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ABSTRACT

A tournament is a digraph in which every pair of vertices is connected
by exactly one arc. The score list of a tournament is the sorted list of
the out-degrees of its vertices. Given a non-decreasing sequence of non-
negative integers, is it the score list of some tournament? There is a
simple test for answering this question. There is also a simple sequen-
tial algorithm for constructing a tournament with a given score list.
However, this algorithm has a greedy nature, and seems hard to paral-
lelize. We present a simple parallel algorithm for the construction
problem. Our algorithm runs in time O(logn) and uses O(n?/logn) pro-
cessors on a CREW PRAM, where n is the number of vertices. Since
the size of the output is ©(n?), our algorithm achieves optimal speedup.
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1. Introduction

A tournament is a directed graph in which there is exactly one arc between
every pair of vertices. This models a competition involving n players, where every
player competes against every other one. If an arc is directed from x to y we say
that x dominates y. The transitive tournament on n vertices is the tournament in
which each integer between 1 and n has a corresponding vertex, and { dominates j
if i>j. The score of a vertex is the number of vertices it dominates. The score list
of a tournament is the sorted list of scores of its vertices (starting with the lowest).

Tournaments are widely studied in the literature (e.g. (BW] M. In this
paper we deal with the following problem: given a non-decreasing list of integers,
$=s5,,...,8,, determine if there exists a tournament with score list 5, and if so,
construct such a tournament.

A simple, non-constructive criterion for testing if such a list is a score list was
found by Landau in 1953 ((BW]): §is a score list of some tournament if and only

if, for all k, 1=k <n:
k
ﬁsi = 2]

i=1
with equality for £ =n.

A simple greedy algorithm ((BW,CL)) is known for constructing a tournament
with v; having score s; (for all 1si=n): select some score s; and remove it from
the list; have v; dominate the s; vertices with smallest scores (and have the rest of
the vertices dominate v;); subtract 1 from the score of each vertex dominating v;
and repeat this procedure for the reduced list. We note that very similar algo-
rithms exist for several other construction problems ({B][CLLIFF)).

The main result of this paper is an NC algorithm for the construction prob-
lem. Our algorithm runs in time O(logn) and uses O(n%/logn) processors on a con-
current read - exclusive write (CREW) PRAM, where n is the number of vertices.
Since the size of the output is ©(n?), our algorithm achieves optimal speedup. See
e.g. [V] for a discussion of parallel algorithms and optimal speedup.

In section 2 we describe our approach, which is based on looking at arcs that
go from vertices of lower score to vertices of higher score.

In section 3 we derive a high-level description of the parallel algorithm.

Section 4 contains a detailed description of an implementation of the algo-
rithms that achieves optimal speedup.



2. The Upset Sequence

Our approach is based on, what we call, the upset sequence of a tournament,
T, which describes the difference between T and a transitive tournament. If we
list the vertices according to their scores in non-decreasing order, then an upset is
when a vertex, v, dominates some other vertex appearing later than v in the list.
We call an arc corresponding to an upset a reverse arc. Transitive tournaments are
exactly those tournaments that contain no upsets.
Definition: Let s;< - - - <s, be the score list of a tournament, T, and let v; be the
vertex of score s; (for all 1=<i=<n). The upset sequence of T, is the sequence, &,
where u, is the number of upsets between {vy, ... ,uv;/ and {Uy+1, - - - ,U,} (for all
1<ksn-1).

The score list uniquely determines the upset sequence (and vice-versa):

Lemma 2.1: Let T be a tournament with score list 5 and upset sequence #. Then,

forall 0sk=<n-1:
i = Se—-it) = s - [’2“]
i=1 1=1

Proof: There are exactly {g] arcs in the subgraph induced on {vy, . ..,v,}, since it

is also a tournament. Therefore the right hand side describes the number of arcs
whose tail is in {vy, . ..,vs}, but whose head isn’t. {l
Corollary 2.1: For all 1=k =n:

S, = uk—uk_1+k—1

How can we use the upset sequence? Our approach is to construct a tourna-
ment with a given score list by starting with a transitive tournament and revers-
ing some of its arcs. The upset sequence of the desired tournament gives us a han-
dle on which arcs to reverse. We will be aided by a graphical representation of the
upset sequence, which we now discuss.

A sequence of non-negative integers can be represented graphically by its his-
togram. We will treat the histogram as a rectilinear polygon ( and call it, simply, a
polygon ), which is divided into squares, each of which has integral x and y coordi-
nates. The x coordinate is a square’s column and the y coordinate is its height. An
example of a polygon is shown in fig. 2.1. Any collection of squares of a polygon is
a sub—polygon. A maximal set of consecutive squares at the same height is called
a slice. Note that a polygon can have several slices at the same height (if it is not
convex). A (horizontal) segment is consecutive set of squares, all in the same slice.
We denote a segment or slice by [/,r] or by [[,r;h], where ! and r are, respectively,
the columns of the leftmost and rightmost squares it contains, and h is its height.

A polygon representing the upset sequence of a tournament will be called an

upset polygon.




1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2.1: A polygon representing the sequence 1,4.4,6.6,3,3,7,7,7,7,4,3,3.

An elementary property of a polygon, which follows from its definition is:
Proposition 2.1: The slices of a polygon form a nested structure: if [{,,r,] and
[l5,rs] are slices with [, =[, then either [, >ryor ry=r,.

We define the following partitioning problem: Given a rectilinear polygon as
shown in fig. 2.1, partition each of its slices into segments such that no two seg-
ments in the partition agree on both endpoints. Such a partition is said to be
valid, and is defined by the set of segments it contains. An example of a valid par-
tition is illustrated in fig. 2.2. The partition is {(1,14], [2,4], (2,5}, [2,14], [4,4],
(4,51, [5,51, [5,14], (8,8], (8,9], [8,10], [8,11], [9,11], [10,11], [11,12]}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2.2: A valid partition of the polygon of fig. 2.1.

Lemma 2.2: A valid partition of the upset polygon yields a solution to the con-

struction problem.
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Proof: Let {{I,,r;] | 1=i<m} be the set of segments in a valid partition of an upset
polygon representing a sequence ¥ corresponding to the score list § = sy, ...,8,-
Let T be the tournament obtained by taking the n vertex transitive tournament
and reversing the arcs {(r;,l;) | 1<i=<mj. By inspection, the number of reverse
arcs crossing the cut ({vy, . . . ,Upfi{Uh+1, - - - sVnP) 18 exactly u,. Therefore (by corol-
lary 2.1), T is a tournament with score list 5% [l

Note that each slice in fig. 2.2 is partitioned into at most two segments. This is not
a coincidence.

Definition: A 2—partition is a valid partition in which every slice is parti-
tioned into at most 2 segments. A slice which is partitioned into at most 2 seg-
ments is 2 — partitioned.

We will deal only with 2-partitions because of the following:

Lemma 2.3: If a polygon has a valid partition, then it has a 2-partition.

Proof: Let P be a valid partition of some polygon, which is not a 2-partition. Let S
be a slice which is partitioned into more than 2 segments such that all slices lying
above S are 2-partitioned. We will prove the lemma by showing how to transform
P into another valid partition in which S is 2-partitioned and the partition of
slices above S is unchanged.

Let the segments comprising S in P be, from left to right, [1,r1], . . . Uerel
(where £ >2). If either [Iy,ry_1] or [l5,r,;] does not appear in P, then the partition
of S can be replaced with {ll1,r, LU, ]} or {U1y,ri)0la,relf respectively. If both
appear, then at least one, say [l,,r; -], must appear in a slice below S (call this
slice T). This follows from the assumption that all slices lying above S are 2-
partitioned and from the nesting property (proposition 2.1). Now, simply assign
the segment [I,,r, _;] to S and the segments Uy,ryd, .l to T 1

Not every rectilinear polygon of the type discussed has a valid partition. Two
examples are shown in fig 2.3.



(1) (2)

Fig. 2.3: Examples of polygons which have no valid partition.

We will show, however, that every upset polygon has a 2-partition. A few more
definitions are required for this: a left (right) face is a maximal vertical line seg-
ment on the left (right) part of the boundary of a polygon. Face k, if it exists, is
the face between columns k —1 and k. Two faces, L and R, are opposing if there is
some slice starting at L and ending at R. The width, w(F) of a face, F, is the
minimum distance between it and any of its opposing faces (where distance is
measured by number of squares). The length of a face F (i.e the number of slices it
touches) is denoted by I(F).

Lemma 2.4: A polygon, D, has a 2-partition if the length of every face of D is no
more than half its width.

Proof: We prove the lemma by induction on the height of D. If the height is 1
then D clearly has a 2-partition. Assume the claim holds for all polygons of height
kE—1, and let k be the height of D. Let D' be the polygon obtained by removing the
bottom slice from D. By the inductive assumption, D’ has a 2-partition, P. We will
show that P can be extended to a 2-partition of D. Let L and R be, respectively,
the left and right faces bounding the bottom level of D. P contains [(L)—1 seg-
ments starting at L and /(R)—1 segments ending at R. By the condition of the

lemma,
width of bottom slice = w(L), w(R) = UL)Y+UR)

Therefore, by the pigeonhole principle, there are two segments that partition the
bottom slice, which are not contained in P. Thus P can be extended to become a
2-partition of D. (]

Lemma 2.5: In an upset polygon the length of every face is no more than half its
width.
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Proof: Let A(k) be the difference in height between the highest square with x-
coordinate k and the highest square with x-coordinate k —1. In other words, if F is
a left face bounding squares with x-coordinate k, then Ak)=Il(F). If F is a right
face then A(k)=—I(F). Using corollary 2.1:

A(k) = Up—Up-1 — Sk—k""‘l
Since 3 is non-decreasing, it follows that:
(*) forall 2=sk=n-1 Ak) = Ak-1)—-1

Say face k is a left face, L. The nearest opposing face of L occurs to the right of
the first value, r, such that r>k and A, +4,..+ - +4,<0. The smallest
possible r value can occur (by (*)) when Ay=Ay 1 +1= =A+r—k In this

case:
w(l) =r—k+1 = 2A(k) = 2U(L)
A symmetric argument works for right faces. 8]

Theorem 2.1: Every upset polygon has a 2-partition.

3. 2-Partitioning the Upset Polygon

As described in the previous section, our algorithm works as follows: given the
score list, §, we compute its corresponding upset sequence #Z and construct a 2-
partition, P, of the upset polygon. In the output tournament, for all 1=i<j=n, y;
dominates v; if and only if [ijleP.

What remains to be shown is how to compute a 2-partition of an upset
polygon, U, efficiently in parallel. Basically, our approach is to construct the parti-
tion according to faces. We first observe that it is a simple task to partition a set
of slices with a common face as follows: say the common face is a left face. Let the
set of slices be, from top to bottom, S,,...,S,, where S;=[l,r;] for all 1=si=m.
Then S; will be partitioned into the segments [I,l+i] and [[+i+1,r;]. This is
shown in fig. 3.1. Such a partition is always possible given lemma 2.5. A sym-
metric partition exists for slices sharing a right face.



Fig. 3.1: 2-partitioning a set of slices with a common left face.

If we simultaneously partition the entire polygon in the manner described (accord-
ing to left faces), the resulting partition might not be valid, since a right face can
be opposite several left faces. Our solution is to have every slice "belong" to one of
(the two) faces it touches, and to be partitioned accordingly. More specifically, it
belongs to the dominant face according a domination relationship defined as fol-
lows: a left face, L, dominates an opposing right face, R, unless the top slice touch-
ing L touches R but the top slice touching R does not touch L (in other words, R
is the highest face opposing L but not vice-versa).

Theorem 3.1: Let S=[I,r,h] be a slice belonging to face F. Let Sp=[l',r',h'] be
the highest slice belonging to F. Say we partition S into 2 segments such that the
length of the segment touching F is A" —h +1. If we perform this partitioning for
all the slices of an upset polygon, U, then the result is a (valid) 2-partition of U.
Proof: First we note that if two slices belong to the same face, they must be of
different height, so their partition cannot conflict (i.e. create segments with identi-
cal endpoints). Therefore, the only conceivable way in which a conflict can occur is
from partitioning two slices, S; and S, that belong to faces L, and R, respec-
tively, where L and R, are left and right faces. Furthermore, L, and R, must be
opposing faces because of the nesting property (proposition 2.1).

We note that the set of slices belonging to some face is consecutive. Say L,
dominates R, (the other case is symmetrical). Then the right endpoint of a seg-
ment created from a slice belonging to L, is at distance at most /(L) from L, and
the left endpoint of a segment created from a slice belonging to R, is at distance at
most [(Ry)—1 from R;. Now we apply lemma 2.5: the distance between L, and R,
is at least I(L,)+I(R,). Therefore all right endpoints of segments created from
slices belonging to L, are less than all left endpoints of segments created from

slices belonging to R4, so no conflict can occur. (I



4. Implementation Details

We now describe in detail a parallel implementation of the tournament con-
struction algorithm described above. Our algorithm works in time O(logn) and
uses O(n?/logn) processors on a concurrent read - exclusive write (CREW) PRAM,
where n is the number of vertices in the tournament. Our parallel algorithm is
optimal, since the size of the output is ©(n?. Some of the procedures will be
easier to describe as using O(n?) processors and working in constant time. Each
such procedure can clearly be slowed down to work in time O(logn) using only

O(n?/logn) processors.

Let U be the upset polygon corresponding to the input score list. The area of
U (i.e. the number of squares it contains) can be B(n?), since its height can be

©(n? (for example, the area of an upset polygon of a a regular tournament is

(n—1Dn(n+1)
12

representation.

). The first step we perform is to "compress" U to get an 0(n?

Let [,<ly< -+ <[, be the sorted list of values of the upset sequence Z (l; is
the i'th smallest u value). The i'th level of U is the sub-polygon with y-
coordinates between [, _;+1 and I; (where [,=0). It is easy to see that each level
is a collection of rectangles. In other words, for every column j and level r, squares
in j appear either in all the heights of r or in none of them. We can, thus, talk
about "slices at level r". We represent U by a zero-one matrix, LEVEL, where
LEVEL[rjl=1if and only if u;=[,. For a complete description we also keep a vec-
tor HEIGHT, where HEIGHT[r] is the height of the highest slice in level r.
LEVEL can be computed using O(n? processors, each computing one entry in con-
stant time.

We now list the steps of the computation. In each step a matrix or vector is
computed, and in the final step a processor is assigned to each slice and 2-
partitions it. We start by listing the matrices and vectors computed and then
describe in detail how each step is implemented.

A vector TOP_LEVEL
TOP_LEVEL(k] is the maximum level, r, such that LEVEL[r,k]=1 (ie. the
highest level of column k).

A matrix ENDPOINT.
If there is a slice [ij] in level r, then ENDPOINTI[rj]=i and
ENDPOINT(r,il=j. If no slice begins or ends at column j in level r then
ENDPOINT{r,j1=9o.

Matrices TOP and BOTTOM.
TOPli,j] is the top level in which slice [i,j] appears. BOTTOMIi,j] is the bot-
tom level in which slice [i,j] appears. (Again, an entry is @ if no such slice

exists).
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Face domination matrix, FD.
FD[i,jl1=1 if face j dominates face i. FD[i jl=0 if face i dominates face j.
FD[i,jl=® if faces i and j are not opposing. (See section 3 for the definition
of domination.)

Vector TOP_SLICE.
TOP_SLICE[k] is the level of the highest slice that belongs to face k (the face

between columns k£ —1 and k).

TOP_LEVEL can be computed in constant time by assigning a processor to each
entry of LEVEL to check if it is 1 and the entry above it is 0.

The r'th row of ENDPOINT is computed using O(n/logn) processors in
O(logn) time by a balanced binary tree computation ((MR]). We "plant” a bal-
anced complete binary tree with n —1 leaves on level r of the upset polygon. Each
node, N, in the tree represents a range of entries in row r of LEVEL, between
columns I(N) and r(N). A node computes three functions:

propagate(N) - is true iff all the entries represented by N are 1.

start_right(N) - the first column of a slice starting between !(N) and r(N) and end-
ing to the right of r(N)—1.

end_left(N) - the last column of a slice ending between I(N) and r(N) and starting
to the left of I(N)+1.

An internal node, N, has two children, Ny and N s, Where LN o) =1(N),
r(N ign)=r(N) and F(N o) =N rign) — 1. Then we have:
propagate(N) = propagate(N ) and propagate(N igp,).
start_right(N) = if propagate(N ,;z,) then start_right(N ,p) else start_right(N .igns).
end_left(N) = if propagate(N ,z) then end_left(N ,;gp,,) else end_left(N jop).

The leaves of the tree represent single entries. If an entry is 0 then
propagate =false and end_left and start_right are both ®. If an entry is 1 then
propagate =true and end_left and start_right are both j (for the leaf representing
entry j). A node computes its functions after its children have computed theirs.
Furthermore, N, writes end_left(N g, In ENDPOINT start_right(N s and
start_right(N ) in ENDPOINT (end_left(N ;z3). Note that a value may be
overwritten several times. After completing computing the functions for the whole
tree, for each entry, j, if LEVEL[rj—-1]=1 and LEVEL[rj+1]=1, then
ENDPOINTI(r,j]is set to .

It takes O(logn) time for the node functions to be evaluated for the entire
tree. The whole computation can be done with O(n/logn) processors by a standard
load-balancing trick, as described in [MR]. Proof that this procedure works
correctly is straightforward, and is omitted.
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TOP and BOTTOM are computed by having a processor for each entry of
ENDPOINT. Processor [r,i] writes "j" in TOP[i,j] if ENDPOINT[r,il=j and
ENDPOINT[r+1,i]#j. Similarly for BOTTOM.

FD[i,jl=1 if ENDPOINT[TOP[ij1+1,j1=9 and either
ENDPOINTITOP[i ji+1,jl=2® or i<j).

For computing TOP_SLICE, let t=ENDPOINT[TOP_LEVEL(k],k]. Then
[k.t] is the highest slice touching face k. If FD[k,t]=1 then TOP_SLICE[k] is
equal to TOP_LEVEL(k]. Otherwise, it is one level below BOTTOMI[k,t] (unless
face B has no other slices than (k,t], which can be checked by looking up
LEVEL[BOTTOMI[k t]—1,k]).

Finally we partition each of the slices. Let s=[l/,r;h] be a slice. We use FD to
find if s belongs to face [ or face r. Then we use TOP_SLICE and HEIGHT to find
the height, &', of the highest slice belonging to that face. Now we can partition s
according to its height, 2, and A’ as described in theorem 3.1.

We need to show how to assign processors to slices. One way to do it is as fol-
lows: a vector, V, is created with one entry for each left face, with the entry being
the length of the face. A vector, P, of partial sums of V is computed. This vector
contains, essentially, an enumeration of the slices. Let a be the total number of
slices of U. We assign logn consecutive slices to each of a/logn processors. Each
processor finds its first slice in time O(logn) by a binary search on P. After that,
each of the successive slices is accessed in constant time.
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