-

C32
p3l24> __ 00| - P<31:24>
8-bit block
g<l31:24> ___ | Carry Lookahead - G<31:24>
C24
p<23:16> ____ S P<23:16>
8-bit block
g<23:16> __ | Carry Lookahead . G<23:16>
C16
p<iS:8> 0| ‘ P<15:8>
§8-bit block
g<15:8> ______ | Carry Lookahead — G<15:8>
C8
p<7:0> . P<7:0>
8-bit block
g<?:0> Carry Lookahead —_ G<7:0>
Cin

Figure 3-9. Block diagram of ALU carry propagation section
lookahead scheme is chosen among many different implementation styles available, for being rea-
sonably fast while less area consuming than a full 32-bit carry lookahead adder {Kong85]. Four 8-
bit block carry lookahead subblocks are cascaded to form a 32-bit carry propagaticn block as shown
in Figure 3-9. The Domino circuit implementation of the above carry propagation scheme meets the

timing requirement.

e

-32.

andToBusD 4

xorTobusD
subtract v

subtract*

busA2 } ' e

Y

—
busB2 o C o {So— —]
—
—<
- busD
__l A
orToBusD
—
1

Figure 3-10. Input section of the ALU

The circuit diagram of the ALU input section is shown in Figure 3-10. Noie that three logical
operations are included in this section, as well as circuits complementing one input for subtract. The
logic diagram and floor plan of the carry propagation block are presented in Figures 3-11 and 3-12,
respectively. The criti_cal path within an 8-bit block is marked with arrowed line in Figure 3-11.
Finally the circuit diagram of the sum block is shown in Figure 3-13. As with other functional units,
the output merely discharges the precharged busD. However, in this case the sum i~gic is included in
the output driver. The layout of the ALU can pe found in Appendix. The resuit: of SPICE simula-

tions for the ALU are summarized in Table 3-2.

-33-

Block/Operation Phase Delay(nsec)
ALU Input Section phi2 8.5
Carry Propagation phi3 14.0
Sum Block(output) phi4 10.0

Table 3-2. Signal Delays in ALU : SPICE simulation

234 -

Critical Path

oL
u
o 29 Ba [os
AN N A
A OA A A qf
8

p3

p2

gl

pl

gC

Figure 3-11. Logic diagram of 8-bit carry lookahead block

-35-

Gl

1 2 5 4
1 2 5 4
1 3 5 4
0 3 5 4
1 2 3 4
1 2 3 4
1 3 3 4
0 3 K} 4
1: Domino logic 1
g0 PO‘
_P_h*_3___q£
: ! > Pl
pl]
—
phi3 d%
—
:]f gl
—
phi3

2 and 5 : Same as 1 but with different sizes of transistors

4: same as 1 but without inverters

3: buffers __{>°__[>°_

0: empty area (routing)

Figure 3-12. Floor plan of 8-bit carry lookahead block

- 36 -

[—

BusD

Sum_To_BusD

(phid)

Figure 3-13. Sum block - the output section of the ALU

3.5 Design metrics of the lower data path

The design metrics for the SPUR CPU lower data path is presented in Table.3-3. It provides an
approximate design time spent on both the circuit design and the layout, in terms of man-months.
Extra time spent on the layout due to a change in design rules is not included in the design time cai-
culation. The transistor count on the SPUR CPU chip reaches over 120,000. About 60,000 transistors
are in the lower data path and master control, 40,000 in the instruction unit, and about 20,000 in the
upper data path. Transistor counts for various blocks within the lower data path are presented in the

same table, as well as the sizes of these blocks.

-37-

Layout Area Design Time
Block Height Width | # transistors | Regularity* Circuit Layout
(lambda) | (lambda) (Man Month) | (Man Month)

Register file 4090 4520 39800 86 1.0 2.0
IF Logic 220 780 210 2 0.5 0.5
DST1, DST2 & MBR 3150 1400 4480 32 0.25 1.0
Byte Ext/Ist 3150 510 580 7 0.1 0.25
Shifter 3150 335 680 15 0.1 0.25
ALU 3150 895 4200 21 0.5 0.75
KPSW & UPSW 3150 800 1770 32 0.1 0.25
TRAP LOGIC 633 1300 730 1.2 0.5 1.5
Bus Interface 3150 448 1090 8 0.2 0.5
Lower Data path 4090 9180 53540 29 3.25 7.0

* total number of transistor divided by number of transistors designed

Table 3-3. Design Metrics of SPUR CPU’s Lower Data path

3.6 Experimental results - A test chip for the data path

A testchip containing the register file and internal forwarding logic was assembled and fabri-
cated in 2 wn N-well CMOS process, at XEROX PARC. Figure 3-14 shows the checkplot of the
testchip, and microphotographies of various parts in the testchip are shown in Figure 3-15. The size

of the chip is 1.04mm by 1.04mm including pads, and it was packaged in 144 PGA chip carrier.

The following functions were tested using Tektronix DAS 9100 system, and found to work.

(1) Register file read and write

(2) Register window overlapping

(3) Double intemal forwarding

(4) Repetition of previous operations in case of a pipeline stall

Due to the limitation or: the DAS system, a clock frequency of 0.5MHz was used to operate the
testchip. With this clock frequency, the reading delay in register file was measured and shown in
Figure 3-16. The testchip was assembled such that we can observe the word line, the bit line, and
the address lines in the decoder, with externally suppli: 4 clocks. Also several pads are connected
such that I/O pad delay can be easily measured. By observing these signals and deiays we could esti-
mate the read delay. It was observed that this delay was less than 20nsec. The SPICE simulation

showed the same delay at about 16.5nsec.

-38 -

Even though the testchip contains only a small part of the whole CPU chip, it does include cir-
cuits that need to be tested before the fabrication of the real CPU chip. These circuits reflect the
design styie and the design rules that we followed to avoid any charge redistribution problems in
dynamic circuits, such as dynamic decoders of register file and the comparator circuits used to
implement IF logic. The register file was implemented with 6T CMOS SRAM cells, and also
needed to be tested to estimate the read delay. Since this delay is the most critical path in the entire
chip, it is then used to determine the minimum phase and hence the cycle time. The testing results,

therefore, gave us a confidence in designing circuits and achieving timing goals.

-

-39-

S L

1t

A (AR 0~ finaapiadysibas |t

'y L] gy
= g 1.LSd)2LSd Keaxelsqs1doa - W&
k= g 1 13 ||
B i e
o 0 77 UL =

] —cte) ! k@%_ﬁm 0 — S4apoo3apm —_— e
ENE Q! Gy S19podapM '@
E} 1
pEd)

. an1pyd010 AL
.WWA aupyodp iy
_Eil
._mm_,‘ =

;m
‘_1
4
1l
| -3
1

Figure 3-14. Testchip

-40-

oL g

e W8S

‘g

A

CY !
‘,ﬂ-
rg |
>4
8
2% ’i

oy
~0
-~
[
wa_‘i.ux-ull-
Iy P

3
e
g1
-
e

shi=d—lpaTue T
. Seeeey —Tings = b B - Sows [& '.‘II
=Tz} onje ot oio: Komsdioso n oMY

e - ‘maedt g_-’_n zg_"gp » ‘. <: 4.
m‘i"t’»ﬂ'—”b! 3 i k| :i-!d'"f-::‘;‘@,,}

A %i(é' Register Cell
]

%
"
N
-
¥ u
M8
9
2|
\(

;E MH ” A e Forverding Logie £

Figure 3-15. Microphotograpies of the testchip

(a) /O pad delay

(b) Delay on word line

(c) Delay between
word line and bit line

-41-

Figure 3-16. Test Results

input

output

Phil

Word line

Word Line

Bit Line

-42 -

4. ALTERNATIVE IMPLEMENTATIONS

The design of microprocessors often requires interaction among different levels of design. For,
example, a feedback from the low-level design can affect the high level design in various ways, and
vice versa. In this section, I will look at some design alternatives in the data path implementation,
and the effects these alternatives would have on microarchitecture and performance of the SPUR
CPU. First, using a dual-port read and write memory cell in the register file will be examined. This
alternative can affect the pipeline organization. Secondly, effects of having dynamic memories on
the chip will be considered. The most difficult problems using dynamic memories are the process

dependency and the complexity of the sensing and refreshing circuits.

4.1. Dual-port read and write memory cell

A critical issue in register-oriented architectures is the register file organization and it’s timing.
A variety of memory configurations can yield a wide range of register file bandwidths. Therefore,

one needs to understand tradeoffs involved in selecting one configuration over another.

As pointed out earlier in Section 2, some pipeline organizations require suspension of pipeline
operations to avoid register write conflict. If the register file is capable of dual-port writing, this
conflict can be resolved, and pipeline suspension due to the conflict of two simultaneous writes is no
longer required. The SPUR CPU avoids this conflict by changing the organization of the pipeline,

such that register write conflict never takes place.

The design of the register cell can vary by having different arrangements of word lines and bit
lines. These lines can be shared for both reading and writing, or separate lines can be provided for
reading and writng. Tradeoffs between these two approaches involve economy of layout area, the
speed, and the concurrency of operations using them. The register cell used in the SPUR CPU fol-
lows the shared bit line approach. In this cell, dual-port reading was implemented relatively easily
by separating the word lines, but writing must use both bit lines to ensure a safe writing. Figure 4-1
shows an altemative register cell that has dual-port writing capability. This 9T pseudostatic RAM

cell was used in Caltech OM-2{MeCo080] and HP FOCUS chip[Beyers81].

-43.

writeA readA

busA

I
Y
]

busB

writeB refresh readB

Figure 4-1. 9T dual-port R/W memory cell

The 9T cell provides both dual-port read and dual-port write capabilities of the register file.
However, area consumed by having 9 transistors often discourages the use of this cell. Therefore, the
design of a memory cell with dual-port capabilities but including less transistors has been con-
sidered. If the 6T SRAM cell can be written using only one bit line, it is an excellent candidate for
the dual-port write memory cell. The reason both bit lines are needed for writing is as follows: When
the cell is written, the flip-flop(cross-coupied inverters) is accessed through the NMOS access
transistors. To change the state of the flip-flop if it has a different value, we must actively pull one
side down while pulling the other side up to make sure that the state changes. Since .. actions are
done through the NM JS access transistors, pulling up is not as effective as pulling down because the
high signal is degraded as it passes through the NMOS access transistor. Thus, writing is done
mostly by pulling down one of the bit lines according to the value to be written. This observation

leads to the conclusion that writing "0" can be done using only one bus, as for reading, but it is the

-44 -

writing "1" that nrevents us having dual-port write with the 6T cell.

read w_l—w
write: OL_J)
v 1 ldi writc*
Yo e P
b— = an Jp—
= v Vo) =
1 -]
J— [ez n]
I I 202 jﬁ
l y write

Figure 4-2. CMOS 6T dual-port R/W memory cell

(o]
(=]

n
o

[)
(=)

T
R et S LD e P S LRt 3

00 AN TN N e e
------- B
Sns i0ns 1Sns 20ns 25ns 30ns ISns 40ns

o V(7) o V(3) « V(2)
Time

Figure 4-3. SPICE simulation on CMCS 6T dual-port R/W memory cell

-

- 45 -

If we use different operating voltages for controlling this 6T cell with appropriate device sizes,
however, writing "1" can be done safely with only one bus. Figure 4-2 shows one possible imple-
mentation of this idea. The sizes of the transistors are kept the same as that of the cell used in the
SPUR CPU, but voltage levels on word line are different for reading and writing. For reading, the
word line is driven at 5.0V by a normal CMOS inverter. For writing, a special driver is used to drive
the word line at 7.0V. The SPICE simulation of writing with only one bus is shown in Figure 4-3. A
CMOS counterpart of bootstrap circuits in NMOS can be used for the special driver. However, such
a CMOS driver has some disadvantages which make it difficult to implement. First, junction break-
down is more probable because of higher operating voltage. This becomes a more serious problem as
minimum dimensions shrink with advances in technology. Secondly, the bootstrap capacitor can take
up a substantial amount of silicon area, since bootstrap capacitance ought to be comparable to the

capacitance it drives.

Still another possible use of 6T SRAM for dual port write memory, based on the above idea, is
shown in Figure 4-4. NMOS pull-up transistors are used in place of CMOS pull-up transistors, with
their gates tied to the Vdd. Note that the W/L ratio of transistors are different from the cell using
CMOS pull-ups. The word line operating voltages are “3.5V for the reading, and 5V for the writing.
The bit lines are precharged to "4V prior to the reading, and driven at full 5V when write. Results of
SPICE simulations showing R/W of this cell are shown in Figure 4-4b. Note that both read and write
are done safely, especially internal node does not rise more than 0.6V until reading ("0") is done. A
driver with an NMOS pull-up can be used to drive the word line at “3.5V for the reading, while a
CMOS inverter can be used to drive the word line for the writing, eliminating the nezd for bootstrap
circuits.

This NMOS 6T cell can be lai¢ out in much iess area than a CMOS cel: since N-to-P or well-
to-well spacing is no longer required. Thus, it can result in a denser memory array while maintain-
ing the same speed of the CMOS SRAM array. The only disadvantage of this cel! is the static power-
consumption due to the NMOS pu!'-ups. This static power can be reduced by lengthening the NMOS

pull-ups, or the gates of these pull-ups can be pulsed with an extra control line. The area saved by

- 46 -

1sv
read: QX___I_-__——_—_
sv
write: ov__|
v
vdd Vdd write*
v
sz JP
Vdd or CLK
{] J—
— |E2“ sz JP
= v v —/

Q—

2n }

write

Figure 44a. NMOS 6T dual-port R/W memory cell

SV

N
2
B ek S S e et

A it

2 Ov | S
S o

IOV /. e e e e P \

0 ove ; - B Y e e et S Sorpeprpepe ne

Ons Sns 10ns 1Sns 20ns 25ns 30ns ISns 40ns 45ns
s V(2) » V(3) « V(T)
Time

Figure 4-4b. SPICE simulation on NMOS 6T dual-port R/W memory cell - write

5 0\/1’\- ------ - - -+ e —cem-- ‘- v “+mmeae- === -+
? |
40Vi 1.
3‘0\4:}.. \i.
E | AU E
! E
2‘0\/{.,t,
10\14:,. +
N
0.0v¥ ----- enens LEE - e]

On Sn . 10n 15n 20n 25n 30n 35n 40n 45n
o V(3) & ¥(S) « V(7)
Time

Figure 4-4¢. SPICE simulation on NMOS 6T dual-port R/W memory cell - read
having all NMOS transistor cell can be used for this extra line. The gates must be pulsed during the
write cycle and periodically to refresh the state of a cell. Without refreshing, the state of a cell can be

altered by the leakage current out of storage node.

Load Ifetch Exec Mem Acc N Write
Ifewch Exec / Write
\‘ W
Iferch Exec Write

Figure 4-5. 3-stage pipeline with double writable register file

If the register file is impiemented using this dual port » memory cell, the pipciine of R-R
instruction need not be stretched to the 4-stage to avoid register write conflict, resulting in 2 3-stage

pipeline except fo- those instructions that reference the memory. However, double inizma

-48 -

forwarding will still be needed for the special sequence of instructions. That is, register references of
instruction 2 cycles after the LOAD may require a double internal forwardings as shown in Figure

4-5. On the other hand, other instruction sequences require only single intemnal forwarding.

4.2 An On-chip Dynamic Memory

The motivation for having on-chip dynamic memory comes from the need for sizable amounts
of memory for program and data storage. The effective storage access time can be reduced and high
throughput is achieved. Several dynamic memory designs that can tolerate the variations of process
technology have been investigated and can be found in {Tham85], [Chil85], and [Tran84]. The pur-
pose of this subsection is to briefly review the limiting factors in designing an on-chip DRAM, and

then to discuss what we would have done if we chose to implement DRAM on the SPUR CPU chip.

The processes used to fabricate high speed and high density DRAM's usually offer special
features such as double layers of polysilicon, and extra implants. First of all, the absence of these
special features in standard processes for the microprocessor chips makes it hard to implement on-
chip dynamic memory. The area of a dynamic memory cell using a standard process would be two or

more times larger than it would be using a state of the art DRAM process.

Junction leakage, subthreshold conduction, and soft errors induced by alpha particles can be
other major concerns regarding the standard process. To be tolerable to the variations of these, a cer-
tain minimum storage capacitance is necessary. However, this will in turn result in larger cell area

and hence lead to the longer access time as well as longer refreshing time.

In addition to the above problems, complexity of the circuit controlling the operation of
DRAM'’s have kept us away from implementing o"-chip dynamic memory. Process independent.
self-timed control circuits for DRAM were investigate< and presented in [Tham85]. Even with such
circuits, any dynamic memory should be refreshed periodically, and this may diswrb the proceszor’s
execution stream. If it is time to refresh all dynamic memories on chip, the contro! of the processor
must stop and wait until all refreshings are done, degrading the processor’s performance. In t- pical

case this is necessary about every 2-3msec.

-49 .

bitline

wordline

read wordline

C

|
.._J_L___:1L
_‘1;.

write wordline

I . I read
reference wordline bitline
12C —[write
T bitline
S/IA
S/A
1T dynamic memory cell 3T dynamic memory cell
_L _L refresh
1 I 1
[e]
Vdd

wordline

I

]

pe—

S/A

bitline

4T dynamic memory cell

Figure 4-6. Dynamic RAM cells

bitline

-50-

Typical dynamic cells using 1T, 3T, and 4T are shown in Figure 4-6. All these cells can be
laid out in much smaller area than a 6T SRAM cell. The advantage of 3T or 4T dynamic memory
cells over 1T cell is that they are less sensitive to process variations and faster in access time. While
the 1T cell requires a certain minimum storage capacitance due to the undesired effects mentioned
above, more area is needed for the extra transistors in 3T or 4T cells. However, the presence of a
multi-layer metal process makes it easy to interconnect these extra transistors. Therefore, the 3T or
4T dynamic cells are more feasible than 1T cell, to be used for an on-chip dynamic memory with
standard microprocessor process available today. As technology advances, however, the 1T cell will

become more attractive due to its high density.

Process dependencies of dynamic memory cells may be overcome by using 3T or 4T cells.
However, a small (about 1% of cycle time) refreshing overhead still exits. The on-chip dynamic
memory is needed for an on-chip cache for instruction or data storage. If we add extra features to this
cache, we can effectively eliminate the overhead associated with refreshing of dynamic memory
used for the caches. Figure 4-7 shows one possible cache implementation with some extra circuits.

The operation of this cache is as follows:

(1) The refresh timer generates a clock with frequency determined by the refreshing interval, e.g.
typically 2-4msec, or to be safe for the worst case, a half of the required refreshing time. The
clock high time can be very short and can be coincided with time that processor does not use

cache, not to disturb the execution stream of processor.
(2) Initally, this clock sets node N1 of each word.

(3) Whenever a word is accessed, the node N1 of that wor is cleared. The signal on the node N1
along with word valid bit is then fed into the Domino circuit, which is evaluated once in every

refreshing interval.

(4) When refresh clock goes high, the domino circuit is evaluated. If anv word has not been
accessed and not been invalidated for the last period, the node N2 (Invalidate*) will remain
high indicating all valid words have been accessed (refreshed) and hence no need for the

refreshing, and the processor’s execution stream can go on without any disruption.

-51-

(5) If the Invalidate* is discharged to GND, it indicates that there are words that nced to be
refreshed. In this case, we can invalidate the whole cache or interrupt the processor’s execution
and refresh all words in a cache.

Study is needed to decide when to invalidate the whole cache rather than refresh it. The size and

organization of the cache may be predominant factors to assess the tradeoffs involved here. Since

such a study is out of the scope of this report, it is not pursued. The circuits required for this scheme

are very simple, fast, and easy to implement.

invalidate

—
I
bt '___—
J: refresh CLK
refresh CLK q
N1
—
valid
bit
wordline
Memory Array
Decoder/Driver

refresh CLK:

-
10nsec

> 2msec o |

Figure 4-7. On-chip cache implemented with dynamic memory cells

-53-

5. CONCLUSION AND SUMMARY

There are many ways to implement a data path for high performance VLSI processors. In this
report, implementation issues for a particular data path have been presented. It has focused on the
data path of the SPUR CPU'’s execution unit. As in the RISC ancestors at U.C. Berkeley, the SPUR
CPU includes a large register file and minimal functional units on the chip. As process technology
has advanced, however, more silicon area has become available on the processor chip. An on-chip
instruction cache is added on the SPUR CPU chip. The data path has been split into two parts. The
upper data path, for the instruction address calculation and the special register reference, is imple-
mented around the instruction cache. The lower data path, for the general computation on the 40-bit

tagged registers, is implemented around the register file.

In section 2, a brief architectural overview was given, to help illustrate the implementation
details presented in the following sections. In section 3, the implementation of the lower data path
has been described in detail. It included the register file, the intemal forwarding logic, and the func-
tional units. Testing results showed that the clock cycle time can be reduced to 100 nsec from the
initial estimate of 140 nsec. The critical delay of the register file operation is below 20nsec, since

this delay defines the width of the phases in the cycle.

Design alternatives have been closely examined in section 4. First, dual-port memory cells
were considered. Multi-port memory can have a great impact on processor performance since it pro-
vides a higher bandwidth between the register file and the functional units. Moreover, multi-port
memory can affect the pipeline organization of the processor. Secondly, on-chip implementation of
dynamic memory was examined. As integrated circuit technology advances further, a process-
independent, high-density, fast on-chip dynamic memories will become more feasible. A possible

implementation of dynamic memory as an on-chip cache was also presented.

There are many design tradeoffs to be considered in the design of data paths for a high perfor-
mance microprocesscrs. The tradeoffs made curing the design process, however, must be re-

evaluated when the iinal processor is used in the completed computer system.

-54-

ACKNOWLEDGEMENTS

First of all, I would like to thank my research advisers, Professors David Hodges and Randy

Katz, for directing this research work and their invaluable comments regarding this report.

I would also like to acknowledge all the people on the SPUR project who made it an exciting
project to work on. In particular, I would like to thank the CPU design team: Shing Kong, Wook
Koh, and Rich Duncombe. Thanks also go to Ken Lutz for setting up the test bench for the SPUR

CPU testchip.

-55-

REFERENCES

(Beyers81] J.Beyers, L.Dohse, J .Fucetola, R.Kochis, C.Lob, G.Taylor and E.Zeller, A 32-Bit VLSI
CPU Chip, IEEE Journal of Solid-State Circuits, Vol. sc-16, no.5 pp.537-541 October 1981.

[Chil85] Brian Childers: On-Chip Memory For Microprocessors, MS Report, EECS, U.C.Berkeley,
Jan. 1985.

[DKJeong86] D.K. Jeong, Gaetano Borriello, David A. Hodges and Randy H.Katz, Design of PLL-
Based Clock Generation Circuits, Submitted to IEEE Journal of Solid-State Circuits, 1986.

[Hill85] M.D. Hill et. al.: SPUR: A VLSI Multiprocessor Workstation, Report No. UCB/CSD 86/273,
Computer Science Division (EECS), U.C.Berkeley, December 1985.

[Joan85] Joan M. Pendlton, A Design Methodology For VLSl Processor, Ph.D. Dissertation,
Memoranum No. UCB/ERL M85/88, U.C.Berkeley, November 1985.

[Kate83] M.G.H. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, Ph.D.
Dissertation, Report No. UCB/CSD 83/141, U.C.Berkeley, October 1983.

[Kong85] S. Kong, Some Design Techniques for High Performance MOS Circuits, Feburary 1985,
M.S. Report, EECS, U.C.Berkeley.

[Kong86] S. Kong, R. Duncombe, D. Lee, W. Koh: The SPUR CPU: An Architectural Description,
Version 2.0, Computer Science Division (EECS), U.C.Berkeley, June 1986.

[MeCo080] C.A.Mead and L.A.Conway, Introduction to VLSI Systems, Addison Wesley Publishing
Co. 1980.

[Mohsen79] A.M.Mohsen and C.A.Mead, Delay-Time Optimization for driving and Sensing of Sig-
nals on High-Capacitance Paths of VLSI Systems, IEEE Journal of Solid-State Circuits, Vol. sc-14,
pp.462-470, April 1979.

[Nora83] Nelson F. Goncalves and Hugo J. DeMan, NORA: A Racefree Dynamic CMOS Technique
for Pipelined Logic Structures, IEEE Journal of Solid-State Circuits, Vol. sc-18 No.3, June 1983,
pp-261-266.

[Sher84] Robert W. Sherburn, Processor Design Tradeoffs in VLSI, Ph.D. Dissertation, Report No.
UCB/CSD 84/173, U.C.Eerkeley, April 1984.

[Taylor85] G.Taylor, SPUR Instruction Set Architecture, Computer Science Division (EECS),
U.C.Berkeley, Moy 1985.

[Tham85] K.S. Tham: A Self-Timed One Transistor Dynamic Ram, MS Report, EECS,
U.C.Berkeley, Jan. 1985.

[Tran84] L.V.Tran, A 32K Bit High Speed On-chip DRAM For Digital Signal Processor, Proceed-
ings of IEEE Custom Integrated Circuit: Conference, pp.166-169, June 1985.

APPENDIX

-Al-

Overlapped with parent Overlapped with child
OWP <5> 11111 OWC <5> 01111
OWP <4> 11110 OWC <4> 01110
OWP <3> 11101 OW(C <3> 01101
OWP <2> 11011 OWC<2> 01011
OWP <1> 11010 OWC<1> 01010
Local Registers Global Registers
Local <9> 11001 Global <9> 01001
Local <8> 11000 Global <8> 01000
Local <7> 10111 Global <7> 00111
Local <6> 10110 Global <6> 00110
Local <5> 10101 Global <5> 00101
Local <4> 10100 Global <4> 00100
Local <3> 10011 Global <3> 00011
Local <2> 10010 Global <2> 00010
Local <1> 10001 Global <1> 00001
Local <0> 10000 Global <0> 00000

Appendix 1. 5-bit Register Addresses

J N L 22 2 2 R R R R R R R R R R RS Z 2RSS RS RS RSS2ttt tRa e

* TYPICAL Device parameters for the BP CMOS40 Process *
* x
* NOTE: These parameters are intended for digital design only. *
* *

AR AR IR KK A AR KA AR AAN AR I AR AR NA R KRR RA A KRR A AR RAR AR AN A KRR Ik kb hk Rk kA k kA k kA k kX

x*xxxk* Uge N and P models for W >= 4U and L <= 20U ****xx*

.MODEL NMOS NMOS LEVEL=2 VTO= 0.75 KP=76.0U GAMMA=.40 LAMBDA=.025 TOX=25N
+ NSUB=4E16 TPG=+1 XJ=.25U LD=.20U UEXP=.16 VMAX=5.5E4 JS=1000U
+ CGSO=220P CGDO=220P CJ=230U CJSW=260P CGBO=40QP

.MODEL PMOS PMOS LEVEL=2 VTO=-0.75 KP=27.0U GAMMA=.50 LAMBDA=.(045 TOX=25N

+ NSUB=2.0E16 TPG=-1 XJ=.20U LD=.05U UEXP=.1l5 VMAX=9.0E4 JS=1000U0
+ CGSO=220P CGDO=220P CJ=670U CJSW=215P CGBO=400P

* TYPICAL Device parameters for the XEROX Zum CMOS Process *
*x *
* NOTE: These parameters are intended for digital design only. *
* *

ET TR SRS LTSS ESELESTELEEESE SRS SRS 2SR R SR as s Rt sttt i S

.MODEL PMOS PMOS LEVEL=2 VTO=-0.70 KP=46.0U GAMMA=.49 LAMBDA=.04 TOX=30N
NSUB=1.0El16 TPG=-1 XJ=.5U0 LD=.375U UEXP=.44 VMAX=9.0E4

TYPICAL CAPS

C3S0=4.4E-10 CGDO=4.4E-10 CJ=3.1E-4 CJSW=3.0E-10 CGBO=1.4E-10

MAX CAPS

CGS0=5.1E-10 CGDO=5.1E-10 CJ=3.4E-4 CJSW=3.8E-10 CGBO=1.5E-10

* + ot +

.MODEL NMOS NMCS LEVEL=2 VTO= 0.70 KP=54.0U GAMMA=,L44 LAMBDA=.,04 TOX=30N
NSUB=1.0E16 TPG=+1 XJ=.3U LD=.225U UEXP=.12 VMAX=5,L2E4

TYPICAL CAPS

CGS0=:,7E~10 LGDO=. .7E-1{ CJ=1.5E-4 CJSW=2.5E~10 CGRO=1.4E-10

MAX CAPS

CG8C~3.1E~.0 CGDO=3.1E-1Q0 CJ=..0E-4 CJSW=1.%E-10 CGBO=1.5E-10

* + % 4

- am

-A3-

", IR I D D DD

; .,g_ i gqéss

I I DR e I K

o1 IR
a_,gr.y%;_.i.,._a 2k

%%.%.S ...%;%é%

L L NEL L. TREL DL 0L LN, O
Dm.g__ﬂ:ﬁ#dﬁ 5 ﬁg_ icaadeiith »ﬁww
Y i

Figure A-1: Shifter Lyout Plot

-A4 -

13
i

14

e
- iy

™

e

e e stib o i dvieg ‘
I NN LR EAD TN

N e

|
Rl Ul

= g e
. e
e

Figure A-2:Byte Extractor/Inserter Layout Plot

ggg_.__g_é___mﬂ it

A -n«lﬂﬁﬁ.ﬁﬂﬁa f.tfi. ..

Jaa,aig______

é_g%_.g] = ..

ﬁqﬁ?

Figure A-3:ALU Layout Plot

