Process Migration in the Sprite Operating System*

Fred Douglis

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

February 11, 1987

Abstract

This paper describes a process migration facility for the Sprite operating system. In
order to provide location-transparent remote execution, Sprite associates with each pro-
cess a distinguished home node, which provides kernel services to the process throughout
the process’s lifetime. System calls that depend on the location of a process are forwarded
to the process’s home node. Performance measurements based on a few simple bench-
marks show that remote execution using the home-node model is efficient as long as the
number of system calls that must be forwarded home is small; this appears to be the
case as long as file-system-related calls can be handled without involving the home node.
The benchmarks also show that the cost of migrating a process can vary from a fraction
of a second to many seconds; it is determined primarily by the number of dirty virtual
memory pages and file blocks associated with the process.

*This work was supported in part by the Defense Advanced Research Projects Agency under contract
N00039-85-C-0269, in part by the National Science Foundation under grant ECS-8351961, and in part by
General Motors Corporation.

1 Introduction

Process migration is a method by which executing processes may be transferred between
nodes in a distributed system. This paper describes a prototype process migration facility
for the Sprite operating system [4,10]. The main purpose of process migration in Sprite is to
make compute power easily sharable in a network of personal workstations: users with several
relatively-independent tasks to perform can (potentially) complete them more quickly by
offloading some of them to other workstations. For example, when recompiling a large system,
the separate compilations of individual modules could be migrated to idle workstations around
the network and executed in parallel. Or, simulations requiring several independent runs with
varying parameters could be handled by doing each run on a separate machine.

We addressed three overall issues in implementing a process migration facility for Sprite:
transparency, preemption, and efficiency. Transparency means that the results produced by
a process should not depend on where it executes in the network, nor should the process
need to be coded in a special way in order for it to be migrated. This means that processes
must still be able to access files, devices, and other system facilities such as time-of-day and
the display in the same fashion when migrated as they would if executing locally. Sprite
achieves transparency by assigning each process a home node. Whenever a migrated process
invokes a location-dependent system call (one that might produce different results if executed
on different nodes), the system call is forwarded to the process’s home node using a remote-
procedure-call facility. Sprite’s use of home nodes distinguishes it from other process migration
mechanisms such as those in the V-System [2,7,8], LOCUS [5,9], and Demos/MP [6].

Our second major concern was preemption. In workstation-based computing facilities,
workstations “belong” to individuals who often want and need exclusive use of their machines.
We felt that a user returning to his/her node should be able to eject all of the processes that
were migrated to that node in the user’s absence. Remote execution facilities, such as the rsh
facility of 4.3BSD UNIX! [3], permit processes to be created on remote nodes but do not allow

the processes to be moved once initiated. Thus a returning user would be forced either to kill

tUNIX is a trademark of AT&T Bell Laboratories.

the foreign processes on his/her node or suffer degraded response until the foreign processes
completed. In contrast, Sprite’s process migration mechanism allows processes to be moved at
any time. If a process is migrated to a node and then the node’s owner resumes activity, the
migrated process can be preempted from that node; after being migrated elsewhere (either
home or to a different remote node), no residual dependencies are left on the node from which
it was preempted.

The third major issue in implementing process migration was efficiency. In Sprite there
are two potential sources of inefficiency: the time necessary to migrate a process, and the
additional cost of supporting remote execution. We used a few simple benchmark programs
to measure these factors in a prototype implementation of the Sprite process migration mech-
anism on Sun-2 workstations. Migration time is dominated by the cost of transferring the
process’s address space: the “null” process can be migrated in about .5 seconds, but processes
with many dirty pages can require many seconds to migrate (about 130 kbytes per second).
Thus, process migration makes the most sense for either (a) processes that are too “young”
to have generated a large address space, or (b) processes that will execute for many seconds
or minutes once migrated.

The additional cost of remote execution consists of the time required to forward sys-
tem calls back to the home node. Since forwarding is relatively expensive (approximately 7
milliseconds per call), it is important that frequently-executed system calls not have to be
forwarded. Sprite allows file-system-related calls to be handled without forwarding, while
most other system calls must be forwarded. Since most system calls are file-system-related,
remote execution appears to suffer negligible degradation: for example, a remote compilation
of four files ran 1% more slowly than when performed locally.

Overall, process migration in Sprite may reduce turnaround time substantially. By dis-
tributing compilations across idle workstations, the total time to compile varying sets of
programs has been reduced to 40-60% of the time needed to compile all the programs on the
same host. The amount of parallelism obtained determines the reduction in turnaround time.

Section 2 of the paper discusses previous implementations of process migration. Section 3

provides background information on the Sprite system. Section 4 describes the Sprite process
migration mechanism. Section 5 analyzes the cost of migration, and Section 6 measures
the performance degradations suffered by migrated processes. Section 7 shows that process
migration can be used to provide substantial speed-ups for some applications. Section 8 gives
criteria for deciding when and where to migrate processes, based on our evaluation of the
system. This paper does not address the policy decisions involved in process migration: when
to migrate a process, where it should be migrated, and when to preempt a migrated process

from its current remote node. We expect to begin work in these areas in the near future.

2 Related Work

Several other systems have implemented process migration in one form or another. The
best-known of these are the V-System [2,7,8], LOCUS [5], and Demos/MP [6]. This section
discusses how those systems address the issues of transparency, preemption, and efficiency.

All three systems provide location-transparent remote execution. Demos/MP and V are
message-based systems: all interactions between a process and the rest of the world (including
both the system and other user processes) are carried out by sending and receiving messages.
The message system already provides a degree of location transparency in these systems; all
that is needed to support transparent remote execution is a facility for forwarding messages.
In Demos/MP, messages are sent to links, which are message paths managed by the kernel.
Each link contains a globally-unique identifier for the recipient of the messages, with the
identifier for the node on which the process was created, a unique local identifier for the
process within that node, and the last-known location of the process. Messages are sent to
the last-known location. When a process moves, its previous node forwards messages sent to
the process and also notifies the senders so that they can update the link with the process’s
new location.

In the V-System, messages are addressed to processes, using global process identifiers.
A global process identifier indicates a logical host for the process, which is mapped to a

physical node using a cache of mappings maintained by the kernel. If a message to a process

fails because the process is no longer at the same location, the kernel sending the message
broadcasts to obtain the logical host’s new location; this information is then used to update
the cache.

In LOCUS, user process use kernel calls, rather than messages, for interaction with the
system and other user processes. Thus, transparent remote execution cannot be achieved
merely by forwarding messages; call-specific techniques are used. LOCTUS already provides
a network-transparent file system, so no special effort is needed for the file-system-related
kernel calls. For kernel calls that operate on processes, the call must be forwarded to the
machine on which the process is executing. Processes are named with the identifier for the
node on which the process was created (called its origin site), plus a process identifier within
the origin site. The origin site keeps track of a process’s current location; other machines
communicate with the origin site to find out the current location for call-forwarding.

All three of the systems allow for preemption: any process may be migrated at any time.
However, if a process migrates several times then Demos /MP leaves residual dependencies at
each of the process’s previous nodes: each one must continue to forward messages on behalf
of the process. In LOCUS only the process’s origin site must assist in forwarding messages,
and in V there are no residual dependencies anywhere, since the process can be located by
broadcasting.

In terms of efficiency, both Demos/MP and V keep caches of a process’s current location
(the logical-to-physical host map kept by the V kernels, and the last-known site kept in
Demos/MP links); the caches eventually get updated after a process moves, which reduces
the amount of forwarding that must occur. In LOCUS there are no caches, so communication
with a non-local process must always involve the process’s origin site.

The V-System performs address-space pre-copying, an additional performance enhance-
ment that is intended to reduce the total time during which migrated processes are suspended.
Demos/MP and LOCUS both halt a process’s execution while it is being migrated; the pro-
cess remains frozen while its address space is copied to the new machine. In contrast, v

copies the address space while the process is still running: all pages are sent to the new node,

and then any pages that were modified after being sent are copied to the new node another
time. This procedure repeats until the number of modified pages is small, and then the pro-
cess is frozen and the rest of its state is transferred, along with any remaining dirty pages.
Theimer reports that pre-copying reduces the suspension time to a period conipa.rable to the
time required to swap a process into memory; migration therefore interferes minimally with

a process’s interaction with other processes and the user [7].

3 The Sprite Environment

This section provides background on the Sprite system, particularly those aspects that
influenced process migration. Sprite provides a kernel interface much like the UNIX operat-
ing system. To user processes, it does not appear message-based: Sprite provides a set of
procedure-like system calls, consisting mostly of calls to manipulate files (open, close, read,
etc.) and calls to manipulate processes (fork, exec, signal, etc.). Like UNIX, I/0O devices
and other special features are handled uniformly through the file system. Similarly, most
interprocess communication is accomplished through the file system (though closely-coupled
processes may use shared memory for communication).

Although the Sprite interface appears like that of UNIX, the implementation of the kernel
is completely different. The most important feature for process migration is the availability
in Sprite of a kernel-to-kernel remote procedure call (RPC) facility. The RPC mechanism
allows the kernel of any node in the network to invoke services in the kernel of any other node
with relatively low latency (about 5 milliseconds round-trip latency on Sun-2 workstations)
and “at-most-once” semantics [10].

The RPC facility has already been used to construct a distributed file system that provides
location-transparent file access across the network [11]. Asin LOCUS, the network file system
allowed us to make the file-system-related kernel calls location-transparent with very little
additional work. For example, the basic information kept by a client for a file consists only
of a token for the file (which is used to communicate with the file’s server) and the current

access position. This information is migrated with a process. Clients also maintain caches of

recently-used file data, but the file system already contains mechanisms for ensuring cache
consistency when multiple nodes access the same file; these same mechanisms are applied
when a process migrates to ensure that it does not access stale data.

In Sprite, the network file system is also used as a backing store for the virtual memory
system [4]. Corresponding to each segment is a temporary file; ordinary file-system operations
are used to transfer pages in and out of virtual memory. This approach to paging simplifies
the mechanism for migrating a process: the process’s current node writes out any dirty pages
to the process’s swap file(s), then sends descriptors for the swap files to the kernel of the new
workstation. The address space of the process is then demand-paged into the new workstation
as the process executes.

However, aside from operations related to the file system, system calls in Sprite are not
generally location-independent. A trivial example is the time-of-day clock. If different nodes’
clocks drift relative to each other, it may not be acceptable for a migrated process to use
the clock of its current node. As ancther example, each processor maintains one or more
environments, each of which associates particular string values with particular string names.
Sprite must take special care to ensure that a migrated process uses the same environment,
regardless of where the proceés has been migrated. Other operations require cooperation
between nodes in order to perform correctly: for example, when a process exits its parent must
be notified; either the parent or the child or both might have been migrated. The following
section describes in detail the mechanisms for process migration and remote execution, and it
explains how the transparent execution issue was resolved by assigning each process a home

node.

4 The Sprite Process Migration Mechanisms

4.1 Migrating a Process

A kernel migrates a process by suspending the process on the source node and transferring

its process state, virtual address space, and open files to the destination node. All transfers

are done using the standard kernel-to-kernel RPC mechanism. Specifically, migration involves

the following steps:

1. An RPC is sent to the destination node to confirm that the process will be allowed to
migrate. (When evicting a process and sending it home, the RPC confirms that the home
node is accessible, but the process is automatically “allowed” to migrate. Otherwise, the

kernel on the destination node may accept or reject foreign processes as it chooses.)

2. The process is interrupted, using the standard signal mechanism, to keep it from exe-
cuting while it is being migrated. If the process is running in user mode, it will trap into
the kernel; if it is in the middle of a system call, the call will be interrupted at the next

convenient place.

3. The “process state” of the process is transferred. This includes the contents of registers,
user and group identifications, signal handling information, and the home node and

process identifier of the migrating process.

4. The virtual address space is transferred. Any dirty pages are sent to a file server, then the
page tables and descriptors for the corresponding swap files are sent to the destination
node. This may require a large number of RPCs depending on the volume of dirty pages
and the size of the page tables that are sent. Also, if the dirty pages do not fit in the

file server’s cache, some delays will ensue as pages are written to disk.

5. Descriptors for the process’s open files and current working directory are encapsulated
and transferred. When writable open files are transferred, the file system cache consis-

tency protocol may cause files to be written back to file servers.

6. An RPC is sent to conclude the migration and permit the migrated process to resume

execution on the destination node.

7. Finally, the process resumes on the destination node. The process’s address space is

demand-paged onto the destination node as pages are referenced.

-~

4.2 Transparent Remote Execution

No matter where a process executes, it must behave as if it were running on the same
workstation throughout its lifetime. Any actions that depend on the location of the process
are performed as if the process were executing on its home node. The home node is similar
to the origin site of LOCUS, except that a process inherits the home node of its parent: in
particular, if a migrated Sprite process forks a child, the child behaves as if it had been created
on the parent’s home node and immediately migrated. In LOCUS, the origin site of the child
process is the node on which the process is created, regardless of the origin site of the parent.
The difference between Sprite and LOCUS arises primarily from naming considerations: since
LOCUS has global naming, the origin site is used primarily for mapping a process’s identifier
to its current location, and for efficiency one desires a child’s origin site to be its current host.
In Sprite, the home node must be inherited to ensure consistent naming and synchronization
of exiting processes; for example, processes are identified using a machine-relative process
identifier, and signals may be sent only to processes that are logically executing on the same
machine (even if some are migrated elsewhere).

A foreign process will execute user code and some system calls on a remote workstation,
but its home node will continue to provide location-dependent services. Sprite classifies

system calls in the following categories (with the number of calls in each category indicated
in parentheses):
e Site-independent (38).
The remote node handles calls that do not depend on the location of a process. For
example, a process’s virtual memory is managed entirely by the node on which it is
executing. Also, the remote node performs file operations by direct communication with
file servers.
e Site-dependent (24).
The home node services most calls that depend on a process’s location. Any operations
on the environment of a process are forwarded home, as are calls to get the time of day,

retrieve information about currently-executing processes, or send signals. Any calls that

may take process identifiers as arguments are handled by the home node because those
identifiers are relative to the home node of the process.
s Cooperative (5).

In a few cases, the remote and home nodes must cooperate to handle a system call.
For example, when a remote process exits, both workstations must clean up some state.
Similarly, when a remote process creates a child, both nodes allocate state for the child.
Additionally, any calls that affect process state (such as setting the effective user iden-
tifier) update the state on both hosts.

o Not migrateable (1).
Sprite provides a system call to map portions of the kernel’s address space into user
memory. (The X window server uses this call to access the display.) It is not possible
for a remote process to map memory from the kernel on its home node, so any process

that invoked this call would have to migrate home before the call could complete.

The decision of where to handle a system call is table-driven and is based on the status of
the process (local or foreign) and the particular call. If a process is running on its home node,
or if the system call may be handled by the remote node directly, nothing special needs to be
done. For forwarded calls, the arguments to the call are passed via RPC to the home node,
where an RPC server process performs the desired operation as a surrogate. The process table
entry of the server is marked to indicate that it is acting on behalf of a migrated process, and
when the surrogate performs an operation (such as sending a signal or getting an environment
variable), the user identifier and other process-specific information for the migrated process

are used.

5 Cost of migration

The current implementation of process migration in Sprite takes approximately 480 mil-
liseconds to migrate a “minimal” process from one Sun-2 workstation to another. (The “min-

imal” process we used has two dirty pages and no open files.) After accounting for the cost

Number of dirty Time to | Added cost per || Time to | Added cost per
4K-byte heap pages || migrate dirty page page in | paged-in page
1 0.50s N/A 0.00s N/A

51 1.97s 29ms 1.04s 20ms

101 3.54s 30ms 2.12s 21ms

151 5.18s 31lms 3.22s 21ms

201 6.62s 31ims 4.32s 21ms

Table 1: Effect of dirty pages on time to migrate. The cost per dirty page is calculated by subtracting

the cost of migration when only one heap page is dirty and dividing by the difference in the number

of pages.

to migrate the minimal process, the time to migrate increases in proportion to the number
of pages touched and file blocks written before migration (these must be written back to the
server as part of migration). After migration, the time to demand-page the address space onto
the new node increases in proportion to the number of pages that are referenced. Table 1
shows the times to migrate a process after it had touched a variable number of 4096-byte
pages, as well as the time for it to reference each page once after being migrated; migration
takes approximately 30 milliseconds per dirty page to flush the page to the file server, and

then it requires about 21 milliseconds per page to fault them onto the new workstation.

Transferring open files is also costly, since RPCs are needed for each file. In addition, if
the file has been written, dirty blocks may need to be flushed from the cache of the node on
which the process had been executing. Each open file requires approximately 34 milliseconds
of overhead for transfer, and each dirty block requires about 26 milliseconds to be flushed.
Table 2 lists times to migrate a process with varying numbers of open files and dirty blocks.

After a process has been running for a long time, the cost of migrating it will likely be
dominated by the time to transfer its address space. Of the 1.97 seconds taken to migrate

the process that had touched 100 pages, over 1.6 seconds were taken just to transfer its heap.

10

Number of dirty 4K-byte blocks per file
Number of open files 0 1 5 10 20
0 0.48s N/A
1 0.52 0.52s 0.66s 0.78s 1.04s
5 0.64 0.78 1.86 2.08 2.20
10 0.82 1.22 2.70 2.42 2.88

Table 2: Effect of open files and dirty file blocks on time to migrate. All times are the number of
seconds taken to migrate a process after it has opened a number of files and written data to them.
The times to migrate are not necessarily proportional to the number of blocks: when many blocks are

written, some may be flushed to the server prior to migration.

The time-line for the migration of this process is given in Figure 1. It is immediately apparent
that the cost of sending the stack and heap to the file server and the page tables to the remote
node greatly outweighs the other costs.

These measurements support Theimer’s use of pre-copying to reduce the amount of time
during which a process is not able to execute. Nevertheless, Sprite does not pre-copy the
address space for three reasons. First, Theimer was concerned about the real-time needs of
his message-based system (timeouts might occur if a process were suspended for a long time
during migration). In Sprite this is not a concern, since communication is managed by the
system in a way that prevents these sorts of timeouts. Second, since we expect migrated
processes_to be non-interactive, suspending a process for several seconds will generally not be
noticed by the user. Third, pre-copying reduces the time during which a process is suspended,
but it may increase the total time for migration. Sprite writes each dirty page only once, so
the suspension may be quite long but the total migration time is as short as possible. When
a user returns to his/her workstation and its kernel evicts foreign processes, they will move
off the workstation faster than they would if pre-copying were performed. Fourth, demand

page-in also helps: only dirty pages need to be transferred immediately; others are not loaded

11

Oms [transfer stack transfer files 1972 ms
1 | &« transfer heap _> V)
i | I
A-D E F GH
Label Event Duration (ms) Total Time (ms)
A Issue migration request
Confirm with remote node 7 7
B Process traps
Transfer process state 12 19
C Transfer code segment 32 51
D Transfer stack segment 162 213
E Transfer heap segment 1668 1881
F Transfer files 85 1966
G Tell remote node to resume process 6 1972
H Migration request completes

Figure 1: Time-line for migration of a process touching 50 4096-byte pages, having three open file
descriptors. The dominating costs are the transferral of the stack, heap, and open files of the process.
The entire operation takes approximately 2 seconds.

on the new node until referenced.

We have no specific measurements of Demos/MP or LOCUS with which to compare the
performance of Sprite process migration. The cost of migration in V has been published [7],
and the base cost of 80 milliseconds to transfer process state in V is greater than the cost
in Sprite; however, by transferring more state the V-System makes processes less location-
dependent. Sprite takes additional time to transfer file information that V does not need
to transfer (due to global servers). It is difficult to compare the transfer rates for virtual
address spaces, because only the maximum memory-to-memory transfer rate of the V-System

is listed in [7] (333 Kbytes/second on an unloaded network, with an effective transfer rate for

12

migration of one-half to one-third of that amount).

6 Cost of Remote Execution

The cost of forwarding calls is generally an order of magnitude greater than the time
necessary to handle calls locally. A forwarded system call will pay the base RPC overhead
of approximately 5 milliseconds per call [10], plus the time to'encapsulate and transfer the
arguments and results of the call. The simplest calls pay the greatest penalty when executed
remotely, since they involve very little processing in the local case. For example, it currently
takes 1 millisecond to get the value of an environment variable locally and 10.2 milliseconds
for a migrated process to get the value from its home node. It takes 63 milliseconds for a
local process to fork a child and wait for it to exit, but it takes 88 milliseconds for a remote
process to do the same. Thus, the forwarded environment-related call is 920% slower; the
forwarded fork/wait calls are only 40% slower.

Fortunately, forwarded calls are rare by comparison to the number of system calls that may
be handled without forwarding. As shown in Section 4.2 on page 8, slightly under half of all
system calls require forwarding; however, most of the forwarded calls are used less frequently
than the non-forwarded calls. Table 3 lists the most frequently-invoked system calls after
a workstation had been used for several compilations, directory listings, and performance
benchmarks; each system call either always involves a redirection to the home node or never
involves one. As the table indicates, only two of the ten most commonly invoked system
calls—approximately 20% of all calls—require extra processing when invoked by a migrated
process.

The most common operations for which migrated processes pay a penalty are those in-
volving process creation and waiting for children. Process creation requires an extra RPC to
the home node, to allocate a process structure corresponding to the remote child. When a
migrated process exits, all resources associated with the process on its remote node are freed,
and the process structure on its home node is marked as exiting; after the parent performs a

wait for the child, the process structure on the home node is freed as well.

13

System call Major use Number of calls

Handled Remotely | Sent Home

Sig_SetHoldMask | (used primarily by csh) 3480

Fs_Close close a file 2278

Fs_Read read a file 1998

Fs_IOControl file-specific ops. 1675

Fs_Write write a file 922

Proc.Wait wait for a process to exit 460

Proc_Fork create a child process 386

Fs.GetNewlD duplicate a file descriptor 356

Sig.SetAction (used primarily by csh) 301

Vm_CreateVA allocate more virtual memory 275

All calls 11528 2548

Table 8: Summary of the most commonly-invoked system calls, as well as the total across all system
calls. Many of the most common calls may be handled without forwarding them to the home node of

the calling process.

Unlike LOCUS, Sprite uses a “pulling” protocol when migrated processes wait for children.
While LOCUS sends a message directly to the parent when a child dies [5], Sprite uses
the home node of the processes to communicate process termination information. When a
migrated process waits for a child to exit, the remote kernel sends an RPC to the home node
to register the parent’s interest in its children. If any children have already died, their exiting
information is returned; otherwise, the parent is put to sleep until a child dies. When the
home node determines that a child has died, it performs an RPC to the remote node to wake
up the parent, which then repeats its inquiry. Keeping exiting information on the home node
avoids the necessity to buffer the information on the remote node of the parent while waiting

for the parent to perform a wait. In retrospect, however, the method used by LOCUS is more

14

efficient because it reduces the number of RPCs required for a parent to wait.

The actual penalty paid by migrated processes may be measured by comparing the time
taken to perform one or more system calls by local and migrated processes running on oth-
erwise idle workstations. Table 4 lists some measurements of the overhead of migration and
remote execution. It lists the times to perform some basic system calls, as well as measure-
ments of the costs of process creation and synchronization. For the latter measurements, the

program creates a pipe, then repeatedly performs the following steps:
1. Fork a child,
2. (Optionally) migrate the child to another client,
3. Write to the pipe, and
4. Wait for the child to exit.

The child in each case waits for something to be written to the pipe, then exits. This ensures
that the child cannot run to completion before its parent has the opportunity to migrate it.
When run completely locally, the loop took an average of 63 milliseconds to complete. When
the parent ran remotely, in which case all forking, waiting, and exiting required interaction
between the home and remote nodes, the loop averaged 87 milliseconds per iteration. This is in
sharp contrast to the 680 milliseconds per iteration when each child was migrated individually,
and it implies that the cost of migration dominates the overhead of remote execution unless

the process runs for at least several seconds.

7 Overall Performance

The discussion thus far has considered only migration between two idle workstations, but
the true test of the effectiveness of the process migration facility is the net gain in throughput
due to parallel remote execution. We used a simple benchmark to simulate the effect of
distributing load across workstations, by compiling identical copies of the same source code
in parallel; Table 5 lists measurements of the turnaround time for these compilations using

Sprite and using Sun’s NFS [1]. The improvement in Sprite using remote execution for even

15

Program Execution times

File server | Client (local) | Client (migrated)

get environment variable 1.00ms 1.00ms 10.20ms
get process and user identifiers 1.00ms 1.00ms 8.20ms
fork, synchronize with pipes,
wait for child to exit 62.0ms 63.2ms 87.6ms
fork, migrate child, synchronize with
pipes, wait for child to exit N/A 680ms N/A

Table 4: Times to complete sequences of system calls. For each benchmark, times are given for the
program running on a file server, locally on a diskless client, and migrated from one diskless client to

another. For these sequences of system calls, the overhead of remote execution is substantial.

two compilations is significant, but the overhead in Unix of rsh severely degrades performance
when used for processes that execute for short periods of time.

We evaluated the impact of migrated processes on the home node by measuring the CPU
atilization on the home node during execution. When all processes were local, the utilization
varied between 92% and 99%, but when processes were distributed across idle workstations
the utilization was 78-86%; therefore, the home node is not severely impacted by servicing
migrated processes. When every process was migrated (leaving no compilation on the home
node), the utilization dropped to approximately 10-25%, with an increase of about 4% utiliza-
tion per migrated process. (The total elapsed time in the latter case was consistently higher
than when one compilation executed locally, thus suggesting that it is undesirable to migrate
all CPU-intensive processes to idle nodes.)

We measured the overhead of remote execution by performing a set of sequential compi-
lations entirely at home and entirely on a remote node. The compilations took 66.5 seconds
locally and 67.1 seconds when entirely migrated; this degradation in performance is only 1%

and may be attributed almost entirely to the cost of migrating the process initially.

16

Sprite Sun NFS
Program Execution times | Improvement || Execution times | Improvement
local | migrated (%) local rsh (%)
one compilation 19s 20s -5 27s 43s -59
two compilations 34 22 35 40 46 -15
three compilations 50 24 52 57 49 14
four compilations 66 28 58 72 53 26

Table 5: Comparison between Sprite migration performance and Sun NFS, running on diskless
Sun-2 workstations. For one compilation, the comparison is between local and remote execution; for
all other cases, the completion time for local execution is compared to the completion time when one

compilation is performed locally and all others are executed remotelv on separate workstations.

8 Conclusions

The relative costs of migration and remote execution suggest criteria for deciding when
to migrate processes. We anticipate two common scenarios for migration: load-balancing
and preemption. The first case will use an rsh-like mechanism, in which a small process will
be migrated before executing another program. The migration would take approximately
480 milliseconds, as described in Section 5 above. The second case arises when one or more
“foreign” processes are evicted. In this case migrating all the processes back to their home
nodes may take several seconds, since their virtual address spaces and cached writable files
will need to be transferred. If the criteria for determining when a workstation is idle are
properly determined—for example, a low load average and no keyboard or mouse activity in
the past 15 minutes—then a short degradation in performance while processes are evicted
should be an acceptable price to pay for the ability to share idle workstations.

Processes should be executed remotely if the following criteria apply:

e there are two or more processing-intensive processes running on the workstation;

17

e each process is expected to run for a period of time that is much greater than the time

to start a remotely-executing process (i.e., at least 2-3 seconds); and

e the likelihood of being evicted from the selected remote node is small.

References

[1]
[2]

[3]

(4]

(3]

(9]

Sun’s Network File System. Sun Microsystems, 1985.

D. R. Cheriton and W. Zwaenepoel. The Distributed V Kernel and its Performance
for Diskless Workstations. In Proceedings of the 9th Symposium on Operating System
Principles, pages 129-140, October 1983.

W. Joy, R. Fabry, S. Leffler, M. McKusick, and M. Karels. Berkeley Software Architecture
Manual. Computer Systems Research Group, Dept. of EECS, University of California,
Berkeley, Berkeley, California, 4.3BSD edition, April 1986.

M. N. Nelson. Virtual Memory for the Sprite Operating System. Technical Re-
port UCB/CSD 86/301, Computer Science Division (EECS), University of California,
Berkeley, 1986.

Gerald J. Popek and Bruce J. Walker, editors. The LOCUS Distributed System Archi-
tecture. Computer Systems Series, The MIT Press, 1985.

M. L. Powell and B. P. Miller. Process Migration in DEMOS/MP. In Proceedings of the
9th Symposium on Operating System Principles, pages 110-119, ACM, October 1983.
M. Theimer. Preemptable Remote Ezecution Facilities for Loosely-Coupled Distributed
Systems. PhD thesis, Stanford University, 1986.

M. Theimer, K. Lantz, and D. Cheriton. Preemptable Remote Execution Facilities for
the V-System. In Proceedings of the 10th Symposium on Operating System Principles,
pages 2-12, December 1985.

B. Walker, G. Popek, B. English, C. Kline, and G. Thiel. The LOCUS Distributed
Operating System. In Proceedings of the 9th Symposium on Operating System Principles,
pages 49-70, October 1983.

18

[10] B. Welch. The Sprite Remote Procedure Call System. Technical Report UCB/CSD
86/302, Computer Science Division (EECS), University of California, Berkeley, 1986.

[11] B. Welch and J. Ousterhout. Prefiz Tables: A Simple Mechanism for Locating Files in
a Distributed System. Technical Report UCB/CSD 86/261, Computer Science Division
(EECS), University of California, Berkeley, 1985.

19

