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ABSTRACT

A decision tree algorithm determines whether an input graph
with n nodes has a property by examining the entries of the graph’s
adjacency matrix and branching according to the information
already gained. All graph properties which are monotone (not des-
troyed by the addition of edges) and nontrivial (holds for some but
not all graphs) have been shown to require Q(n?) queries in the

worst case.

In this paper, we investigate the power of randomness in recog-
nizing these properties by considering randomized decision tree algo-
rithms in which coins may be flipped to determine the next entry to

. be examined. The complexity of a randomized algorithm is the
expected number of entries that are examined in the worst case. The
randomized complexity of a property is the minimum complexity of
any randomized decision tree algorithm which computes the pro-
perty. We improve Yao's lower bound on the randomized complex-
ity of any monotone nontrivial graph property from Q(nlog'/ 20) to

- (n®).

1. Introduction

Suppose we would like to determine whether an unknown input graph on
nodes V={1,2,...,n} has, for example, an isolated node and we can obtain infor-
mation only by asking questions of the form "Is edge {i,j} in the graph?”. In the
deterministic decision tree model, the choice of question may depend only on the

information gained so far, and the deterministic complexity of a problem is the

*Research supported by NSF Grant #DCR-8411954.
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number of questions that must be asked in the worst case.

In a randomized decision tree algorithm, the choice of question may also
depend on coinflips. The cost of the algorithm is measured by the maximum over
all input graphs of the expected pumber of questions asked. The randomized
complezity R(P) of a property P is the minimum cost of any randomized decision

tree algorithm which computes P.

A graph on V={1,2,..,n} may be viewed as a subset of edges E = {{i,j} | i,j
€V, i #£j}. A collection of such graphs is called a graph property provided that it

is invariant under renumbering of the nodes.

A graph property is monotone increasing if it is not destroyed by the addi-

tion of edges. It is nontrivial if it holds for some but not all graphs.

The deterministic complexity of monotone, nontrivial graph properties has
been extensively studied. In 1973, Aanderaa and Rosenberg [Ro] conjectured a
lower bound of Q(n?) which was proved by Rivest and Vuillemin [RV]. Their
constant factor of 1/16 was subsequently improved by Kleitman and Kwiatkowski
[KK], and then Kahn, Saks, and Sturtevant [KSS).

Much less is known about the randomized complexity of monotone nontrivial
graph properties. This problem was studied in a 1977 paper by A. Yao [Y1}, in
which he gives a lower bound of (}(n) for all monotone nontrivial graph proper-
ties, }(n?) lower bounds for certain specific graph properties, and develops useful
tools for such proofs. No progress was made on the general lower bound until
1986 when Yao showed a lower bound of Q(nlog‘/ 2) [Y2]. In this paper, we

show:

Theorem 1: For any nontrivial, monolone (increasing) graph property Ponn
nodes, R(P) is greater than n8/7/18 for sufficiently large n.

‘The gap between the lower bound and upper bound for this problem remains
remarkably wide. No monotone, nontrivial graph property is known to have a
randomized complexity of less than roughly n2/4. Thus the following conjecture
which was posed by Yao in 1977 [Y1] is still open:

Conjecture 1 (Yao): The randomized complezity of any monolone, nontrivial

graph property on n nodes is Q(n?).
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In Sections 3 and 4, we prove the following reiationships between the
minimum randomized complexity of any monotone nontrivial graph property on
n nodes to by, the minimum randomized complexity of any monotone, pontrivial
bipartite graph property on V and W with {V|=k and {W|=lL (A bipariite
graph property is a collection of subsets of VX W which is invariant under permu-

tations of V and of W.)

Theorem 2: For any q such that 1<q<n/2 and any monotone nontrivial graph
property P on n nodes, R{P)_>_min{n2/2q—3/2n +¢q, min b,_..}.
g<r<af2 " '

Theorem 3: For any monotone, nontrivial graph property P on n nodes, R(P)
Zmin{ns/s/g, blﬂ/ZJ,f"/ﬂ} for sufficiently large n.
In Section 5, we prove a lower bound for bipartite graph properties:

Theorem 4: For any k and |, bk’l>(k1)4/7/8.

Theorems 3 and 4 yield a lower bound of Q(n8/7), proving Thoerem 1.
Theorem 2 is of interest in that it may lead to lower bounds as high as nld if
improved lower bounds on the complexity of bipartite graph properties can be

shown.

In section 6 and 7, we present the proofs of two lemmas and a technique for
proving lower bounds on the randomized complexity of graph properties when
certain conditions are satisfied. (A l-certificate is defined in section 2):

Theorem 5: If P is a monotone nontrivial graph property and P has a I-

certificate with mazimum degree d and t nodes of positive degree, then R(P) >
(t/(d%+1))°/32.

2. Preliminaries

In this section, we review some well-known tools for showing lower bounds on
randomized complexity. The following definitions and lemmas are stated in terms
of graph properties but are easily extended to bipartite graph properties.

A 1-certificate for a property P is a minimal set of edges whose presence in a
graph proves the graph has the property. Le., If G, is a l-certificate then P(G,)
= 1, and for any proper subset G’ of Gy, P(G'")=0.
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A O-certificate for a property P is a minimal set of edges whose absence from
a graph proves the graph has the property. Le., if G, is a O-certificate then
P(G5)=0 and for any proper subset G’ of G, P(GN)= 1.

The size of a certificate refers to the number of edges in it. A clique of size q

is the set of all [g] edges on q nodes.

Let 7 be a 1-1 and onto mapping from nodes V to V'. For any set of edges A
on V, we define m(A) by m(A) = {{={i),=(j)} | {ii} € A}. For A a set of edges on
V and B a set of edges on V', we say A and B can be packed iff there is a 1-1 and
onto mapping from Vto V' & such that m{A) and B have no edges in common.
Lemma 2.1: a. R(P) is greater than or equal to the size of any 1 or O-cerlificate.
b. No leaf of a decision‘ tree for a property can accept more than one 1-
certificate. (Note that this refers to an input graph whose edge set 13 exactly a
1-certificate.)

c. A O-certificate and a I-certificate for a property P cannot be packed.
Lemma 2.2: Let PP(G)= 1iff P(G)=0. PP is called the "dual” of P.
a. PP is monotone and nontrivial if P is.
b. The O-certificates of P are the 1-certificates of PP and vice versa.
¢. R(PP) = R(P).
The proofs of these lemmas are straightforward.
We note that Lemma 2.2 implies that some results in this paper which are

given in terms of l-certificates are also true for O-certificates. These include

Theorem 5 and Lemmas 4.1 and 4.2.

Theorem 2.3 (Yao) [Y1]: R(P) equals the mazimum over all probability distri-
butions of n-node input graphs of the minimum average cost of a deterministic

algorithm on that input.

3. Reduction to a Bipartite Graph Property--I
To prove Theorem 2, we need the following well-known theorem:

Theorem 2.1 (Turan) [T): Let g and n be natural numbers with ¢ > 2. Every

graph with n nodes and greater than tq_l(n) edges containg a clique of size g,
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n+t

t=eg—11n.
where t, equals [g]-— ‘\g: 12’] where n;=

1m0

Theorem 2: Let P be any monotone, nontrivial graph property on n nodes. For

any integer q such that 1<q<n /2, R(P)>min{n?/2¢—3/2n+q, <mi<n /2b,,_,.,,}.
gEran

Proof: We show that any monotone nontrivial graph property P either has a
large 0- or l-certificate or can be reduced to a monotone, nontrivial bipartite
graph property.

Let ¢, and co each be the size of the smallest clique which contains a 1-

certificate and O-certificate, respectively, for P.
Case 1: ¢,<q.

>From Lemma 2.1¢, we have that a O-certificate cannot be packed with a 1-
certificate. Hence the complement of any O-certificate cannot contain a clique of
size q. From Turan’s Theorem, the complement must be of size less than or equal

to t,_;, which implies that every O-certificate must be of size at least
[g]—tq_12n2/2q—3/2n +¢. By Lemma 2.1a, this gives a lower bound for R(P).

Case 2: ¢4<gq.

The proof is similar to the above. A lower bound on the size of any 1-certificate is
derived.

Case 8: ¢;>q and c4>q.

Claim: There is an r such that ¢<r<n—q and r<c, and n—r <co.

Let r = min { ¢,—1, n—q}. We observe that ¢;+co>n+1. Otherwise, the two
cliques and therefore a l-certificate and O-certificate can be packed, since two
cliques on two sets of nodes with one node or less in common have no common
edges. The claim easily follows.

Let P’ be the bipartite graph property defined on V, W with VI =r and
|W | = p-r, as follows: for any BC V X W, P’(B) = 1 iff P(VUB) = 1, where V
denotes the set of all edges on V. P’ is a monotone bipartite graph property.
Since |V] < ¢; and |W| < ¢4, we have P(V)= 0 and P(VUVXW): 1. There-

fore, P’ is nontrivial.
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For all input graphs containing V, any randomized algorithm must compute

P’ in order to determine P. Hence, R(P) is greater than or equal to R(P’) which is
eater than or equal to min b,_. ..
& s q<rgn/z "

4. Reduction to a Bipartite Graph Property-II

To prove Theorem 3, we use the following theorem on packing graphs.
Theorem 3.1 (Sauer and Spence)[SS]: Let A and B each be graphs on n
nodes and let m(A) and m(B) be the mazimum degree of any node in A and the
mazimum degree of any node in B, respectively. If m(A)jm(B) < n/2 then A
and B can be packed.

In this section, we show:
Theorem 3: Let P be any monotone nontrivial graph property. For n sufficiently

large,

R(P) 2>min{n®5/9, bin /o) fn/21}-

Proof: Let ¢, and ¢y each be the size of the smallest clique that contains a 1-
certificate and O-certificate, respectively, for P. We partition the n nodes into |V
= |n/2] and |WI| = [n/2]. We may assume that the size of any 0- or I-
certificate is less than n%°3/9 for otherwise, by Lemma 2.1, R(P)Zn5/5/g,

Case 1: ¢,>[n /2] and ¢y>[n/2].

Then let B be any subset of VXW. We may define a monotone bipartitite graph
property P’ such that P’(B)= 1 iff P(VUB):I. P’ is nontrivial since V does not
contain a l-certificate and W does not contain a O-certificate. Since any random-
ized algorithm to compute P must compute P’, R(P)>R(P') 2b|s 2, [n/21-

Case 2: ¢, <[n/2] .

Then there is a clique of size <¢; which contains a O-certificate for PP, Hence, we

need only consider Case 3.

Case 8: cy<[n/2].

Let B be any subset of edges on nodes in W. We define 2 new property P’as fol-
lows: P’(B) = 1 iff P( VU(VX W) B)= 1. P’ is a monotone graph property. P’

is also nontrivial since W contains a O-certificate. Any randomized algorithm to
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compute P must compute P’ so that R(P)2R(P).

We show that there exists a l-certificate for P’ with maximum degree less
than n1/%/4 and with at least n/4 nodes of positive degree. We can then immedi-

ately apply Theorem 5 below to give a lower bound of n8/%/9.
Claim 1: P’ has a 1-certificate G’ with mazimum degree less than n1/5/4.

Let G be any l-certificate for P. Map the |n /2] nodes of highest degree to nodes
in V. The remaining nodes must have degree less than n!/ 5/4, for otherwise, G is
of size greater than n8/ 5/9. The set of edges incident to nodes in W contains a 1-
certificate for P’. Therefore, we know that P’ has a l-certificate with maximum

degree less than n1/%/4, which we call G".
Claim 2: G’ has at least n/4 nodes of positive degree.

Assume that there are at least n/4 nodes of 0 degree in G'. We use Theorem 3.1
to show that any O-certificate for P’ can be packed with G’, giving a contradic-

tion.

Let H be a O-certificate for P'. We define a permutation ¢ of W, such that
o(H) and G’ are disjoint. Let W’ be the set of the n/4 nodes of smallest degree in
H. Since the size of H is less than n®/5/9, the nodes in W’ have degree less than
4n1/%/9 in H. Let m(H) denote their maximum degree.

Let W” be a set of n/4 nodes which includes all nodes of positive degree in
G' and let mus(G') denote - their maximum  degree. Since
mwn(H)mwn(G')Snz/s/9<n/8, Theorem 3.1 implies that the subgraph of H
induced on W' and the subgraph of G’ induced on W” can be packed. This pack-
ing may be extended to a packing of H and G’ by arbitrarily mapping W-W’ to
W-W", since G’ has no edges incident to nodes in W-W”.

Since there is a 1-certificate with n /4 nodes of positive degree and maximum

degree less than nl/5/4, we may apply the following:

Theorem 5: If P is a monotone nonirivial graph property and P has a I-
certificate with mazimum degree d and t nodes of positive degree, then R(P) >
(t/(d2+1))*/82.
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Then we have, for sufficiently large n:

n2
RiF)2 512((n%/°/16)+1)?

>nb/5/9.

5. The Randomized Complexity of Bipartite Graph Properties
Theorem 4: The minimum randomized complezily of any monotone nontrivial
bipartite graph property P on V and W, with |VI=k and |W| =1, is at least
(k)47 /8.

We denote nodes in V and W by v and w, respectively. We may assume
that k>! and that the size of all 1- and O-certificates is less than (kl)4/7/8. Other-
wise, R(P) is at least (k1)4/7/8, by Lemma 2.1a.

Let V' be any subset of V with less than k/2 nodes. Then it is not hard to see
that either P(V XW) = 0 or PP(VxXW) = 0. Since R(P?) = R(P), we may
choose P so that P(V XxW) = 0. It follows that any 1-certificate of P has at least
k/2 v's with degree >1 and that k/2< (kl)*7/8.

To each 1l-certificate for a property P we assign a sequence (dy,dg, - - - ,di)
where each d; is the degree of w; in the 1-certificate and the w's have been num-
bered so that d,>dy> * -+ 2d,. Let G denote a 1-certificate which is lexico-
graphically smallest and let d,, denote d; for G, i.e., the smallest over all 1-
certificates of the maximum degree of any w. ( If there is more than one lexico-

graphically smallest 1-certificate, we choose one.)

If d_,, is at least k8/7178/7/4, we can directly apply a technique from Yao's
paper [Y2].
Lemma 4.1: If P is any monotone nontrivial bipartite graph property on V and
W, |W| =1 and the size of G is less than s, then R(P) >i%d ., /8 —1/2.

The proof of Lemma 4.1 is sketched in Section 6.

For s <(kl)*/7/8 and dmu2k8/7l"s/7/4, Lemma 3.1 gives a lower bound of
(k1)*/7/8 for R(P).

If d_,(P) is less than k8/71178/7 /4, we will show that G has 2(k1)2/7 v's with

nonempty pairwise disjoint neighbor sets. ( The neighbor set of a node v in a
graph Gis {w | { v, w} € G}.)
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Then Lemma 4.2 below will imply a (k1)4/7/8 lower bound for R(P).

Lemma 4.2: Let G be a I-certificate for a monotone, nontrivial bipartite graph
property P. If G has m v'’s with nonempty pairwise disjoint neighbor sets, then

R(P) is at least m?/32.
The proof of Lemma 4.2 is given in Section 5.
It remains to prove the following claim:

Claim: There is a set M of 2(lc1)2/7 v’s in G, which have nonempty pairwise

disjoint neighbor sets.

Recall that we chose P or PP so that every 1-certificate had at least k/2 v's with
degree at least 1. Of these nodes, less than than k/4 have degree at least
k=3/714/7/2 for, by assumption, the size of each certificate is less than (k!)¥/7/8.
Thus, at least k/4 v's have positive degree less than k'3/7l4/7/2.

Let K be a maximal set of these v's which have nonempty pairwise disjoint

neighbor sets. We show that if K| < 2(l )2/7, then K is not maximal.

Let T'(v) denote the neighbor set of v in G . Since each v in K has degree
less than k=3/714/7/2, we have: _
51T (w) 1 < (@K f2)=(k7HTI0T),
veK
Each w has degree less than dmu=k8/7l’°/7/4. Then, the number of v's adjacent

to any w€ | JT(v) is less than (k"/718/7)(k8/7l‘6/7/4)=k/4. There is at least one
veK

v of small positive degree which is not adjacent to any w € Ul‘(v). Thus, K is
veK

not maximal, which contradicts our assumption and proves the claim.

6. Proof of Lemma 4.2 and Theorem 5

Lemma 4.2: Let G be a 1-certificate for a monotone, nontrivial bipartite graph
property P. If G has m v’s with nonemply pairwise disjoint neighbor sets, then
R(P) is at least m?/32.

Proof: Let M be the set of v's with nonempty pairwise disjoint neighbor sets.
The idea is to reduce the task of finding a 1-certificate to finding a perfect match-

ing between the v's in M and their neighbor sets.
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We generate an input distribution for which any deterministic algorithm will
require an average cost greater than m?/32. The lower bound on the randomized
complexity then follows from Theorem 2.3. For every permutation o of M, we
have a G, constructed as follows (where I'g(v) denotes the neighbor set of v in
G):

1. For all v ¢M, {v,w} € G, iff {v,w} €G.
2. For all v; €M, {v;, w} € G, iff {v;, w}€ G, where o(i)=7.

Suppose the deterministic algorithm is told about all edges and nonedges
described in (1) above, so that the algorithm asks only about edges incident to
nodes in M. At each step, if the algorithm asks about an edge {v,w} where w €
T'¢(v;) for some i, the algorithm is told about the entire set of edges {{v, w}! for
all w € Tg(v;)} which are either all in the input graph or all absent.

To accept a graph in this distribution, the algorithm must find exactly m
edges”. Since no two l-certificates are accepted by the same leaf in the decision
tree, there are at least m! leaves, each corresponding to a different G ,.

A binary tree of height x can have at most [:1] paths with exactly m “yes”

branches. Let h be the solution to:
z —
[m] = m!/2.

Then at least half the leaves accepting the inputs in the distribution must lie at
depth greater than h. The average depth of these leaves is at least h/2. By
Theorem 2.3, R(P) is at least the minimum average cost of any deterministic algo-

rithm on this input which is at least h/2.

To find a lower bound for h, we note that:
T Te m
o)<z s ks

Then h is greater than the solution to the following equation:

el

which implies that h > m?/16 and R(P) > m?/32.

m

<l1/2ml.
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The lemma may be generalized to arbitrary graph properties by specifying
that the v, must also be independent. Consequently, we have the following
theorem:

Theorem 5: If P is a monolone nontrivial graph property and P has a I-
certificate with mazimum degree d and t nodes of positive degree, then
R(P)>(t/(d*+1))%/32.

Proof: There are at least t / (d%+1) independent nodes of positive degree which

are also pairwise nonadjacent. The proof is the same as for Lemma 4.2.

7. Proof of Lemma 4.1

This lemma is based on a technique discussed in [Y2] and more details may

be found there. (A lexicographically smallest 1-certificate is defined in Section 3.)

Lemma 4.1: Let G, denote a lezicographically smallest 1-certificate for any
monotone nontrivial bipartite graph property P on V and W and dm,; denote the
mazimum degree of any w in G. If [W| =1 and the size G, is less than s,
then R(P) >i%d_,./8s—1/2.

Proof: We number the nodes in W so that w; is a node of highest degree in G
and wo,wy, . . . ,Wyyq are the 1/2 -1 nodes of smallest degree in G;. The degree of
each of these nodes is less than 2s/l, for otherwise, there are 1/2 nodes with degree

at least 2s/1 and at least s edges in G,. that the size of G, is at least s.

We will generate a set of input graphs for which any randomized algorithm

will incur an average cost of at least 1%d . /8s—1/2.
Let T(w;) = { v | {v, w;}€G }.

Each input graph I is constructed as follows:
Start with the edges in G and do the following:

1. Add {{v,w;}| for all v € I'(wp0)}.
For each i, 2<i<I/2-1, add {{v,w;4,! for all v€ I'(w;).
2. Let T} = I(w,) - T(wy2)
Let T, = I'(w,) - T'(wy)
For 3<i<1/2, let T; = T(w,) - T'(w;)-T(w; ;).
Now, for all i, 1<i<1/2, add S; = {{v, w;}| for all v € T;}.
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3. Randomly remove 4s/1 edges from each §;.
The the following is true about all input graphs I generated in this manner:

Fact 1: P(I) = 0 because the mazimum degree of each w; in I for 1<i<I1/2 s

less than d _,,, and therefore, each I'is lezicographically smaller than G .

Fact 2: If the edges removed from any one S; in step (8) are replaced in I, the
resulting graph I’ would have property P.

Fact 1 is obtained immediately by counting the pumber of edges incident to each
w; in any L. Fact 9 is observed by noting that I contains a subgraph isomorphic
to G, as follows:

a.) w; in G| may be mapped to any w; in I' for 1<j<!/2 whose S; has been
restored,

b.) if j## 1, then each w; for 1/2>i>7 in G, can be mapped to w;y, in I’ and
wj o can be mapped to wy in I'.

Thus, to determine that P = 0 on any of these inputs I, an algorithm must find a
missing edge in S; for each i, 1<i<!/2. But this is equivalent to finding one of
4s/1 randomly chosen edges out of a total of at least d,,, - 4s/l, for each i. Any
randomized algorithm to compute P will incur an expected cost on the input dis-

tribution given by:

12 d . —48/1
Expected Cost > 5_:‘ mjs/l / >1%d,,./88—1/2.
§e1

It follows that for any randomized algorithm, there is a worst case graph whose
expected cost is at least 1%d_,./8s—1/2.
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