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ABSTRACT

The growing complexity of VLSI chips creates a need for better CAD
tools and data management techniques. The rapidly changing nature of
the field requires a modular toolbox approach — rather than a fixed monol-
ithic design system — and the involvement of the designer in the tool-
building process. A short overview over the Berkeley design environment
and our recent Synthesis Project is also given.

1. INTRODUCTION

Very large scale integration (VLSI) has made it economically viable to place
several bundred thousand devices on a single chip, and the technological evolution
will continue to increase this number by more than an order of magnitude within
a decade. While the limits on chip growth imposed by technology and materials
are still another three orders of magnitude away,! the design of the present-day
chips already causes tremendous problems. G. Moore coined the term “complex-
ity barrier”.? This is the major hurdle faced today in the construction of ever
larger integrated systems. In Section 2 the nature of the VLSI complexity prob-
lem will be discussed.

In order to deal with this complexity and to exploit fully the technological
potential of VLSI, some structure has to be introduced into the design process; the
resulting design styles are reviewed in Section 3, and the general nature of the
VLSI design process is discussed. The size of the task is such that it cannot be
done without tools; new tools and new ways of managing the information associ-
ated with the design of a VLSI chip must be developed (Section 4) This changes
the role of the designer (Section 5).

Section 6 illustrates with the example of the Berkeley Synthesis Project how
we think the art of VLSI design is going to evolve.

2. VLSI COMPLEXITY

In the early 1980’s. VLSI complexity became a hot topic for concern and dis-
cussion.® This may appear surprising if one compares the complexity of the chips
of that period with other technological structures that mankind has built in the
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past. Certainly the number of components on a VLSI chip does not exceed the
number of parts in a telephone switching station or in the space shuttle, and
mainframe computers with an even larger number of transistors have been built
for at least a decade before they were integrated onto a chip. System complexity
should not differ markedly whether a circuit is contained within a cabinet, on a
printed ecircuit board, or on a single silicon chip.

It is the "large”, potentially unstructured space of the VLSI chip that causes
the concern. Nobody would dare to insert a million discrete devices into a large
chassis using discrete point-to-point wiring. Large systems built from discrete
devices are broken down into sub-chassis, mother-boards, and module-boards car-
rying the actual components. This physical partitioning encourages careful con-
sideration of the logical partitioning and of the interfaces between the modules at
all levels of the hierarchy. Since such systems are typically designed by large
teams, early top-down decisions concerning the partitioning and the interfaces
must be made and enforced rather rigidly — for better or for worse. This keeps
the total complexity in the scope of each individual designer limited in magnitude,
and thus manageable.

VLSI permits the whole system to be concentrated in a basically unstructured
domain of a single silicon chip which does not a priori force any partitioning or
compartmentalization. On the positive side, this freedom may be exploited for
significant performance advantages. On the negative side, it may result in a
dangerous situation where the complexity within a large, unstructured domain
simply overwhelms the designer.

A similar crisis was faced by software engineers when unstructured programs
started to grow to lengths in excess of 10,000 lines of code. The crisis was allevi-
ated by the development of suitable design methodologies, structuring techniques,
and documentation styles. Many of the lessons learned in the software domain
are also applicable to the design of VLSI systems.?

Furthermore, the field of VLSI is rather interdisciplinary in nature. To
achieve optimal results, we need a tight interaction of algorithms, architecture,
circuit design, IC technology, etec. However, designers who are experts in all these
fields are rarely found. How can ordinary mortals attempt to do a reasonable
VLSI design? Here again, suitable abstractions have to be found, so that the
details of processing are hidden from the layout designer, and the details of the
circuit implementation are hidden from the microarchitect. Models that are accu-
rate enough to permit sound decisions based on them need to be created, and ~
clean interfaces between the various domains of responsibility need to be defined.
For instance, the semantic meaning of the geometry specified in a layout has to be
defined carefully: Is this the geometry of the fabrication masks? Is this the
desired pattern on the silicon chip? Or is this a symbolic representation of some
of the desired device parameters? These questions still lead to much discussion
and often to bad chips. The emergence of silicon brokerage services such as
MOSIS* has forced clarification of many of these issues.
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3. THE DESIGN SPECTRUM

To make the task of filling the void on a VLSI chip manageable, some widely
accepted abstractions have emerged that lead to a hierarchy (or rather a multidi-
mensional space) of views of a particular design. The different representations
generally address different concerns. A typical list of design levels and of the con-
cerns they address is shown in Table 1.

Design Level Concerns Addressed
Behavior Functionality
Functional blocks, Resource allocation

Linked module abstraction® ) .
sequencing, causality

Register-transfer level Testability

Clocked register and logic® . ..
= & timing, synchronization

Gate Level, Implementation with

imiti itches® - .
Clocked primitive switches proper digital behaviot

Cireuit Level Performance, noise margins
Sticks Level Layout topology
Mask Geometry [mplementation, yield

Table 1. Levels of abstraction in chip design.

The other saving notion is that of prefabricated parts. The same functions at
various levels of the design space are needed again and again. Successful designs
of frequently used parts can thus be saved in libraries for the reuse by many cus-
tomers. The nature of these parts and the level to which they are predefined or
even prefabricated leads to a variety of different design styles.

3.1. VLSI Design Styles

A large spectrum of possibilities for the design of a VLSI chip has evolved,
offering wide ranges of expected turn-around time, resulting performance, and
required design effort. Table 2 gives a strongly simplified view of the spectrum of
possibilities.

On one end of the spectrum are the Gate Array and Standard Cell technolo-
gies. Predesigned logic cells at the SSI and MSI level permit the engineers to use
functional blocks that they are already familiar with from TTL breadboard
designs. The abstraction and prefabrication of these cells lead to minimal design
effort and faster turn-around time but at the price of less functionality per chip
and less performance for a given technology.
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Method Complexity Effort Main Strength  Automation
Gate Array 20,000 4-8 weeks  Fast changes Yes
Standard Cell . 40,000 4-8 weeks  Resuse of logic Yes

Macro Cell 100,000 1-2 years  Good area use Almost
Flexible Modules 200,000 1-2 years  High density Almost
Standard Functions 200,000 2-8 years  Testability Not yet
Optimized Layout 400,000 >8 years  High performance  Not so scon

Table 2. Styles of IC chip design.

At the other end of the spectrum is the full custom chip in which all modules
have been hand-designed with the utmost care for performance and density and
have been integrated and packed onto the c¢hip in a tailor-made fashion. This
design style can lead to spectacular results in terms of functionality and perfor-
mance of an individual chip, but it comes at the price of an exorbitant design
effort.

Somewhere in the middle between these two extremes are mixed approaches
in which the crucial cells have been hand-designed with great care — particularly
the cells that are in the critical path determining performance and the cells that
are used in large arrays, as they will make the dominant contribution to the size
of the chip. Uncritical “‘glue” logic that is used only once may be generated by a
program either in the form of a PLA or as a string of standard cells. These macro
cells of varying sizes and shapes are then placed and wired by hand or by emerg-
ing CAD programs.® This approach leads to higher densities than standard cells,
since the degree of integration in the macro cells is typically higher and since a
smaller amount of area is wasted in partly filled wiring channels. If the macro
cells are procedurally generated and suitably parameterized so that they can be
adjusted to the available space, even higher densities can be achieved. When
properly used, these intermediate approaches can compete with a full custom
design in terms of performance but typically result in a somewhat larger chip size.

Concerns of modularity and testability may outweigh aims for density and
performance; functional modules designed for testability with clean interfaces are
then used. This is in analogy o the use of properly abstracted and encapsulated
software modules. This approach has started to gain acceptance also in VLS. A -
good VLSI design environment will permit the designer to mix these various
design styles in appropriate ways.

3.2. The Design Process

Even with an agreed-upon set of hierarchical levels, an extensive library of
predefined parts, and a chosen design style, the design process can still be rather
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involved. It is rarely a single forward pass through all the transformation steps
that takes a high-level behavioral description through register-transfer and logic
level descriptions into a symbolic representation capturing the topology and
finally into a dense layout suitable for implementation with a particular tecknol-
ogy (Table 1). The overall problem may be structured in a top down manner into
simpler subtasks with clearly defined functions. But in parallel, designers inti-
mately familiar with the implementation technology will explore good solutions
for generic functions in the given technology in a bottom-up fashion. This effort
will result in an understanding of what functions can best be implemented in this
environment and produce a set of efficient building blocks.

Hopefully, the top-down decomposition and the bottom-up provision of solu-
tions will meet in the middle and permit completion of the design. However, for a
new technology, it is unlikely that this will happen on the first try. The natural
building blocks must first be discovered; only then can the architectures be
modified and partitioned appropriately. Thus there is an iteration of top-down
and bottom-up moves in a Yo-Yo like fashion until the optimal path linking archi-
tecture to technology has been found.

It should also be pointed out that the design process is often a mixture of
solid established procedures and of free associations and ‘trial-and-error’. The
guessing part plays a role in finding good partitioning schemes as well as in the
definition of generic functions that might constitute worthwhile building block in
the given technology. Proven checking methods are then used to evaluate objec-
tively whether the guesses made are indeed usable: Is the decomposition function-
ally correct? Is it appropriate — or does it cut through some inner loop, causing
unnecessary communications penalties? Are the building blocks of general use?
How many algorithms, tasks, or architectures can actually make use of them? Is
their performance reasonable?

In the next section we explore to what extent this design process can be sup-
ported by the computer, and for which part the human intelligence might be hard
to replace.

4. THE ROLE OF CAD TOOLS

Good tools help man to achieve more, to obtain better results, or to reach
given goals more effortlessly. VLSI design is no exception. I like to split the CAD
tools useful in the design of ICs into five classes:

1) Checking and Verification Tools typically answer questions such as: Are
there any errors? Are the connections between blocks consistent? Does this
function behave as specified?

(8]
R

Analysis Tools tell the designer: How well does a particular approach work?
How much power does this circuit consume? What is the worst case settling
time? :
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3) Optimization Tools can help the designer to vary component values to
achieve a specific performance goal, or they can find “‘optimal” module place-
ments within given constraints.

4) Synthesis Tools combine construction procedures and optimization algo-
rithms. They may decompose a logic function into a minimum number of
gates, or they may find a good floor plan from a connectivity diagram.

5) High-level Decision Tools support the designer in the ‘‘guessing phase” of
the design process. These tools try to suggest particular solutions, i.e., parti-
tioning schemes, micro atchitectures, or network topologies.

4.1. The CAD Wave

Building tools in the above classes 1) through 5) gets progressively more
difficult. Typically, checking and verification tools are the first to become viable,
belping to eliminate well-defined mistakes. Next, analysis tools permit the
designer to find out how good a2 solution he has chosen and whether the design
meets specifications. Based on the analysis algorithms, optimization tools emerge,
assisting the designer in fine-tuning a design and in optimizing particular aspects
of it. Gradually, these tools evolve into self-reliant synthesis tools; these may use
heuristic methods or simulated annealing techniques to find solutions that are
becoming competitive in quality with the work of human designers. Finally the
tools will invade the areas where it is most difficult to replace the human mind —
the high-level decision making process. Here tools from all the previously men-
tioned classes need to be employed in an iterative way; often techniques from the
field of Artificial Intelligence are used.

Sweeping through the various levels of the design hierarchy in a bottom-up
manner, tools will start to take over the function of the human designer. This
general trend has started many years ago. Historically, the first tools to be
developed for IC designers were circuit analysis tools such as SPICE.” There was a
real need for such tools, since calculating the performance even of small
integrated circuits would have been too tedious, and including actual fabrication
of the chip in every design iteration would have been tooc slow and costly. At that
time, the circuits were small enough so that most checking tasks could be per-
formed without computer assistance. Optimization was done by hand with the
help of the available analysis tools. Design decisions were largely based on the
intuition or experience of the designer.

In the meantime, tools have matured at the layout level. Circuit extractors
and design rule checkers are relied upon by every designer of large ICs. Without
timing verification and circuit simulation, it would be impossible to obtain chips
that meet performance specifications. Circuit optimization, however, is still
largely done by the designer, using analysis tools in the ““feedback loop”, and syn-
thesis tools are being investigated in the research laboratories.
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At the higher levels of the design hierarchy tools have not claimed as much
ground yet. Functional simulators are used to verify the correctness of the func-
tional behavior and to obtain some crude idea of the expected performance.
Optimization and synthesis tools are the subject of active research. High-level
decision tools are being contemplated.

Tools are important at all the levels of the design hierarchy introduced in
Section 3. The development of CAD tools started at the circuit level, because
there the need was most urgent. This was the level of abstraction that could not
easily be breadboarded and evaluated by measurement. As larger and larger sys-
tems get integrated onto a single chip, we will need better tools also at the higher
levels in the design hierarchy.

4.2. Design Representation

Traditionally, many design systems for custom circuitry have used the
geometrical layout information to “glue’ everything together. From this low-level
description that other representations are derived, and many of the analysis start
from this level, e.g. circuit extraction and design rule checking. This is an unsa-
tisfactory approach. Too much of the designer’s intent has been lost in that low-
level representation and has to be rediscovered by the analysis tools.

If there is to be a ‘‘core” description from which other representations are
derived, it has to be at a higher level. The trend is to move to a symbolic
description®19 that is still close enough to the actual geometry, so that ambigui-
ties in the layout specification can be avoided. Yet at the same time, this descrip-
tion must have provisions to specify symbolically the electrical connections and
functional models of subcircuits.!!

In the long run, there is no way that a proper, integrated data management
system can be avoided. Such a system can capture the design at various levels of
the design hierarchy and, with the help of various tools, ensure consistency
between the various representations. An integrated tool system will have to sup-
port the mentioned Yo-Yo design process in order to be effective.

4.3. Tool Integration

The art of VLSI design is not yet fully understood, and new methodologies
are still evolving. It is thus too early to specify a rigid design system that per-
forms the complete design task; quite likely, such a system would be obsolete by
the time it becomes available to the user. It is more desirable to create a frame-
work that permits the usage of many common tools in different approaches and
that supports a variety of different design styles and methods. In short, the
environment should provide mechanisms and primitives rather than policies and
solutions.

Intricate interaction between the various tools must be avoided; every tool
should do one task well and with reasonable efficiency.1? The tools are coupled
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through compatible data formats or a joint data base to which they all interface
in a procedural manner. The former solution causes less overhead in the early
development phase of a new tool and makes it easy for workers in different loca-
tions to share data and test examples since ASCH text files can easily be transmit-
ted over electronic networks.

The data base approach leads to a more tightly coupled system. It has the
advantage (or disadvantage) that all data is in one central location. Interfacing a
tool to this data base is normally more involved and costly than to simply read
and write ASCH files. Unless the data management system is properly con-
structed and supported, the access to the data base can also get painfully slow. A
practical solution is to use a combination of both: a data base that also has
proper ASCII representations for each view of the design.

At Berkeley such a collection of tools!3 has been under development since the
late 1970s. All tools are embedded in the UNIX!* operating system. UNIX
already provides many of the facilities needed in such an environment: a suitable
hierarchical file structure, a powerful monitor program in the form of the UNIX
shell 15 and convenient mechanisms for piping the output of one program directly
into the input of a successor program. An example of a newer, object oriented
data basel® will be discussed briefly in Section 6. The corresponding ASCI
representation and interchange format is EDIF .17

Regardless of the exact structure of the data base, the various different
representations of a design should be at the fingertips of the designer, so that he
can readily choose the one representation that best captures the problem formula-
tion with which he is grappling at the moment.

5. THE ROLE OF THE DESIGNER

The wave of emerging CAD tools at all levels of the design hierarchy is
changing the role of th» designer.

5.1. The CAD System Virtuoso

Designers of solid-state systems will spend an ever smaller fraction of their
time designing at the solid-state level. More and more technical tasks, particu-
larly at the lower levels of the design hierarchy, can be left to computer-based
tools. Systems designers will rely increasingly on tools and on prototype modules
generated by expert designers. They will thus change from being technical
designers to being players of a sophisticated and rich CAD system.

It will take effort to learn the new skills. The essential experience no longer
consists in knowing how to best lay out a Schottky-clamped bipolar gate, but
rather in choosing the right tool, setting the right parameters and constraints,
using a reasonable number of iterations, or knowing what to look for in a simula-
tion producing a wealth of raw data.
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The results obtainable with any CAD system depend to a large extent on the
skill with which the designer moves through the maze of options. Furthermore,
many of our design tools are still in the state corresponding to the early days of
the automobile, where the driver also had to be a mechanic and be prepared to
take care of frequent breakdowns.

5.2. The Designer as a Tool Builder

Good tools cannot be constructed in an isolated CAD department. They
must be built in close relationship with the user. Who is better qualified than the
actual user to understand the needs for a tool and to test whether a new tool
really meets expectations? Further, a good CAD tool cannot be built in a single
try. Only after the designers have a prototype to play with, they can decide what
they really need and provide more accurate specifications for the new tool. The
emergence of a tool often changes the nature of the job emough to shift the
emphasis to a different bottle neck, thus altering the requirements f{or the tool.
This 1n turn may necessitate a revision of the user interface or the performance
targets. This iterative process to arrive at the proper specifications leads to the
tool development spirai shown in Figure 1.

Specifications

Detailed Yo
Plans

"Clear
{, Concept J-

Revision of
Program Structure

Experiments,
User-Feedback

: first quick
\ 'hack'
Prototype

Program

Usable
Application Tool

Marketable
Systems Product

Figure 1. The spiral of tool development.
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Each implementation serves as the basis for clearer specifications for the next
round. The more rounds one can make around this spiral, the better the tool will
get. In going from one round to the next, one should not be afraid to start com-
pletely from scratch, to throw out the old code, and to keep nothing but the
experience and plans for an improved approach. The temptation to just patch up
the old code can be reduced if the implementation language is switched. Many
tool developers have found it productive to create early prototypes in LISP,
SmallTalk, or Prolog, and to code later versions in an efficient procedural
language providing some control over the machine resources.

The first one or two turns on the development spiral are crucial. This is
where the general directions of a new tool are determined. On later turns it is
much harder to make significant conceptual changes. Thus, on the first turn(s) it
is particularly important that the development is done in close contact with the
designers actually using the tool. How much closer ¢an you get than having the
designer himself do the first “‘quick hack”? Nowaday, more and more engineers
receive a good education in programming, and it is thus easier to find persons
with the right combination of skills.

Once the framework of the tool is well established and the user interface
defined, a formal CAD group could take over to recode the tool, modularize the
program, look at efficiency issues, and provide decent documentation. In the pro-
duction of a good manual, the designers must again be strongly involved, as they
understand the needs of the users.

The most leverage out of human ingenuity can be obtained if the latter is
used to build new and better tools, which then can help many other designers to
do the job better or faster. Using the designers as tool-builders, the impact of the
work of individual engineers can be compounded.

5.3. The Design Manager

A good manager, will not only focus on getting the job done on time, but will
also concentrate on creating an environment in which the job can get done most
efficiently. The improvement of the environment must not be neglected under the
pressures of immediate deadlines; it is a necessary investment for the future.

This is also true for the individual design engineer, as he too is a manager of
his task, his time, and his environment. This requires a change of attitude on the
part of the typical engineer. He may have to spend a larger amount of time,
learning about available tools, acquiring new tools, or building tools himself, than
working on ‘the job’. But experience has shown that, amortized over two or three
jobs, this investment into the environment pays off.
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6. THE SYNTHESIS PROJECT AT BERKELEY

In Spring 1986, an ambitious project concerning the automatic synthesis of
integrated circuits was undertaken in the Department of EECS at Berkeley. The
“official’’ goal of the project was to integrate and enhance our various CAD tools
to create a suit of tools that could synthesize a complex microcomputer from a
behavioral-level description to the mask-level cutput with as little manual inter-
vention as possible. As a “fringe benefit” we expected to gain a thorough under-
standing of the major issues in IC synthesis and to find out where our CAD tool
design efforts need to be focussed.

8.1. Project Organization

The Synthesis Project was led by Professors Newton, Sangiovanni-Vincentelli
and Séquin together with seven visiting Industrial Fellows. Following a tradition
in our department, the project was tightly integrated with our graduate instrue-
tion. During the Spring term of 1986, the project was carried by two graduate
courses, a design-oriented class (CS 292H) and a CAD tool-oriented class {EECS
290H), both of which had to be taken by all 35 participating students.

The tool development was tied to the SPUR (Symbolic Processing Using
RISCs) project!® which had been in progress for about a year. The main focus of
the SPUR project was the development of a set of three chips: the central RISC
processor (CPU), a cache controller (CCU), and a floating point coprocessor
(FPU), for use in a multiprocessor workstation. We planned to use the architects
and original implementors of these chips as consultants and hoped to obtain large
parts of chip descriptions in machine-readable form.

A matrix organization was adopted for the graduate-student design teams.
Each student, as a participant in the design class, was involved in the design of
one of the three chips and was responsible for the generation of at least one
specific module. As a participant in the CAD class, each student was a member
of one of several tool development groups (e.g., logic synthesis, place and route,
module generation) and was working towards developing a tool suite that would
be usable for all three chips.

6.2. Resources and Infrastructure

Resources available to the Synthesis Project included a dozen DEC
VAXstationIl workstations and seven color VAXstationll/GPX machines. The
backbone was a VAX8650 CPU with 500 Mbytes of disc storage dedicated to the
course. This machine acted as the central database and as the repository for all
the existing and emerging CAD tools. All these machines, as well as all the other
computing resources in the department, were coupled through an ethernet, creat-
ing a tightly coupled, highly interactive computing and communications environ-
ment.
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Important software support was provided by the Digital Equipment Corpora-
tion in the form of the DECSIM mixed-level simulator and its associated
behavioral design language, BDS. This software package was chosen primarily
because of its availability and because DEC personnel were on site to provide sup-
port for its application. DECSIM also offered the possibility of using mixed-level
simulation at the behavior, register-transfer, gate-logic, or switch level — even
though during the course we did not get far enough to use all these options.

For the integration of our tools we chose to use a single object-oriented data
management system, OCT,!® the development of which had started some time
ago. OCT has as its basic unit the ‘cell’ which can have many ‘views’ — physical,
logical, symbolic, geometrical. A cell is a portion of & chip that a designer wishes
to abstract; it can vary in size from a simple transistor to the entire floorplan of a
CPU. The system is hierarchical, i.e., cells can contain instances of other cells.
Moreover, cells can have different abstract representations depending on the
intended application, and these are represented in OCT by ‘facets’, which are the
accessible units that can be edited. OCT provides powerful constructs for com-
plex data structures but manages this complexity unseen by the user.

A graphical CAD shell, VEM, was developed that permits the user to inspect
and alter the contents of the various cells in the data base in a natural manner.
OCT also provides project management support in the form of change-lists, time
stamps, and search paths. All evolving synthesis tools were provided with inter-
faces to the OCT data manager.

6.3. Module Generation Tools

One major effort during the Synthesis Project concerned the creation of a
module generator that transforms logic equations at the behavioral level into a
final mask layout. The important representation levels and the tocls that perform
the transformations between them are shown in Table 3.

Module generation starts from a DEC BDS behavioral description which is
converted with the help of a language translator into BDSYN, a subset of BDS,
developed to represent logic partitioned into combinational blocks and latches.
From there, another translator maps the BDSYN description into BLIF, the
Berkeley Logic Intermediate Format, by expanding high-level constructs into
Boolean equations.

MIS, a multilevel interactive logic synthesis program, then restructures the
equations to minimize area and to attempt to satisfy timing constraints. MIS first
implements global optimization steps that involve the factoring of Boolean equa-
tions and multiple-level minimization. Local optimization is then performed to
transform locally each function into a set of implementable gates. Finally, MIS
includes a timing-optimization phase that includes delay approximation based on
technology data and critical-path analysis.19
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Design Function Representation Level Program Name
Logic / Behavior
. . BDSYN
Logic Synthesis MIS

Logic / Gate

TOPOGEN / EDISTIX

Topology Optimization GENIE / MKARRAY

Symbolic / Graphic

SPARCS
ZORRO

Layout Generation

Layout / Geometry

Table 3. Transformations in the module generation process.

Once the logic equations have been optimized the module generators are
responsible for optimal packing of the logic into regular or irregular array-based
structures.?? Some of these tools also consider slack times for critical paths.

TOPOGEN generates a standard-cell-like layout at the symbolic level from a
description of a Boolean function in the form of nested AND, OR, INVERT
expressions. A complex static CMOS gate is produced in which first the transis-
tors and then the gates have been arranged so as to minimize the module area.
The output from TOPOGEN can be inspected and modified with EDISTIX, a
graphic editor using a symbolic description on a virtual grid.1? The symbolic lay-
out can then be sent to one of the compactors mentioned below.

A more sophisticated module generator is the combination of GENIE and
MKARRAY. GENIE is a [airly general software package using simulated anneal-
Ing to optimize the topology of a wide range of array design styles, including
PLAs, SLAs, Gate Matrix, and Weinberger arrays. It handles nonuniform transis-
tor dimensions, allows a variety of pin-position constraints, approximates desired
aspect ratios by controlling the degree of column folding, and performs delay
optimization. Its output is sent to the array composition tool, MKARRAY, which
takes specifications of arrays of cells at the topological level. It then places the
cells and aligns and interconnects all the terminals.

The modules at the symbolic level have to be spaced or compacted to a dense -
layout obeying a particular set of design rules.?l SPARCS is a new constraint-
based IC compaction tool that provides an efficient graph-based solution to the
spacing problem. It can deal with upper bounds, user constraints, even symmetry
requirements. It detects of over-constrained elements, and permits adjustable
positioning of noncritical path elements
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Another compactor under development, ZORRO,?2 works in two dimensions
and i1s derived from the concept of zone refining used in the purification of crystal
ingots. ZORRO passes an open zone across a precompacted layout. Circuit ele-
ments are taken from one side of this zone and are then reassembled at the other
side in a denser layout.l® This compactor gives denser layouts at the cost of
longer run times.

8.4, Chip Assembly tools

All the tools described above are employed in the automatic synthesis of
modules that are to be used in the design of an entire chip. Various tools have
been developed to perform module placement, channel definition and ordering,
global routing, and finally detailed routing.® These tools handle routing on multi-
ple layers as well as over-the-cell wiring. Table 4 shows the sequence of transfor-
mations carried out on the representations in the OCT database from the original
tentative floor plan to the final placement of all the modules and of the wiring in-
between.

Lavout Function OCT Symbolic View
Floorplanning & Placement aem > Placed
Channel Definition and Ordering -2 Channel Defined
Global Router == > Routed
Detailed Router 2> Unspaced
Spacing-Compaction s> Spaced

Table 4. Functions of the chip composition tools.

The TIMBERWOLF-MC?3 package performs the placement function using
simulated annealing techniques. This program handles cells of arbitrary rectil-
inear shape; it accommodates fixed or variable shapes with optional bounds on
aspect ratio, and accepts fixed, constrained, or freely variable pin locations.

CHAMELEON?% is a new multi-level channel router that allows the
specification of layer-dependent pitch and wire widths. It has as its primary
objective the minimization of channel area and as its secondary objective the
minimization of the number of vias and the length of each net. On two-layer
problems it performs as well or better than traditional channel routers.

MIGHTY?5 is a ‘rip-up and reroute’ two-layer detailed switch-box router that
can handle any rectagon-shaped routing region with obstructions and pins posi-
tioned on the boundary as well as inside the routing region. It outperforms all the
known switch-box routers and even performs well as a channel router on problems
with a simple rectangular routing region.
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8.5. Results

Fifteen weeks is not enough time to build a complete synthesis system —
thus we could not “press the button” on the last day of class and wateh the lay-
outs for the three SPUR chips pop out of the computer.

After the fifteen-week course period, all three chip designs had been con-
verted from their original descriptions in ‘N.2' or SLANG formats to BDS and
inserted into our data management system. In the last few weeks of the course,
these descriptions were then used to exercise the pipeline of tools that had been
created in parallel. Major parts of these designs have run through various tool
groups and produced results of widely varying quality. Improvements were quite
visible as the tools were debugged and improved.

The major benefit of this course is a very good understanding of the
bottlenecks and missing links in our system and concrete plans to overcome these
deficiencies. Over all, the Synthesis Project of Spring 1986 must have been a posi-
tive experience; the students polled at the end of the term voted strongly in favor
of continuing the Synthesis Project in the Fall term.

7. CONCLUSIONS

There is a broad spectrum of design styles that have proven successful for the
coustruction of VLSI circuits and systems. For all these styles and for all the lev-
els in the design hierarchy, good computer aided tools and data management tech-
niques are indispensable. The emerging wave of CAD tools shows a trend to start
at the Jower hierarchical levels and to move upwards and to sweep the verification
and analysis tools before the synthesis and high-level decision making tools.
There is no doubt that eventually the whole design spectrum will be covered.

To make the emerging tools truly useful, the new tools should be developed
in close cooperation with the user, or even by the user himself. Several iterations
are normally needed to produce a good tool. The development of tools should be
planned with this in mind.

Due to the changing nature of VLS] design, a design system will never be
“finished”. In order to keep up with the needs of the chip designers, the environ-
ment and the data representations must be kept flexible and extensible. A modu-
lar set of tools coupled to an object-oriented, integrated data base is a good solu-
tion.

Finally, we believe that the most effective tool development takes place under -
the forcing function of actual designs. In a recent push to integrate and complete
our synthesis tools at Berkeley, we have used the chip set of an emerging VLSI-
based multiprocessor workstation. This effort has given us a clear understanding
of the tools that we are still missing. It has charted out enough work to keep us
busy for several more years. '
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