Tutorial on the C Information Abstraction System

Michael Nishimoto

Yih-Farn Chen

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

This tutorial describes the C Information Abstraction System, a tool
which helps fill the needs of C programmers working with large software
programs. The system consists of two subsystems: the C Information
Abstractor(CIA) and the Information Viewer(INFOVIEW). CIA is a pro-
gram which abstracts compilable C source code into a set of relations and
summaries of software objects. This set is stored in a program database
where INFOVIEW can use it to produce vital information necessary for
program understanding. The main role of INFOVIEW is to provide a sim-
ple user interface to the CIA database; however, it also functions as a pro-
gramming interface for individuals who wish to use the available informa-
tion to create their own systems. Written originally on a VAX 11/750
operating 4.3BSD, CIA and INFOVIEW have been ported to UNIX System
V+t and SUN 3.0 systems.

Table of Contents

Page
1. INTRODUCTION 2
2. THE C INFORMATION ABSTRACTOR 2
3. THE INFORMATION VIEWER 6
4. PROGRAM DEVELOPMENT 20
5. STATUS AND FUTURE WORK 24

Appendices

A. Summary of CIA Options 26
B. Detailed Description of Information in the Database 27
C. Summary of INFOVIEW Commands 31
D. Summary of INFOVIEW Library Commands 32

This work is supported in part by MICRO under contract No. 532434-19900.
$UNIX is a trademark of Bell Laboratories.

1. INTRODUCTION

Maintenance responsibility for programs frequently shifts from person to person
throughout a software life cycle. Each time this occurs, the ease of tramsition is deter-
mined by the complexity of the software system and the amount of documentation avail-
able. A programmer is often confronted with either the situation of modifying inade-
quately documented code or the situation of trying to remember specific details about his
own code. It would be helpful to have a software tool that stores and retrieves program
structure information, so programmers can reduce the time involved with program under-
standing.

The C Information Abstractor System(CIAS) is such a software tool. Two subsys-
tems make up CIAS: the C Information Abstractor(CIA) and the Information
Viewer(INFOVIEW). The C Information Abstractor is a program which abstracts compil-
able C source code into a set of relations and summaries of software objects. This set is
stored in a database where INFOVIEW can use it to produce vital data necessary for pro-
gram understanding. INFOVIEW’s main role is to provide a simple user interface to
CIA’s database; however, it also functions as a programming interface for individuals who
wish to use the available information to create their own systems. Figure 1 illustrates
how CIA and INFOVIEW interact. A decision to build CIA separately from the C com-
piler was made because the C compiler contains many complexities unnecessary for our
purpose. Moreover, information abstraction is usually performed after all syntax errors
have been removed from programs.

programs views
C Abstractor Info. Viewer —— >
1 v i
abstraction rules Database queries

Figure 1. Outline of the C Information Abstraction System

This tutorial corresponds to version 1.0 of the CIA and INFOVIEW system. Written
originally on a VAX 11/750 operating 4.3BSD, CIA and INFOVIEW have been ported to
UNIX System V and SUN 3.0 systems with little effort due to their portable C implemen-
tation. The only differences in code resulted from limitations of the various environments
such as the length of a file name or the number of open files.

2. THE C INFORMATION ABSTRACTOR

The C Information Abstractor views programs as software objects and relationships
between these objects. Each object has a set of attributes which describe the location,
data type, and other information of the object. Figure 2 shows the conceptual model of
the C program database we adopted. When C programs are abstracted by CIA, informa-
tion about the five object types —files, functions, global variables, types, and macros—
symbolized by boxes, and the eleven relationships, symbolized by lines, are abstracted and
placed into a program database. Solid lines represent currently implemented relationships

-3.

while dotted ones represent future extensions. Table 1 summarizes the nine present rela-
tionships and two future extensions of CIA. For a discussion on the design of the concep-
tual model, see[l]. Appendix B gives a more detailed information of the database files.

many-to-many

esereananeensd >
P > type [¢
E =
i A
4 V Y ¥
A-4
1 function >3 gbvar “—> file <
A A :
____j | I—
>3] macro <
&> > <S¢ —>

many-to-one

Figure 2. The Conceptual View of the C Program Database

Table 1. Definitions of the Eleven Relationships
num | obj_typel | obj_type2 | rel_type definstion
1 file file m-to-m | filel includes file2
2 function function m-to-m functionl calls function2
3 gbvar function m-to-m | gbvarl referenced in function2
4 macro function m-to-m | macrol referenced in function2
5 function file m-to-m | functionl referenced or defined in file2
6 macro file m-to-m macrol referenced or defined in file2
7 gbvar file m-to-m | gbvarl referenced or defined in file2
8 type file m-to-m typel referenced or defined in file2
9 gbvar type m-to-1 gbvarl defined as type2
10* type function m-to-m | typel referenced or defined in function2
11* type type m-to-m | typel referenced in type2

* Future Extensions

2.1. Starting-up

As CIA and INFOVIEW are not a standard part of BSD UNIX at this time, they
may not be on your current machine. The executable code should be in /usr/local/cias.
If it is not, please send mail to cia@ucbarpa.Berkeley EDU to receive the latest

-4 -

information on the location of the CIA/INFOVIEW object code. Once the location is
known, place it into your path. See the path mechanism in csh(1).

2.2. An Example

Throughout Section 2 and Section 3, we will use the following C program source as
an example to show the basic usage of the CIA system. The example program contains
software objects representative of what a C programmer might encounter, and it should
be available in /usr/local/lib/cias/example. Copy files in that directory to a directory of
your own, so you can create/modify your own program database as you proceed.

<FILE: chain.h>

i : #define LEN 10

2 : #define NIL ((LINK #) 0)
3 :

4 : typedef char NAME;

b :

6 : struct link {

7 : EAME npame[LEN];

8 : struct link #*next;
9: };

10: typedef struct link LINK;
11:

12: static LINK stemplLink;

<FILE: chain.c>
: #include <stdio.h>
: #include ®*chain.h*®

D [I NERRRRBERAARARRASRIASEIAIESRD
: & file: chain.c

: & contents: High level routines
: SERARRERBRSRASRESBERERESRRRSR: 2/
D /818088888 RRRRRRRRRRRSRRSS 8/
9 : /#:s function: FindName s:2/
10: /:% purpose : Return ome if :%/
11: /#:s pame found in list, #:%/
12: /s:* otherwise return zero %:#*/
13: /8 %3250 48202228823 8088804388/
14: int

15: FindName(head, name)

18: LINK shead;

17: KAME sname;

(< TN B« B R R

18: {

19: vhile (IsNotNIL(head)) {

20: if ('strcmp(head->name,name))
21: return(l);

22: }

23: return(0);

24: } /% end of FindName */

25:

26: InsertName(head,name)
27: LINK #head;
28: NAME *nane;

29: {

30: LINK stemp;

31:

32: temp=(LINK s)malloc(sizeof (LINK));
33: strcpy (temp->name,name) ;

34: temp->next = head;

35: head = temp;

36: } /* end of InsertName 2/

<FILE: util.c>

O 0O~ W -

.

T]8RS RBARERERIBRENSEREIRIRAER
: » file: util.c

: & contents: Very low level

. primitives.

: SRERSERAEBEARABABRRIRARRERNS; (8]
: #include "chain.h*

D[R SSEBERRERIREAEAARRISRRS R4S
: & function: IsNotNIL

© SAERERALRERALRERARRERRBERARS 8/
: IsNotNIL(head)

: LINK #shead;

: q{

return (head->next != WIL):

: }/» end of IsNotKIL s/

: GetName (name)
: NAME #name;
: {

scanf ("¥s*,name);

: }/+ end of CetName s/

: PrintResults (found)
: int found;
: {

if (found == 1)

printf ("Found\n");
else

printf (*Not Found\n®);

:} /% end of PrintResults #/

<FILE main.c>

O 00 3D U WP

19:
20: } /* end of main %/
Example 1. A Representative, Sample Program

: #include <stdio.h>
: #include "chain.h®
: LINK #chain=NIL;

: NAME #name;

: main(arge, argv)
: int arge;
: char #argv([];

: {

int found;

name= (NAME s)malloc(LEN);

GetName (name) ;

while (strcmp(name,®quit®)) {
InsertName(chain, name);
GetNanme (nane) ;

}

GetName (name) ;

found=FindName(chain, name);

PrintResults (found) ;

2.3. Building a CIA Database

The abstractor’s syntax and options, where appropriate, were patterned after UNIX's
C compiler ce(1). To build a program database for the above program segment, a user
would execute

% cia chain.h chain.c util.c main.c

% is the prompt character. Your prompt may be different from what is shown here. If
CIA executes successfully, the following would appear on your screen:

reading from file chain.c Exit value=0 for chain h
reading from file chain.c Exit value=0 for chain ¢
reading from file util.c Exit value=0 for util.c
reading from file main.c Exit value=0 for main.c

In the current directory, the following files should exist: comment.data, file.data,
function.data, gbvar.data, macro.data, type.data, filefile.data, funcfunc.data,
gbur func.data, macrfunc.data. They form what we term the minimum database. This
set holds the information most commonly needed by programmers. Although they can be
examined with the standard cat(l) or more(1) commands because of their ASCII storage
format, use of the Information Viewer (described in Section 3) is recommended. The
names and formats of the database files are subject to change.

A few options which expand CIA’s database by producing additional files are avail-
able. More descriptions of the these options and the contents of each data file can be
found in Sections 3-5.

3. THE INFORMATION VIEWER

The Information Viewer (INFOVIEW) provides a set of commands for interactively
accessing the program database created by the C Information Abstractor. To use most of
the INFOVIEW commands, a user does not have to memorize the names of object attri-
butes. Only the objects and relations shown in Figure 2 need to be remembered.

3.1. Info — Getting Attribute Information

The info command displays attribute values of a program object, e.g., where it is
located and what its type is. The syntax of the command is

info [-u] object_type object_name

For example,

% info function FindName

in_£file func_type func_name static bline hline eline

= —EETe mem—m—m-

chain . ¢ int FindName n 8 i7 24

The output informs us that the integer function FindName is located in the file chain.c
and is not a static function. FindName starts at line 8; its header ends at line 17; and its
body ends at line 24. Definitions of a function header and function body are given in Sec-
tion 3.6.

-7-

Similarly, try the following examples to see the attribute values of several other
object types.

% info gbvar templLink
% info macro LEN

% info type NAME

% info file chain.c

In order to simplify the processing of the attribute information by other application
programs, an option flag -u is provided for producing unformatted output. Fields in this
output are separated by the character :. For example,

% info -u function FindName
chain ¢ int:FindName:n:8:17:24

If you are interested in building your own programs using the attribute information
of program objects, the following shell script[2] may help you understand how the unfor-
matted output of the info command can be used to conmstruct an editfunc command.
Readers not familiar with shell programming or the awk(1) program(3] should skip the
rest of this sub-section.

#! /bin/sh
editfunc: invoke the vi editor to edit a function
Usage: editfunc func_name
LineAndFile=‘info -u function $1 |
awk ’
BEGIN {FS="* "}
{printf "%s %s". $5, $1}’ °
vi +$LineAndFile

The variable LineAndFile in this shell script will be evaluated at the 5th and Ist
fields of the unformatted output line, i.e., the bline and the in_file fields, respectively.
These two fields become arguments to the vi(Z) editor. For instance, to edit the function
FindName, a user would type

% editfunc FindName

This command would translate to "vi +8 chain c*, which automatically invokes vi(1)
on the file chain.c and places the cursor at line 8. editfunc is similar to the combination
of the UNIX's ctags(1) and the tags command of vi(1). However, because of the program
database, we can easily build a set of integrated software tools without rederiving infor-
mation already collected.

3.2. View — Viewing Program Objects

The view command? is used to print out the contents of a programming object. The
syntax is

tView should not be confused with the UNIX view command (usually under the directory Jusr/ucb)
which is a read-only version of wvif1). To avoid invoking the UNIX wview command, place
Jusr/local/cias before fusr/uchb in your path variable; see csh(1).

view [-n] object_type object_name [file_name]

For example, to see the definition of the data type *struct link", simply enter

% view type "struct link®
struct link {
NAME name[LEN];
struct link *next;

}.

After seeing the above definition, a programmer would want to know how the type NAME
is defined:

% view type NAME
typedef char NAME;

For the purpose of name matching, ®struct link" is considered a single name. Line
numbers can be associated with the output if the -n flag is given. The optional
file_name argument of the view command should be provided if the same object name is
shared by two objects in two different source files, e.g., when two static functions using
the same name are declared in two different files.

Now try a few more examples:

% view function InsertName
% view gbvar chain
% view -n macro LEN
% view file chain.h

The view command provides two important functions needed during software
development and maintenance:

(1) Tracing: By invoking a set of view commands, a user can easily trace through a pro-
gram that references many data structures, global variables, and functions. Tedious
searching of all source files is no longer required.

(2) Cutting and Pasting: Using view to retrieve program objects and redirection to con-
catenate them, this cutting and pasting of programs becomes easier than using tradi-
tional editors. For example, the following simple shell script file cluster can be
used to concatenate several functions in a single file.

#! /bin/sh

cluster: create a cluster of functions
Usage: cluster f1 f2 . . fn

for i in $*

do

view function $i
done

Suppose we want to create a file name.c that consists of the following functions: Find-
Name, InsertName, and GetName. Enter the following:

% cluster GetName FindName InsertName > name.c

-9.

One drawback with the cluster command is that the newly created file name.c
does not compile because of missing references. In the next section, we shall see how the
retrieval power of view can be enhanced when used with the rel command to retrieve all
related objects of a particular object.

3.3. Rel — Accessing Relations

The rel command shows the relations between an object and other objects. The syn-
tax is

rel [-u] object_typel object_type2 object_namel object_name2 [r[d]

The relations understood by the Information Viewer are defined in Figure 2 and
Table 1. There are basically two types of relations: definition relations and reference
relations. If object A is defined inside object B, then there is a definstion relation
between object A and object B. If object A is referenced inside object B, then there is a
reference relation between object A and object B.

In the case of function-function relationships, only reference relations exist. For

example, enter:

% rel funmction fumction main -

4 3 o o e o Sk e ok o e oo s ok sk Kok koK R KKk R KRk R Rk kK

reference relations: from funcfunc data
ol 3¢ ¢ 3 e 3k e ¢ 3 3 o e e e e e 3¢ e K e ok g R ok e sk e e ek ek R ek ek e Kk Rk

caller_£file caller_func callee_£file callee_func
main.c main chain.c FindName
main.c main util . ¢ GetName
main.c maln chain ¢ InsertName
main.c main util. ¢ PrintResults

The dash sign - in the command line means ‘‘don’t care”, i.e., any functions that are
called by the function main should be listed. Similar to the tnfo command, output can be
unformatted if the -u flag is given.

Another example here shows the existence of both types of relations between the two
object types gbvar and file:

-10 -

% rel file gbvar main.c -

e 3 3 ok e e e e o e S e o ek oK 3 ok e S ok o e sk e Sk ok ok ke ok ok ok sk ok koo K kK

reference relations: from gbvrfunc data
e 3k e ok e ok 3 o e S e o e 3k ok e e e e e ok i 2 o o e e ok e ke e ok KK ok ok Rk e

var_name used_in_£file used_in_func
name main.c - maln
chain main.c main

e 3 4 e o 4 3 2 30 ke e o ke e Sk ok 00 3 S ke 3 o ok e e ok 3 e e ek e ok ok ok ok ke ok ok K

definition relations: from gbvar data
st e o o e ok ok o e e S o e e s o e o S o o ok ok ok ok o ok ok ok ek ek ke sk koK ok ok

in_£file data_type var_name static bline eline
main.c LINK * chain n 4 4
main.c NAME * name n 5 5

The reference relations show all the global variables referenced in the file main c.
The definition relations show all the global variables defined in the file main c. Relations
listed can be limited to only one type by an optional fifth argument: If r is specified, then
only reference relations will be listed. If d is specified, then only definition relations will

be listed.

Now try some more examples:

% rel file file chain.c -

% rel function function - IsNotNIL
% rel -u gbvar function - main

% rel function macro - LEN

% rel function file - chain.c

% rel file macro chain h - d

% rel type file - chain.h

% rel gbvar type - "LINK *"

Recall the problem of the cluster command we mentioned in the previous section.
When a program needs to reuse a certain function in other programs, it is necessary to
retrieve not only the function itself, but also macros, types, global variables, and functions
referenced by that function. Moreover, these objects may have additional references. It is
like solving a ripple effect problem. With the rel and view commands, the task of retriev-
ing all related objects can be greatly simplified.

3.4. List — List Contents of a Data File

Note that although all commands in previous categories require only the knowledge
of the names of object types, the list command will require knowledge of the actual names
of the database files.

- 11 -

The syntax of the list command is

list [-u] datafile_name

For instance,

% list type

in_file data_type bline eline
chain.h NAME 4 4
chain.h struct link 6 9
chain . h LINK 10 10

Names of all database files will be found in Section 2. The output can be unformatted if
the -u flag is given. For example,

% list =u macrfunc
LEN:main: main.c
NIL:IsNotNIL:util.c

Try these:

% list gbvrfunc
% list ~-u macrfunc
% list funcfunc
% list filefilse
% list -u function

3.5. Structured Comments and the Comment Command

Since comments in C programs can be placed anywhere, parsers cannot be easily
built to associate comments with objects. To solve this problem, we introduce the concept
of structured comments. Three types of structured comments are recognized by CIA: file
comment, pre-comment, and post-comment.

(1) File Comment: A file comment can be used once anywhere within each file. Nor-
mally, it is placed at the beginning of a file and follows the following syntax:

/* comments coxf

As long as the two colons appear immediately after the asterisk, CIA will consider
the comment as a file comment. This comment should not be used to give in-depth
explanations of each function and variable defined, rather it should explain what
group of functions and variables are defined within the file. The file comment was
intended to be a place where programmers could explain characteristics particular to
entire files.

(2) Pre-comment: Pre-comments are placed before a software object and they follow
the following syntax:

/* * comments * %/

-12-

Again, only the symbols :* and *: distinguish the pre-comment.

(3) Post-comment: Post-comments are normally placed after a software object and
they follow the following syntax:

JEx: comments ckxf

Table 2 lists the comment types and with what each can associate. While global
variables and types can have pre- and post-comments attached to themselves, functions
can only be associated with pre-comments. Furthermore, pre-comments must appear
completely before the object to which they are attached. In the case of functions and glo-
bal variables, this means that it must be placed before the type. Analogously, post-
comments must appear after the software objects, i.e., semi-colons for global variables and
type declarations and closing curly braces for functions.

Table 2. Comment Associations with Software Objects
num object file comment | pre-comment | post-comment
1 file X
2 function X
3 global variable X X
4 macro
5 type X X

The special syntax of the three comment types must be conformed to. Although CIA
only needs to recognize the first four characters to determine which type it is looking at, a
warning is issued if the proper ending is not used. In any case, the first occurrence of a
*/ ends the comment.

Several structured comments can be grouped together and associated with a single
software object. Blank lines or normal C comments can appear in between the comments,
but no code can be interspersed within the structured comments. For example,

[% RERFR ROk KRR K X [

/* function: GetName x/
R Ll T e B e L T s E O 7

/*: more comments here xf
GetName ()

{

}

INFOVIEW provides a command comment for viewing comments. The syntax is
similar to that of the view command:

comment [-n] object_type object_name [file_name]

For instance,

-13-

% comment function FindName
/*;***************************;*/

/*:* function: FindName *: %/
/*:* purpose : Return onme if *:*/
/*:* name found in list, *:*/

/% * otherwise return zero *: */
/*;***************************;*/

Here is another example:
% comment file util.c
PR T e ht E
* file: util.c
* contents: Very low level
* primitives.
FTTIT T3 222232222 22222 20 2 5 2 Sl */

3.8. Function-related Commands

Functions are probably the most important objects in the program database.
Several commands are solely created for dealing with function objects:

(1) header: print out the header of a function. A header is defined as the comments (if
any) and the formal parameter definitions. The syntax of header Is

header [-n] function_name [file_name]
For example,

% header FindName
J% RERFRAEARIARRAERRER KT RRK K [

/* * function: FindName * %/
/*:* purpose : Return ome if *:*/
/*:* name found in list, *x %/

/¥ * otherwise return zero * */
R Ll e e L L N T

int

FindName (head, name)
LINK *head;

NAME *name;

(2) body: print out the body of a function. The syntax is similar to that of header:

body [-n] function_name [file_name]

For example,

<14 -

% body -n InsertName

29 . {

30 LINK *temp;

31

32 temp=(LINK *)malloc(sizeof (LINK));
33 : strcpy(temp->name, name) ;

34 temp->next = head,

35 head = temp;

36 : } /* end of InsertName */

The next three commands: formals, listcall, and viewcall should only be executed
when the database is constructed with the -f option of CIA. The -f option prompts
our system to.collect two more pieces of information:

a) Formal parameters of each function definition — stored in formals.data.
b) Real parameters given for each function call — stored in funcccall.data.

This option can increase the disk block usage by a significant amountt. Exercise
caution when issuing it.

To test the next three commands, first create a new database with the formal param-
eter and function call information:

% cia =-f chain . h chain ¢ util. ¢ main ¢

In addition to the minimum database, you should also find formals.data and
funccall.data in your current directory.

(3) formals: print out the formal parameters of a function in a nice form. The syntax is

(4)

formals [-u] function_name [file_name]
For example,

% formals InsertName

file_name : chain.c

function_name: InsertName

arg_type arg_name
LINK * head
NAME * name

The output of the formals command will be unformatted if the option flag -u is
given.

listeall: list all the instances of function calls made to a particular function. The
syntax is

t+ This option was implemented to help support a structure chart generator.

(5)

-15 -

listcall [-u)] callee [file] ([caller]

This command helps locate and count function calls. For example, to print out all
the instances of the function call GetName, enter

% listcall GetName

file caller callee bline eline
main.c main GetName 12 i2
main. ¢ main GetName i5 i5
main.c main GetNa.m_e i7 i7

The listing can be limited to function calls in a particular file or even in a particular
function. For example,

% listcall IsNotNIL chain.c FindName

file caller callee bline eline

chain.c FindName IsNotNIL i9 19

ot A S e > s s s e —————
i . D o i s s e P DD S A T e e D T oA S S SRS MDD D D D MRS A TR e o

viewcall: print out the actual statements that invoke a particular function call. The
syntax is similar to that of listcall:

viewcall [-n] callee [file]l [caller]

For example,

% viewcall -n InsertName
14 InsertName (chain, name) ;

summary: print out the summary of a function. The summary includes
(1) function attributes

(2) function header

(3) global variables and macros referenced in the function

(4) functions that call this function

(5) functions that are called by this function

This is our first attempt at automatic generation of design documents from the pro-
gram database. The document can be used to check against the original paper
design (if there was any).

The syntax of this command is

summary function_name [file_name]

The output generated by summary is usually very long; we have to leave out an
example here because of the space limitation.

-16-

3.7. Miscellaneous Commands

In this section, we list a few other INFOVIEW commands that do not fall into the

previous categories:

(1)

(5)

see: print out a section of a source file specified by the beginning and ending line
numbers. The syntax is

see [-n] filename num! num2
For example,

% see -n chain.h 6 10
6 : struct link {

7 NAME name [LEN];
8 : struct link *next;
9 : };

10 : typedef struct link LINK;

schema: print out the database schema. The syntax is
schema [datafile_name]
For example,

% schema gbvar

in_file data_type var_name static bline eline

——————— e
f—t—

D o o e s i T e s e it
T S S D D S o S G, 20 0 M

e] 0y D mtm e D D
D S0 o e I S T e T e e 0 T D R SIS

% schema funcfunc

caller_£file caller_func callee_file callee_func

e e e T L ST E o o i i e 00 S S S ool 8 TP DD D i > o 10 S A A P V) S i S~ <D S D] W) K D S .t Sl I o o > S e s 38

If the datafile name is not given, then the whole database schema will be printed.

retrieve: retrieve database entries that satisfy a set of field specifications. The syn-
tax is

retrieve rel_name fieldl=valuel . . f{ieldn=valuen
For example,

% retrieve function bline=8

in_file func_type func_name static bline hline eline
chain. ¢ int FindName n 8 17 24
util.c int IsNotNIL n 8 12 15

% retrieve gbvar static=y

in_file data_type var_name static bline eline

chain.h LINK =* tempLink y 12 12

-17 -

Knowledge of field names, which can be obtained through the schema command, is
required in order to use the retrieve command. Note that all commands in other
categories do not require any knowledge of the field names, and recall that the field names
are subject to change in the future.

(8) infoview: print out the command syntax of all INFOVIEW commands. A summary
of all INFOVIEW commands can be found in Appendix C.

3.8. Prefix Matching

All object types can be specified by a proper prefix when invoking INFOVIEW com-
mands. The minimum prefixs necessary for each object type follow: fi for file, fu for
function, gbv for gbvar, t for type, and ma for macro. For example,

% info gbvar see can be replaced by
% info gbv see

% retrieve function static=y can be replaced by
% retrieve fu static=y

For specifying database files that store relations, the following abbreviations can be used:
fifi for filefile, fufu for funcfunc, gf for gbvrfunc, and mf for macrfunc. For example,

% list filefile can be replaced by
% list fifi
% retrieve gbvrfunc used_in_file=do_info.c can be replaced by

% retrieve gf used_in_file=do_info.c

3.9. Environment Variables

A programmer may want to switch back and forth between several program data-
bases; therefore, a set of environment variables is provided for locating program files or
database files. If none of the environment variables are set, the default is to search files in
the current directory.

Suppose your program and database files are located in the directory pro ject, and the
current directory is not project. Before you invoke any INFOVIEW commands, set the
environment variable ciadir to project. If you are using the C shell, type

% setenv ciadir project
If you are using the Bourne shell{2], type
% ciadir=project
In all later examples, we will assume that you are using the C shell.

Two additional environment variables, datadir and pgmdir, are provided for the
separation of the program database and source files. Datadir and pgmdir, when either or
both are set, overwrite the environment variable ciadir. Table 3 shows how the settings
of environment variables affect the searching of database or program files.

- 18-

Table 3. Locating program database and source files
environmental variables files located in
ciadir pgmdir datadir program database
- - - current current

- - B current B
- A - A current
- A B A B
C - - C C
C - B C B
C A - A C
C A B A B

For example, suppose the following commands are executed:

% pwd
/b/os/useri/project

% mkdir ciabase

% mv *.data ciabase

% setenv datadir ciabase

then all database accesses will go to /b/os/userl/project/ciabase until the environment
variable datadir is changed or unset. Source files are still assumed to be located in the
current directory.

Users may prefer to separate the program database and source files for several rea-
sons:

(1) Simply to avoid a crowd of files in the source directory.

(2) To maintain different subsets of the program database by running the C abstractor
on different subsets of the source files. This is particularly useful when some related
programs that share source files are located in the same directory. For example, sup-
pose program pl is constructed from 1ibl.c, 11b2.c, and pl ¢, and program p2
is constructed from 1ibl ¢, 1ib2 c, and p2.c. Two databases can be created in
the following way (-c option is explained in Section 4.1):

% cia -c pl.c p2.c libi ¢ 1lib2 ¢
% cia pl.cst libl.cst 1ib2.cst
% mkdir pl.base

% mv * data pl . base

% cia p2.cst libl.cst 1ib2 cst
% mkdir p2.base

% nv * data p2.base

(3) To maintain multiple versions of the program database so as to keep a history of the
structural changes in a program. Only attribute information and relational informa-
tion can be accessed in old versions of databases. Source access to old versions using
the view command would be difficult until some facilities that integrate the SCCS
files[4] and the program database become available.

- 19 -

To find out the current settings of the environment variables used by the
INFOVIEW System, use the command pgmenv. For example,

% pgmenv

ciadir= /b/os/useri/project

pgmdir=

datadir= /b/os/userl/project/ciabase

3.10. Initialization File

Before CIA starts processing C programs, it reads in an initialization file .ciarc from
the current directory. This file can contain parameters to control the abstraction of C
programs, which use special libraries or require different databases. As a result, direc-
tories can be personalized to reflect the special needs of the programs within.

One of CIA's options -I allows users to specify additional paths when searching for
include files. See Section 4.3 for a full explanation. If source files within one directory
depend on include files in another directory such that the -I... option is required with each
CIA execution, .ciarc has a mechanism to prevent the repetitive typing. For example,
say we would normally execute:

% cia ~I/b/os/miken/cia/lib -I/b/os/miken/lib chain.h chain.c util.c main.c
We could, instead, place .ciarc in the current directory with the following contents:

incdir=/cia/lid
inedir=/b/os/miken/1lib

Now, to build a database, we would simply type

% cia chain.h chain.c util.c main.c

The general include file search path becomes

(1) Current directory
(2) First added directory via -I.. . option
(8) Second added directory via -I... option

(I) First added directory via .ciarc file
(J) Second added directory via .ciarc file

(N) /usr/include directory

Search start positions are identical to those explained in Section 4.3.

The three environment variables used by the INFOVIEW system can also be placed
in the .ciarc file. Individuals will then be able to view different programs in different
directories without resetting the variables. The syntax is identical to that of incdir, e.g.,

- 20 -

ciadir=/b/os/miken/ciasource
datadir=/b/os/miken/ciasource/data
pgndir=/b/os/miken/ciasource

Pointers in the initialization file take precedence by replacing their respective environment
variable.

3.11. Redirection of the Database

Instead of explicitly moving database files into a directory, you can issue a CIA
option -dDirectory. Using the second major example of Section 3.9, it becomes

% cia -c¢ pl.¢ p2.¢c 1libl ¢ 1ib2. ¢

% mkdir pl base

% cia -dpl base pl cst libl.cst 1ib2 cst
% mkdir p2 base

% cia -dp2.base p2.cst libl.cst 1ib2 cst

3.12. INFOVIEW Library Routines

The C program database provides an excellent opportunity for developing software
tools that utilize the valuable attribute and relational information. In order to facilitate
the construction of these commands, a set of library functions is provided as an interface
to the C program database. For details of these functions, see INFOVIEW(3). A short
summary is given in Appendix D.

4. PROGRAM DEVELOPMENT

Developed originally as a maintenance tool, CIA became a more complete program-
ming tool when modifications were made enabling it to be used in program development.
This section describes incremental abstraction and gives an example of a makefile[5] that
uses incremental abstraction for more efficient maintenance of large program databases.

4.1. Incremental Abstraction

Analogous to a C compiler’s incremental compilation, the C Information Abstractor
has a method of incremental abstraction used to lower overall abstraction time when fre-
quent changes are made to source. Unlike C compilers, however, CIA can abstract include
files, creating a few dissimilarities between the two.

Intermediate abstraction files in CIA lingo are called symbol table files and take the
form * hst and *.cst. To create them using the example of Section 2.2,

% cia -¢ chain.h chain.c util.c main.c

Upon successful completion, chain.hst, chain.cst, util cst, and main.cst should
exist in the current directory. To link the minimum database from these files, a user
would type

#® cia chain.hst chain.cst util.cst main.cst

As a result,

-921-

% cia chain.h chain.c util.c main.c <method 1>

produces the same database as

% cia =-c chain.h chain. ¢ util.c main.c <method 2>
% cia chain.hst chain.cst util cst main. cst

except the last method will reabstract faster than the first. For example, say we made a
change to the file chain.c. To recreate the database using method one, we would execute

% cia chain.h ckain.c¢ util.c main.c

exactly what we did earlier; however, by using method two

% cia -c chain.c
% cia chain.hst chain.cst util.cst main. cst

The time to completion is considerably less than method one because chain. h, util.c
and main. c are not reabstracted in the later example. Typically, abstraction time for a
symbol table is equal to 50% of the compilation time for that same source file.

IMPORTANT: When using incremental abstraction and options other than -c con-
currently, careful attention must be paid to the options chosen at symbol table creation
time and at database creation time. Abstraction ranges can be summarized as follows:

1) If the symbol tables are created with a specific option and that option is not given in
the linking phase, the additional information abstracted at the creation phase is not
put into the database.

2) If the symbol tables are created without a specific option, the extra information that
would be abstracted by including the option is lost. As a result, if that option is
given at link time, the database will not contain any information associated with
that option.

Because adding certain options at abstraction time can lead to enormous symbol
table files, our approach was to not include all information as the default. Likewise, the
use of certain options at the link phase can increase the size of the final database by up to
two times. In order to keep storage requirements to a minimum, options must be carried
through to all stages of development. For example, to collect function parameter data,
use

% cia -¢ ~f chain.h util.c¢ chain.c
% cia -f chain.hst util.cst chain cst

If the -f option is fergotten on either line, function parameter information is not collected.

4.2. Make and Makefiles

Experienced programmers will notice that the problem of insuring database integrity
during frequent source changes can be easily remedied through makefiles. Those program-
mers unfamiliar with Make and makefiles should read the Make manualf5]. Figure 3
shows a subset of the makefile used for the Network Event Manager, a current project at
UC Berkeley. It demonstrates the use of incremental abstraction in a makefile to main-
tain a program database.

-929-

Example for maintenance of programs
Makefile for Network Event Manager

SRC = em.c event.c exec.c status.c socket.c
HDR = em . h
OBJ = em.0 event.o exec.o status. .o socket.o

CST = em.cst event.cst exec.cst status.cst socket.cst
HST em_ hst

GET = sccs get
CIAFLAGS = -f

SUFFIXES: .¢ .0 .cst .hst

em: ${0BJ}
ce ${CFLAGS} -o em ${0BJ}

${0BJ}: em.h

c.o:
cc ${CFLAGS} -c $«

CIA section

.¢c.cst:
cia -c ${CIAFLAGS} $<

.h hst:
cia -c ${CIAFLAGS} %<

ciabase: ${HST} ${CST}
cia ${CIAFLAGS} ${HST} ${CST}

SCCS section
sources: ${SRCS}

${SRCS}:
${GET} $0

Example 2. A Sample Makefile

The source files are listed after the macro SRC; the header files are listed after HDR;
and the corresponding symbol table files are listed after CST and HST. To build or
rebuild the Event Manager’'s database, a user needs just input

-923-

% make ciabase

After HST and CST are expanded, the dependencies for this command become em.hst,
em.cst, event. cst, exec.cst, status.cst, and socket.cst. Let’s say that none of
the symbol table files exist. Make would then try and create them by executing:

% cia =¢c -f em.h

% cia -c -f em.c

% cia -c -f event.c
% cia -c -f exec.c

% cia -c -f status.c
% cia -¢ -f socket.c

Make knows to execute these commands because of the dependencies

.¢.cst: and .h . hst:

For example, em hst is dependent on em.h; to create em.hst, it must execute
% cia -c -f em.h

Now that ciabase's dependencies are met, Make automatically issues the command

% cia em hst em.cst event.cst exec.cst status.cst socket cst

This performs what Make thinks will create the file ciabase; however, ciabase is only
conceptually created through the database files. Once the UNIX prompt returns, your
database is made; and using INFOVIEW, you can examine your program in a style you
have never before experienced. Also, remember that when a change is made to the source,
just type

% make ciabase

4.3. Preprocessor Options

Through options, the C compiler gives a certain amount of control over a compila-
tion to the user invoking the compilation. These options allow users to define and
undefine macros as well as give additional paths when searching for include files. CIA,
too, has these options so that, according to the command line options given, its database
entries will correspond to a correct interpretation of its input. Any macros defined or
undefined with the command line, however, will not be entered into CIA’s relational data-
base. To define a macro, a user would invoke CIA as follows:

% cia -Dmacro=xxx chain.c

The eflect would be identical to putting the following statement on line 0 of chain c.

#define macro xxx

-Dmacro is short for -Dmacro=1 and can be used when a macro only needs to be defined
as with conditional compilation; undefining macros can be performed through a -Umacro
option. Deciding to use the -D... and -U... options should not be difficult. If a program is
compiled as follows,

-4 -

% cc -Dunix chain.h util.c chain.c main ¢

then its database should be built similarly:

% cia -Dunix chain.h util.c chain.c main.c

An include file search path is used during the CIA's preprocessing stage. Normally,
users have no need to learn about the path because they will have only two types of
include files: those located relative to the current directory and those located relative to
the /usr/include directory. If a programmer wishes to use include files which don’t fall
into either of the previous two categories, he can add to the search path with the <Idirec-
tory option. The search path becomes:

(1) Current directory
(2) First added directory via -I... option
(3) Second added directory via -I. .. option

(N) /usr/include directory

Up to seven or eight directories can be added to the search path in the location shown
above. If double quotes surround the include file name in the source, the search begins at
position one, the current directory, e.g.,

#include "cia.h"

However, if angled brackets are used, the search begins at position two. Suppose two
directories are added to the search path as follows:

% cia -I/b/os/miken/1lib ~I/b/os/miken/local chain.h util.c chain ¢

If the following then appears in the source file chain.h,

#include <param.h>

the e¢ia program will search the file param.h starting from the directory
/b/os/miken/1ib.

5. STATUS AND FUTURE WORK

The C Information Abstraction System has been installed and in production use at
UC Berkeley and Columbus Bell Laboratories. The system has proved extremely helpful
in supporting the development and maintenance of our own projects. Ivan Brohard and
Bruce Wachlin at Columbus Bell Laboratories implemented the GRIST system, which pro-
vides a multi-window graphical interface for software development and maintenance based
on the C program database created by the C Information Abstractor. Our future work
will focus on an integrated set of software tools that exploit the information stored in the
program database, e.g., to support very high level operations such as calculation of
software metrics, analysis of program structure, automatic program restructuring, analysis
of ripple effects, generation of design documents, etc.

- 25 -

Acknowledgement

Many people contributed to the implementation of the C Information Abstraction
System. Michael Nishimoto implemented the C Abstractor with help from Lenora Eng.
Joo-Seok Song wrote some early shell scripts for the INFOVIEW system. Wen-Ling Chen
implemented most of the final INFOVIEW system in C programs with help from Yih-Farn
Chen. We would also like to thank Professor Ramammoorthy, our colleagues, Atul
Prakash, Benjamin Chang, Wei-Tek Tsai, Yutaka Usuda, Vijay Garg, Tsuneo Yamaura,
Anupam Bhide, Rajeev Aggarwal, and the technical staff at Columbus Bell Labs, in partic-
ular Charles Fritz, Bruce Wachlin, Ivan Brohard, Doyt Perry, and Michael Buckley for
valuable comments and discussion throughout the development of this project. Special
thanks are due Andy Guest for his help during the preparation of this tutorial.

References

1. Y. F. Chen and C. V. Ramamoorthy, “The C Information Abstractor,” Computer
Software and Applications Con ference (COMPSAC), Chicago, October 1986.

2. S. R. Bourne, “An Introduction to the UNIX Shell,” UNIX Programmer’s Manual,
vol. 2, 1978.

3. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, ‘‘Awk - A Pattern
Scanning and Processing Language,” Uniz Programmer’'s Manual, vol. 2, 1984.

4. M.J. Rochkind, ‘““The Source Code Control System,” IEEE Transactions on
Software Engineering, vol. SE-1, no. 4, pp. 364-370, December 1975.

5. S. Feldman, “Make - A program for Maintaining Computer Programs,” Uniz
Programmer’s Manual, 4.2 BSD, 1978.

- 96 -

Appendix A — Summary of CIA Options

USER Options: ¢, d, e, f, i, m, s, u, w, x, D, I, U

-c
-d

=€

-f

o
-1

Incremental abstraction. See Section 4.1.
Directory for CIA database. See Section 3.11.

No external function information. Some programs make numerous calls to
library/system functions. If the external definitions are not placed within an include
file and instead are placed within each module calling that function, funcfunc.data
may grow large. See Function to Function Relation in Appendix B. To curtail
the size of funcfunc.data, we don’t output relations involving functions which are
defined externally and which don’t appear in any of CIA’s input files.

Collect formal parameter & function call information. See Section 3.8.

Collect information in include files. When variables or functions are defined within
an include file, non-relational information is not abstracted for them. This option
will cause that data to be collected. Be aware that data files can increase tremen-
dously depending on your style of programming.

Print out a menu of CIA options
Collect information on system function calls. The data file produced is system.data.

Collect unknown identifiers within functions. The data file produced is
unknown.data.

Suppress normal [stdout] messages

Collect macro expansion information. The data file produced is ezpand.data, and it
will grow very large.

Define a macro — same format as cc(1) See Section 4.3
Add directory to include search path — same format as cc(1) See Section 4.3

Undefine a macro — same format cc(1) See Section 4.3

ADMINISTRATION Options - h, |, t

-h
-l
-t

Print hash table values
Print low level debug information-show state changes

Print tokens, identifiers, EOF, ...

{Currently, there is no sophisticated interface to this file.

.97 -

Appendix B — Detailed Description of Information in the Database

The various relationships between the five software objects were illustrated in Figure
9. This appendix will explain the objects and their relationships in more depth while list-
ing, after each heading, the data files from which specific information was derived.

Files — file.data

The CIA system collects three pieces of information related specifically to files; they
are file comment, file length, and compile-time file length. Information on file comments is
placed in comment.data and has been previously discussed in Section 3.5. The meaning of
file length should be obvious; however, the concept of a compile-time file length may be a
new. Compile-time length more accurately reflects than normal file length how much time
an abstraction or compilation will take an a given file.

In the process of writing large C programs, source code is broken down into modules
and include files. When C compilers and our C abstractor begin parsing module files, they
expect a pre-processor, /lib/cpp in BSD UNIX, to have already passed over the file. The
pre-processor will process all the compiler control lines, those beginning with a #. One
operation of cpp is to actually merge in include files, making the module file parsed by
CIA much larger. The resulting file length is the compile-time length of a file.

Functions — function.data, formals.data, and funccall.data

Functions, being the cornerstone of structured programming, are the most informa-
tive software objects available. CIA provides their type, location, length, staticness (all in
function.data), formal parameters (formals.data), parameters of each call (funccall.data),
and comments. Header and body breakdowns are also collected. A function header is
defined as the comments (if any) and the formal parameter definitions. Although com-
ment information is stored implicitly through the function header (function.data), explicit
data is kept in comment.data.

Global Variables — gbvar.data

Type, definition location, length, and staticness are the attributes abstracted by CIA
for global variables. Comments can be placed both before and after definitions, and
INFOVIEW'’s view command will display both if both are used. Unlike function
definitions, however, global variable definitions can be ambiguous. 4.3 BSD's C compiler,
for instance, allows multiple definitions of a variable within a program although not
within a single file.

CIA takes the stance of define once, declare many. The difference between definition
and declaration is illustrated in the following code segment:

- 98-

#include <stdio.h>

extern CHAR *symbol_table(];
int index;

static long bit_mask;

o W W N

In the above code segment, the structure symbol_table would be considered a declara-
tion while index and bit_mask would be definitions.

CIA depends on programmers to define variables only once and properly declare
them elsewhere. If multiple definitions are used, CIA will abstract them all, but
INFOVIEW will only display the first occurrence within the database.

Macros — macro.data

Only two pieces of information are stored for macros: definition location and expan-
sion locations. DO NOT use structured comments with macros; CIA may not understand
your program. Macros cannot have structured comments associated with them because of
the manner in which macro expansions are resolved by the pre-processor. We decided to
not modify the pre-processor due to the slow down it would incur. If structured com-
ments are attached to macros, CIA aborts from the file it is currently abstracting or out-
put false data. Expansion information (stored in expand.data) will not be abstracted
unless the -x option is given. Moreover, the extra data file produced may be enormous.
See Appendix A.

Types — type.data

Definition location and attached comments are abstracted from types. Like global
variables, types can have both pre and post-comments. Presently, we don't parse the con-
tents of type definitions, so that information is not available. See Type to Type Rela-
tion.

File to File Relation — filefile.data

Often times an individual executes

% grep "#include® source.c

to find out which files are included in some source file or include file. He may also type
% grep include.b *.¢

This prints files which include a particular include file. With CIA both these commands
become unnecessary. filefile.data contains the relations between include files and source
files, and rel can display the data quickly.

Function to Function Relation — funcfunc.data

In the absence of good comments, this relationship gives more useful information
about a program than any other. With it, a program’s entire call structure can be
recreated. The C Abstractor finds the functions which are called by each function and the

-99-

functions which call a certain function.
Three different variations of called functions are abstracted by CIA. They are
1) Functions defined by the user. [e.g., main()]
2) Externally defined functions. [e.g., extern int HashValue();, FILE *fopen();]
3) Library or system functions: functions not defined or declared. [e.g., strepy()]

CIA needs to find the file name where the called function is defined to complete this
relation. In the first case, the file name where the programmer defines the function is
obviously used. For the second case, a slightly different algorithm must be utilized. If
these functions are not defined anywhere, CIA indicates that the definition file is where it
found the initial external definition or declaration. It would be to your advantage to put
external definitions in include files unless they are used only once. Otherwise, your
program may appear to have multiple definitions due to the algorithm explained above.
For the last type, we do not abstract a pure function to function relation; however, we
can create an extra database file (system.data) which holds the library/system function
calls. Presently, declared library/system functions are treated as the second type of func-
tion. Many standard I/O functions, like fopen(), are declared within <stdio.h> and are
handled as such. Note that library/system function calls will presently produce entries
within funcfunc.data which are not consistent with function.data. For instance, the
database for

<FILE: pl.c>
main ()
{

FILE =*fp,

fp=fopen(*data®, *r");
}

would contain the following entry in funcfunc.data:

pl.c:main:/usr/include/stdio.h:fopen

However, the function fopen is defined nowhere.

Global Variable to Function Relation — gbvrfunc.data

This relation is very similar to the previous one. CIA abstracts a list of all global
variables each function uses and a list of functions which use a particular variable.

Two types of global variables are recognized:
1) Those defined by the user.
2) Those variables defined externally.

As explained earlier, this may be a point of confusion since C compilers may handle
definitions and declarations differently. We take the stance of define once, declare many.
See the Global Variable object section in this appendix. A variable declaration must
have an extern keyword in the statement. Like the function to function relation, if CIA
can find no definition, it will report the variable as being defined where it was declared.
This situation should not occur as frequently, though, because C has few system variables.

-30-

Macro to Function Relation — macrfunc.data

We abstract all macros each function uses and all functions which use certain mac-
ros. If a macro is substituted by other macro(s), then the original macro and substituting
macro(s) will all be abstracted.

Function to File Relation — from function.data and funcfunc.data

The next four relations are built a little differently than those already explained. Up
to this point, this appendix has discussed how one software object references another
object. In the function to file relation, the C Information Abstraction System provides
those functions referenced or defined in each file and those files which reference or define
particular functions. With static functions, multiple function definitions can exist. This
relation is not abstracted explicitly by the core abstractor CIA; instead, it is provided by
INFOVIEW. Using two database files, INFOVIEW can create this relation through
exhaustive search. ' g

Macro to File Relation — from macro.data and macrfunc.data

Macros referenced or defined within a file and all files referencing or defining a macro
are collected.

Global Variable to File Relation — from gbvar.data and gbvrfunc.data

CIA abstracts global variables referenced or defined within a file and files referencing
or defining particular global variables.

Type to File Relation — from type.data

The type to file relation is not completed at this time. We can presently offer data
showing which types are defined in which files but not which types are referenced in each
file.

Global Variable to Type Relation — from gbvar.data

Global variables cannot reference types, so this relation gives just those variables
defined as certain types.

Type to Function Relation [Future Extension] — typefunc.data

Types used within each function and functions which use particular types will be
abstracted. This relation is a future extension of CIA we hope to implement. If it works
in the version you have, use it; otherwise, send mail to cia@ucbarpa.Berkeley.EDU for the
latest details. At this moment, we are uncertain whether this data will be output as a
default or another option.

Type to Type Relation [Future Extension] — typetype.data

Finally, we offer you a type to type relation for quick understanding of complex data
structures. The syntax for any future extensions should be analogous to existing ones.

-31-
Appendix C — Summary of INFOVIEW Commands

info [-u] object_type object_name

rel [-u] object_typel object_type2 object_namel object_name2 [rld]
view [-n] object_type object_name [file_name]
comment object_type object_name [file_name]
list [-u] datafile_name

header function_name [file_name]

body function_name [file_name]

formals [-u] function_name [file_name]
listcall [-u] callee [file] [caller]

viewcall [-n] callee [file] {caller]

retrieve rel_name fieldl valuel field2 value2 ...
summary function_name [file_name]

see [-n| file_name begin_line end_line

schema [rel_name]

pgmenv

infoview

Note: The following environment variables should be set properly:
pgmdir: the pathname of the program directory
datadir: the pathname of the data directory

ciadir: the default pathname when pgmdir or datadir is not set

If none of the above variables is set, then the current
directory is searched for data files or program files.

-32-

Appendix D — Summary of INFOVIEW Library Routines

formals: obtain information about a function's formal parameters.

formals(func_name, file_name, buffer)
char *func_name,

char *file_name;

char *buffer;

getfields: get data fields from a data line.

getfields (line, field)
char line[MAXLINE];
char field [NUMFIELDS] [MAXLINE],

header: fill a buffer with the header of a function.

header (function_name, file_name, buffer)
char *function_name,

char *file_name,

char *buffer;

snfo: obtain information about an object’s attributes.

info(obj_type. obj_name, buffer)
char *obj_type.

ckar *obj_name;

char *buffer;

tnterpret: interpret an error code.

interpret(error_code)
int error_code;

match: match a line with a table that has pairs of field numbers and field values.

match(line, num, rel_table)

char line [MAXLINE],

int num,

struct rel_tab rel_table [MAXFIELDS];

open_source: open a file of a particular type in a specified directory.

FILE *open_source(openfile, filetype)
char *openfile;
int filetype;

prefiz: transform the prefix of a relation name to its full name.

prefix(rel_name)
char *rel_name;

rel: obtain the relational information between two object types.

-33-

rel(obj_typel, obj_type2, obj_namel, obj_name2, ref_def, buffer)
char *obj_typel;

char *obj_type2;

char *obj_namel;

char *obj_name2;

int ref_def;

char *buffer;

(10) see: fill a buffer with a part of the specified program file.

see(filename, begin_line, end_line, numflag, buffer)
char *filename;

int begin_line;

int end_line;

int numflag;

char *buffer;

(11) view: print out a specified object.

view(ob]_type, obj_name, file_name, numflag, buffer)
char obj_type [MAXNAME] ;

char obj_name [MAXNAME] ;

char file_name [MAXNAME] :

int numflag;

char *buffer;

